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Abstract

A common approach to model-based tracking is to use a
model of the object to predict what will be observed, and
then to compare that with real observations. For meth-
ods that make use of the object’s photometric properties
(appearance) in their measurements, illumination inconsis-
tencies between the modeled and actual scene can cause
tracking problems. In this paper we address one case:
model-based tracking of Lambertian objects under direc-
tional light sources. We present an iterative optimization
method that uses a Kalman filter to simultaneously refine
estimates of the object motion, the illumination, and the
model texture. We model the illumination variance be-
tween the real and predicted observation using the inten-
sity ratios of corresponding surface points, which we then
use to make model-based image predictions consistent with
the real lighting. To demonstrate the effectiveness of our
method we present experimental results using both synthetic
(controlled) and real image sequences.

1. Introduction

Conventional model-based tracking approaches often ex-
tract and matchgeometricfeatures, e.g., contours or edges.
Because such features are generally invariant to illumina-
tion, the methods can be consideredillumination insensi-
tive. On the other hand, methods [5, 12, 11] have been pro-
posed to exploit theappearanceinformation. For example,
tracking or registration between the real and predicted im-
ages can be performed by comparing photometric proper-
ties such as intensity, color, or texture. These methods have
proven to be accurate and efficient in many object track-
ing and recognition applications. Unfortunately, because
the appearance of an object can change dramatically un-
der different lighting conditions, typical appearance-based
methods are prone to difficulties when the model and the

real object are illuminated differently, as is usually the case.
In this paper, we present an illumination insensitive

model-based 3D object tracking system. The inputs of the
system consist of a texture-mapped graphics model and im-
age sequences of the target object. The system outputs
are the object pose estimate over frames, a refined texture
model and an map that models the illumination variance be-
tween the model space and the real scene. We use a Kalman
filter to recursively refine the pose (position and orienta-
tion), a model for the illumination, and the texture compo-
nent of the object model. During tracking, we use graphics
hardware (with texture mapping) to render synthetic images
of the graphics model at its estimated pose, from the view
point of each of the cameras. We use the pixel intensities
of the real and synthetic images as the measurements. We
handle the illumination inconsistency problem by estimat-
ing an Illumination Normal Map (INM)—a mapping from
the surface normal of a 3D point to the intensity ratio of
its projections in the real and synthetic images. The INM
defines an illumination transformation between the real and
synthetic images. Using this transformation, we can gen-
erate illumination-corrected synthetic images and compare
them with the real images, as if they were taken under the
same illumination.

In the next section we discuss some related work. In
Section 2 we describe the Illumination Normal Map and
analyze its properties. In Section 3 we provide a brief in-
troduction to the relevant parts of the Kalman filter, and in
Section 4 we describe our estimation process in the con-
text of the Kalman filter framework. Finally in Section 5
we shows some results from both synthetic and real image
sequences, and in Section 6 we discuss some future plans.

1.1. Previous Work

Classical model-based tracking methods typically use
geometric object models that describe theshapeof the ob-
jects. For instance, both Gennery and Bray exploited a wire
frame model to track polyhedral objects [7, 2]. Rehg and



Kanade tracked articulated hand motion using a generalized
cylinder model of the hand [14]. Stengeret al. proposed a
method to capture hand motion using an hand model that is
built from truncated quadrics [16]. Rosenhahnet al. pro-
posed a silhouette-based approach for pose estimation of
free-form surface models [15]. These methods avoid the
illumination inconsistency problem by defining geometric
features that are illumination invariant. However, geometric
features like contours do not contain all the information use-
ful for object tracking. For example, the rotation of a sphere
cannot be detected using its contour information alone. In
addition, extracting and matching features can be expensive
when the object is geometrically complex.

Alternatively, some approaches useappearancemod-
els of objects—predicting the appearance of the object in
each specific pose. Photometric properties such as intensity,
color or texture can then be compared between the predicted
and real observations. Dellaertet al. proposed a Kalman
filter based system that simultaneously estimates the pose
and refines the texture of a planar patch [5]. Nickels and
Hutchinson tracked articulated objects through matching
feature templates [12]. In [20] a novel 3D object track-
ing system was developed where the model of the object is
a pre-acquired light-field. Such appearance-based methods
make more direct and complete use of available information
from the image observations, and have achieved outstanding
performance in applications like face tracking. However,
because the real and predicted observations are registered
using illumination dependent properties, these methods are
prone to difficulties or failure in the presence of illumination
inconsistencies between the modeled and real scenes.

