Anti-aliasing Anatomic Surfaces

Rohit R. Saboo Marc Niethammer Stephen M. Pizer

Anti-aliasing: problem defintion

- Given a voxelized representation, find a surface within the voxel boundaries that represents the input image.
- The problem is ill-posed there are several possible surfaces; we select the smooth one.

Previous attempts

Constrained mean curvature flow [Whitaker 2000]

- Cons
 - Shrinks volumes.
 - Constraints make the result piecewise smooth.

Filtering methods

- Cons
 - Shrink volume
 - Change topology: holes

Flow of Laplacian of curvature

- Flow of Laplacian of curvature has been shown to produce smooth surfaces. [Chopp 1999]
- Constraining it doesn't have any ill-effects.

Data representation

- Represented as a level-set of signed distance function
 - obtained from the binary image
- Advantage
 - Computation of curvatures and evolution is straightforward.
- Disadvantage
 - Difficult to deal with thin regions not enough data to compute derivatives.

Evolution

- Evolution of the level set is done by flow of Laplacian of curvature.
- The level set is constrained to not change by more than 0.5
 - We can increase this limit to provide constrained smoothing.

Evolution

- Convergence may, however, take a long time.
 - for flat regions parallel to cardinal planes (shown in white on the quartic surface in the right)

Heuristic for faster convergence

- Flat regions are identified
 - Flat regions have zero K and zero H.
 - Flat regions are parallel to one of the cardinal planes.
- A distance metric change is used to compress distances along 'longer directions' – all directions become equidistant from boundary.

'Lines' along which compression takes place

Heuristic for faster convergence.

- The changed distance metric is used in the Laplacian of curvature computations.
 - This enables faster convergence in flat regions
- As iterations progress, the spacing is relaxed to be the original spacing
 - This needs to be done so that the smoothness is defined by the original curvature and not the curvature based on the new metric.

Example: Quartic Surface (Original)

Example: Quartic Surface (Anti-aliased)

Laplacian of curvature Curvature

Example: Ellipsoid (Original)

Example: Ellipsoid (Anti-aliased)

Laplacian of curvature Curvature

Example: Mandible

Original

Anti-aliased

Acknowledgements

• I would like to acknowledge Ross Whitaker for some valuable discussions on the topic.

References

- Ross Whitaker, "Reducing Aliasing Artifacts In Iso-Surfaces of Binary Volumes" IEEE Volume Visualization and Graphics Symposium, October 2000, pp. 23-32
- David L. Chopp , J. A. Sethian, "Motion by Intrinsic Laplacian of Curvature" Interfaces and Free Boundaries, volume 1, 1999, pp. 1-18