
Hyperdocuments as Automata:

Veri�cation of Trace-based Browsing Properties

by Model Checking�

P. David Stotts Richard Furuta
Computer Science Department Department of Computer Science

University of North Carolina Texas A&M University
Chapel Hill, NC 27599-3175 College Station, TX 77843-3112

stotts@cs.unc.edu furuta@cs.tamu.edu

Cyrano Ruiz Cabarrus
School of Systems Information and Computer Science

University Francisco Marroquin
Guatemala

Abstract

We present a view of hyperdocuments in which each document encodes its own browsing
semantics in its links. This requires a mental shift in how a hyperdocument is thought
of abstractly. Instead of treating the links of a document as de�ning a static directed
graph, they are thought of as de�ning an abstract program, termed the links-automaton

of the document. A branching temporal logic notation, termed HTL�, is introduced for
specifying properties a document should exhibit during browsing. An automated program
veri�cation technique called model checking is used to verify that browsing speci�cations in
a subset of HTL* are met by the behavior de�ned in the links-automaton. We illustrate
the generality of these technique by applying them �rst to several Trellis documents, and
then to a Hyperties document.

CR Categories: I.7.2 (Hypertext/hypermedia), H.5.1 (Hypertext navigation and maps),
D.2.2 (Petri nets), D.2.4 (Program veri�cation), F.3.1 (Specifying and Verifying and Rea-
soning about Programs).

Key words: Veri�cation, hypertext, hypermedia, browsing semantics, temporal logic,
model checking, Petri nets.

�This work is based upon work supported by the National Science Foundation under grant numbers IRI{
9007746 and IRI{9015439.

1

1 The problem and the approach

Among others, Halasz has noted the need for structural search and query mechanisms for increas-
ing the utility of hypertext documents. He identi�es two major subtasks [20]: \: : : to design a
query language geared toward describing hypermedia network structures," and \: : : implementation
of a search engine capable of satisfying the queries expressible in the new language." This report
describes an approach to both of these subtasks. We concentrate on a mechanism for answering
queries concerning a document's dynamic properties, that is, what sequences of links a reader
may be allowed to follow during browsing. However, the basic technique, that of model checking
(borrowed from concurrent system veri�cation), can be easily adapted to locating readers within
the structure under examination.

The work described deals with hypertexts that are best thought of as cohesive, consistently
structured, non-linear documents rather than as accumulated collections of information. We
see a current and future need for hypertextual documents that \tell a story": training scripts,
tutorials, interactive writing/�ction, descriptive/persuasive texts: : : these are a few examples of
the class of hypertext under discussion in this paper. Many uses also exist for hypertexts that are
not \writing" per se, but nonetheless are structured documents that have an identi�able author
(one person or a tightly-coupled collaboration) and in which some constraints, prescriptions,
and proscriptions need to apply to the linkages among elements.

In this view, a hypertext is an interactive document, providing a non-linear, dynamic analogue
to the traditional notion of structured document. In an interactive setting, the notion of a
document's structure must extend beyond the normal static concept of its graph (trees, typically,
for paper-based documents) of components into the dynamic domain of browsing. A formal,
analyzable description must be available of how those components might be presented to a
reader|the possible sequences and parallel threads of activity within the document. We refer
to this as the dynamic structure of an interactive document [16], as contrasted with the notion
of static structure provided by a collection of links.

This report presents an approach to expressing dynamic properties an author may want in
a document, and provides a method for verifying in an automated fashion whether the linked
structure of a document satis�es the required property speci�cations. The emphasis here is on
behavior that is allowed by links alone, independent of any navigation aids that a browser or
navigation program might provide. Such knowledge allows an author to build a structure to
o�er the desired linkages no matter what system is used to accessed the document. Portions of
this work previously have been reported in preliminary form [42].

Links-only document behavior

Trellis is a general man/machine interaction model that has been used previously as the basis
for various hypertext systems and experiments [40, 41, 39]. Research on Trellis has concentrated
on identifying the advantages of using formal automata to de�ne hyperdocuments. Though we
�rst explain our veri�cation method in the context of Trellis, we would like to emphasize up
front that the approach is applicable to documents produced by any hypertext system. What is
required is a particular way of thinking about a document | that is, one must view a document
as an abstract automaton that speci�es the process of browsing within it. Such a view is easily
obtained for the hypertext systems in use today. In fact, for systems other than Trellis, the
linked structure of a document can usually be thought of as the state transition diagram of a
�nite state machine (FSM). For Trellis, the links de�ne a more powerful class of automaton
called a place/transition net (PT-net, also called Petri net). No matter what its power, we will

2

δ
δ

(E,link3)=D, etc...

(E,link2)=I
(E,link1)=Fδ

browsing

(directed graph)
document

(automaton, finite state machine)
document alone

links-only browsing

execution of the transition function for the state machine

defines possible node sequences, possible button sequences

without relying on the features of a browser program

(arbitrary Turing Machine)

(history, bookmarks, etc.)

browser program

r

f

s
p

n

mh
c

k

w

y

x

b a

link3

link2

link1

state
current

state

J
I

H

G

F

E

D

C

B

A

start

Figure 1: Traditional view of hypertext document, and automaton view.

refer to the automaton inherently de�ned by a document's hyperlinks as its links-automaton.
This conceptual framework is illustrated in Figure 1. The top half shows the traditional

view of a hyperdocument | a browser program allowing navigation of a directed graph. The
bottom half shows the links-automaton view, in which the directed graph is treated as an FSM.
In this links-automaton, it is clear that there exists a browsing path from the starting node (A),
continuing through the nodes E and D, and ending with node C. The links-only behavior of the
document does not allow any further browsing from this point, because there is no transition
out of node C. In order for browsing to continue, the author of this structure must be relying
on some feature of the browser (such as backup, general history, restart, or bookmark at the
table-of-contents, for example) to \warp" the reader to another location within the document.
In order to guarantee behavior that does not require browser features, an author may wish to
ensure that there is some path from each node back to the start node, for instance.

Other research e�orts to formalize some aspects of browsing, such as the HAM [7], have
focused on removing the arbitrary nature of the Turing machine that provides browsing services
for a directed graph. In Trellis, we have extended the fundamental power of the links-automaton
itself. The browser for a Trellis system is a simple program| limited to a strict implementation

3

.

.

..
.
.

.

.

..
.
..

.

..
.
.

.

.

..
.
.

.

.

..
.
.

.

.

. .
.
.

possible link sequencespossible node sequences

fp

rs c k

link3link2link1

kmh

wyx

ba

start

JI

AE

FDI

CDH

EB

A

C

Figure 2: Branching event trees for links-automaton in Figure1

of the transition rule for PT-nets. Trellis hyperdocuments have more power and expressibility
than FSM-based documents when considering the behavior allowed in their links alone. All
behavior that can be expressed in FSMs can be expressed in PT-nets; in addition, a PT-net
inherently allows parallel threads of activity (obtained with multi-head/multi-tail links), and
is not limited to expressing a �nite number of states.1 In our most recent Trellis model, an
even more powerful net-based formalism allows a hyperdocument to encode the interactions
of multiple cooperating readers, as needed for collaboration-support systems [17]. Section 3
discusses such documents briey.

Formalizing browsing properties

Suppose we are given a hypertext containing among other things content elements X and Y and
buttons B and C (link anchors). We would like to formalize statements like \all (su�ciently
long) browsing sessions must encounter X, but only sometime after seeing Y," or \there is at
least one browsing session encountering Y," or \there is a browsing session in which at some
point buttons B and C are both selectable." More general speci�cations include \there must be
some path from any node X back to the index," and \every node Y must have some out links."