Illumination insensitive methods have been developed
to recognize and track objects under varying lighting con-
ditions. To maintain color consistency through image se-
quences, Cubberet al. used a transformed color space that
is invariant to highlights, viewing direction, surface orien-
tation and illumination directions [4]. Hageret al. devel-
oped an efficient region tracking method that uses a three-
dimensional linear subspace to model all possible surface
appearance of the same object under varying lighting con-
ditions [9]. Training images are taken under sample light-
ing conditions to serve as the illumination templates. In
[3], the linear subspace illumination model is improved to
generate subject-independent templates. Ramamoorthi and
Hanrahan [13] and Brasi and Jacobs [1] formulated the
relationship between radiance and irradiance as a spheri-
cal convolution whose kernel is determined by the surface
BRDF, and proved that under the assumption of Lamber-
tian surfaces and directional light sources the illumination
function can be recovered using first nine coefficients of a
spherical harmonic basis. Freedman and Turek developed
a tracking method that computes illumination-invariant op-
tical flow using graph cuts [6]. They make the assumption

that intensity consistency across pixels can be propagated
over frames. Recently, Zhanget al. proposed the use of the
intensity ratio between corresponding pixels to model the
illumination variance between an image pair [18]. Belief
Propagation is used to simultaneously estimate per-pixel il-
lumination ratio and disparity.

2. Illumination Ratio Estimation

Illumination variation between the real and synthetic
scenes can be modeled as the ratio of the intensities of cor-
responding pixels in two images. Consider a 3D pointp on
the surface of the target object. The projection ofp on the
image plane is (x, y). Under Lambertian surface and di-
rectional lighting assumption, in the absence of shadow, the
pixel intensity ofI(x, y) is given by

I(x, y) =
∑

k

cka(p)Lk · N(p) (1)

where a(p) is the nonnegative absorption coefficient
(albedo) of the surface at the pointp, Lk is the unit direc-
tion vector of light sourcek, ck is the intensity of the light
sourcek, N is the unit inward normal vector of the surface
atp.

The intensity ratior of corresponding pixels at (x, y) in
the real and synthetic images can be computed as

r(x, y) =
I(x, y)

Î(x, y)
=

∑
k cka(p)Lk · N(p)

∑
k ĉka(p)L̂k · N(p)

(2)

whereÎ(x, y) is the pixel intensity in the synthetic image,
ĉk andL̂k represent the different illumination conditions in
the synthetic scene. Since the albedoa(p) is constant, it
can be moved outside the summation and canceled in the
division. Thus Eqn. (2) can be rewritten as

r(x, y) =

∑
k ckLk · N(p)

∑
k ĉkL̂k · N(p)

(3)

2.1. Illumination Normal Map

One can see from Eqn. (3) that the illumination ratior of
a pointp is independent of the albedoa, and is a smooth
function of the surface normalN . This key observation
leads to the formulation of the Illumination-Normal-Map
(INM), a lookup table that maps a normal to an illumination
ratio. Each point in the INM corresponds to a unit normal
vectorN in the 3D space. Its horizontal(θ ∈ [0, 2π)) and
vertical coordinate(φ ∈ [0, π)) is defined by the projection
of N in certain fixed spherical coordinate system. Its value
is the illumination ratio valueρ for the normalN (Fig. 1).
An INM defines an illumination transformation between the
real and the synthetic scene. A good property of INM is that
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Figure 1. Spherical coordinate and INM.

ρ is a smooth function of(θ, φ). Thus we can computeρ for
relatively sparse samples of the INM and estimate the rest
using interpolation.

2.2. Compute Illumination Ratio

Consider a pixel(x, y) in the synthetic image. Given the
geometry model and pose estimation of the object, the cor-
responding surface pointp with normalN(p) in the world
space can be found through back-projection. Its coordinate
(θ, φ) in the INM can then be derived by projectingN(p) to
a specified spherical space. Thusρ(θ, φ), which equals to
r(x, y), can be computed by comparing the corresponding
pixel intensities in two images Eqn. (2).

