
Model-Based 3D Object Tracking Using an Extended-Extended Kalman Filter
and Graphics Rendered Measurements

Hua Yang Greg Welch
Computer Science Department Computer Science Department

Univ. of North Carolina at Chapel Hill Univ. of North Carolina at Chapel Hill
Chapel Hill, NC 27599 Chapel Hill, NC 27599
yanghua@cs.unc.edu welch@cs.unc.edu

Abstract

This paper presents a model-based 3D object tracking system that uses an improved Extended
Kalman filter (EKF) with graphics rendering as the measurement function. During tracking, fea-
tures are automatically selected from the input images. For each camera, an estimated observation
and multiple perturbed observations are rendered for the object. Corresponding features are ex-
tracted from the sample images, and their estimated/perturbed measurements are acquired. These
sample measurements and the real measurements of the features are then sent to an extended EKF
(EEKF). Finally, the EEKF uses the sample measurements to compute high order approximations
of the nonlinear measurement functions, and updates the state estimate of the object in an iterative
form. The system is scalable to different types of renderable models and measureable features. We
present results showing that the approach can be used to track a rigid object, from multiple views,
in real-time.

1. Introduction

Vision-based object tracking typically involves estimating the state of a moving object from a
sequence of camera images. The state typically includes the object pose (position and orientation)
and derivatives (velocity and acceleration) parameters. Model-based object tracking makes the
assumption that some prior information of the tracked object is available in terms of a model, that
can be used to generate a estimated observation of the object at some predicted pose. Thus the
state of the object can be estimated by comparing the real observation to the predicted one. The
comparison normally involves matching features extracted from different observations.

In this paper, we present a model-based object tracking system. The input of the system is a
graphics model of an object and image sequences from single or multiple cameras observing the
object. The output is the state estimation of the object. For a single-camera system, in each frame,
features are selected from the input image at runtime. A synthetic image is rendered to estimate
the observation (from the specific camera) of the object at its predicted state. The real and esti-
mated measurements are acquired by finding positions of the corresponding features in the real and
synthetic images. Similarly, more synthetic images of the object are rendered at perturbed poses
around its state estimate, features are extracted and their measurements are derived. These per-
turbed feature measurements are later used to compute high order approximations of the nonlinear
measurement functions. This provides an efficient way to compute the estimated measurement of
a feature and the Jacobian matrices of the the feature’s measurement function. Finally, the EEKF

1

Figure 1. Flowchart of the tracking system.

uses the measurement function approximations and the real measurements to estimate and update
the state of the object. An overview of the procedure is shown in Fig. 1. For a multi-camera system,
such a procedure proceeds sequentially for all the camera views.

The proposed system prototype can be generalized into a framework of model-based object track-
ing using graphics rendering as the measurement function. As long as the model is renderable and
the features are measurable, this framework can be applied. As shown in the experiment results,
a textureless skull with a shape model is tracked using silhouette information, and a checkerboard
with an appearance model is tracked using Kanade-Lucas-Tomasi (KLT) features [12]. Although it
is not implemented in our system, this framework has the potential to perform model refinement.
In that case, the state of the object should be extended to include the model.

Section 1.1 presents a brief survey of related literature on model-based object tracking. Section 2
reviews the the Extended Kalman filter approach to state estimation. An extended EKF (EEKF) is
introduced. In Section 3 an overview of the proposed system is given with emphasis on selecting
features and computing Jacobian matrices through graphics hardware accelerated rendering. Sec-
tion 4 describes the detailed approach and the associated results. Section 5 offers concluding and
future work thoughts.

1.1. Previous Work

Different model-based object tracking methods have been proposed. Classical approaches use
geometric or appearance models with features defined in the model space. For example, Gennery
[3] and Bray [1] exploited a wire frame model to track polyhedral objects. Dellaert et al. [2]
proposed a Kalman filter based system that simultaneously estimates the pose and refines the texture
of a planner patch. Nickels and Hutchinson [8] tracked articulated objects through matching feature

2

templates. Although these methods achieve good results in their own applications, they are prone to
have the problem of establishing the image-model correspondence for projective-variant features.
Moreover, some features can not be defined in the model space. For instance, the silhouette of an
object.