The links-automaton of a hyperdocument is an abstract program, and it can be thought of as
generating a tree of possible event sequences (either sequences of button clicks, or sequences of
content displays, depending on the properties to be studied). Figure 2 illustrates event sequences
for the links-automaton in Figure 1; in each tree shown, an underlined node has no children.
The tree on the left shows the possible sequences of content displays whereas the tree on the
right shows possible sequences of button selections. Consider the left tree in Figure 2. One
possible (�nite) sequence of content displays is nodes A, B, C; another possible sequence is A,
B, H, J, : : :and on, perhaps not terminating.

We will formalize the browsing behavior allowed in a hyperdocument as the collection of
possible event traces produced by the links-automaton of the document. We will specify prop-
erties we want the traces to exhibit with a branching temporal logic.2 Finally, we will analyze
the document for the presence or absence of properties with a program veri�cation technique
called model checking.

1We assume some familiarity with general net theory. Interested readers can get details in previous Trellis
papers [40], and in summary texts by Murata [32], Reisig [36], or Peterson [33].

2The concept of time implied by the term \temporal" is not duration but rather the relative ordering of events
in a sequence.

4

Background in temporal logic

Work in temporal logic was �rst conducted under the name of tense logic by symbolic logicians
and philosophers for reasoning about ordering of events in time without mentioning time explic-
itly. In the last decade, temporal logic has become a convenient formalism used, among other
things, in program veri�cation [6, 35], in arti�cial intelligence and cognitive science [22, 21, 25],
in speci�cation and veri�cation of concurrent computations [2, 29], in veri�cation of network pro-
tocols and sequential circuits [31], and in veri�cation of software requirements speci�cations [1].
A complete survey of classical works in temporal logic as well as its current applications is
found in [19]. More recently, temporal logic has been applied successfully to the speci�cation,
veri�cation, and analysis of reactive systems, which are concurrent computations that maintain
a relationship with their environments; an overview of this area can be found in Manna [28].
Hyperdocuments, especially when interpreted as concurrent computation (as in Trellis) bear
some resemblance to reactive systems.

In a branching temporal logic one introduces special logic symbols that allow formulation
of assertions involving relative ordering as well as quanti�cation over paths in a tree-like model
of time. Various authors have proposed distinct syntaxes and semantics for branching time
logics [24, 4], which di�er in expressive power. However, CTL�, developed by Emerson and
Halpern [13], is one of the most general languages for branching time logics, since it properly
contains most of the other branching time logic languages. We have chosen CTL�as as the basis
for our hyperdocument notation, called HTL�, or hypertext temporal logic.

The work of Gabbay, et al. [18] shows that CTL�, (and so HTL�) is expressively complete
in the sense that all �rst-order logic properties can be represented by temporal formulae. How-
ever, not all browsing properties of hypertext are �rst-order logic properties; this is one of
the weaknesses of our current approach. Similar limitations in other contexts have inspired
extended temporal logics, such as Wolper's addition of new operators associated with regular
expressions [43]. We expect our work could be similarly extended, but we will not discuss the
topic further here.

Application of temporal logic to nets and hyperdocuments

One of the novel contributions of this work is the treatment of the coverability graph of a PT-
net as a �nite state machine, making model checking of the net states possible. Sinachopoulos
also has considered the application of temporal logic to the study of place/transition nets [38],
exploring the di�erences between branching time and partial order logics. It is suggested to
apply UB [4], CTL [15], CTL� [13] and POTL [34] to the study of the �ring sequences in place/
transition nets. Emphasis is on an axiomatic speci�cation approach; he does not consider model
checking as a method. Beeri et al. [3] have presented a method for using a modal (temporal)
logic for structural queries in a hyperdocument. The work is unrelated to nets, but looks at
hyperdocuments as directed graphs. The goal of a query is to locate a particular subgraph.
Queries in the temporal logic are essentially structural patterns to be matched against the
document graph.

Contributions of this work

This report presents a mixture of new results from the authors' research, prior work of the au-
thors, and prior work of other researchers. We would like to clearly distinguish these components
before getting into the technical presentation.

5

Our novel contributions are:

� the idea of a links-automaton, in which we view a hyperdocument as an abstract process
instead of a static data structure;

� the use of temporal logic for expressing browsing properties of hyperdocuments, and the
use of the links-automaton of a hyperdocument as the basis for model checking of these
properties;

� the HTL* temporal logic notation for succinctly expressing hyperdocument browsing prop-
erties, and the HTL subset of HTL* that can be e�ciently veri�ed with model checking;

� the idea of using the reachability graph of a PT-net as the �nite state model for checking
properties of Trellis hyperdocuments.

Prior work on which we build includes:

� the Trellis hypermedia system (developed by the authors), which we use for example
documents to analyze;

� the Hyperties system from Shneiderman [37, 30], which we also use for sample documents
to analyze;

� CTL*, CTL, and POTL temporal logic notations, which we employ as the semantic basis
for HTL* and HTL;

� the model checking algorithms and software from Clarke, which we used to implement our
hyperdocument analysis tools.

We have not developed any new model checking techniques, but we have shown how to apply
this useful work from programming languages research to the domain of hypermedia. We have
also shown how to derive the necessary models from hyperdocuments, using two very di�erent
systems as examples (Trellis and Hyperties). We have not extended the basic power of temporal
logic languages over that of CTL* and POTL, but we have de�ned speci�c temporal operators for
more naturally expressing the browsing properties of hyperdocuments. Finally, our techniques
are general, applying to any hypermedia system including the suddenly ubiquitous World Wide
Web.

In the remainder of this paper we �rst present the HTL temporal logic notation (the full HTL*
notation is presented in the appendix); we show how to encode hyperdocument browsing proper-
ties in HTL; we explain how to use Clarke's model checking techniques to verify these properties
for hypermedia, including how to extract a links-automaton from a hyperdocument; we illustrate
our methods on documents from Trellis and Hyperties; and we discuss work remaining to be
done to build on our results.

2 Hypertext Temporal Logic

This section discusses two related temporal logic notations: HTL* and HTL. HTL* is a fully ex-
pressive language with operators designed to succinctly express browsing concepts and properties
common in hyperdocuments. HTL is a subset of the HTL* notation; the properties expressed

6

in HTL can be very e�ciently checked for validity using a model checking algorithm developed
by Clarke [11]. Our current model checking experiments are restricted to the HTL subset, so
we have put the full de�nition of HTL* in Appendix A. Readers familiar with basic temporal
logic should be able to skip the appendix and still understand the main results of this work.

The semantics of HTL� is closely related to CTL� [13]. The syntax has been altered to more
directly reect the hypertext domain, using a di�erent notation and including backward path
quanti�cation to more conveniently express the kinds of statement authors need to make about
how documents are to be browsed. As discussed in section 1, we think of a hyperdocument
as de�ning many possible sequences of node visits (or link followings), represented as a tree
starting at the �rst node browsed. At each node is a browsing sequence, a reader has many
choices as to what the next node visited will be, producing the branch points in the tree. We
also assume that there are many di�erent basic properties of node that are of interest during
analysis (such as \the page is a cgi-script" or \the page contains an image map" or \the page
has no out-links"). At each node, these basic properties will be either true or false. We speak
of this collection of basic properties as the state language, a set of atomic predicates.