All surface points are illuminated by the same directional
light source. For a convex object (simple self-occlusion),
this means that points with the same normals share the same
illumination ratio within one frame. Moreover, if the scene
lighting is static, illumination ratio consistency shouldhold
for points with same surface normals across frames. This
means multiple observations of the same illumination ra-
tio variable can be acquired with the presence of measure-
ment noise. We formulate illumination estimation problem
in the Kalman filter framework. The detailed approach is
explained in the Section 5.

So far, we have made the assumption that the real im-
age and the synthetic image are exactly registered. In other
words, there is no error in object pose estimation and cam-
era calibration. Unfortunately, in practice such errors al-
ways exist. Thus the per-pixel-based illumination compu-
tation is subject to fail, for the ratio maybe computed by
comparing the imaging of two different 3D surface points.
However, since most object are piece-wise smooth and il-
lumination ratio is a smooth function of the surface nor-
mal,r(x, y) should be spatially smooth, discontinuities only
happen at places whereN(p) changes abruptly. This obser-
vation leads to the area-based method for illumination ratio
estimation. The real and synthetic images can be blurred us-
ing a box filter. The illumination ratio is then computed as
the relative scale of intensities of the corresponding pixels
in the filtered images. Notice that blurring across regions

with normal discontinuity should be prohibited.

2.3. Illumination Correction

Once the INM is computed, it can be applied to gener-
ate illumination corrected synthetic image. For each pixel
(x, y) in the synthetic image, its INM coordinate(θ, φ)
can be computed using back-projection as described earlier.
The value ofρ(θ, φ) in INM is then set tor(x, y). When
(θ, φ) is not a grid point of the INM,ρ(θ, φ) can be com-
puted by interpolating the ratio values of neighboring grid
points. After acquiringr(x, y), the corrected pixel intensity
Î−(x, y) is computed asI(x, y) ∗ r(x, y). Applying this
process to all the pixels occupied by the synthetic object
will generate an image that is considered to be illuminated
under the lighting condition of the real scene.

3. Kalman Filtering

The Kalman filter (KF) is a popular and time-tested
Bayesian estimation tool [10]. While the theoretical as-
sumptions about noise characteristics and models are usu-
ally violated, in practice the filter has proven very popular
as it offers a robust and efficient means for on-line estima-
tion. In the classical KF framework, an uncontrolled linear
system is modeled as

X̂−

t = AX̂t−1 + Wt−1 (4)

Ẑt = HtX̂
−

t + Vt (5)

Eqn. (4) is known as the state-transition or process equa-
tion, wheret is the time step,̂X is the estimate of the real
system stateX , X̂− is thea priori (predicted) state,A is
the deterministic state transition between steps, andW is
the process noise. Eqn. (5) is known as the measurement
equation, wherêZ is the estimate of the real measurement
Z, H represents the linear observation function that relates
the state of the system to its measurements, andV is the
measurement noise.W andV are assumed to be normally
distributed with covariancesQ andR respectively (used be-
low), spectrally white, and independent of each other. In
addition to estimating the system statêX, the filter also
estimates the error covarianceP . Similar to Eqn. (4) it is
assumed thea priori error covarianceP− can be modeled
(predicted) usingP from the previous step as follows.

P−

t = APt−1A
T + Q (6)

A Kalman filter performs system state estimation using a
prediction-correction mechanism. At each frame, the fil-
ter predictsX̂− and Ẑ using the deterministic portions of
Eqn. (4) and Eqn. (5), andP− using Eqn. (9). It then cor-
rects the state by subtracting the estimated from the real



observations, and factoring the residual back into the es-
timated state. Thea posterioristate and error covariance
then serves as the basis for the next step. Themeasurement
updateequations are as follows.

Kt = P−

t HT
t (HtP

−

t HT
t + R)−1 (7)

X̂t = X̂−

t + Kt(Zt − HtX̂
−

t ) (8)

Pt = (I − KtHt)P
−

t (9)

In theory, theKalman gainK as computed in Eqn. (7) pro-
vides the optimal weighting of the observation residual in
Eqn. (8), minimizing the mean of the diagonal ofP .

