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Abstract

HUAI-PING LEE: Simulation-Based Joint Estimation of Body
Deformation and Elasticity Parameters for Medical Image Analysis.

(Under the direction of Ming C. Lin.)

Elasticity parameter estimation is essential for generating accurate and controlled

simulation results for computer animation and medical image analysis. However, finding

the optimal parameters for a particular simulation often requires iterations of simulation,

assessment, and adjustment and can become a tedious process. Elasticity values are

especially important in medical image analysis, since cancerous tissues tend to be stiffer.

Elastography is a popular type of method for finding stiffness values by reconstructing

a dense displacement field from medical images taken during the application of forces or

vibrations. These methods, however, are limited by the imaging modality and the force

exertion or vibration actuation mechanisms, which can be complicated for deep-seated

organs.

In this thesis, I present a novel method for reconstructing elasticity parameters with-

out requiring a dense displacement field or a force exertion device. The method makes

use of natural deformations within the patient and relies on surface information from

segmented images taken on different days. The elasticity value of the target organ and

boundary forces acting on surrounding organs are optimized with an iterative optimizer,

within which the deformation is always generated by a physically-based simulator. Ex-

perimental results on real patient data are presented to show the positive correlation

between recovered elasticity values and clinical prostate cancer stages.

Furthermore, to resolve the performance issue arising from the high dimensionality

of boundary forces, I propose to use a reduced finite element model to improve the

convergence of the optimizer. To find the set of bases to represent the dimensions for

forces, a statistical training based on real patient data is performed. I demonstrate the

trade-off between accuracy and performance by using different numbers of bases in the

optimization using synthetic data. A speedup of more than an order of magnitude is

observed without sacrificing too much accuracy in recovered elasticity.
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Chapter 1

Introduction

Screening and treatment of cancer are an important topic, since cancer is the second

most common cause of death in the US [American Cancer Society, 2012]. In particular,

prostate cancer is the second leading cause of cancer-related death in men, and there is

no standard or routine screening procedure yet. A popular method for prostate cancer

screening is the digital rectal exam (DRE), which involves inserting a gloved, lubricated

finger into the patient’s rectum to palpate and check for any abnormality in the prostate,

as shown in Fig. 1.1. The palpation is an example of cancer detection methods based

on elasticity, assuming that cancerous tissues are stiffer than normal ones. A palpation,

however, provides only qualitative assessment, and the small size or deep location can

make it impossible to detect the difference in stiffness by palpation. Instead, automatic

approaches based on medical image analysis can be used to estimate internal tissue

elasticity quantitatively. For example, elasticity reconstruction, or elastography [Ophir

et al., 1999], is a non-invasive method for estimating elastic tissue properties, based on

comparison of pre- and post-compression images and measured external forces. Elas-

tography is an inverse problem to elastic body simulation: the elasticity is recovered

from displacement and external forces. A rectal ultrasound probe is a popular device for

elastography of prostate, where the external forces are provided by the probe, and the

speckles in the ultrasound image provides an estimation of pixel-wise displacement field.

Fig. 1.2 shows an example result of ultrasound elastography for the prostate, where the



Figure 1.1: Digital rectal exam (DRE); the doctor inserts a gloved, lubricated finger into
the rectum to feel and check the prostate. Courtesy of National Cancer Institute.

color for each pixel represents elasticity values recovered from the displacement and the

forces.

Elastic body simulation is also useful in cancer treatment methods such as image-

guided radiotherapy (IGRT) and image-guided surgery. In an IGRT, the treatment plan

is made according to the planning image, and a treatment image is taken before each

treatment fraction to align the patient with the plan. Therefore, there is a need for

finding the rigid and non-rigid transformation from the treatment image to the planning

image to perform the alignment. An image registration method aims to find such a

pixel-wise correspondence between the two images. Besides methods based on directly

minimizing intensity errors and segmented surface distances, a physically-based simula-

tion can also be used to find such a correspondence. The boundary conditions (prescribed

nodal displacement or forces) need to be chosen carefully to match the deformed surfaces

or image intensities, and the material properties are usually chosen according to ex vivo

experiments on human tissues [Krouskop et al., 1998; Umut Ozcan et al., 2011]. In image

guided surgery, it is also important to register the preoperative image to intra-operative
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Figure 1.2: An example elastography result for the prostate using a rectal probe. Left:
overlaid colormap represents recovered elasticity. Right: corresponding ultrasound im-
age. Courtesy of Hitachi Medical Systems.

anatomy (landmarks) in order to compensate for the deformation during the surgery.

