Using GPUs as CPUs for Engineering Applications: Challenges and Issues

Michael A. Heroux
Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Outline of the Talk

1. A Brief Discussion of Some Sandia Applications.
2. Some Important Application Kernels.
3. Use of 32-bit arithmetic in Engineering Apps.
5. How I hope to leverage GPUs.
6. Final Thoughts and Summary.
Sandia Applications

- Sandia is primarily an Engineering Lab:
 - Structures, Fluids, Electrical…
 - and Contributing Physics.
 - Coupling of Physics is primary focus of computing efforts.

- Some Apps use Explicit Methods:
 - Pronto: 3D Transient Solid Dynamics Code.
 - CTH: 3D Eulerian Shock Code.

- Strong focus on Implicit codes:
 - SALINA (Structures)
 - ALEGRA (ALE Shock code)
 - SIERRA (Fluids and Interactions)
 - Xyce (Electrical)
 - …and more.

- I will focus mostly on the implicit codes.

- One basic assumption:
 - GPU will be viewed as a co-processor.
 - I will not emphasize related issues, but are critically important.
Common Implicit Code Characteristics

- **Unstructured:**
 - Grids are used, stitched together, but
 - Global irregularity is significant.
 - Most data structures assume arbitrary connectivity.
 - Most tools implicitly assume significant regularity.

- **Finite Element/Volume/Difference:**
 - Most apps discretize continuum via these methods.
 - We will discuss this issue later (as opportunity for 32-bit use).
 - Xyce circuit modeling is exception: Inherently discrete.

- **Models are 1–3D, Nonlinear, both Steady/Transient.**

- **Solvers are a critical technology component:**
 - Often considered “3rd–party”.
 - Typically consume 50% or (much) more of run–time.
 - Direct (sparse) solvers often used.
 - Preconditioned iterative methods often and increasingly used.
 - The core is a sparse linear solver.
Problem Definition

- A frequent requirement for scientific and engineering computing is to solve:
 \[Ax = b \]
 where \(A \) is a known large (sparse) matrix, \(b \) is a known vector, \(x \) is an unknown vector.
- Goal: Find \(x \).
- Methods: Preconditioned Krylov methods.
- The Conjugate Gradient (CG) method is simplest of these.
- CG is only appropriate for symmetric (Hermitian).
- Still serves as reasonable prototype for initial study.
- With some exceptions we will note.
Other Types of Solver Problems

- Nonlinear problems: \(f(u) = 0 \):
 \[u(x)u(x)' - \sin(x)\cos(x) = 0. \]
- Eigenvalue problems: \(Ax = \lambda x. \)

\[
\begin{bmatrix}
1 & -2 & 1 \\
0 & -2 & 2 \\
2 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
= 0
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

- Many variations.
- Sparse matrix multiplication: Basic op for all above.
- Linear solver often basic component for all.
- Iterative linear solvers important on parallel machines.

Bottom line: Study of Sparse Iterative solver makes sense.
Iterative Methods

- Given an initial guess for x, called x^0, ($x^0 = 0$ is acceptable) compute a sequence x^i, $i = 1, 2, \ldots$ such that each x^i is “closer” to x.

- **Definition of “close”:**
 - Suppose $x^i = x$ exactly for some value of i.
 - Then $r^i = b - Ax^i = 0$ (the vector of all zeros).
 - And $\text{norm}(r^i) = \sqrt{\text{ddot}(r^i, r^i)} = 0$ (a number).
 - For any x^i, let $r^i = b - Ax^i$
 - If $\text{norm}(r^i) = \sqrt{\text{ddot}(r^i, r^i)}$ is small ($< 1.0E-6$ say) then we say that x^i is close to x.
 - The vector r is called the residual vector.
The CG Method

