
Extending Semi-supervised Learning Methods for Inductive Transfer Learning 
 

Yuan Shi 
School of Software, Sun Yat-sen University 

Guangzhou, China 
sycaszsu@gmail.com 

Zhenzhong Lan 
School of Software, Sun Yat-sen University 

Guangzhou, China 
lzzsysu@gmail.com

Wei Liu 
Department of Computer Science, Nanjing University  

Nanjing, China 
lwbiosoft@gmail.com 

Wei Bi 
Department of Computer Science, Sun Yat-sen 

University, Guangzhou, China 
biwei@mail2.sysu.edu.cn

 
 

Abstract—Inductive transfer learning and semi-supervised 
learning are two different branches of machine learning. The 
former tries to reuse knowledge in labeled out-of-domain 
instances while the later attempts to exploit the usefulness of 
unlabeled in-domain instances. In this paper, we bridge the two 
branches by pointing out that many semi-supervised learning 
methods can be extended for inductive transfer learning, if the 
step of labeling an unlabeled instance is replaced by re-weighting 
a diff-distribution instance. Based on this recognition, we 
develop a new transfer learning method, namely COITL, by 
extending the co-training method in semi-supervised learning. 
Experimental results reveal that COITL can achieve significantly 
higher generalization and robustness, compared with two state-
of-the-art methods in inductive transfer learning. 

Keywords-Inductive transfer learning; semi-supervised 
learning; co-training 

I.  INTRODUCTION 
In traditional data mining and machine learning research, 

it is often assumed that there are sufficient training data. For 
example, in supervised classification task, the labeled 
training instances are often assumed to be sufficient to train 
a good learner that can correctly classify unseen instances. 
In many practical applications, however, labeled instances 
are insufficient, because labeling training instances is often 
expensive, difficult, or time-consuming. Meanwhile, 
unlabeled instances may be relatively easy to obtain, thus 
can be used to compensate the lack of labeled instances, 
which motivates a recent machine learning branch - semi-
supervised learning [1]. Due to its importance in practice 
and theory, semi-supervised learning has received 
considerable attention. A number of learning methods, 
including self-training, co-training, graph-based methods, 
etc., have been proposed to effectively learn from both 
labeled and unlabeled data. 

Many machine learning methods, no matter for 
traditional machine learning or semi-supervised learning 
problems, are under a common assumption: the training and 
test data are drawn from the same distribution and the same 

feature space. So, when the distribution changes, most 
learning methods fail to work well. Therefore, human effort 
is required to re-collect a large amount of labeled data to re-
train a learner to fit the new distribution. Since the labeling 
process is often expensive, reducing human effort to label 
new data attracts increasing attention. This motivates 
another machine learning branch, namely transfer learning 
[2], which aims to transfer the knowledge in a source 
domain to solve the learning task in a related target domain, 
i.e. the domain we are interested in. The source and target 
domain have different data distributions or even different 
feature spaces. For example, in web page classification, we 
can use transfer learning to adapt a classifier for university 
pages to the classification task on Facebook.com [2]. This is 
because that although the data distribution between 
university web and social web pages are quite different, 
there still exists some common classification knowledge 
that can be reused to reduce the labeling effort. Even if we 
still want to classify the university web pages, transfer 
learning may also help, because the contents on web pages 
are changing over time, and the training data can be easily 
outdated (i.e. under a different distribution to the current 
data).  

Transfer learning has been studied for more than one 
decade, and various approaches have been developed. Most 
of these approaches can be summarized into two categories, 
namely instance-transfer and feature-representation-transfer. 
In instance-transfer, training instances in the source domain 
are re-weighted according to their impact on the learning in 
the target domain [3]. While feature-representation-transfer 
tries to learn a common feature representation across 
domains to reduce the domain divergence as well as the 
training error, making knowledge in different domains easy 
to transfer [4].  

Besides the learning strategies, different problem settings 
of transfer learning have also been studied. There are mainly 
three settings of transfer learning, namely inductive transfer 
learning, transductive transfer learning and unsupervised 
transfer learning [2]. In this paper, we focus on inductive 

2009 Ninth IEEE International Conference on Data Mining

1550-4786/09 $26.00 © 2009 IEEE

DOI 10.1109/ICDM.2009.75

483



transfer learning, in which only a few labeled data in the 
target domain are available. Besides, we assume that the 
source-domain data are also labeled, just the same as several 
other works like [3], [5]. In a word, our problem setting 
assumes that a large amount of source-domain data (referred 
to as diff-distribution data in the following) and a small 
amount of target-domain data (referred to as same-
distribution data) are available. Both the diff-distribution 
and same-distribution training data are labeled and under the 
same feature space. However, we should note that although 
a few same-distribution data are provided, they are still 
insufficient to train a good learner for the target domain. 
One intuition to solve the problem is to use the same-
distribution data to find out some useful diff-distribution 
instances and reuse them to improve the learning in the 
target domain, which exactly follows the instance-transfer 
strategy. In fact, several instance-based approaches for 
inductive transfer learning have already been proposed, such 
as auxiliary-data-based method [5] and boosting method for 
transfer learning [3], but their generalization ability and 
robustness still need to be improved.  