While Eqn. (4)–Eqn. (9) model linear systems, the filter
can be reformulated to accommodate a nonlinear process
functiona(X) and/or observation functionh(X) using lin-
ear approximations about̂X. In thisextended Kalman filter
(EKF) formulation the matricesA andH in Eqn. (4) and
Eqn. (5) are replaced by the Jacobian matricesA = ∂a/∂X̂
andH = ∂h/∂X̂ respectively. Note that for our object pose
estimation we actually used aniteratedEKF. We describe
this in Section 4.2. For more complete KF/EKF informa-
tion the readers can refer to [17] for example.

4. Iterative Estimation

We implement our model-based tracking system using
the Kalman filter framework. The state of the systemX is
modeled as[S, M, T ], whereS is the object pose parame-
ters,M is the Illumination Normal Map andT represents
the texture of the object. Pixel intensitiesI are used as
the system measurements. The estimated measurement of
a pixel at(x, y) in the synthetic image is computed as:

I(x, y, S, M, T ) = M(HM (S, x, y)) · T (HT (S, x, y))
(10)

where HM and HT are the back-projection functions.
Given a pose estimatêS, they define the mapping from
an image pixel at(x, y) to an INM pixel at (θ, φ) and
a texture pixel at(u, v). In fact, the camera calibration
and object model are also implicitly used byHM andHT .
However, since they are constant throughout the image se-
quences, they are not included in the equation. One can see
that Eqn. (10) can be divided into two parts. The fist part
M(HM (S, x, y)) defines the illumination correction. The
second partT (HT (S, x, y)) represents the texture mapping.

HM defines the mapping between discrete coordinates
in the image and the INM. A pixel in the image may be
mapped to a non-grid point in the INM. In this case, the
illumination ratio of the pixel should be computed by inter-
polating neighboring grid points, where the values are de-
fined. A similar issue holds for the image-texture mapping
HT . Moreover, the projection of a pixel in the texture space
is an ellipsoid rather than a point [8]. When a relatively

high-resolution texture is provided, such an ellipsoid covers
multiple texture pixels. Thus, the value of the image pixel
should be computed as a weighted average of the covered
texture pixels. Eqn. (10) can then be rewritten as

I(x, y, S, M, T ) =
∑

θ,φ

M(θ, φ)ξM (HM (S, x, y), θ, φ)

·

∑

u,v

T (u, v)ξT (HT (S, x, y), u, v)

(11)

where ξM and ξT are the filtering kernels centered at
HM (S, x, y) andHT (S, x, y).

With the above system model definition, the Kalman fil-
ter can be used to estimate the object pose, Illumination
Normal Map, and texture in a recursive fashion. The pro-
cessing at each frame includes four steps: prediction, pose
update, illumination estimation and texture refinement.

4.1. Prediction

We predict the statêX− based on the previous state esti-
mateX̂ as in Eqn. (4). Recall that the system state consists
of the object poseS, textureT and Illumination Normal
Map M . T is fixed for a given object.S is predicted using
certain motion model. For instance, constant-speed motion
model is used in our system.M can be predicted using
different dynamic models. For instance, if we assume the
scene lighting is static,M would be constant, and an iden-
tity matrix should be used for the state-transition matrixA.
However if for example the light source intensity and/or di-
rection vary, a non-identity dynamic model could be used to
predictM . The prediction step is important as it provides a
good initialization for the remaining steps.

4.2. Pose Update

Here we assume that the INM and texture estimatesM̂
andT̂ are fixed. The estimated intensity measurementÎ of
a specific image pixel is then a nonlinear function of the ob-
ject pose estimatêS as in Eqn. (11). As described earlier,
an Extended Kalman filter can be used to linearizeÎ around
ŝ. However, sincêI is highly nonlinear this linearization
process can cause significant error ifŜ is not close enough
to the true pose. One approach to address this problem is
to use an Iterated Extended Kalman filter (IEKF). The key
point about the IEKF is that you iteratively refine the state
within each step. The IEKF generates an estimate of the
state, which can be used to predict the measurement, which
can be used to update the state, which can again be used
to predict the measurement, etc. A crucial point is that af-
ter each iteration, the measurement function is re-linearized
around the newly updated state estimate. A detailed de-
scription of the IEKF can be found in [19].