As with CTL�, HTL� formulae add path quanti�ers and sequence operators to a basic pred-
icate calculus over the state language, allowing formulae expressing properties that hold over
the tree of browsing possibilities itself:

�
!

9 is a path quanti�er saying \there exists a forward path"

�
!

8 is a path quanti�er saying \for all forward paths"

� 3 is a sequence operator saying \eventually (in some state from here)"

� 2 is a sequence operator saying \always (in all states from here)"

� � is a sequence operator saying \in the next state"

In our notation the temporal operators have higher precedence than the traditional logical
connectives. We use parentheses where extra clarity is needed. Among operators at the same
level of precedence, we apply them left to right in a formula.

The formula \
!

8 3 P" says that in all browsing paths through a document (going in a forward
direction) the reader will eventually encounter a state (node, page) in which the predicate P is
true (where P is some predicate from the state language). Several other operators are explained
in Appendix A (e.g, backward path quanti�ers, past-tense and future-tense operators, etc.); we
leave the reader to study those for a formal treatment, and present the basics of HTL* informally
via the following examples interpreted in the context of hyperdocument browsing.

Examples of browsing properties in HTL*

We now present a list of formulae in the context of browsing a hyperdocument. The basic
state language of HTL� in our experiments is simple, containing only assertions about which
content elements are viewable (e.g., c.introduction) and which links (buttons) are selectable
(e.g., b.next). We assume that each formula refers to the initial state of the document, i.e.,
these are properties that hold when browsing begins.

�
!

8c.hello means \At the beginning of every browsing session, you must encounter the hello
screen."

7

�
!

82
!

9�c.end means \Wherever you are, you can immediately leave the document" (assum-
ing this is the interpretation of content end).

�
!

8 (3' _ 2:') is a tautology which states that in all browsing sessions either ' happens
at least once or it never happens at all.

�
!

82
!

93c.menu means \wherever you happen to be, it is possible to eventually get back to
the menu."

�
!

82(c.error $ c.description) means \for all browsing sessions, it is always the case that
content element error is visible if and only if description is visible."

�
!

93
!

82(:b.info) means \it is possible for button info to eventually die, that is, to never
again be selectable."

�
!

82
!

93(b.info) means exactly the opposite of the previous statement, that is \button info
never dies". This does not mean that it is always selectable, but rather that, in all
situations, button info can eventually become selectable.

�
!

93(b.option1 ^ b.option5) is interpreted as \there is a browsing session in which at some
point buttons option1 and option5 are both selectable." This property may seems to
require only a simple state-by-state check, looking for both out links, but for hypermedia
systems that allow multiple content elements to be displayed concurrently (like Trellis)
this is a non-trivial condition to check.

�
!

8 (3c.menu ^ c.menuP3c.identi�cation) means \in all (forward) browsing sessions content
element menu is eventually visible, but only sometime after content element identi�cation
is visible." Notice that the second conjunct only states \for all browsing sessions if menu
is visible, then sometime in the past identi�cation was visible."

�
!

8 (c.no-help-modeF2:b.help) signi�es \for all browsing sessions, if content element no-
help-mode is visible then button help will never be selectable."

�
!

8 (� atnext ') states that immediately after the �rst occurrence of ', will happen.

Notice that the formula
!

8 ('F�) would be too strong since we would be requiring the
original condition for all occurrences of ', not just for the �rst one.

Similarly:
!

8 (atnext ') states that during the �rst occurrence of ', happens, and
!

8 (atnext �') says that before the �rst occurrence of ', must happen.

�

83=n' means \At this point of the browsing session, ' must have occurred exactly n

times."

�
!

82

92b.help means \wherever you happen to be, you could have gotten there having the
button help always selectable."

�
!

92:b.con�dential means \there is a way to browse the hypertext such that the button
con�dential is never selectable".

8

Model checking: Validating a subset of HTL*

HTL� has been presented as a rich temporal logic language especially suited for expressing
browsing properties for hypermedia documents. We now describe a method for verifying whether
particular HTL� formulae hold for speci�c hyperdocuments. This kind of problem has already
been extensively studied in other contexts, most notably in the domain of concurrent programs
and protocols speci�ed by collections of �nite state machines. These solutions are collectively
referred to as model checking.

We will not present a lengthy technical discussion of model checking methods here; however,
a brief description is in order. Our contributions are not in developing new checking algorithms
but rather in showing how to use the program analysis work of Clarke [11] for analyzing hyper-
documents. Model checking algorithms traverse the �nite state machine of a Kripke structure
and verify (or disprove) the truth of a particular temporal logic formula; this involves searching
down appropriate combinations of paths (according to the meanings of the temporal operators
in the formula) and checking the truth of the individual state assertions at each node along the
way.

In the general case, and especially with complicated temporal formulae, the complexity of
model checking may require exponential time. This has been demonstrated to be the case for
CTL* [11], and HTL* is semantically very similar. However, Emerson and Lei have shown that in
most practical cases model checking of CTL* is tractable even for very large systems [14]. Based
on previous results by Lichtenstein and Pnueli [26], Emerson and Lei determined that formulae
of CTL� which combine both branching-time and linear-time operators could be checked with
complexity exponential in the length of the temporal formula, yet linear in the size of the
structure.

In practice, the HTL� formulae that hypertext authors would want to examine would not
be overly complex, and the size of the model only a�ects the checking algorithm in a linear
manner. For most hypermedia systems, generating a model from a hyperdocument is also of
linear complexity. Therefore, we believe that model checking the entire HTL� language would
be practical for most cases.

Clarke, et al., have studied the model checking problem extensively for a restricted temporal
logic language called CTL[11, 12, 5]. CTL is a proper subset of CTL* formed by requiring
temporal operators to appear only in speci�c combinations. Clarke has implemented an e�cient
algorithm that checks CTL in polynomial time for all cases. The restrictions on operators limit
the combinatorial explosion of paths when searching the �nite state machine.

Rather than implementing a model checker for full HTL� we have chosen to experiment using
Clarke's software. We correspondingly de�ned a proper subset of HTL� called HTL, semantically
similar to CTL. HTL permits only branching-time operators, meaning each path quanti�er must
be immediately followed by exactly one of the operators � or U . The de�nition of HTL can be
stated more formally:

� Every simple formula in the state language is a formula in HTL.

� If ' and are HTL formulae, then so are :', '_ ,
!

93('),

93('),
!

9 ['U],

9 ['U].

For formal simplicity, the
!

8 operator and the path quanti�er 2 are de�ned in terms of
!

9 and
3; practically, we write formulae containing those symbols as if they were technically part of
HTL.

Because of the backward path operators, HTL turns out to be syntactically equivalent to
POTL of Pinter and Wolper [34] rather than to CTL. As one can see in the formation rules, HTL

9

gives rise to an inseparable combination of temporal operators. For instance,
!

9� and

9� stand
for \there is an immediate successor" and \there is an immediate predecessor" respectively. All
the usual abbreviations are de�ned and interpreted in the obvious way. Although HTL severely
restricts the expressiveness power of HTL� it is still appropriate to express many interesting
properties in the context of hypertext.