It is noteworthy that although inductive transfer learning 
and semi-supervised learning address different problems, 
they share similarities on their methodologies, thus many 
approaches for semi-supervised learning can be extended to 
inductive transfer learning setting. To develop better 
instance-based methods for inductive transfer learning, this 
paper attempts to extend methods in semi-supervised 
learning. The basic idea of the extension is to replace the 
step of labeling an unlabeled instance by re-weighting a 
diff-distribution instance.  Specifically, this paper extends 
the co-training method. As an often-used semi-supervised 
learning method, co-training trains two learners separately 
on two different views, and uses the predictions of each 
learner on unlabeled instances to augment the training set of 
the other learner. Such training style has the advantages of 
high generalization ability and strong robustness, which has 
been reported by several research works (for example, refer 
to [6]). In our CO-training method for Inductive Transfer 
Learning (COITL), two base learners also learn in a 
collaborated way, however, the information that one learner 
gives to the other is the weight of a diff-distribution instance 
instead of the predicted label of an unlabeled instance. The 
co-training method uses the weighted k Nearest Neighbor 
( k NN) method [7] as the base learner, and implement two 
learners by setting different values for the parameter k . 
Moreover, each k NN learner weights a diff-distribution 
instance according to its influence on the training error. An 
efficient implementation of COITL is also presented. 
Experimenting on eight data sets, we show that the proposed 
method outperforms state-of-the-art approaches in inductive 
transfer learning, in terms of generalization error and 
robustness to noise. 

To summarize, this paper has mainly two contributions. 
First, it bridges inductive transfer learning and semi-
supervised learning, and shows that many semi-supervised 

learning methods can be extended for inductive transfer 
learning. Second, it develops a new transfer learning method 
by extending the co-training method in semi-supervised 
learning. The rest of this paper is organized as follows. 
Section II presents the related work. Section III gives the 
problem statement. Section IV discusses the relationship of 
the two learning branches. Section V gives the details of 
COITL. Section VI reports the experimental results. Finally, 
Section VII concludes. 

II. RELATED WORK 

A. Instance-transfer 
Transferring knowledge from instances is intuitively 

appealing. Although directly reusing the diff-distribution 
data is unfeasible, there are certain parts of the data that can 
still be reused to benefit the learning in the target domain 
[2]. Here we briefly review a few research works with the 
similar problem setting as ours.  

Wu and Dietterich [5] presented a way of integrating 
auxiliary training data into k NN as well as support vector 
machine methods. The methodology is to minimize a 
weighted sum of two loss functions, one for original training 
data (i.e. same-distribution data) and the other for auxiliary 
data (i.e. diff-distribution data). Their experiments 
demonstrated that using auxiliary data can improve the 
classification performance when the original training data 
are inadequate. Note that in their work, all diff-distribution 
training data are given the same weight, yet our method sets 
the weight for each diff-distribution instance separately. 

Liao et al. [8] introduced an auxiliary variable for each 
diff-distribution instance to reflect the distribution 
mismatch. Those auxiliary variables are estimated as a 
byproduct, along with the classifier. They also incorporated 
a new active learning method to select unlabeled same-
distribution instances to be labeled with the help of diff-
distribution data. In our method, however, we perform 
transfer learning only on labeled data. 

Dai et al. [3] proposed a boosting algorithm, namely 
TrAdaBoost, as an extension of the AdaBoost algorithm. 
The idea is to use a small number of same-distribution 
instances to find out useful diff-distribution instances by 
iteratively adjusting their weights. In each iteration, a base 
learner is trained on the weighted training data and used to 
predict the label of each training instance. Moreover, 
TrAdaBoost uses the same strategy as AdaBoost to update 
the weights of incorrectly classified same-distribution 
instances while also adopts a different strategy from 
AdaBoost to update the weights of misclassified diff-
distribution instances. Experimental results verified the high 
generalization of TrAdaBoost.  

B. Co-training 
The co-training method, first proposed by Blum and 

Mitchell [9], presents a novel learning style: two learners 
are separately trained on two sufficient and redundant 

484



views, and the predictions of each learner on unlabeled 
instances are used to augment the training set of the other 
one. Here, the two sufficient and redundant views are two 
attribute sets which satisfy the following two requirements: 
first, each attribute set is sufficient to train a good learner; 
second, given the class label, each attribute set is 
conditionally independent to the other. Later, Dasgupta et al. 
[10] theoretically showed that when there exist two 
sufficient and redundant views, the co-trained learners can 
reduce the generalization error by maximizing their 
agreement over the unlabeled instances. Although co-
training has been successfully utilized in several domains, 
such as statistical parsing [11] and noun phrase 
identification [12], in most application scenarios, the 
requirement of sufficient and redundant views, could not be 
met. Therefore, some variants of co-training which relax the 
requirement of sufficient redundancy were proposed.  

Goldman and Zhou [13] developed a relaxing version of 
the co-training method. Their method employs two different 
supervised learning algorithms to divide the instance space 
into a set of equivalence classes, and uses cross validation to 
help label the unlabeled instances and generate the final 
hypothesis. Their experimental results demonstrated that 
although there are no sufficient and redundant views, such 
co-training version can still achieve excellent performance. 
Recently, Wang and Zhou [14] theoretically proved that, co-
training can be effective if the learners are diverse, which 
implies that the sufficient and redundant views are actually 
used to achieve the diversity of the learners, and they are not 
necessary if the diversity can be achieved from other ways. 
For example, in [7], the diversity is achieved by setting 
different parameters for the k NN method, so that even with 
the same view, i.e. the same attribute set, co-training still 
outperforms many other methods. 