\[i = 0; \ x^{i-1} = 0; \ r^{i-1} = b; \] A given by user;
while \(\text{norm}(r^i) > \text{tol} \) {
 \[i ++; \]
 \[r^{tr} = \text{ddot}(r^{i-1}, r^{i-1}); \]
 if \((i=1) \) \(p^i = r^{i-1}; \)
 else {
 \[b^i = \frac{r^{tr}i-1}{r^{tr}i-2}; \]
 \[p^i = r^{i-1} + b^i*p^{i-1}; \]
 }
 \[Ap^i = \text{sparsemv}(A,p^i); \]
 \[a^i = \frac{r^{tr}i-1}{\text{ddot}(p^i,Ap^i)}; \]
 \[x^{i-1} = x^i; \quad x^i = x^{i-1} + a^i*p^i; \]
 \[r^{i-1} = r^i; \quad r^i = r^{i-1} - a^i*Ap^i; \]
}
\[x = x^i; \] // When \(\text{norm}(r^i) \leq \text{tol} \), stop and set \(x \) to \(x^i \)

Three primary kernels:
- Dot product (reduction).
- Vector update.
- Sparse matrix-vector multiply.
This might look familiar…

- Bolz, et. al. describe efficient implementations of all three kernels:
 - Vector updates: Trivial, very fast.
 - Dot Products: Use 2D layout, recursive 2-by-2 to 1 reduction.
 - Matrix–vector multiply:
 - Compressed-row-by-compressed-row.
 - Rows ordered by decreasing density.
 - Diagonal handled separately.
 - Fragment program handles a row.
 - Limitations on row density (up to 200):
 - Not a major practical limitation but annoying for bullet-proof implementations.
CG Performance

<table>
<thead>
<tr>
<th>Kernel\Processor</th>
<th>GeForce FX 500MHz</th>
<th>Pentium–M 1.6GHz (This Laptop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot Product</td>
<td>172 MFLOPS</td>
<td>159 MFLOPS</td>
</tr>
<tr>
<td>Vector Update</td>
<td>718 (Implied)</td>
<td>68 MFLOPS</td>
</tr>
<tr>
<td>Sparse MV</td>
<td>62 MFLOPS</td>
<td>116 MFLOPS</td>
</tr>
<tr>
<td>Total CG Performance</td>
<td>98 MFLOPS</td>
<td>109 MFLOPS</td>
</tr>
</tbody>
</table>

- GeForce FX results computed from Bolz, et. al. (Single precision)
- Pentium-M results from Cygwin/GCC 3.3.3 (Double precision).
- Encouraging results! (I think).
- From Pat Hanrahan’s talk:
 - ATI Radeon 9800XT 1.5x faster than GeForce FX for vector update.
 - X800 2x faster than 9800XT
 - NV40?
CG Solver Performance Observations

- GPU results appear to be “generalizable” …
- But are also “Wind at our back” results:
 - Problem size, layout tightly constrained.
 - How do we write general-purpose code that works for all sizes?
 - Seems like writing assembler.
- Choice of details avoid recursive preconditioners.
 - Bolz, et. al. also discuss Multigrid, but use Jacobi smoother.
 - No clear path to implementing recursive preconditioners: Gauss–Seidel, ILU, etc.
- Memory size (up to 256MB) allows healthy problem size:
 - Unpreconditioned CG requires 72n words storage.
 - 4n words – vectors,
 - 7n words – matrix values, 7n words – matrix indices/pntrs
 - Max problem dimension: 3.5M equations.
 - However, CG is simplest algorithm. ILU–GMRES more common, much more involved, much more memory.
- Then there’s the issue of FP precision…
Use of Single Precision: Background

- 20–30 years ago, single precision was commonly used in scientific/engineering apps.

- Single precision persists in pockets:
 - LS-DYNA still has SP capability, accumulates into DP.
 - SP FFTs are still very common, e.g., seismic calculations.

- Most other apps have migrated to DP:
 - Literature is fairly silent about which apps phases need DP.
 - Lots of anecdotal information. Tough problems really need DP or higher.
 - General attitude has been “use the highest precision that has reasonable cost.”
 - Going back to SP would be difficult.