4.3. Illumination Estimation

In this step, we estimate the values of INM pixels by
comparing the image intensities of corresponding pixels in
the synthetic and the real image. At this time, the poseŜ
and the texturêT are fixed. For a particular pixel at(x0, y0)
whose normal is mapped to(θ0, φ0) = HM (Ŝ, x0, y0) with
neighboring INM grid points(θk, φk), the measurement
function and Jacobian matrix can be written as

Î(M̂) = c(x0, y0)

n∑

k=1

M̂(θk, φk)ξM (θ0, φ0, θk, φk) (12)

H(M̂) = c(x0, y0)[ξM (θ0, φ0, θ1, φ1), ..., ξM (θ0, φ0, θn, φn)]
(13)

wherec(x0, y0) =
∑

u,v T̂ (u, v)ξT (HT (Ŝ, x0, y0), u, v) is
the intensity of pixel(x0, y0) computed directly from tex-
ture mapping,ξM (θ0, φ0, θk, φk) is the interpolation kernel
used to computêM(θ0, φ0), andn is the size of the inter-
polation window. Currently, we computêM(θ0, φ0) using
bi-linear interpolation of the surroundingn = 4 pixels.

The intensity measurement in Eqn. (12) is a linear func-
tion of M̂ . This means the standard Kalman measurement
update equations can be applied to estimateM̂ . The in-
tensity measurement for each pixel is sent to the Kalman
filter one at a time. ThenH is ann-vector with elements
wk = c(x0, y0) ξM (θ0, φ0, θk, φk), Kalman gainK is an
n-vector and the noise covarianceR becomes a scalerσ2.
In addition, we make the assumption that pixel values in the
INM are independent of each other. In this case, the process
covarianceP is ann × n diagonal matrix. Given the defi-
nition of these matrices, the measurement update equations
Eqn. (7)-Eqn. (9) can be transformed into

Kk = P−

kkwk(

n∑

j=1

(P−

jjw
2
j ) + σ2)−1 (14)

M̂k = M̂−

k + Kk(I(x0, y0) − Î(x0, y0)) (15)

Pkk = (1 − Kkwk)P−

kk (16)

From the above equations one can see that the residual of
intensity measurement of an image pixel is used to update
the values of the INM pixels that contribute in computing
its illumination ratio.

4.4. Texture Refinement

The texture refinement is performed in a way similar to
the illumination estimation. The posêS and illuminationM̂
are held constant. Thus for a synthetic pixel at(x0, y0) with
texture coordinate(u0, v0) = HT (Ŝ, x0, y0) we can derive
the following equations

Î(T̂ ) = l(x0, y0)
n∑

k=1

T̂ (uk, vk) ξT (u0, v0, uk, vk) (17)

H(T̂ ) = l(x0, y0)[ξT (u0, v0, u1, v1), ..., ξT (u0, v0, un, vn)]
(18)

wherel(x0, y0) =
∑

θ,φ M̂(θ, φ)ξM (HM (Ŝ, x, y), θ, φ) is
the illumination ratio at(x0, y0), and(uk, vk) are then tex-
ture pixels inside the projection ellipsoid of pixel(x0, y0).
We can see that̂I is a linear combination of texture intensi-
ties. Currently we use equal weights for all the texture pix-
els, i.e.ξT (u0, v0, uk, vk) equals to1/n if (uk, vk) is inside
the projection ellipsoid around(u0, v0), or 0 otherwise.

The measurement estimatêI(T̂ ) in Eqn. (17) is a
linear function of T̂ . Therefore, we can use a linear
Kalman filter to estimate the texturêT using Eqn. (14)-
Eqn. (16). The elements in theH vector becomewk =
l(x0, y0) ξT (u0, v0, uk, vk).