One solution to the problem is to use a view-dependent representation of the object. In [15] a
novel 3D object tracking system was developed, in which the model of the object is a pre-acquired
light-field. An alternate approach is to select features directly from images. For instance, Rehg
and Kanade [6] tracked articulated hand motion using a generalized cylinder model of the hand.
Stenger et al. [11] also proposed a method to capture hand motion. Their model is built from
truncated quadrics. Both systems extract the contours of the hand from images and use them as the
visual cues for tracking.

Although defining features in the image space is a natural way to solve the problem of false
matching for projective-variant features, it has not been adopted by any real-time Extended Kalman
filter based 3D object tracking system. We believe this is due to the fact that in order to propagate
distributions of the EKF one needs to compute the derivatives of the measurements of the features
with respect to the motion of the object. Conventionally, computing the derivative of the measure-
ment function of a feature requires its coordinate in a 3D space. Which is hard (if not impossible)
to compute for features extracted from a 2D camera image.

2. Nonlinear Filtering

The problem of tracking an object from input measurements can be formulated as optimizing the
state estimate of a nonlinear system. A number of Bayesian techniques have been proposed to per-
form the optimization. When Gaussian distribution is assumed, commonly used approaches include
the EKF and the Unscented Kalman filter (UKF) [4]. To handle multi-modal distribution, the parti-
cle filter is used [9]. An EKF computes the Jacobian matrices and derives a linear approximation to
the nonlinear function. While the UKF and the particle filter avoid computing the Jacobian matrices
and propagate the distribution by sampling. In this paper, we assume an unimodal distribution, and
use an extended EKF (EEKF) to achieve a balance between the computation and the performance.

2.1. Extended Kalman filtering

The extended Kalman filter addresses the problem of estimating the state of a nonlinear system.
There are two basic Kalman filter equations for an uncontrolled system.

Xk = f(Xk−1, wk−1) (1)

Zk = h(Xk, vk) (2)

Equation (1) is the state-transition or the process equation. Where X is the state of the system,
k is the time stamp, f describes the process model of the system, w is the process noise. In the
measurement equation (2), Z is the measurements of the system, h is a nonlinear function that
relates the state of the system X to the measurements Z, and v is the measurement noise. Notice
that in order to apply the EKF, the additive process and measurement noise of the system should
be independent, white and with Gaussian probability distributions. We denote them as p(w) ∼
N(0, Q) and p(v) ∼ N(0, R). In practice one does not know the real values of state as well as the
noise. However, we can approximate the state and the measurement as:

X̃k = f(X̂k−1, 0) (3)

3

Z̃k = h(X̃k, 0) (4)

where X̂ is the a posteriori estimate of the state from the previous time stamp k − 1.
In a nonlinear system, process function f and measurement function h can be linearized about

the current state estimate of the system by computing their partial derivatives. Thus Equation (1)
and (2) can be transformed into:

Xk = X̃k +Ak(Xk−1 − X̂k−1) +Wkwk−1 (5)

Zk = Z̃k +Hk(Xk − X̃k) + Vkvk (6)

Where X and Z are the actual state and measurement vectors, X̃ and Z̃ are the approximate state
and measurement computed from (3) and (4), A and H are the Jacobian matrices of partial deriv-
atives of f(X̂k−1) and h(X̂k−1) with respective to X , and W and V are the Jacobian matrices of
partial derivatives of f and h with respective to w and v.

Given the linearization of the system, the EKF perform state estimation using a prediction-
correction mechanism, as shown in Algorithm 1. At each frame, the filter predicts the current
state of the system and correct this estimated state using measurements of the system. The updated
estimate will then be used to predict the state for the next frame. The reader is referred to [13] for
the derivation of the Kalman filter equations.

Algorithm 1: Extended Kalman filter
————————————————
1) Predict the state:
X̂−

k = f(X̂k−1, 0)
2) Compute the error covariance:
P−

k = AkPk−1A
T
k +WkQk−1W

T
k

3) Compute the Kalman gain:
Kk = P−

k H
T
k (HkP

−
k H

T
k + VkRkV

T
k)

4) Update the state estimate
X̂k = X̂−

k +Kk(Zk − h(X̂−
k , 0))

5) Update the error covariance
Pk = (I −KkHk)P−

k

————————————————

2.2. Iterated Extended Kalman Filtering

The core of the extended Kalman filter is the linearization of the nonlinear system around its
current estimated state. This linearizing process can cause significant error if the measurement
function is highly nonlinear. One approach to address this problem is the iterated extended Kalman
filter (IEKF). The key observation that leads to the IEKF is that, after each iteration, the EKF gener-
ates a better estimate of the state of the system. Which can be used to derive a better approximation
of the measurement function. The IEKF iteratively estimates the state of the system. The estimation
result of one iteration is used to re-linearize the measurement function. Thus in the next iteration,
the state of the system will be computed using the updated Jacobian matrix and measurement esti-
mate. A detailed description of the IEKF can be found in [14].