Links-automata provide models for model checking

To verify browsing properties of a hyperdocument with the model checker, there must �rst be
a model to check. The speci�c method of extracting a model from a hyperdocument will vary
from system to system, but in general the idea is to use the links-automaton of a hyperdocument
to produce an appropriate �nite state machine for the Kripke structure required by the model
checker. For many hypermedia systems this is a simple, if not trivial, exercise; for other systems,
notably Trellis, converting the links-automaton to an FSM can be quite involved. There are,
then, three issues in modeling a hyperdocument:

1. What is the appropriate links-automaton for the hypermedia system that generated the
document?

2. How shall this links-automaton lead to a �nite state machine?

3. What state assertions shall be associated with the FSM, i.e., what atomic properties of
the hyperdocument characterize the aspects of browsing that are to be studied?

In the following two sections, we illustrate these processes for two di�erent hypermedia systems:
Trellis and Hyperties. For Hyperties (and most other hypermedia systems) the most appropriate
links-automaton is already a �nite state machine, so model generation is fairly simple. For Trellis
the correct links-automaton is a PT-net, which is more powerful than a �nite state machine;
extracting a checkable model from a Trellis document is therefore a more complex process.

In our examples, typewriter font indicates direct input and output for Clarke's model check-
ing software, which uses ASCII character representations for the CTL (HTL) operators. \A,

E" correspond to \
!

8 ;
!

9"; \G, F, U, X" are \2;3;U; �" respectively3. To aid in following this
notational shift, we show some formulae in both symbolic operator form and in ASCII model
checker input form.

3 Analyzing Trellis hyperdocuments

Trellis [40, 39, 41] is a unique hypermedia system developed previously by the authors. It di�ers
from other systems in that links can have multiple source nodes and multiple destination nodes.
This allows creation and synchronization of parallel browsing paths with multiple concurrently
displayed content elements. The novel link concepts of Trellis have been most recently been
realized in a WWW browser called MMM (Multi-head Multi-tail Mosaic) [8].

The Trellis document shown in �gure 3 is a small net that expresses the browsing behavior
found in some hypertext systems, namely that when a link is followed out of a node, the source
content stays visible and the target content is added to the screen. The source must later be
explicitly disposed of by clicking a remove button.

3CTL does not contain backwards path operators, so we have restricted our experiments with Clarke's model
checker to forward path properties.

10

Figure 3: Small Trellis document.

The PT-net is the links-automaton of this hyperdocument; a PT-net is not always a �nite
state machine. In order to obtain a �nite state machine for model checking, we compute the
coverability graph of the net [33, pp. 91-95] and use that. The net here gives rise to a coverability
graph of 11 states (reference [40] shows in detail how a coverability graph can be generated from
the PT-net in a Trellis document). The coverability graph is in FSM form, but has some
redundant states; after simpli�cation, we have an 8-node FSM.

The transition diagram of this FSM and its encoding for the model checker are shown in
Figure 4. The number of states and transitions (CUBES) is given �rst. Next, the section
MOORE-OUTPUTS names the atomic predicates we are using4. The bit vector next to a
state number indicates which of the atomic predicates (counted in the order listed in MOORE-
OUTPUTS) are true in that state. Finally, the transitions out of a state are given as a list of
destination state numbers following each bit vector.

Notice that in this particular document, several states have multiple concurrently visible

4Recall that for our experiment, a predicate like c.welcomemeans the welcome content element is visible, and
b.beginmeans the begin link is selectable; we have not attempted to encode any document properties other than
these simple ones, though more complicated properties could certainly be represented.

11

NAME = RefB.fsm;

INPUTS = ;

STATES = 8;

CUBES = 12;

MOORE-OUTPUTS =

c.welcome,c.overview,c.shuttle,c.engines,c.allow,c.inhibit,

b.begin,b.orbiter,b.propulsion,b.start,b.return,b.remove;

#0 100010100000

1

#1 010010011000

2

6

#2 010101000011

3

4

#3 000110000010

0

#4 110001100001

0

5

#5 010001000001

1

#6 011001000101

7

4

#7 001010000100

0

#END

7 5

4

3

6

210

Figure 4: FSM encoding of the links-automaton for Trellis document

content elements. State 2, for example, has bits marked in positions 2 and 4, meaning the
predicates c.overview and c.engines are true. This in turn implies that these two content elements
are concurrently visible when browsing the hyperdocument at the point modeled by state 2. This
is exactly the browsing situation illustrated in �gure 3.

This model can be queried with the model checker for any browsing properties that involve
temporal combinations of the atomic predicates. In our experiment, due to our choices for
atomic predicates, we can investigate properties about when during browsing certain links will
be selectable, or under what conditions certain content elements will be visible:

� Is there some browsing path such that at some point both the \orbiter" and \propulsion"
buttons are selectable on one screen?
!

93(b.orbiter ^ b.propulsion)

|= EF(b.orbiter & b.propulsion).

12

The formula is TRUE.

� Does there exist a browsing path such that at some point both the \shuttle" text and the
\engines" text are concurrently visible?
!

93(c.shuttle ^ c.engines)

|= EF(c.shuttle & c.engines).

The formula is FALSE.

� Is there some browsing path that reaches a point at which no buttons are selectable?

|= EF(~b.begin & ~b.remove & ~b.propulsion & ~b.orbiter

& ~b.start & ~b.return).

The formula is FALSE.

� Is there some browsing path that will eventually simultaneously show the \overview" panel
and the \engines" panel?

|= EF(c.overview & c.engines).

The formula is TRUE.

An alternate way to express this query is to reverse the sense: On all paths is it always
the case that either \overview" or \engines" is not showing?
!

82(:c.overview_:c.engines)

|= AG(~c.overview | ~c.engines).

The formula is FALSE.

� Is it possible during browsing to see both the \welcome" and \engines" panels on the same
screen?

|= EF(c.welcome & c.engines).

The formula is FALSE.

� Can both the \allow" access control and the \inhibit" access control ever be in force at
the same time?

|= EF(c.inhibit & c.allow).

The formula is FALSE.

� Is it possible to select the \orbiter" button twice on some browsing path without selecting
the \remove" button in between?
!

93(b.orbiter ^
!

8�(
!

8 [b.remove U b.orbiter]))

|= EF(b.orbiter & AX(A[b.remove U b.orbiter])).

The formula is FALSE.

This last query is a bit more complex. The informal expression of it does not parallel closely
the actual operators employed to check the property.

13

Figure 5: CSP program as browsable Trellis document

A larger Trellis document

The model checker also has been tested on the larger Trellis document shown in Figure 5
(being displayed by an older version of the Trellis net editor). The document contains about 70
nodes; the state machine derived from this net contains more than one thousand states. The
performance of the model checker on formulae like those from the previous example was on the
order of a few seconds, with the most complicated query we tried requiring about 20 seconds
on an older-generation engineering workstation. We suspect that authors of hyperdocuments
will �nd such timing not at all unreasonable for establishing the presence or absence of critical
browsing properties.

Colored PT-net models for CSCW

Current work with Trellis involves encoding group collaboration protocols into hypermedia doc-
uments [17]. The links-automata on which these CSCW hyperdocuments are based is a colored
PT-net. FSM models derived from colored PT-nets are even more complicated than those de-
rived from plain PT-nets; the group interactions encoded in these models bene�t greatly from
the veri�cation analysis enabled by model checking.