The finite element method (FEM) [Zienkiewicz and Taylor, 2005] has been applied to

model the biomechanics of the organ of interest, and the boundary conditions based on

landmark matching is the key to a successful registration [Cash et al., 2005].

Material properties are also essential in surgical simulations targeted at a specific pa-

tient, since tissue properties differ from patient to patient. The patient-specific modeling

of a surgical simulation is especially important for treatment planning. For example,

a simulator can be useful for planning of a brachytherapy [Chentanez et al., 2009] for

treating prostate cancer, and different prostate stiffness can produce different simulation

results and thus change the optimal way of inserting the needles [Salcudean et al., 2006].

Since in vivo experiments on tissue properties are usually unavailable before treatment

planning, the elastography becomes the main method in modeling surgical simulations.
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1.1 Elastography

The elastography can be illustrated using a linear static finite element method. The

basic idea of the FEM is to discretize a continuous domain with discrete elements and

nodes, and only the values at the nodes are considered in the discretized equations. The

linear static isotropic elasticity model and FEM gives the linear equation

Ku = f ,

where u is the vector of nodal displacements, f is the vector of external forces, and K

is the stiffness matrix determined by node connectivities and material properties. A

forward FEM-based simulation uses a volumetric mesh, a set of material properties, and

boundary conditions to build the matrix K and vector f and solve for the displacement

u. An elastography is the inverse problem of the forward simulation and aims to solve

for the elasticity by finding nodal displacements and external forces.

Existing elastography methods usually requires a dense (pixel-wise) displacement

field and a force exertion/measurement device. The displacements and external forces

are considered as known values, and the elasticity can be computed directly as an inverse

problem of the linear FEM [Zhu et al., 2003] or by iteratively minimizing errors in the

displacement field [Kallel and Bertrand, 1996]. Since the effect of a static compression

is usually limited to superficial tissues, more recent methods use vibrations instead to

cause the displacement [Chopra et al., 2009]. In order to reach deep-seated organs such

as the prostate, the vibration actuator needs to be inserted into the rectum or urethra.

For other internal organs such as the liver, however, the ability to apply vibration could

be limited by the patient’s fat tissues. Moreover, the modality of the images is also

limited: in images where the intensity is almost constant, the dense displacement field

can only be approximated, and these elastography methods may not be as reliable.
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1.2 Deformable Registration

The result of a deformable registration is usually represented as a pixel-wise displacement

field. A popular registration method is to minimize pixel-wise intensity errors by treating

the displacement vectors as the parameters to the optimization [Thirion, 1998]. The

image-based method is likely to stick to a local minimum because the displacement for

each vector is decided using only local intensity information. A regularization term is

therefore needed to resolve ambiguities for uniform regions and to enforce some quality

measures of the displacement field, such as the smoothness. Moreover, the intensity

values are ambiguous — a particular value could represent different tissues in an image.

If landmarks (local feature points) can be found in the two images, the matching of

corresponding landmarks can provide more robust registration than matching intensities

[Shen and Davatzikos, 2002]. However, it is often impossible to find a very dense set of

landmarks, and displacement vectors for most pixels are affected by both the landmark

matching and the interpolation method.