- Mixed precision has been and is being used:
 - Construct preconditioner in DP, store and apply in SP.
 - Course grid solves (smaller condition number).
 - These approaches rely on ability to have SP, DP co-mingled.
Double Precision is Required

- In my opinion, going back to SP is not attractive.
- DP has allowed us to advance modeling capabilities.
 - We do not want to take a step back.
 - In fact, we want more precision in many cases.
- Solvers need DP (and higher) regularly:
 - Ill-conditioned problems need the mantissa bits to avoid (or at least delay) severe cancellation.
 - SP exponent bits are too few (DP are more than needed) to handle range of values for many problems.
- It seems like native DP on GPUs is not near-term.
- So how about simulated DP?
Simulated DP

- Two approaches:
 - Single–single.
 - True simulated double.

- Single–single:
 - Uses two SP numbers to store the upper/lower mantissa bits.
 - Exponent is not split: Same exponent range as SP.

- True simulated double:
 - Double the size of SP.
 - Has larger exponent range.
Lessons from Simulated Double-Double, Quad

- Software techniques are used frequently to provide double–double and quad precision on modern CPUs.
- Number of packages to facilitate use.
- Some lessons from simulated double–double on CPUs:
 - Portable simulated double–double is about an order of magnitude slower than double.
 - Add takes 19 DP ops, Mult takes 25+ DP ops.
 - Temporal locality keeps cost down.
 - A Fused Mult–add (FMAD) HW instruction can cut this in half.
- True simulated quad:
 - Is significantly more costly, especially if FMAD available.
 - Has better round off properties, larger exponent.

True Simulated Double is Needed

- Some articles suggest adding FMAD to GPU.
- My concern:
 - Range of single is 1E+/-38.
 - We often see numbers near the limit of this range in our computations.
- Assertion: True Simulated Double needed:
 - More bits are needed for exponent.
 - But we don’t need as many as IEEE DP:
 - 1E+/-308 is overkill.
GPUs for other parts of Eng Apps

- Many FEM/FVM applications “strip mine” the loading of local element stiffness matrices into *working sets*.
- This approach seems a natural fit for GPUs.
- Difficulty: At the end of load phase, nodal values must be scattered into global sparse matrix.
- It appears that scatter ops are hard to perform on GPUs.
- If so, there are two approaches to address scatter problem:
 - Add scatter to GPUs.
 - Reorganize apps to be node-oriented (instead of element oriented). \(\leq\) This will never happen.
Other Issues

- In papers I have read, nobody reports time to load/unload graphics memory. Why not?
- Has anyone considered a segmented sum algorithm for sparse matrix–vector multiplication?
- To those who are considering “novel” algorithms for GPUs:
 - We have been in similar situations in the past (only 10 years ago).
 - General observation: “The best parallel algorithm is your best parallel implementation of your best serial algorithm.”
 - Example: Domain Decomposition methods.
Segmented Sum MV

\[\text{VAL} = \begin{array}{ccccccc}
0.5 & 0.1 & 0.2 & 0.3 & 0.5 \\
0.2 & 0.2 & 0.2 & 0.4 & 0.4 \\
0.3 & 0.1 & 0.4 & 0.4 & 0.3 \\
0.1 & 0.5 & 0.2 & 0.1 & 0.6 \\
0.4 & 0.1 & 0.4 & 0.6 & 0.3 \\
0.2 & 0.3 & 0.5 & 0.2 & 0.5 \\
\end{array} \]

\[\text{FLAG} = \begin{array}{cccccccccccccccccc}
T & F & T & F & F & F & T & F & F & F & T & F & F & F & T & F & T & T & F \\
\end{array} \]

\[\text{LAST} = \begin{array}{ccccccc}
3 & 5 & 6 & *** & 5 \\
\end{array} \]

\[\text{PRESENT} = \begin{array}{ccccccc}
T & T & T & F & T & T \\
\end{array} \]
How I hope to Leverage GPUs

- **Trilinos Project: Solvers.**
 - Linear, Eigen, Nonlinear, Time-dependent, ...
 - Most C++ class libraries.