For example, consider the colored PT-net net shown in Figure 6. This work, as implemented
in the WWW, is further discussed in two Web conference papers [8, 9], both of which can be
found on the Web. We analyzed a Trellis hyperdocument based on this net with the model
checker, and found an error in its behavior. The \hold" place was intended to allow the modera-

14

d

d

dy

d releaseFloor

speak

dropFloor

grabFloor

listen

moderate

delp

addp

pool

d

m

m

m

m

m

m

m

d

d

d

m

m

m

d

d

newMod

d+m

d+m m

getFloor

mutex

hold
m

m

d

d

d

d

susp

wait

resp

m m

y

d

Figure 6: Colored PT-net for moderated meeting protocol

tor to park a speaker for a time while the moderator assumed the speaker's oor; the moderator
would then release the oor back to the speaker on hold. The net as shown here, however,
does not constrain the moderator to execute the \dropFloor" operation after the \grabFloor"
operation. If, instead, a \grabFloor" is followed by a \releaseFloor" operation, the previous
speaker is stuck on hold. To check for this problem, we asserted this formula:

EF (c.hold & ~c.speak) .

Informally, this says \There is some browsing path that reaches a document state in which the
hold node is active (i.e., someone is on hold) and the speak node is not active (i.e., no one
is speaking, moderator or otherwise)." The model checker revealed the assertion to be true,
though we expected it to be false, thus uncovering an error in how the link structure of the net
encodes the desired browsing behavior.

15

4 Analyzing a Hyperties document

To illustrate that these browsing veri�cation concepts are not speci�c to Trellis, but are indeed
general, we have applied the approach to a Hyperties [37, 30] document. Speci�cally, we have
extracted the link structure from the Hyperties version of ACM's Hypertext On Hypertext issue
of the Communication of the ACM, and use the directed graph as the �nite state machine for
the model checker. The model contains 298 states (content nodes), and over 700 links. Here are
the results of some sample queries, all of which were answered by the model checker in less than
two seconds on an engineering workstation.

� On all paths from the initial node, is it always the case (at all nodes) that some future
path contains the Table of Contents (TOC) node?
!

82(
!

93(c.tableofc))

|= AG (EF (c.tableofc)).

The formula is FALSE.

Since this property does not hold, this says the document contains at least one node from
which it is impossible to reach the TOC. Note that these properties are being tested for
the link structure of the document alone, and do not account for any system-supplied
browsing aids, such as backup or full history.

� On all paths from the initial node, will the TOC eventually be seen?

On all paths from the initial node, will the Introduction eventually be seen?

|= AF (c.tableofc).

The formula is FALSE.

|= AF (c.introduc).

The formula is TRUE.

The previous property asked if TOC could be reached from any node; this property is
di�erent in that it asks if TOC will eventually be reached (at least once) when browsing
from the initial node. Such a property could be satis�ed if, for example, TOC were the �rst
or second node on all paths, whether or not it could then be returned to after browsing
past it. The second formula above illustrates this with the Introduction node. Since the
Introduction is the initial node of the document, the property trivially holds, but it says
nothing about whether the Introduction can be revisited once it is passed.

� Is there at least one path such that once the Introduction is reached, it can be later
revisited?
!

93(c.introduc ^
!

9�(
!

93(c.introduc)))

|= EF (c.introduc & EX (EF (c.introduc))).

The formula is FALSE.

16

Since the Introduction is the �rst node on all paths, the failure of this property implies
that it can be read only once during any traversal of the document (again, considering
only the link structure proper). In Hyperties, this means the special browser features, like
history, must be relied on.

� On all paths from the initial node, is it always the case (at all nodes) that the TOC is
exactly one link away?

On all paths from the initial node, is it always the case (at all nodes) that the TOC is no
more than three links away?

|= AG (EX (c.tableofc)).

The formula is FALSE.

|= AG (EX (c.tableofc | EX (c.tableofc | EX (c.tableofc)))).

The formula is FALSE.

This �rst property might well be one an author wants a document to have, though it is
a bit strong. The second property is more relaxed and more probable for a document
to exhibit. The proper semantics are obtained by nesting the \next step" operator. Of
course, neither property holds for this document since we have already seen that some
nodes exist from which TOC is not reachable at all.

� Is there some path from the initial node on which it is always the case (at all nodes) that
the TOC is exactly one link away?

|= EG (EX (c.tableofc)).

The formula is TRUE.

Interestingly enough, though we saw that the \one hop away" property for TOC does not
hold for all paths, it does hold for at least one path in this document.

� On all paths from the initial node, is it always the case (at all nodes) that either the
Bibliography is not displayed, or else some path eventually leads from it to the TOC?

|= AG(~c.bibliogr | EF(c.tableofc)).

The formula is FALSE.

This query attempts to further re�ne the �nding that the TOC cannot be reached from
some nodes. Here we see that the Bibliography node is one such node.

5 Discussion and conclusions

In this report we have described an authoring mechanism whereby the creator of a hyperdoc-
ument can verify that its link structure will exhibit certain desired properties when browsed.
This method is automatable; author input is required to express the properties to be checked,
but no human-generated proof is required.

17

Modeling other hypermedia systems

We illustrated model checking for two hypertext systems: Trellis, and Hyperties, but our analysis
methods will likewise apply to documents from any hypermedia system for which an accurate
model can be derived. Producing a model for analysis requires �rst determining how much of
the system's browser behavior to add to the document links-automaton, based on the purpose
for an analysis.

In our experiments we worked directly with the links-automaton without special browser
features mixed into the model. Hyperties, for example, allows a reader to jump from any node
directly to the Table of Contents node; this behavior is maintained by the browser software, and
is not represented directly as links in the document. Correspondingly, the model we analyzed
(the CACM issue) gave the answer false to the query \on all paths, the TOC is eventually
seen". In this document, the author relied on the special browser feature and built a linked
structure that did not always allow return to the Table of Contents. If browsed on a system
other than Hyperties, one without this special feature, this particular document structure would
lead readers down dead ends.

The choice to analyze links-automaton behavior alone was arbitrary; browser behavior can
certainly be encoded into a model if desired. The Hyperties Table of Contents feature just
mentioned can be included in analysis by placing extra transitions into the FSM processed by
the model checker.

Path mechanisms and scripting languages

Though the method applies to general hyperdocuments, it also has application to hyperme-
dia/multimedia scripting languages and other path control mechanisms. In fact, the Trellis
model we used in some of the examples is inherently such a path control mechanism, providing
the author of a hyperdocument greater control over the sequences in which nodes will be browsed;
this control is obtained through a more powerful links-automaton (the PT-net) than that used
in other hypermedia systems (�nite state machines). Other researchers have described di�erent
mechanisms to meet similar needs [10, 44]. Our model checking approach could be used, for ex-
ample, during document maintenance to verify that paths expressed in these other mechanisms
continue to be accurate for the target hyperdocuments after modi�cation of the link structure
or contents.

User interface

Model checking as we have presented it would bene�t greatly from a good user interface and
support environment. Hyperdocument authors will almost certainly not wish to write browsing
properties directly in the HTL� notation. While some success might be had in providing a more
English-like notation that could be translated directly into HTL� a better approach might be to
pre-design dozens, or perhaps hundreds, of queries that make sense for general hyperdocuments.
These would be pre-coded into HTL� and provided in a menu for authors to check as desired.
New queries could be added to the menu as authors decided to write them; we expect that writing
correct queries in HTL� would be about as di�cult as writing macros for document-processing
tools like TEX or emacs.

18

System interoperability

Finally, the concept of a links-automaton provides an intriguing solution to the interoperability
problem. The current approach, seen in HTML and the World Wide Web, is heterogeneity
through homogeneity | standardizing on a common document notation and a (usually large)
collection of specialized browsing operations and interpretations. An alternate approach is to
have each hypermedia system export a links-automaton for a document, expressing the behavior
inherent in the links of each document without all the \extra" features provided by the individual
browser software. Any browser that could \execute" the �nite state automaton would provide
the intended behavior for the document; moreover, the simplicity of the FSM model means that
all browsers could provide a \common" behavior for any particular document.