Physically-based simulations, such as the FEM-based approach described in Section

1.1, provide displacement fields of high quality and physical accuracy. And since internal

nodes are also simulated in the FEM, the dependence of the registration on the inter-

polation is minimized. However, the material properties (needed for stiffness matrix K)

and boundary conditions (for force vector f) are unknown. A surface matching can pro-

vide estimated boundary conditions [Ferrant et al., 2000], but geometrically deformed

surfaces may have the problem of vertex redistribution. On the other hand, to decide the

material properties, cycles of simulation-evaluation-adjustment may be needed. Notice

that in some of the simulation-based registration methods, the material properties are

less important than the deformation, since when there are boundary conditions applied

to all the surface nodes, a good registration can always be achieved, if the materials

are soft enough: one can apply larger forces on a stiffer material to achieve the same

deformation. Also notice that the term “elastic registration” is often used to describe
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methods using regularization terms based on elastic energy (computed with derivatives

of the deformation field), and these “elastic” methods does not utilize simulations of

elastic bodies.

1.3 Parameter Estimation in Computer Graphics

In computer animation, physically-based simulations can help generate realistic effects

such as smoke, liquid, and elastic deformation, without low-level manipulations. In many

cases, however, the animator would like high-level control of the physical effect through

adjusting simulation parameters. For example, particular shapes of fluid can be achieved

by adding artificial forces while keeping physical plausibility [Treuille et al., 2003; Mc-

Namara et al., 2004]. 2D animations can also be controlled by simulation parameters.

Fig. 1.3 shows 2D shapes resulted from simulations using different Poisson’s ratios (com-

pressibility). The look and feel of simulated cloth and soft objects, on the other hand,

depend on the physical properties rather than the exerted forces. In order to achieve

a certain effect, the material properties need to be estimated through tedious cycles of

adjustment, simulation, and evaluation. Optimization-based methods have been pro-

posed to automatically estimate material properties based on captured images/videos

and measured forces [Bhat et al., 2003; Syllebranque and Boivin, 2008; Bickel et al.,

2009]. Most of these methods require special image/video capturing systems and force

measuring devices, which may limit their applicability.

1.4 Joint Estimation of Deformation and Elasticity

Parameters

In this thesis, I aim to simultaneously solve the two main problems, elastography and

deformable registration, by presenting a general deformation and elasticity parameter
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Figure 1.3: Example 2D shape deformations showing different results with different
Poisson’s ratios ν; the boundary conditions are the same for both sets of objects (the
gravity).
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Figure 1.4: Overview of the optimization framework; the simulation parameters are
updated according to the current error in deformed surface and fed into the simulator
for the next iteration.

estimation method that only depends on surface information from multiple images, and

the movement is provided by natural organ movements. The deformation is not known

and is computed as an end result of the algorithm. The framework is built upon a

physically-based simulator that requires some simulation parameters (such as material

properties and boundary conditions) and generates nodal displacements, which are used

to deform the surfaces. The distance between the deformed and the target surfaces

are minimized in an optimization loop: in each iteration, an updated set of simulation

parameters is computed according to the distance-based objective function, and the

parameters are fed back to the simulator for the next iteration, and so on, as shown in

Fig. 1.4.
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My method has two main advantage over previous elastography methods. Firstly,

since only surface information is used, any image that can be segmented can be used in

my framework. This also means that the resolution of the resulting elastogram is limited

to organ boundaries, but I argue that the recovered “average” stiffness of an organ also

reflects the combination of tissues of different elasticities in it. Second, the problem

of force exertion or vibration actuation is avoided since I do not actively generate the

displacements but only observe the movements from the images. Although the absolute

elasticity values cannot be recovered due to the lack of force measurements, I am able

to find the ratio of elasticity values when there is more than one material.

1.5 Thesis Statement

Physically-based modeling and numerical optimization can be applied to simultaneously

estimate deformation and material properties efficiently from deformed surfaces for elas-

tography and deformable registration.

To support this thesis, I present a general framework for estimating elasticity parame-

ters and boundary forces based on surface information without knowing the deformation

field or external forces. The feasibility of the framework is examined by showing a signif-

icant positive correlation between recovered elasticity values and clinical prostate cancer

stages. To show potential applications of the framework to assessment of a radiotherapy,

I apply the optimization scheme to the deformable image registration problem, as well

as the estimation of treatment images for dose calculation in the setting of a marker

tracking system. The application in physically-based animation is shown with an ex-

ample parameter estimation for 2D elastic body animation, where the Poisson’s ratio

is recovered from the source and target shapes. Finally, to address the performance

issue due to high dimensionality of external forces, I introduce an acceleration method

using reduced-dimension finite element modeling, where the reduced basis is trained
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Figure 1.5: A typical scene of the male pelvis region: the movement of the bladder and
rectum deforms the prostate. Left: a 3D rendering of the organ surfaces; the white
surface represents the target surface of the prostate. Right: a slice of a CT image of
the area; the red contour shows the segmentations of the reference image, and the blue
contour shows the prostate in the target image.

statistically across multiple patient data sets.