By re-linearizing the measurement function, the IEKF derives a better approximation of the mea-
surement and generates a better state estimate. However, the re-linearization process introduces

4

additional computation. This computation can be trivial if an analytical representation of the mea-
surement function h is available. In this case, the H matrice can be computed directly. Otherwise,
a numerical differentiation has to be applied using Equation (7).

H(X̂−) =
Z|X=X̂−+ε − Z|X=X̂−

ε
(7)

The numerical computation of H can be expensive, since it has to be applied for every mea-
surement and for every iteration. This can preclude the use of the IEKF in real-time applications.
To solve this problem, we propose a new Kalman-based approach, which we call the Extended
Extended Kalman filter (EEKF). Like the IEKF, the EEKF iteratively sents measurements to a stan-
dard EKF to estimate the state of the system. But it avoids the excessive numerical differentiation
by pre-computing a nonlinear approximation of the measurement function. This is done through
acquiring multiple samples of the measurement at states around current state estimate.

2.3. Extended Extended Kalman Filter

In practice, an analytical representation of the measurement function is not always available.
However, one can always samples the measurement function and compute a Taylor expansion for
it.

h(X̂) = h(X̂−) +
∑ 1

i!h
i(X̂−)(X̂ − X̂−)i(i = 1..n− 1)

where
h(X1) = Z1|X=X1

......
h(Xn) = Zn|X=Xn

(8)

In general, given n sample measurements Z1, ..., Zn acquired at states X1, ..., Xn that are close to
the current state estimate X̂−, one can numerically solve Equation (8) and compute the derivatives
of h|X=X1 to the order of n−1: h′, h′′, ..., hn−1 orH,H ′, ..., Hn−2. The high order approximation
enables efficient re-linearization of the measurement function h at a different state. Again using a
Taylor expansion, one can approximate the Jacobian matrix H .

H(X̂) = H(X̂−) +
∑ 1

i!
H i(X̂−)(X̂ − X̂−)i(i = 1..n− 2) (9)

The Extended Extended Kalman filter (EEKF) is designed to estimate the state of a nonlinear
system, when an analytical representation of its measurement function is not available. The intuition
of the EEKF is sampling and approximating the nonlinear system. At each time stamp, multiple
measurement samples are generated at states around current state estimate. A high order (≥ 2)
approximation of the measurement function is computed using these samples. After that, the EEKF
performs state estimation iteratively. In each iteration, the measurement function is relinearized
at the state estimated from previous iteration, a standard EKF is then applied to update that state
estimate. The algorithm of the EEKF is shown in Algorithm 2.

Both the IEKF and the EEKF iteratively relinearize the measurement function and apply an EKF
to perform state estimation. In fact, they are quite similar. The difference between them lies in
the relinearization. The IEKF relinearizes the original measurement function. In the absence of
an analytical representation of the measurement function, relinearization involves numerical dif-
ferentiation, an expensive process. On the other hand, the EEKF relinearizes the approximated
measurement function. Numerical differentiation is not required anymore, since we already have
an analytical measurement function, an approximated one though.

5

Algorithm 2: Extended Extended Kalman filter
————————————————————-
1) Predict the state X̂−.
2) Compute the error covariance P−.
3) Generate multiple samples of Z around X̂−.
4) Derive an high order approximation of h using Eq(8).
5) Compute the Kalman gain K.
6) Update the state estimate X̂ .
7) Update Z̃ and H using Eq(8) and (9).
8) Assign X̂ to X̂−.
9) |X̂ − X̂−| > thresh ? Goto (5) : Continue
10) Update the error covariance P.
————————————————————-

3. Object Tracking

In this section, the EEKF is applied to accomplish the task of object tracking. Feature selection
and matching and graphics hardware accelerated measurement sampling are described.