References

[1] Atlee, J. M., and Gannon, J. D. State-based model checking of event-driven system
requirements. IEEE Transactions on Software Engineering (Jan. 1993), 24{40.

[2] Barringer, H., Kuiper, R., and Pnueli, A. Now you may compose temporal logic
speci�cations. In Proc. of the Sixteenth ACM Symp. on Theory of Computing (1984),
pp. 51{63.

[3] Beeri, C., and Kornatzky, Y. A logical query language for hypertext systems. In
Hypertext: Concepts, Systems, and Applications, A. Rizk, N. Streitz, and J. Andr�e, Eds.
Cambridge University Press, Nov. 1990, pp. 67{80. Proceedings of the European Conference
on Hypertext.

[4] Ben-Ari, M., Pnueli, A., and Manna, Z. The temporal logic of branching time. In
fProc. Eighth ACM Symp. on Principles of Programming Languages (1981), pp. 164{176.

[5] Bursh, J. R., Clark, E. M., and McMillan, K. L. Symbolic model checking: 10 to
the 20 states and beyond. Carnegie Mellon and Stanford Universities, 1989.

[6] Burstall, R. M. Program proving as hand simulation with a little induction. Information
Processing 74 (1974), 308{312.

[7] Campbell, B., and Goodman, J. M. HAM: A general purpose hypertext abstract
machine. Commun. ACM 31, 7 (July 1988), 856{861.

[8] Capps, M., Ladd, B., and Stotts, D. Enhanced graph models in the web: Multi-client,
multi-head, multi-tail browsing. In Proceedings of the 5th WWW Conference (Computer
Networks and ISDN Systems, vol. 28) (May 6-10 1996), pp. 1105{1112. This paper appears
on-line at http://www5conf.inria.fr/�ch html/papers/P19/Overview.html.

[9] Capps, M., Ladd, B., Stotts, D., and Furuta, R. Multi-head/multi-tail mosaic:
Adding parallel automata semantics to the web. In Proceedings of the 4th WWW Conference
(WWW Journal, O'Reilly and Associates Inc., vol. 1) (Dec. 11-14 1995), pp. 433{440. This
paper appears on-line at http://www.w3.org/pub/Conferences/WWW4/Papers/118/.

[10] Christodoulakis, S., Theodoridou, M., Ho, F., and Papa, M. Multimedia docu-
ment presentation, information extraction, and document formation in MINOS: A model
and a system. ACM Trans. O�ce Inf. Syst. 4, 4 (Oct. 1986), 345{383.

19

[11] Clarke, E. M., Emerson, E. A., and Sistla, A. P. Automatic veri�cation of �nite-
state concurrent systems using temporal logic speci�cations. ACM Transactions on Pro-
gramming Languages and Systems 8, 2 (1986), 244{263.

[12] Clarke, E. M., and Grumberg, O. Research on automatic veri�cation of �nite-state
concurrent systems. Ann. Rev. Comput. Sci. 2 (1987), 269{290.

[13] Emerson, E. A., and Halpern, J. Y. \sometimes" and \not never" revisited: on branch-
ing vs. linear time. In Proc. Tenth ACM Symp. on Principles of Programming Languages
(1983), pp. 127{140.

[14] Emerson, E. A., and Lei, C. L. Modalities for model checking: Branching time strikes
back. In Twelfth Symposium on Principles of Programming Languages (1985), pp. 84{96.

[15] Emerson, E. A., and Srinivasan. Branching time temporal logic. In Proc. of the REX
School/Workshop 1988 on Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency (1989), Springer-Verlag.

[16] Furuta, R., and Stotts, P. D. Structured dynamic behavior in hypertext. Technical
Report CS-TR-2597 (UMIACS-TR-91-14), University of Maryland Department of Com-
puter Science and Institute for Advanced Computer Studies, Jan. 1991.

[17] Furuta, R., and Stotts, P. D. Interpreted collaboration protocols and their use in
groupware prototyping. In Proc. of the 1994 ACM Conference on Computer Supported
Cooperative Work (CSCW '94) (Oct. 1994), ACM, New York, pp. 121{131.

[18] Gabbay, D., Pnueli, A., Shelah, S., and Stavi, J. On the temporal analysis of
fairness. In Proc. Seventh ACM Symp. on Principles of Programming Languages (1980),
pp. 163{173.

[19] Galton, A., Ed. Temporal Logics and their applications. Academic Press, Harcourt Brace
Jovanovich, Publishers, 1987.

[20] Halasz, F. G. Reections on NoteCards: Seven issues for the next generation of hyper-
media systems. Commun. ACM 31, 7 (July 1988), 836{852.

[21] Kahn, K., and Gorry, G. A. Mechanizing temporal knowledge. Arti�cial Intelligence
9 (1977), 67{95.

[22] Kowalski, R. A., and Sergot, M. J. A logic-based calculus of events. New Generation
Computing 4 (1983), 67{95.

[23] Kroger, F. Temporal Logic of Programs. Springer-Verlag, 1987.

[24] Lamport, L. \Sometime" is sometimes \not never": on the temporal logic of programs.
In Proc. Seventh ACM Symp. on Programming Languages (1980), pp. 174{185.

[25] Lee, R. M., Coelho, H., and Cotta, J. C. Temporal inferencing on administrative
databases. Information Systems 10 (1985), 197{206.

[26] Lichtenstein, O., and Pnueli, A. Checking that �nite state concurrent programs
satisfy their linear speci�cation. In Twelfth Annu. ACM Symp. Principles on Programming
Languages. (1985), pp. 97{107.

20

[27] Lloyd, J. W. Foundations of Logic Programming, second ed. Springer-Verlag, 1987.

[28] Manna, Z. Temporal Veri�cation of Reactive Systems. Springer-Verlag, 1995.

[29] Manna, Z., and Pnueli, A. Veri�cation of concurrent programs: the temporal frame-
work. In The Correctness Problem in Computer Science, R. S. Boyer and J. S. Moore, Eds.
Academic Press, 1981, pp. 215{273.

[30] Marchionini, G., and Shneiderman, B. Finding facts vs. browsing knowledge in hy-
pertext systems. Computer 21, 1 (Jan. 1988), 70{80.

[31] Moszkowski, B. Reasoning about digital circuits. PhD thesis, Standford University, CA,
1983.

[32] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE
77, 4 (Apr. 1989), 541{580.

[33] Peterson, J. L. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc., 1981.

[34] Pinter, S. S., and Wolper, P. A temporal logic for reasoning about partially ordered
computations. In Proc. of the third ACM Symp. on Principles of Distributed Computing
(1984).

[35] Pnueli, A. The temporal logic of programs. In Proc. Eighteenth IEEE Symp. on Founda-
tions of Computer Science (1977), pp. 46{67.

[36] Reisig, W. Petri Nets: An Introduction. Springer-Verlag, 1985.

[37] Shneiderman, B. User interface design for the Hyperties electronic encyclopedia. In
Proceedings of Hypertext '87 (Nov. 1987), pp. 189{194. Published by the Association for
Computing Machinery, 1989.

[38] Sinachopoulos, A. Logics for Petri-nets: Partial order logics, branching time logics and
how to distinguish between them. Petri Net Newsletter (8 1989), 9{14.

[39] Stotts, D., and Furuta, R. Browsing parallel process networks. Journal of Parallel
and Distributed Computing 9, 2 (1990), 224{235.