In this paper, we adopt the same co-training style in [7], 
that is, our method does not use two views, and achieves the 
diversity of learners by setting different values for the 
parameter k  in k NN. Clearly, such implementation is more 
general than the classical version of co-training.  

III. PROBLEM STATEMENT 
In our problem setting, the data in the source domain and 

target domain have the same feature space X and label set 
Y ( {0,1}Y = ), but they are under different distributions. 
The training set T consists of two sets of instances: training 
data in the target domain (denoted by sT ) and training data 
in the source domain  (denoted by dT ). All instances in 

sT and dT are labeled. As mentioned above, in this paper, we 
would refer sT to the same-distribution data set and dT to the 
diff-distribution data set. Moreover, we denote the test set as 
E , which contains a set of unlabeled instances.  

Both the same-distribution data set sT and the test set 
E are from the target domain, thus have the same 
distribution. While dT and E are from different domains, 

thus their distributions are different. Note that the size of sT  
is supposed to be relatively small, so that merely training on 

sT is unable to produce a high-performance learner. 
However, the size of dT is relatively large, since we assume 
that it is easy to obtain large amounts of source-domain 
data. An illustrative example of sT and dT is shown in 
Figure 1. 

 

Figure 1.  An example of the same-distribution data set and diff-
distribution data set 

More formally, we define sT , dT  and E as follows. 
The training set in the target domain: 

1 1 2 2{( , ), ( , ),..., ( , )}s s s s s s
s n nT x y x y x y=  

where ( 1,2,..., )s
ix X i n∈ = is the feature vector of the i th 

instance, s
iy Y∈ is its corresponding label, and n is the size 

of sT . 
The training set in the source domain: 

1 1 2 2{( , ), ( , ),..., ( , )}d d d d d d
d m mT x y x y x y=  

where ( 1,2,..., )d
ix X i m∈ = is the feature vector of the i th 

instance, d
iy Y∈ is its corresponding label, and m is the size 

of dT . 

The test set (in the target domain): 1 2{ , ,..., }e e e
rE x x x= , 

where ( 1,2,..., )e
ix X i r∈ = is the i th instance’s feature 

vector, and r is the size of the test set. 
The objective of inductive transfer learning is to use 

sT and dT to learn a function :f X Y→ , such that f can 
correctly predict the label of instances in the test set E .  

IV. BRIDGING INDUCTIVE TRANSFER LEARNING AND 
SEMI-SUPERVISED LEARNING 

We know that inductive transfer learning and semi-
supervised learning are two different machine learning 
branches for solving different learning problems. They are 
motivated by the observation that in many application areas, 
labeling new data is expensive, as it requires the effort of 
experienced human annotators. Hence both branches 
attempt to explore a large number of auxiliary data to reduce 
the labeling effort. Their differences are: 

 

485



a. Inductive transfer learning focuses on learning from 
auxiliary labeled data, while semi-supervised learning 
focuses on learning from auxiliary unlabeled data. 
b. In inductive transfer learning, the auxiliary and original 
labeled training data are under different distributions or 
even different feature spaces, while in semi-supervised 
learning, the auxiliary unlabeled data and original labeled 
data are drawn from the same distribution. 

Considering the above differences, we can see that, 
although in inductive transfer learning, labels of auxiliary 
data are available, they cannot be used directly due to the 
distribution divergence. Therefore, re-weighting training 
data is often adopted to reduce the distribution divergence. 
While in semi-supervised learning, although auxiliary data 
are unlabeled, their labels can be predicted as they are under 
the same distribution with the labeled data.  

Roughly speaking, in both branches, the auxiliary data 
can be explored in two levels – instance-level and structure-
level. In the instance-level, a learning method attempts to 
select some useful auxiliary instances and add them to the 
original training set. Typical methods are self-training [15] 
and co-training [9] [13] in semi-supervised learning, as well 
as TrAdaBoost [3] in transfer learning.  While in the 
structure-level, a learning method uses the large collection 
of auxiliary data to help learn the intrinsic structure of the 
data. Typical methods are harmonic function [16] and 
manifold regularization [17] in semi-supervised learning, 
and Eigen-transfer [18] in transfer learning. In the following, 
we show the connection between the two branches from the 
instance-level. 

It’s clear that, in the instance-level, the key step in 
inductive transfer learning is to calculate the weight of a 
diff-distribution instance (we only consider instance-transfer 
here), while the key step in semi-supervised learning is to 
calculate the label of an unlabeled instance. The basic idea 
of extending semi-supervised methods for inductive transfer 
learning is to replace the step of calculating the label of an 
unlabeled instance with the step of calculating the weight of 
a diff-distribution instance. This idea is intuitive, since if the 
weights of diff-distribution instances are determined, the 
weighted diff-distribution data can be considered under a 
quite similar distribution to the same-distribution data (this 
is because, in instance-transfer, re-weighting diff-
distribution data essentially reduces distribution 
divergence). Therefore, after re-weighting, a set of labeled 
instances under the same or at least very similar distribution 
to the original labeled data are produced, which is 
equivalent to the result in semi-supervised learning after the 
labels of unlabeled instanced being predicted. Thus, semi-
supervised learning methods such as self-training and co-
training can be easily extended for inductive transfer 
learning. For instance, co-training can be extended so that 
each learner teaches the other the weights of some diff-
distribution instances. We will discuss the details of such 
method in next section. 