3.1. System Models

The goal of tracking an object is to estimate and update its state. Typically, the state of an object
consists of its pose (position and orientation) and its velocities (translation and rotation). In our
system, we assume constant-speed motion of the object between consecutive frames. Thus the state
X of a rigid object in the 3D space is defined as [x y z φ ψ γ x′ y′ z′ φ′ ψ′ γ′]. Applying this
state representation to the Kalman filter equations, we acquire a linear state transition function f
(Equation (1)). Its derivative matrix can be written as:

A =

∣∣∣∣∣
I6×6 ∆tI6×6

0 I6×6

∣∣∣∣∣

Where ∆t is the time between two consecutive frames.
The input of the system are camera images from one or multiple cameras. Features are extracted

from these images. For any feature, its coordinate in the image space (ix, iy) is a measurement Z
of the system. Given the state of the object X, the camera parameters C and the coordinate of the
feature in the object model space P , the image coordinate of a feature can be computed using a
3D-2D projection, a highly nonlinear process. The measurement function h in Equation (2) can be
written as:

Z = h(X,C, P, v)

Notice that v is white noise and C is constant for a fixed camera. Thus h is a function of X and
P . If P is also given, the linearization of h can be computed directly. Otherwise the derivative of h
has to be computed numerically using Equation (8). Multiple images of the object at neighboring
states are generated as described in Section 3.3.

3.2. Feature Selection and Matching

Conventional methods define features in the model space. So when an estimate of the object’s
pose is available, the estimated measurement of the feature can be determined by projecting the

6

model onto the image plane, using internal camera parameters. This approach works well for
tracking geometric features defined by a wire-frame model, such as vertices and edges. However,
it has problem with features whose appearances are subject to the viewpoints. Most types of the
texture features fall into this category. For these features, it is hard to match the one extracted from
the real image to its template defined in the model space. Besides, some important types of features,
such as the silhouette of the object, can not be defined in the model space.

In the proposed system, the features are automatically selected from the input images at run
time. This method has several advantages. Self-occluding is easily solved. Silhouette of the object
can be detected. Moreover, extracting features from the image space increases the accuracy of
feature matching. Because a feature extracted from a camera image is presumably one of the most
distinguishable features from the camera’s viewpoint, and it is used to search for corresponding
ones in images that are acquired or generated from nearby perspectives.

When a feature is defined in the image space, a numerical method has to be applied to compute
the derivative of its measurement function, for its coordinate in the model space is generally not
available. Back-projection is not feasible for lack of the depth information. In a multi-camera
system, one may recover the 3D position of a feature by triangulation. However, the triangulation
requires accurate matching of features over two views that are considerably apart from each other.
For projective variant features, such a task is hard to achieve. Besides, the triangulation can not be
applied to features like the silhouette.

3.3. Generating Measurement Samples Using Graphics Rendering

As described earlier, for a feature extracted from the image, multiple sample measurements of
the feature need be acquired to derive an approximation of its measurement function. The pose of
a 3D object is a vector of 6 DOF. To generate a second order approximation, at least three (one
center/estimated and two perturbed) samples have to be acquired along each of the 6 dimensions.
The centered sample can be shared by all 6 dimensions. Thus a total of 13 samples have to be
acquired. And they are only the samples for one feature. If a system consists of m cameras and
an average of n features are selected for each of the camera view, a total of 13mn feature samples
need to be acquired. That is a challenging task for a realtime system.

When a graphics model of the object is available, one can generate feature samples using graph-
ics hardware accelerated rendering. For each camera, one center/estimated image is rendered using
the estimated pose parameters. Besides, 12 other images are rendered at perturbed poses. These
perturbed poses are derived by adding a perturbation along one of the 6 dimensions to the center
pose. After that, corresponding features are extracted from all 13 images and and their measure-
ments are found. Compared with the CPU based method, the GPU based method is more efficient.
The modern graphical processing unit is fast. A moderate graphics model that consists of thousands
of polygons can be rendered in milliseconds. As shown in the experiment result, 13 sample images
are rendered and read back to the memory in 100 ms using a NVIDIA GeForce 6800. Moreover,
graphics rendering is a parallel method, samples of features from the same view are generated si-
multaneously. Thus one can expect a better feature-per-second performance when the number of
features increases.