[40] Stotts, P. D., and Furuta, R. Petri-net-based hypertext: Document structure with
browsing semantics. ACM Transactions on Information Systems 7, 1 (Jan. 1989), 3{29.

[41] Stotts, P. D., and Furuta, R. Temporal hyperprogramming. Journal of Visual Lan-
guages and Computing 1, 3 (1990), 237{253.

[42] Stotts, P. D., Furuta, R., and Ruiz, J. C. Hyperdocuments as automata: Trace-
based browsing property veri�cation. In Proceedings of the ACM Conference on Hypertext
(ECHT '92), D. Lucarella, J. Nanard, M. Nanard, and P. Paolini, Eds. ACM Press, 1992,
pp. 272{281.

[43] Wolper, Z. Temporal logic can be more expressive. In Proc. of the Twenty-second IEEE
Symp. on Foundations of Computer Science (1981), pp. 340{348.

[44] Zellweger, P. T. Active paths through multimedia documents. In Document Manipula-
tion and Typography, J. C. van Vliet, Ed. Cambridge University Press, Apr. 1988, pp. 19{34.
Proceedings of the International Conference on Electronic Publishing, Document Manipu-
lation, and Typography, Nice (France), April 20{22, 1988.

21

Appendix A

A.1 Syntax of HTL�

The kernel of HTL� is the language we call SL (State Language), a typed �rst-order language [27].
Typed �rst-order languages, also known as many-sorted languages, are more convenient than
ordinary �rst-order logic for expressing properties of systems with di�erent types of primitive
elements (e.g. buttons/links and content elements). SL allows description of the properties of
hyperdocuments at particular points during browsing. To keep early experiments simple, the
SL in this report allows expression of only two such properties: \is a content element visible?",
and \is a link (button) selectable?". For example, the SL formula c.hello asserts that the
content element named \hello" is visible; similarly, the formula b.help asserts that the button5

named \help" is selectable. Practical use will require augmenting the expressive power of SL
by introducing new atomic predicates to encode other aspects of hypermedia documents and
browsing.

HTL� is a temporal extension of SL; it includes all symbols of SL with additional temporal
logic operators, including backward path quanti�ers (as explained later), using a notation similar
to that of Wolper [43] and Lamport [24]. Except for the di�erence in the kernel and the backward
path quanti�er, HTL� is essentially the same language as CTL�.

Well-formed formulae

Let a path be a sequence of states. We de�ne inductively two kinds of formula: state formulae
describing what is the case at a speci�c state, and path formulae describing what holds over an
entire path. The well formed HTL� formulae are then exactly the �nite state formulae generated
by these rules:

� State formulae:

S1. All atomic formulae of SL are state formulae; we refer to these as simple formulae.

S2. If ' and are state formulae then so are :('), ('_).

S3. If ' is a path formula then
!

9 (') and

9 (') are state formulae.

� Path formulae:

P1. All state formulae are path formulae.

P2. If ' and are path formulae then so are :('), ('_).

P3. If ' and are path formulae then so are ('U) and �(').

The unary operator � (next time), and the binary operator U (until) are termed tense operators;
they are used to formulate assertions over sequences of states (paths). The formula 'U holds
for a path if and only if eventually occurs in the sequence, and ' is true in all states from
the beginning until the �rst state where is true. Nothing else is implied; that is, ' may or
may not continue to hold thereafter. Similarly, �' holds for a path if and only if ' is true in
the next state in the path, that is, in the second state of the of the sequence.

5For historical reasons, we use the term \button" almost interchangeably with \link" and \anchor."

22

The symbols
!

9 and

9 mean \there is at least one forward (respectively backward) path from
this state such that : : :". These operators are called existential path quanti�ers.6

Operator abbreviations

The symbols and operators given as de�ning HTL� comprise a minimal (but clearly not unique)
set; all the other usual temporal operators can be constructed from them. We now de�ne
these, and other notations, as abbreviations for expressive convenience in describing properties
of hyperdocuments and browsing.

� Standard abbreviations:

{ The logic symbols ^ (conjunction),! (conditional) and$ (if and only if) are de�ned
in the usual way. For instance, using DeMorgan's rules, we get for the symbol ^:

' ^ � :(:' _ :)

{ The two unary tense operators 2 (always) and 3 (sometime) are de�ned as:

3(') � true U '

2(') � :(3(:'))

{ (' atnext), meaning \' holds at the next state that holds", is de�ned as:

' atnext � : U ('^) _ �2:

{ (' unless), meaning \if there is a following state at which holds then ' holds
up to that point or else ' is always true", is de�ned as:

' unless � 'U _ 2'

{ The universal path quanti�ers
!

8 and

8 are de�ned as:

!

8 (') � :(
!

9 (:'))

8 (') � :(

9 (:'))

� Past tense operators: The `past' operators: P2 (always in the past), P3 (sometime in
the past) and P� (immediately before). All of these operators have a `conditional spirit',
so to speak. For instance, 'P3 is a path formula intuitively stating: \ if ' holds in
a certain state of the sequence, then sometime in the `past' (i.e. in a previous state)
must have held." Notice that the eventual realization of ' is not assumed. The other two
operators have the obvious similar intuitive meaning. The `current' state is not considered
as a `past' state in our de�nitions. Formally we have:7

'P2 � 2(2:' _ U')

'P3 � 2:' _ :'U

'P� � 2(�'!)

6The backward path quanti�er, as explained in section 5, refers speci�cally to the initial state. This is in
some sense more restrictive than the backward operators of POTL, but it is all that is needed in this context.
Moreover, this restriction will eventually simplify the checking process.

7The de�nition of P2 turns out to be similar to the de�nition of U in [43] where there is no \eventually"
component. This operator is also known as the unless operator.

23

� Future tense operators: The future operators: F2 (always in the future), F3 (some-
time in the future) and F� (immediately after) have analogous interpretations:

'F2 � 2('!�2)

'F3 � 2('!�3)

'F� � 2('!�)

Examples of WFFs with abbreviations

To illustrate the syntax of HTL�, we give a few examples of well-formed temporal formulae.
Many of them are classical in temporal logic literature and are intended to be a quick exposition
for readers not familiar with temporal logic. These are preliminary examples in the sense that
the formal semantics of HTL� are not introduced until section 5.

� The formula 32' holds for a path if and only if there is a state in the sequence such that
from this state on ' is always valid.

Considering now the formula 23' we see that it has a di�erent meaning altogether. It
holds for sequence if and only if at each state of the sequence ' holds sometime in the
future. If the sequence is in�nite for example, then the previous statement amounts to
saying that ' holds in in�nitely many states in the sequence8 or, in other words, that '
occurs in�nitely often (also known as \fairness requirement").

Correspondingly, the other combinations 2� ; �3'; : : : express di�erent conditions.

� The following formulae may be considered an \unrolling" of the basic tense operators using
the next time operator:

2' � ' ^ �2'

3' � ' _ �3'

'U � _ ('^�('U)) ^ 3

� The following HTL� formulae fail to capture the intended meaning of the operator F2 (it
is a good exercise to convince oneself of this):

3' ! 2

3' ! �2

3' ! 3'U�2

2(3' ! �2)

2(' ! (^ �2))9

These are just a few examples. A complete list of temporal logical laws may be found in [23].

8Suppose not, then there is a \last" state in the sequence for which ' holds. But then in the next state (since
the sequence is in�nite) it would be false that sometime ' will hold; this yields a contradiction.