The above thinking points out that, to make the extension 
feasible, a weighting strategy needs to be designed first. It is 
noteworthy that the weighting strategy can also be inspired 
by ideas in semi-supervised learning. For instance, in semi-
supervised learning methods, the confidence of an unlabeled 
instance is often estimated, and the most confident instance 
is labeled with priority. Such labeling confidence is 
functionally similar to the weight in transfer learning, since 
it points out the usefulness of an auxiliary instance. In our 
co-training method, the weighting strategy can be seen as an 
extension of the confidence measurement strategy in [7].  

V. CO-TRAINING FOR INDUCTIVE TRANSFER LEARNING 

A. Weighting strategy 
In our co-training method, k NN is chosen to be the base 

learner, with two considerations. First, due to the iterative 
property of co-training, a base learner needs to be re-trained 
many times. Since k NN is a lazy learner, the training 
process is just updating its training set, which is very 
efficient and easy to implement. Second, due to the local 
property of k NN (i.e. the label of an instance is predicted 
by local neighbors), calculating the weight of an instance 
can be efficient. Therefore, the weighting strategy discussed 
below is particularly suitable for k NN, yet its underlying 
idea can be generalized to other learners. 

To facilitate our discussion, we first define the neighbor 
error. 
Definition. The neighbor error of an instance is the error 
between its true label and the predicted label by its 
neighboring instances. 

Let ( , )i ix y denote an instance whose weight is iw . Its 
k nearest neighbors are denoted by 

1 2
, ,...,

ki i ix x x , with the 

weight 
1 2
, ,...,

ki i iw w w , respectively. Therefore, the neighbor 

error of the instance ( , )i ix y is calculated according to the 
following equation: 

1

1

| |j j

i

j

k
i ij

x i k
ij

y w
e y

w
=

=

= −
∑
∑                           

(1) 

Note in the above equation, 
1 1

/
j j j

k k
i i ij j

y w w
= =∑ ∑ gives the 

predicted label of ( , )i ix y by its k neighboring instances.  
The underlying idea of the weighting strategy is to re-

weight an instance according to its influence on the training 
error. If the influence is relatively positive, the instance will 
have a relatively high weight. Let 'T denote the current 
training set. Initially, 'T is set to be the same-distribution 
data set sT , and the weights of all instances in sT are set to 
be 1 (we will explain how 'T being updated in next 
subsection). For each diff-distribution instance ( , )d d

i ix y , 
consider its influence on 'T . Assume that due to the 
addition of ( , )d d

i ix y , a number of goodn instances’ neighbor 

486



error is reduced while a number of badn instances’ neighbor 
error is increased. If good badn n≥ and 0goodn > , then the 

weight of ( , )d d
i ix y , denoted by d

iw , is set as follows: 

goodd
i

good bad

n
w

n n
=

+                                
(2) 

Otherwise, the instance is simply dropped. We can see that 
in equation (2), if goodn equals to badn , the weight has the 
smallest value 0.5; if 0goodn > and badn equals to 0, the 
weight has the largest value 1. The intuition is that if a diff-
distribution instance brings more positive influence and less 
negative influence, its weight will be higher. What should 
be pointed out is that the neighbor error of an instance is not 
exactly the same as the training error of an instance, since 
the neighbor error is a real value while the training error is 
usually a binary value (i.e. correct or not). However, using 
the neighbor error can help evaluate an instance’s influence 
more accurately due to its real-value property. 

B. COITL 
In this section, the proposed co-training method (COITL) 

is discussed in detail. As mentioned in Section II, to make 
co-training effective, two base learners should be diverse. In 
our implementation of co-training, two learners both are 
k NN, thus the diversity is achieved by setting different 
values for the parameter k . Since the weighting strategy is 
based on the neighboring structure, different k values will 
result in differences on instances’ weights given by two 
learners. Such setting also brings another profit, as it is 
usually difficult to decide which k value is better for the 
learning problem at hand, two learners with different k  
values might have complementary effects. 

Let 1L , 2L denote the two learners, and 1T , 2T be their 
corresponding training set, respectively. Note, in co-
training, each learner is trained on its own training set, and 
its training set can be updated by the other learner. Initially, 

1T and 2T are both set to be the same-distribution data set 

sT , in which the weights of all instances are set to be 1. In 
every iterative step, each learner randomly selects an 
unprocessed diff-distribution instance and judges whether 
the instance be re-weighted or just dropped. If the diff-
distribution instance needs to be re-weighted, then the 
learner sets the weight for the instance using the weighting 
strategy discussed in the above subsection, and adds the 
weighted instance to the training set of the other learner. 
This training step repeats until all diff-distribution instances 
are processed. Note that in our method, a learner just selects 
a random diff-distribution instance and gives it to the other 
if it can be re-weighted. This implementation differs from 
the one in semi-supervised learning, where usually the most 
confident instance is selected. We use the random selection 
just because it is more efficient than selecting the instance 

with the maximum weight (analogous to the labeling 
confidence in semi-supervised learning).  

After co-training, the hypotheses of 1L and 2L should be 
combined to give the final hypothesis. A simple method is 
to use the linear combination, that is, constructing a 
combined hypothesis *h by: *

1 1 2 2h h hα α= + , where 

1α , 2 [0,1]α ∈ are two weighing factors, 1h and 2h are two 
hypotheses given by 1L and 2L , respectively. We can 
calculate 1α and 2α  as follows. Let 1e and 2e be the training 
error of 1L and 2L  on the same-distribution data set sT . 

Then 2
1

1 2

e
e e

α =
+

and 1
2

1 2

e
e e

α =
+

, which implies that the 

weighting factor of a learner is larger if it produces less 
training error on sT . The procedures of COITL are shown in 
Table I.  