- **Significant investment in templated classes:**
 - `Vector(VectorSpace<OrdinalType, ScalarType> const &VectorSpace)`
 - `OrdinalType`: Indexing (int)
 - `ScalarType`: Floating point values (double, float, ...)

- Next generation of apps will use these templated class libraries.

- Templates allows use of any ADT that has “+”, “-”, “*” and sometimes “/”.

- Hope: Use this templating mechanism to utilize GPU data types.

- One key feature of our abstract model:
 - Ops can migrate to data.
ARPREC

- The ARPREC library uses arrays of 64-bit floating-point numbers to represent high-precision floating-point numbers.
- ARPREC values behave just like any other floating-point datatype, except the maximum working precision (in decimal digits) must be specified before any calculations are done

 \[
 \texttt{-mp::mpInit(200);}
 \]
- Illustrate the use of ARPREC with an example using Hilbert matrices.
- Lately also incorporated GMP library.
Hilbert Matrices

- A Hilbert matrix H_N is a square N-by-N matrix such that:

\[
H_{N_{ij}} = \frac{1}{i + j - 1}
\]

- For Example:

\[
H_3 = \begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{bmatrix}
\]
Hilbert Matrices

- Notoriously ill-conditioned
 - $\kappa(H_3) \approx 524$
 - $\kappa(H_5) \approx 476610$
 - $\kappa(H_{10}) \approx 1.6025 \times 10^{13}$
 - $\kappa(H_{20}) \approx 7.8413 \times 10^{17}$
 - $\kappa(H_{100}) \approx 1.7232 \times 10^{20}$

- Hilbert matrices introduce large amounts of error
Hilbert Matrices and Cholesky Factorization

- With double-precision arithmetic, Cholesky factorization will fail for H_N for all $N > 13$.
- Can we improve on this using arbitrary-precision floating-point numbers?

<table>
<thead>
<tr>
<th>Precision</th>
<th>Largest N for which Cholesky Factorization is successful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Precision</td>
<td>8</td>
</tr>
<tr>
<td>Double Precision</td>
<td>13</td>
</tr>
<tr>
<td>Arbitrary Precision (20)</td>
<td>29</td>
</tr>
<tr>
<td>Arbitrary Precision (40)</td>
<td>40</td>
</tr>
<tr>
<td>Arbitrary Precision (200)</td>
<td>145</td>
</tr>
<tr>
<td>Arbitrary Precision (400)</td>
<td>233</td>
</tr>
</tbody>
</table>
Summary

- There is low-hanging fruit:
 - Seismic processing almost certainly.
 - Some explicit calculations.

- Proof-of-concept (via CG solver) works for some implicit calculations:
 - Timing results are competitive for SP.
 - Limitations on preconditioning are problematic.
 - Some kind of “compiler” seems necessary to equal generality of CPUs. Brook is a good start.

- Double precision is necessary for broad acceptance of GPUs.
 - I don’t see the simulation community taking a step back (some need to go to 128–bit!).
Summary (cont).

- True double precision is necessary:
 - Single–single is not sufficient (and FMAD is not needed).
 - HW double precision would be great (and GPUs would have the attention of many more people).
 - True Simulated Double is a start, but then performance is set back.

- Scatter capabilities are needed in GPUs in order to broaden impact to physics portion of engineering apps, or maybe I am missing something.

- What about load/unload time between CPU/GPU memories?

- What about segment sum MV?

- I hope to (easily) used GPUs via existing software libraries.
Summary (cont.)

- Please report times for all phases of CPU/GPU use.
- Beware novel parallel algorithms.