Recall that samples of features are used to generate functions that approximate the measure-
ment functions locally. Thus the perturbation of the object’s pose should be small enough to derive
relatively accurate approximations. However, the perturbation should not be too small, for the dif-
ference between two measurements of the sampled feature should be measureable. The magnitude
of an appropriate perturbation is determined by the size of the object and the distance between the

7

object and the camera. In our current implementation, given the prior knowledge on the system’s
working volume and the object’s size, a predefined fixed perturbation is chosen to make the differ-
ence between measurements to be of the magnitude of several pixels. A more practical way would
be to let the system choose the magnitude of the perturbation adaptively and automatically.

3.4. Initialization

To track an object, an initial state estimate needs to be provided. While automatic state initial-
ization is feasible, for our prototype implementation, our current prototype assumes the object to
be static at the first frame and computes its pose using a manual method. A set of N (N ≥ 3)
features are chosen from the object model. The coordinates of these features in the model space are
acquired. Markers are added to the real object at the corresponding positions. At the first frame,
these markers are manually identified in the input images. Their positions are computed by trian-
gulation. At this point, the coordinates of the markers in both the world space and the model space
are known. One can then use a linear solver to compute a minimum sum of square solution for the
transformation matrix between the two 3D spaces. The pose of the object can be derived from the
linear 3D transformation.

4. Experimental Results

The imaging device of our tracking prototype consists of four calibrated and synchronized Point-
grey Dragonfly digital cameras. The system is implemented in C++ using GLUT and Opencv li-
braries. The algorithm runs on an AMD Athlon 64 FX-55 processor (2.61 GHz) with PCI express
and a NVIDIA GeForce 6800 videocard. The time performance of the prototype is shown in Fig. 2:

Render and read-back /image 6.67 ms
Silhouette feature extraction and matching time /image 0.23 ms
Number of synthetic images samples /frame 52
Number of real images /frame 4
Render and read-back time /frame 347 ms
Silhouette feature extraction and matching time /frame 13 ms
K alman filtering time /frame 3 ms
Total processing time /frame 380 ms

Figure 2. Time performance of model-based tracking. About 500 silhouette features
per image, and 13 images per camera, and 4 cameras per frame are used.

We test the performance of the system on three experiments using both synthetic and real data.
In the first experiment, the prototype uses four sequences of graphics generated images to track the
motion of a synthetic solid cube, as shown in Fig. 3. To demonstrate the capability of the EEKF,
we perform model-based tracking using both the standard EKF and the EEKF. The estimation error
using both methods are compared in Fig. 4. One can see that the EEKF surpasses the EKF with
more accurate pose estimates.

In the second experiment, a checkerboard is tracked using 640× 480 image sequences from four
cameras. Texture features are extracted from the images using KLT method. The tracking result is

8

illustrated in Fig. 5. A synthetic image of the checkerboard model is rendered from one of the four
viewpoints of the cameras, using the estimated pose parameters. Which is then blended with the
real image from the same camera. The third experiment demonstrates the tracking of a textureless
skull model in front of a dark background. The measurement is the outline of the skull in the image
space. To be more specific, the measurement is the samples of the skull’s outline on a number of
horizontal and vertical scanlines. The resulting images are shown in Fig. 6. In each of the images
(b)–(f), a synthetic image of the skull model is rendered using state estimate, and then blended with
the real image.

5. Conclusion and Future Work

In this paper, we present a prototype of object tracking system. The system prototype uses graph-
ics hardware accelerated rendering to acquire sample measurements of the tracked object. These
measurements are sent to an Extended Extended Kalman filter. Which generates nonlinear approx-
imations of the measurement functions then estimates object motion iteratively. The system can be
generalized into a model-based object tracking framework that supports different types of render-
able models and measureable features. Experiment results show that, using inputs from multiple
cameras, the prototype can be applied to track a rigid object robustly and accurately in real-time.

Some future works can be attempted to make the system more practical. For instance, the au-
tomatic initialization and the adaptive perturbation-decision may be implemented. Besides, our
current system requires an accurate model of the object. In the future, we would build a smarter
system that starts tracking with a coarse model of the object and performs online model-refinement.
For a multi-camera system, the coarse model can be acquired using the stereo reconstruction or the
convex-hull technique.

Acknowledgements

At UNC-Chapel Hill we want to acknowledge Jim Mahaney and John Thomas for their technical
support. We also want to thank Andy Christensen of Medical Modeling Corporation for his help
with the MRI-based physical skull models shown in Fig. 6.