1.6 Main Results

1.6.1 Elasticity Estimation for Noninvasive Cancer Stage As-

sessment

In Chapter 3, I apply my optimization framework to estimate the stiffness of the prostate

in real patient data and show that the recovered elasticity values correlate to prostate

cancer staging. Fig. 1.5 shows a typical scene of the male pelvis region that I focus on

in the experiments. In this area, the prostate is usually pushed around by the bladder

and rectum, which deforms a lot due to different amounts of contents from time to time.

The clinical application I propose is complementary to existing elastography meth-

ods. When a number of images from the same patient is available, my method provides

an additional indication of cancer staging. The experimental results show a significant

positive correlation between recovered stiffness values and the cancer stages, as shown in
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Figure 1.6: Box plot showing the range of recovered elasticity values (Y axis) for patients
within each cancer stage (X axis), where the top and bottom of the boxes show the 25th
and 75th quartiles, and top and bottom lines show the maximum and minimum values;
the data shows significant positive correlation between the two values (the estimated
p-value is 0.024 using Spearman’s rank correlation).
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Fig. 1.6. I also analyze the effect of inaccurate Poisson’s ratio and different combination

of normal and cancerous tissues within the prostate. Furthermore, a nonlinear FEM can

be integrated with my framework. These results were published in [Lee et al., 2012] and

are presented in Chapter 3.

1.6.2 Applications in Medical Image Analysis for Radiotherapy

In an image-guided radiotherapy of prostate cancer, a CT image is taken before the

treatment, and the treatment plan is made according to this CT image (planning im-

age). On a predetermined subset of treatment fractions, in order to align the patient

with the plan, another CT image (treatment image) is taken, and the patient is moved

accordingly. A treatment CT images also provides an estimation of the radiation dose

delivered to each part of the tissue, since the X-ray intensity represents the absorbed

radiation. If the delivered dose deviates too much from the treatment plan, the plan

can be modified accordingly. Therefore, finding the transformation (rigid and non-rigid)

from the treatment space to the planning space is essential in evaluating delivered dose

in a radiotherapy. The process of finding a transformation that matches two images is

called image registration. Details are given in Chapter 2.

1.6.2.1 Physically-Based Image Registration

While the rigid registration is relatively easy, nonrigid image registration remains difficult

since the movement of internal organs is complicated. A physically-based registration

approach uses a simulator to generate a deformation field that matches the images, and

the key to a good matching are the material properties and boundary conditions. How-

ever, most existing methods use surface matching to provide boundary conditions and

use hand-picked material properties. My optimization framework provides a means of

automatically finding the optimal elasticity values and boundary conditions. In contrast

to registration methods that seek to maximize image similarities, my method ensures
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Figure 1.7: A typical setting of the Calypso system. Left: three transponders are
implanted into the prostate to provide localization; courtesy of Calypso. Right: a CT
image slice showing the prostate and two of the transponders.

quality of deformation since it is always generated by an FE simulator, assuming the

FE model is suitable for the patient. In contrast to existing FEM-based methods, mine

does not require hand picking the material properties. I experimented with CT images

of the male pelvis region and compared the results with a popular image-based method.

The results were published in [Lee et al., 2010b] and are presented in Chapter 3.

1.6.2.2 Treatment Image Estimation by Matching Implanted Markers

Instead of treatment images, a GPS-like system [Langen et al., 2008; Balter et al., 2005]

can also be used to track a few markers implanted into the target organ. Fig. 1.7 shows a

typical setting of such a system, where three electromagnetic transponders are implanted

into the prostate. With such a tracking system, the target organ can be located without

taking a treatment image. Such a system not only provide a more accurate localization

than a CT image but also provide localization during the treatment fraction. However,

since the treatment images are missing, there is no way to estimate the delivered dose.