TABLE I.   THE PROCEDURES OF COITL 

Algorithm: COITL
Input: the same-distribution data set sT (size = n ), the diff-

distribution data set dT (size = m ), the neighboring 

parameter 1k , 2k  
Process: 

  for i =1 to n    
     1s

iw ←  
  end for 
  1 sT T← , 2 sT T←  

   Set 1T and 2T to be the training sets for two learners 

1L and 2L , respectively. The neighboring parameter for 

1L and 2L  are 1k and 2k , respectively. 
  for t = 1 to / 2m   
      for {1,2}j = do 

      Randomly select an unprocessed diff-distribution 
instance ( , )d d

i ix y from dT  

           Use jT to calculate goodn and badn of ( , )d d
i ix y  

           if good badn n≥ and 0goodn > then 

                goodd
i

good bad

n
w

n n
=

+
 

if j equals to 1 then 

                         Add ( , )d d
i ix y with d

iw to 1jT +  

                    else 
                         Add ( , )d d

i ix y with d
iw to 1jT −  

                    end if 
               end if 
          end for 
      end for 

1 1h L← , 2 2h L←  
Set 1α and 2α as the weights of 1L and 2L , according to 

their training error on sT . 

Output: *
1 1 2 2h h hα α= +  

487



C. Efficient implementation 
It is noteworthy that the method in [7] also needs to find a 

set of instances being influenced by an added instance, i.e. 
having the added instance as a neighboring instance. They 
stated that finding all influenced instances in the whole 
training set is time-consuming and proposed an 
approximation strategy. However, in this subsection, we 
give an efficient implementation of our method which can 
accurately find all influenced instances with the same time 
and space complexity as the approximation strategy. 

Note that in the weighting strategy, to calculate goodn and 

badn of an instance ( , )d d
i ix y , we need to find out a set of 

instances influenced by ( , )d d
i ix y . Here we call the set 

containing a few instances influenced by ( , )d d
i ix y as the 

influenced set (denoted by iΛ ). In order to efficiently 
process the influenced set, our method needs to store 
necessary information. For simplicity, let us first consider 
the case when there is only one training set, denoted by 'T . 
The size of 'T is ( )O n m+ . For each instance ( , )i ix y in 'T , 
we use an array iA to store the indexes of its k neighbors 

1 2( , ,..., )ki i i . The array is sorted in ascending order 
according to the distance between ( , )i ix y to each neighbor, 
i.e.,

1 2
( ) ( ) ... ( )

ki i i i i iD x x D x x D x x− ≤ − ≤ ≤ − . Here ()D returns 
the distance between two instances. The largest neighbor 
distance, i.e., ( )

ki iD x x− , is named the radius of the 

neighboring structure (denoted by ir ).  
It’s easy to see that the space complexity of our method 

is ( ( ))O k n m+ , since for each instance in the training set, a 
k -length array is maintained. For discussing the time 
complexity, we distinguish two operations, namely 
searching for the influenced set and updating the influenced 
set. The first operation is invoked when we want to find out 
the weight of a diff-distribution instance, while the second 
operation is performed when we want to add a weighted 
diff-distribution instance to the training set. Assume that 
calculating the distance of two instances takes 1c time, and 
comparing two real values takes 2c time. Note that in 
common cases, 1 2c c>> . When searching for the influenced 
set, we need first to calculate the distance between the diff-
distribution instance to each instance in the training set, 
which takes 1 ( )c O n m+ time. After that, for each instance in 
the training set, its distance to the diff-distribution instance 
should be compared with its radius to see whether the 
instance is influenced, which takes 2 ( )c O n m+ time. 
Therefore, the total time complexity for finding the 
influenced set for one diff-distribution instance is 

1 2 1( ) ( ) ( )cO n m c O n m cO n m+ + + = +  (recall that 1 2c c>> ).  
Then, let us consider the time complexity for updating the 

influenced set. Note that the updating operation itself 

contains two sub-operations: first, the influenced set for the 
diff-distribution instance should be searched (because in co-
training, the weighted instance is added to a new training 
set); second, the arrays of each instance in the influenced set 
should be updated. The first sub-operation takes 1 ( )c O n m+  
time, as discussed above. For the second sub-operation, 
since each array has been already sorted, updating one array 
takes 2 ( )c O k time. Let the maximum size of an influenced 
set be An , thus, modifying all arrays take 2 ( )Ac O kn time. 
Combing the time complexity of the two sub-operations 
together, the time complexity for updating the influenced set 
is 1 2( ) ( )Ac O n m c O kn+ + . Let us make another assumption, 
that is, ( ) /An n m k< + . This assumption makes sense, since 
usually m is very large while k is relatively small (in our 
experiments, m is 1000, k is no more than 5, and An equals 
to 3k ). Hence the time complexity for updating the 
influenced set is: 

1 2 1 2 1( ) ( ) ( ) ( ) ( )AcOn m cOkn cOn m cOn m cOn m+ + < + + + = + . The equation 
holds because 1 2c c>> . The above analysis shows that, the 
time complexity of searching for and updating the 
influenced set both are 1 ( )c O n m+ . 

Now we come to the co-training setting, in which one 
learner first re-weights a diff-distribution instance (this 
invokes the operation named searching for the influenced 
set), and adds the weighted instance to the training set of the 
other learner (this invokes the operation named updating the 
influenced set). Thus, the time complexity for one learner to 
teach the other learner once is 1 ( )c O n m+ . 