This effort is primarily supported by National Library of Medicine contract N01-LM-3-3514:
“3D Telepresence for Medical Consultation: Extending Medical Expertise Throughout, Between
and Beyond Hospitals,” and in part by NSF grant EIA-0303590: “Ubiquitous Pixels: Transforming
Collaboration & Teaching with Pervasive Wall Displays.”

References

[1] A. J. Bray, “Tracking objects using image disparities,” Image and Vision Computing, Vol. 8(1), pp. 4–9,
February 1990.

[2] F. Dellaert and S. Thrun and C. Thorpe, “Jacobian images of superresolved texture maps for model-based
motion estimation and tracking,”In Proceedings of the Fourth Workshop on Applications of Computer
Vision, October 1998

[3] D.B. Gennery, “Visual tracking of known three-dimensional objects,” International Journal of Computer
Vision, Vol. 7(3), pp. 243–270, April 1992

9

[4] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to nonlinear systems,” In Proceed-
ing of the International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando,
FL, 1997.

[5] I. A. Kakadiaris and D. Metaxas, “Model-Based Estimation of 3D Human Motion with Occlusion Based
on Active Multi-Viewpoint Selection,” In Proceeding of the International Conference on Computer Vi-
sion and Pattern Recognition, pp.81–87, 1996.

[6] J. M. Rehg and T. Kanade, “Model-Based Tracking of Self-Occluding Articulated Objects,”In Proceed-
ings of the Fifth International Conference on Computer Vision, June 1995

[7] D. G. Lowe, “Object recognition from local scale-invariant features,” Proceedings of the 7th Interna-
tional Conference on Computer Vision, pp. 1150–1157, 1999.

[8] K.Nickels and S. Hutchinson, “Model-based tracking of complex articulated objects,” IEEE TRANSAC-
TIONS ON ROBOTICS AND AUTOMATION, Vol. 17(1), pp. 28–36, 2001.

[9] D.J. Salmond N.J. Gordon and A.F.M. Smith, “Novel approach to nonlinear/non-Gaussian Bayesian
state estimation,” Radar and Signal Processing, IEE Proceedings F, Vol. 140(2), pp. 107-113, April
1993.

[10] Y. Bar-Shalom and T.E. Fortmann, “Tracking and Data Association,” Academic Press, Boston, 1988.

[11] B. Stenger, P. R. S. Mendonca and R. Cipolla, “Model-based 3D tracking of an articulated hand,” In
Proceeding of the International Conference on Computer Vision and Pattern Recognition, December
2001.

[12] C. Tomasi and T. Kanade, “Detection and Tracking of Point Features,” Carnegie Mellon University
Technical Report, CMU-CS-91-132, April 1991.

[13] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Technical Report, TR 95-041, Depart-
ment of Computer Science, University of North Carolina at Chapel Hill, December 1995.

[14] Z. Zhang, “Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting,” Interna-
tional Journal of Image and Vision Computing, Vol. 25, pp. 59-76, 1997.

[15] M. Zobel, M. Fritz and I. Scholz, “Object Tracking and Pose Estimation Using Light-Field Object
Models,” VISION, MODELING, AND VISUALIZATION, pp. 371–378, November 2002.

10

Figure 3. Images (a-d) show the input images at certain frame, generated by four
virtual cameras. Images (e-h) are the resulted images rendered from the viewpoints
of the same cameras using the state estimate of this frame.

Figure 4. Estimation error of the pose of the synthetic cube over 50 frames. The
cube is tracked using synthetic image sequences from 4 virtual cameras. Image
(a-c) show the error of the position (in mm). Image (d-f) show the error of the ori-
entation (in degree). The red curves represent estimation error using the standard
EKF. The green curves represent estimation error using the EEKF.

11

Figure 5. Illustration of tracking a checkerboard. The center part of the checker-
board (10× 10 grid) is rendered from the viewpoint of one calibrated camera, using
the estimated pose parameters. The resulting synthetic image is then blended with
the real image from the same camera. Four cameras are used, here we only demon-
strate the viewing results from one of them.

Figure 6. Illustration of tracking a skull using samples of its outline on a number
of vertical and horizontal scanlines. Four cameras are used; here we illustrate the
viewing results from the perspective of one of them. Image (a) is the real image
of the skull. The dark spots on the skull are the markers used for initialization. In
images (d-f), synthetic images of the skull model are rendered using state estimate
and are blended with the real images. (MRI-based skull models from Andy Chris-
tensen of Medical Modeling Corporation.)

12