9Even though this formula does not capture the intented meaning, it provides a very similar one; the only
di�erence is that the must be true in all future states as well as in the current one.

24

A.2 Semantics of HTL�

Assume a hyperdocument H, containing nodes (with named content) and links (also with
names). The semantics of HTL� are de�ned in terms of a Kripke structure K (an annotated
�nite state machine, as described in [11]) derived from H. Using a Kripke structure will allow
the use of Clarke's model checker for determining the truth of HTL� statements, as explained
in section 2. We also leave to section 2 any discussion of how a model is generated from H.

Let K =< M;C;B > be a �nite state machine and two functions. Let C be a function that
maps names to the states in M . Let B be a function that maps names to the transitions in M .
In SL an assertion \c.hello" is true for some state s if C(s) = hello, that is, if the name of the
content mapped to s is \hello"; we are assuming that if the M is in state s, then the content
for s is visible, or active. Similarly the SL assertion \b.help" is true in some state s if there is a
transition t out of s such that B(t) = help; when M is in state s, the enabled transitions out of
s represent selectable links in the hyperdocument being modeled by K.

Next, we have the concept of forward and backward paths or state sequences:

� � = (�0; �1; �2; : : :) is a forward sequence from state �0 if and only if 8i; �i+1 is immediately
reachable from �i.

� � = (�0; �1; �2; : : : ;M0) is a backward sequence from state �0 if and only if 8i; �i is imme-
diately reachable from �i+1, and M0 is the initial state of M .

We write �rst(�) to refer to the state �0, and �i to refer to the post�x of � beginning with �i; for
instance �2 = (�2; �3; : : :) . Notice that forward as well as backward sequences may be in�nite,
since paths may have cycles. This will be important for model checking issues.

Validity of HTL� formulae

It is clear that the validity of atomic formulae of SL on states inM can be completely determined
using just H. That is to say, given a certain state, we can determine whether or not a link is
selectable, or a particular content element is active in the modeled hyperdocument.

To de�ne validity of more complex formulae we use the standard notation. Let M0 be the
initial state of M and � a reachable state from it. If ' is a state formula, we write:

M0; � j= '

to mean that formula ' is valid in the state �. A similar notation applies for path formulae
holding for a sequence �. When the initial markingM0 is implicit then we omit it from the left
hand side of the expression. The relation j= is de�ned inductively:

1. Let ' be a simple formula. � j= ' if and only if ' holds in state �. Similarly, � j= ' if and
only if ' holds in state �rst(�).

2. Let � be a path formula and � a particular state. The path quanti�ers are de�ned as:

� � j=
!

8 (�) if and only if for every forward sequence � from � (i.e. �rst(�) = �), we
have � j= �.

� � j=
!

9 (�) if and only if there is a forward sequence � from � such that � j= �.

� � j=

8 (�) if and only if for every backward sequence � from � (i.e. �rst(�) = �), we
have � j= �.

25

� � j=

9 (�) if and only if there is a backward sequence � from � such that � j= �.

3. Let ' and be state formulae and � a sequence. The tense operators are interpreted as:

� � j= 2(') if and only if 8i � 0; �rst(�i) j= '. That is to say, formula ' is valid in all
states of the sequence �.

� � j= 3(') if and only if 9i � 0; �rst(�i) j= '. That is to say, formula ' is valid in at
least one state of the sequence �.

� � j= �(') if and only if �rst(�1) j= '. That is, the formula ' is valid in the second
state of �.

� � j= 'F2 if and only if

(9i � 0; �rst(�i) j= ') ! (8j; j > i ! �rst(�j) j=)

In other words, in �, if ' holds in some state then will hold in all the following
states. The binary operators F3 and F� are de�ned analogously.

� � j= 'P2 if and only if

(9i � 0; �rst(�i) j= ')!(8j; 0 � j < i ! �rst(�j) j=)

In other words, in � if ' holds in some state then must have happened in all the
previous states. The operators P3 and P� are de�ned analogously.

� The operator U is given the standard interpretation10: � j= 'U if and only if

9i � 0; (�rst(�i) j= ^ (8j; 0 � j < i ! �rst(�j) j= '))

� � j= ' atnext if and only if

(9i � 0; �rst(�i) j=)!(�rst(�j) j= ' for the least j � 0 such that �rst(�j) j=)

4. Let � and � be path formulae. The tense operators are interpreted as:

� � j= 2(�) if and only if 8i � 0 (�i j= �).

� � j= 3(�) if and only if 9i � 0 (�i j= �).

� � j= �(�) if and only if �1 j= �.

� � j= (�F2�) if and only if

(9i � 0; �i j= �) ! (8j; j > i ! �j j= �)

The binary operators F3 and F� are de�ned similarly.

� � j= �P2� if and only if

(9i � 0; �i j= �) ! (8j; 0 � j < i ! �j j= �)

The operators P3 and P� are de�ned analogously.

� � j= �U� if and only if 9i � 0; (�i j= � ^ (8j; 0 � j < i ! �j j= �)).

� � j= � atnext � if and only if

(9i � 0; �i j= �)!(�j j= � for the least j � 0 such that �j j= �)

10Actually this interpretation implies 'U ! 3 . However, some authors, like Wolper, give a slightly di�erent
interpretation to the operator U in such a way that does not necessarily hold in the sequence. This is precisely
the meaning of the operator unless.

26

A.3 Further HTL� abbreviations and extensions

Before presenting the examples, we develop additional notation. Let ' be a state formula and
� a path. We say that 3n' holds for path � if and only if ' holds at least n times in the path
�. It is easy to construct formulae expressing 3n, for every n. For instance

33' � 3' ^ (' ! (3' ^ ' ! 3'))

In general, we inductively de�ne the formulae 3n' (for any natural n) as:

3n' =

�
3' if n = 1
3' ^ (' ! 3n�1') if n > 1

From this de�nition, one can immediately express two concepts:

� ' happens at most n times � :3n+1'.

� ' happens exactly n times � 3n' ^ :3n+1'.

We write 3�n', 3�n', and 3=n' to mean that ' happens at most, at least, or exactly n times
respectively. By boolean combinations of the previous formulae one can express the fact that a
property hold between n and m times, and so on.

Extensions of the U operator are also possible. We write ' Un to mean that ' occurs in
all states of the sequence until the nth occurrence of . As in the case of U , nothing else is
implied in the de�nition. That is, ' may or may not continue to hold thereafter. This concept
is easily de�ned by recursion:

'Un =

�
'U if n = 1
'U (^ ('Un�1) if n > 1

For instance 'U3 � 'U(^ U (^ 'U)).
The extensions of the � (next time) operator are similar. We write ��n' to mean that '

will hold in all the states of the sequence up to, and including, the nth state. We write �=n'

to mean that ' will hold in the nth state of the sequence. Finally, ��n' means that ' will not
hold until the nth state of the sequence.11 These are de�ned inductively:

�=n' =

�
' if n = 0
�(�=(n�1)') if n > 0

��n' =

�
' if n = 0
��(n�1)' ^ �=n' if n > 0

��n' =

�
' if n = 0
��(n�1):' ^ �=n' if n > 0

The previous extensions induce natural ones for the binary past and future operators. For
example 'F3=2 or 'P�2 have the obvious meaning.

11This notation is somewhat misleading in that we are not stating that ' will hold for all the states after the
nth. We are just saying that ' does not hold for all the states strictly less than n, and furthermore, that it holds
in state n.

27