As mentioned above, in [7], an approximation strategy 
was proposed to process the influenced set. However, the 
time complexity of their approximation strategy is 
still 1 ( )c O n m+  (as can be proved) and the space complexity 
is also the same as ours, which implies that the 
approximation is actually not necessary. Also, as stated in 
[7], in some cases the approximation may bring negative 
effects. This further demonstrates the advantage of our 
efficient implementation. 

VI. EXPERIMENTS 

A. Datasets and preprocessing 
In the experiments, we choose eight datasets, four of 

which (Mushroom 1 , Waveform 2 , Magic 3 , Splice 4 ) are 
directly obtained from UCI Machine Learning Repository, 
and the other three are generated by adding noise to the four 
original datasets. The Mushroom dataset has 8124 instances. 
Each instance has 22 attributes which describe some 

                                                           
1 http://archive.ics.uci.edu/ml/datasets/Mushroom 
2http://archive.ics.uci.edu/ml/datasets/Waveform+Database+Generator+(Ve
rsion+1) 
3 http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope 
4 http://archive.ics.uci.edu/ml/datasets/Molecular+Biology+%28Splice-
junction+Gene+Sequences%29 

488



properties of a mushroom. All instances can be classified 
into two classes - poisonous or non-poisonous. We use the 
mechanism in [3] to construct the training and test set: for 
each instance, if its attribute stalk-shape is enlarging, then 
this instance is put into the same-distribution or test data set; 
otherwise, it is put into the diff-distribution data set. In all 
datasets, we fix the size of the diff-distribution data set to be 
1000, the size of the test data set to be 1000, and the 
maximum size of the same-distribution data set is 500 (note 
in experiments, the size of the same-distribution data set has 
several different values). To show that the construction 
mechanism is effective, we can calculate the “diff-test error” 
by setting the diff-distribution data as the training data and 
calculate the prediction error on the test data (the underlying 
learner is k NN with k  = 3). For the Mushroom dataset, the 
diff-test error is 0.659, which implies the large distribution 
difference in the same-distribution data and the diff-
distribution data (note the test data and the same-distribution 
data are under the same distribution). In the experiments, we 
are also interested in the robustness of a learning method. 
Here the robustness evaluates its sensitiveness to noisy 
instances. Therefore, for each of the four datasets, we also 
construct its corresponding noisy dataset (for example, the 
Mushroom-Noise dataset corresponds to the Mushroom 
dataset). The mechanism to construct the noisy dataset is to 
flip a diff-distribution instance’s label with the probability 
of 0.015. Note that we only add noise to the diff-distribution 
data. This makes sense, because usually the same-
distribution instances are just a few, which are carefully 
labeled by humans. The diff-distribution data, however, are 
often large in amounts, which tend to contain noise. The 
diff-test error of the Mushroom-Noise dataset is 0.666, 
slightly larger than that of the Mushroom dataset. 

The Waveform dataset has 5000 instances, each of which 
contains 21 attributes. All instances can be classified into 
three classes; however, in the experiments we only choose 
instances from the first two classes. For each chosen 
instance, if its first attribute value is larger than 0.15 and its 
second attribute value is larger than 0, it is put into the 
same-distribution or test data set; otherwise, it is put into the 
diff-distribution data set. The diff-test error is 0.301. 
Similarly, we construct its corresponding noisy dataset by 
introducing labeling noise with the probability of 0.015. The 
diff-test error of the Waveform-Noise dataset is 0.405. 

The Magic dataset has 19020 instances, each with 10 
attributes. All instances belong to two classes. For each 
instance, if its first attribute value is larger than 100, it is 
added to the same-distribution or test data set; otherwise, it 
is added to the diff-distribution data set. The diff-test error 
of the Magic dataset and Magic-Noise dataset are 0.123 and 
0.204, respectively. 

The Splice dataset has 3190 instances, each containing 60 
attributes. Each instance belongs to one of three classes 
(‘EI’, ‘IE’ and ‘Neither’). Since in this paper, only binary 
classification problem is addressed, we combine the class 
‘EI’ and ‘IE’ to form a single class. Then, for each instance, 

if the first attribute value is ‘A’ or ‘G’, we add it to the 
same-distribution or test data set; otherwise, we add it to the 
diff-distribution data set. The diff-test error of the Splice 
dataset and Splice-Noise dataset are 0.263 and 0.287, 
respectively. 

Table II lists the information of the eight datasets. 

TABLE II.  THE INFORMATION OF THE EIGHT DATASETS 

dataset # 
attr. 

size 
of dT  

max 
size 

of sT  

size 
of E  

diff-test 
error 

Mushroom 22 1000 500 1000 0.659 
Mushroom-Noise 0.666 

Waveform 21 1000 500 1000 0.301 
Waveform-Noise 0.405 

Magic 10 1000 500 1000 0.123 
Magic-Noise 0.204 

Splice 
60 1000 500 1000 

0.263 
Splice-Noise 0.287 

 
Finally, complete content and organizational editing 

before formatting. Please take note of the following items 
when proofreading spelling and grammar: 

B. Experimental results 
In the experiments, four learning methods are chosen to 

be compared. They are k NN, COITL, Aux- k NN [5] and 
TrAdaBoost [3]. For k NN, k is set to be 3. For COITL, the 
two k  values are set to be 3 and 5, respectively. The 
parameter settings for Aux- k NN and TrAdaBoost follow 
those proposed in literatures. To test the performance of 
each learning method in different conditions, the size of the 
same-distribution data varies from 10 to 500. Table III 
shows the experimental results (test error) on the Mushroom 
dataset. We can see that, when the size of the same-
distribution data set is smaller than 100, transfer learning is 
effective, as it reduces the generalization error. When the 
size of the same-distribution data set is larger than 100, the 
effects of transfer learning are not apparent.  