I propose two methods to estimate the treatment image according to the planning

image and the marker locations. One is based on m-reps [Pizer et al., 2003] fitted to

the marker locations, providing displacements at the sample points on the surface. The
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m-reps provide a coordinate system that represents any location within or near the

surface of the object, including the marker locations. By fitting the planning m-rep to

the marker locations in the treatment space, displacements on the surface sample points

can be estimated. The dense deformation field is then interpolated for the entire region

of interest, and the planning image warped using the resulting deformation serves as the

estimated treatment image.

The other proposed method is based on the simulation-based optimization frame-

work: I find the optimal external forces that minimize the error in marker locations. In

this case, the parameters to the optimizer are the external forces acting on the surface

nodes of the prostate, and the objective function is based on distance between deformed

marker locations and the target locations. The optimal external forces gives the defor-

mation field that matches the marker locations in the planning and treatment spaces

and is used to generate the estimated treatment image. The simulation-based approach

results in more physically accurate deformations for pixels far from sample points (in this

work, the organ surface), since the entire 3D domain is considered in the FEM. On the

other hand, the deformation generated by m-reps depends on the interpolation algorithm

because only the deformation at sample points is given by the m-reps correspondence.

I assess the effectiveness of the estimated treatment image by comparing the deformed

planning models (fitted to treatment marker locations) with the segmentation from real

treatment image. Dose calculation results using the real and estimated treatment images

are used to show the feasibility of the image estimation scheme. These results were

published in [Lee et al., 2010a] and described in detail in Chapter 4.

1.6.3 Application in Physically-Based Animation

The selection of simulation parameters has been a difficulty in applying a physically-

based simulation for generating animations. In 2D animations, for example, the notion

of “stiffness” and “compressibility” has been studied in the literature, but heuristics are
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Figure 1.8: The initial shape (left), target shape (middle), and the plot of error versus
Poisson’s ratio (right), where the error is based on the distance between corresponding
vertices; the recovered value is 0.48 (ground truth is 0.49).

still much more popular than simulating animated objects as elastic bodies. I apply

my optimization framework to 2D shape animation using the FEM. The simulation

parameters to be optimized are boundary conditions of a few points and the Poisson’s

ratio of the material (for a single object, Young’s modulus is irrelevant). Fig. 1.8 shows

an example of recovering the Poisson’s ratio given the initial and target shapes. These

results were published in [Lee and Lin, 2012] and presented in Chapter 5.

1.6.4 Acceleration of Optimization Framework Using Reduced-

Dimension Finite Element Modeling

Reduced-dimension finite element modeling [Krysl et al., 2001] has been used to reduce

the computational complexity of the nonlinear FEM. A linear basis representing the

nodal displacements is computed by training a statistical model using sample displace-

ments generated by example simulations [Krysl et al., 2001] or user-provided keyframes

[Barbič et al., 2009]. Each of the bases can be viewed as nodal displacements, and

the displacements solved by the FEM is always a linear combination of the bases used.

Fig. 1.9 shows the first two bases for the surface displacements of the bladder and the

rectum.

I apply the idea to my FEM-based elasticity optimization, since the high dimen-
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Figure 1.9: Visualization of the first two principal components (reduced bases) found by
the statistical training of surface deformation.

sionality of external forces hurts the performance of the optimizer. In my case, the

example displacements for the statistical training are computed by matching surfaces

from segmented images. The main difference between my method and previous appli-

cations of the reduced dimension modeling is in the cross-model training: I train for

a reduced set of basis elements to be used for multiple FE models. The cross-model

training also means that example displacements generated using different models can

all be used in the statistical training and thus the reduced basis captures the statistics

of multiple patients. The reduced basis can also be applied to any new patient data

without re-training.