5. Experiment Results

We have tested our method with both synthetic and real
data. First we present results using synthetic data. The
synthetic scene consists of one textured sphere (an earth
model), two cameras, and two directional light sources. One
of the light sources remains static, and the other changes
its direction. Synthetic image sequences rendered from the
two camera views are used for tracking and illumination es-
timation. Fig. 2 demonstrates the illumination correction
process. The INMs in (c) are computed by comparing pixel
intensities in image pairs (a,d) and (b,e). The INM is then
used to transform (d) to generate illumination corrected im-
age (f). Although (a) and (b) are textured differently, they
are generated using the same illumination parameters. As
shown in (c), the INMs computed from (a) and (b) are very
similar. This demonstrates that our INM estimation method
is insensitive to the surface texture. Fig. 3 shows the track-
ing and INM estimation of the synthetic sphere under vary-
ing lighting conditions. One can tell from the estimated
INMs that the direction of the light source changes. The res-
olution of the INMs shown in Fig. 2 and Fig. 3 is72 × 36.
Each pixel in the INM represents an interval of5 × 5 de-
grees.

We also tested the proposed method on real data. We
used two calibrated and synchronized Point Grey Dragon-
fly cameras to capture image sequences of an ambient cube
undergoing 6D free motion. The cameras were set to cap-
ture at 15 frames per second. Currently camera photo-
consistency is not enforced, thus an INM is estimated for
each of the two cameras. The scene lighting environment
consists of the ambient light and two strong distant light
sources. The pose of the cube is manually initialized. Fig. 4
illustrates the illumination correction. As shown in Fig. 5,
without illumination correction the system loses tracking
within a few frames. The texture refinement result is pre-
sented in Fig. 6. One can see that the texture extracted from
real image (d) is apparently darker, which shows that there



is a significant illumination difference between the model
and the real scene. However the refined texture (c) esti-
mated using illumination-corrected measurements still pre-
serves the luminance inherent in the initial texture input (b).

6. Future Work

The illumination ratio is a smooth function under Lam-
bertian reflectance. Thus our method only estimates values
for a sparse set of INM grid points and recovers the entire
INM through interpolation. In fact, due to the low-pass-
filtering property of Lambertian reflectance, the illumina-
tion can be closely approximated using nine coefficients of
a spherical harmonic basis, as proved in [13, 1]. This indi-
cates that we can further reduce the state dimensionality of
the Kalman filter through estimating the coefficients of the
spherical harmonics.

At the moment we use the graphics hardware to render
a predicted imagewithout illumination correction, then we
transfer that image back to main memory and perform all
of the subsequent per-pixel computations using the CPU.
However we believe that we could implement the illumi-
nation correction directly on the graphics card while ren-
dering, and then transfer that image to texture memory, re-
rendering lower resolution versions instead of blurring, etc.
In addition to the base texture of the object model, there
could be a normal (vector) texture and an INM texture, both
which are used by Cg programs (for example) that imple-
ment the per-pixel computation in parallel.
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Figure 2. Illustration of illumination correction. (a) Ill uminated textured sphere. (b) Illuminated
texture-less white sphere. (c) Upper: INM computed by compa ring (a) and (d). Lower: INM com-
puted by comparing (b) and (e). (d) Texture mapped sphere. (e ) Solid white sphere. (f) Illumination
corrected textured sphere transformed from (d) using the up per INM in (c). Notice that (a) and (b) are
rendered under the same lighting condition.

Figure 3. Tracking and INM estimation for synthetic image se quences with varying illuminations. The
first row shows the original synthetic images at frames 3, 33 a nd 53. The second row are the INM
estimated at these frames. One can see that the lighting dire ction changes over frames. The last row
represents the tracking results. Wire-frame sphere render ed using the estimated pose parameter are
superimposed onto the original images.



Figure 4. Illumination correction on real data. (a) Real ima ge. (b) Synthetic image without illumination
correction. (c) Illumination corrected synthetic image.

Figure 5. Tracking of a cubic object under static directiona l lighting. Wire-frame cube rendered using
the estimated pose parameter are superimposed onto the orig inal images. The first row shows the
tracking results (frames 1, 20 and 110) with illumination co rrection. The second row shows the
tracking results (frames 1, 10 and 20) without illumination correction.

Figure 6. Texture refinement results. (a) Original texture. (b) Initial input texture generated by blurring
(a). (c) Refined texture. (d) Texture directly extracted fro m a real image.