TABLE III.   EXPERIMENTAL RESULTS (TEST ERROR) ON THE 
MUSHROOM DATASET 

Learning 
Method 

size of the same-distribution data set 

10 20 40 60 80 100 250 500 
kNN 0.359 0.208 0.122 0.064 0.057 0.038 0.004 0.003 

COITL 0.274 0.120 0.087 0.054 0.054 0.033 0.004 0.003 
TrAdaBoost 0.375 0.148 0.070 0.070 0.039 0.025 0.004 0.003 
Aux- kNN 0.343 0.168 0.105 0.085 0.053 0.046 0.004 0.003 

 
It may be difficult to assess the rank of each learning 

method; therefore we provide a meaningful criterion to 
compare the performance of different methods. The 
criterion is named the Average Test Error Reduction 
(ATER), which is the mean of the reduced test error 
compared to k NN when the size of the same-distribution 
data set varies. Formally, for a learner *L (COITL, Aux-

489



k NN or TrAdaBoost), its ATER is obtained using the 
following equation: 

*

8*
NN1

1( ) ( )
8 k Li

ATER L e e
=

= −∑  

where NNke is the test error of k NN and *L
e is the test error 

of *L . As can be seen, the ATER uses k NN as the baseline 
to evaluate the performance of other learning methods. 
Also, it’s easy to see that the ATER reveals the average 
generalization ability of a learning method. 

TABLE IV.  THE ATER OF EACH LEARNING METHOD ON THE CLEAR 
DATASETS. 

Learning 
Method 

ATER 
Mushroom Waveform Magic Splice

COITL 0.028 0.100 0.077 0.161 
TrAdaBoost 0.015 0.058 0.056 0.065 

Aux-kNN 0.006 0.042 0.037 0.035 
 

Table IV lists the ATER of each learning method on the 
clear datasets. It is evident that COITL significantly 
outperforms TrAdaBoost and Aux-kNN on all of the four 
datasets. Also, TrAdaBoost performs better than Aux-kNN 
on each dataset.  

Figure 2 shows the performance comparisons of different 
learning methods on clear datasets. Note that when the 
number of the same-distribution data is quite small (i.e. 
equals to 10), transfer learning methods can significantly 
improve the test error. For example, in Waveform dataset, 
the test error is reduced from over 0.4 to about 0.1 when 
transfer learning is performed. Also note, the curves of the 
test error are not monotonously descending, because the 
same-distribution data are so insufficient that adding just a 
few same-distribution instances may not help to train a 
better learner.  

 
(a) Mushroom           (b)  Waveform 

 
(c) Magic         (d)  Splice 

Figure 2.  Performance comparisons on clear datasets 

490



TABLE V.  THE ATER OF EACH LEARNING METHOD ON THE NOISY 
DATASETS 

Learning 
Method 

ATER 
Mushroom-

Noise 
Waveform-

Noise
Magic-
Noise 

Splice-
Noise

COITL 0.042 0.095 0.043 0.145 
TrAdaBoost 0.015 0.057 0.028 0.057 

Aux-kNN 0.017 -0.022 0.013 0.051 
 
Table V lists the ATER of each learning method on the 

noisy datasets. Again, COITL achieves much higher 
generalization than the other learning methods. The results 
also demonstrate the high robustness of COITL. By 
contrast, the robustness of TrAdaBoost and Aux-kNN are 
worse. Note that although TrAdaBoost performs better than 
Aux-kNN on the Mushroom dataset, it makes larger test 
error on the Mushroom-Noise dataset. Also note, Aux-kNN 
has negative ATER on the Waveform-Noise dataset, 

meaning that its transfer learning brings bad effects. Those 
observations reflect that TrAdaBoost and Aux- kNN are 
more sensitive to noise than COITL.  

Figure 3 shows the performance comparisons of different 
learning methods on noisy datasets. It is noteworthy that 
adding noise to the diff-distribution data may reduce the test 
error of the transfer learning methods. For instance, in the 
Mushroom-Noise dataset, the three transfer learning 
methods have better performance than that on the 
Mushroom dataset. This is not strange because those 
methods always select useful diff-distribution instances 
based on the same-distribution data. However, in many 
cases, the introduction of noisy instances can have bad 
effects. Comparing Table IV with Table V, we can see that 
TrAdaBoost and Aux-kNN perform worse on the 
Waveform-Noise and Magic-Noise datasets than on the 
Waveform and Magic datasets. 

 

 
(a) Mushroom-Noise      (b)  Waveform-Noise 

 
(c) Magic-Noise         (d) Splice-Noise 

Figure 3.  Performance comparisons on noisy datasets 

491



The outstanding performance of COITL can be roughly 
explained as follows. First, it utilizes the co-training 
mechanism which helps to generalize well through 
maximizing the agreement on the diff-distribution data by 
two learners. Second, the different k values for each kNN 
allow them to have some compensated effects on different 
datasets. For example, kNN with a very small value of k 
tends to perform well when there is little noise in the 
dataset, while kNN with a relatively large value of k may be 
more robust on noisy dataset. In our experiments, we found 
that although k values are sensitive to different datasets, 
setting them to 3 and 5 may be a robust choice, as it gives 
good results on each dataset. In practice, one can also use 
cross-validation to choose more proper k values. 

VII. CONCLUSION 
Inductive transfer learning and semi-supervised learning 

are two different branches of machine learning. In this 
paper, we bridge them by showing that many semi-
supervised learning methods can be extended for inductive 
transfer learning, if the step of labeling of an unlabeled 
instance is replaced by re-weighting a diff-distribution 
instance. Based on this recognition, we develop the COITL 
algorithm which extends the co-training method in semi-
supervised learning. COITL employs two k NN learners 
with different values of k . In every learning iteration, each 
learner re-weights a diff-distribution instance for the other 
one, where the weight of the instance is determined 
according to its influence on the training error. The final 
prediction is made by linearly combining the predictions of 
both learners. Moreover, an efficient implementation of 
COITL with relatively low time complexity is discussed. 
Experimental results show that, compared with two state-of-
the-art methods in inductive transfer learning, COITL can 
have less generalization error and stronger robustness. 

There are three research issues to be explored in the 
future: first, theoretically analyzing the properties of 
COITL; second, extending other semi-supervised learning 
approaches, like the graph methods, for inductive transfer 
learning; third, extending inductive transfer learning 
approaches for semi-supervised learning. The third issue is 
quite interesting, as we believe it will bring more insightful 
understanding of the relationship between semi-supervised 
learning and transfer learning. 

ACKNOWLEDGMENT 
We thank the anonymous reviewers for their helpful 

comments. 
 

REFERENCES 
[1] Zhu X., “Semi-supervised Learning Literature Survey”, Technical 

Report 1530, University of Wisconsin-Madison, 2008. 
[2] Sinno J. P., and Qiang Y., “A Survey on Transfer Learning”, 

Technical Report, Hong Kong University of Science and Technology, 
2008. 

[3] Dai W., Qiang Y., Xue G., and Yong Y., “Boosting for Transfer 
Learning”, In Proceedings of the 24th International Conference on 
Machine Learning (ICML), 2007. 

[4] Argyriou, A., Evgeniou, T., and Pontil, M., “Multitask Feature 
Learning”, In Proceedings of the 19th Annual Conference on Neural 
Information Processing Systems (NIPS), 2007. 

[5] Wu P., and Thomas G. D., “Improving SVM Accuracy by Training 
on Auxiliary Data Sources”, In Proceedings of the 21st International 
Conference on Machine Learning (ICML), 2004. 

[6] Sarkar, A., “Applying Co-training Methods to Statistical Parsing”, In 
Proceedings of the 2nd Annual Meeting of the North American 
Chapter of the Association for Computational Linguistics, 2001. 

[7] Zhou, Z. H., and Ming L., “Semi-supervised Regression with Co-
training Style Algorithms”, IEEE Transaction on Knowledge and 
Data Engineering, 2007, pp. 1479-1493. 

[8] Liao, X., Ya X. and Lawrence C., “Logistic Regression with An 
auxiliary Data Source”, In Proceeding s of the 21st International 
Conference on Machine Learning (ICML), 2004. 

[9] Blum, A. and Mitchell, T., “Combining Labeled and Unlabeled Data 
with Co-training”, In Proceedings of the 11th Annual Conference on 
Computational Learning Theory (COLT), 1998. 

[10] Dasgupta, S., Littman, M., and McAllester, D., “PAC Generalization 
Bounds for Co-training”, In Advances in Neural Information 
Processing Systems, MIT Press, 2002, pp. 375-382. 

[11] Hwa R., Osborne, M., Sarkar, A., and Steedman, M., “Corrected Co-
training for Statistical Parsers”, In Working Notes of the ICML’03 
Workshop on Continuum from Labeled to Unlabeled Data in Machine 
Learning and Data Mining, 2003. 

[12] Pierce, D., and Cardie, C., “Limitations of Co-training for Natural 
Language Learning from Large Data Sets”, In Proceedings of 
Empirical Methods in Natural Language Processing, 2001. 

[13] Goldman, S., and Zhou, Y., “Enhancing Supervised Learning with 
Unlabeled Data”, In Proceedings of the 17th International 
Conference on Machine Learning (ICML), 2000. 

[14] Wang, W. and Zhou Z. H., “Analyzing Co-training Style 
Algorithms”, In Proceedings of the 18th European Conference on 
Machine Learning (ECML), 2007. 

[15] Culp M. and Michailidis G., “An Iterative Algorithm for Extending 
Learners to a Semi-supervised Setting. Journal of Computational 
Graphics and Statistics, 2008. 

[16] Zhu, X., Ghahramani, Z., and Lafferty, J., “Semi-supervised Learning 
Using Gaussian Fields and Harmonic Functions”, In Proceeding s of 
the 20th International Conference on Machine Learning (ICML), 
2003. 

[17] Belkin, M., Niyogi, P., and Sindhwani, V., “Manifold Regularization: 
A Geometric Framework for Learning from Labeled and Unlabeled 
Examples”, Journal of Machine Learning Research, 2006. 

[18] Dai, W., Jin, O., Xue, G., Yang, Q., and Yu, Y., “Eigen-Transfer: A 
Unified Framework for Transfer Learning”, In Proceedings of the 
26th International Conference on Machine Learning (ICML), 2009.  

492