In order to achieve the basis sharing, all patient-specific FE models must be con-

structed in a way that they share the same set of boundary nodes (which have force

applied), and only the dimensions for these nodes are reduced. I use a set of atlas

surfaces consisting of the boundary nodes to build each specific FE model: the atlas

surfaces are iteratively deformed to fit the specific surfaces, and the FE model is built

on the fitted surfaces. As a result, the nodes on the atlas surface is shared among all

specific FE models, and the reduced basis can be shared among these FE models.

Although the simulator itself does not benefit a lot from this partial reduction scheme,

the speed of the optimizer is improved by more than an order of magnitude due to the
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Figure 1.10: The trade-off between speed and accuracy is achieved by using a different
number of bases for representing nodal displacements in the FE model.

reduced dimension of its parameter space (boundary forces). I present experiments on

synthetic patient data to show the trade-off between the speed (number of basis vectors

used) and accuracy in recovered elasticity, as shown in Fig. 1.10. These results were

published in [Lee and Lin, 2012] and presented in Chapter 5.

1.7 Organization

The remainder of this dissertation is organized as follows.

Chapter 2 reviews previous work and basic concepts related to the thesis work,

including medical image analysis and elasticity reconstruction.

Chapter 3 presents the core framework of the thesis for estimating deformation and

elasticity parameters. The sensitivity of deformation to the elasticity is studied, and

experiments on real patient data is presented. A clinical application complementary

to traditional elastography is also presented, followed by examples in physically-based
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medical image registration.

Chapter 4 discusses the problem of estimating treatment images for dose calculation

when marker locations instead of CT images are used to localize the patient during

treatment. A method based on fitted m-reps as well as the simulation-based approach

is proposed and experimental results in dose calculation are presented.

Chapter 5 introduces the acceleration method for the optimizers using reduced-

dimension FE modeling. An application of the optimization framework on physically-

based 2D animation is also presented.

Finally, Chapter 6 concludes this thesis and discuss future research directions.
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Chapter 2

Previous Work

In this chapter, I survey some related work on elasticity and deformation estimation in

the fields of medical image analysis (elastography and image registration) and computer

graphics (physically-based animation).

2.1 Elastography

Material properties are important in medical applications such as surgical simulation,

motion compensation, and cancer detection. The most direct and accurate approach of

material property estimation is measuring them ex vivo, where the tissue is extracted

from the patient or the animal, and the deformation and forces are measured in a con-

trolled environment [Krouskop et al., 1998; Zhang et al., 2008; Umut Ozcan et al., 2011].

In many cases, however, ex vivo experiments with the tissue are not feasible for live pa-

tients, and medical images have been used for noninvasive elasticity reconstruction.

Since many diseases are related to stiffer tissues, palpation has been an important

means of diagnosis. However, the result of a palpation is subject to the person who

performed the examination, and the application is limited to areas close to the skin.

To overcome these limitations, a quantitative analysis of medical images can be used to

evaluate tissue stiffness. For example, elastography (or elasticity reconstruction), is a

noninvasive approach that makes use of displacements evaluated from medical images



(usually ultrasound images) and the measured forces.

2.1.1 Displacement Field Estimation

Based on how the external forces are applied, elastography methods can be roughly

divided into two groups: one using quasi-static compression (also called static elastogra-

phy), and the other using low-frequency vibrations (also called dynamic elastography).

A common component in most methods of both groups is the use of a dense displace-

ment field for estimation elasticity parameters. Once the displacement field is known,

the elasticity can be computed using a direct or iterative optimization method.

2.1.1.1 Static Elastography

This type of methods estimate the dense displacement field using two images, one taken

at the rest state, and the other taken when the tissue is compressed. Most of the meth-

ods use ultrasound images because the displacement field can be computed from the

time delays between pre- and post-compression echo signals, assuming that speckle mo-

tion represents the underlying tissue movement for small, uniaxial compressions [Ophir

et al., 1999]. Ultrasound elastography is usually only two dimensional, since the image

resolution is highest on the plane perpendicular to the transducer face, and therefore it

requires a sweeping of the transducer to produce a 3D elastogram [Lindop et al., 2006].

Another disadvantage is that the amount of compression is still limited to regions close

to the skin, unless some probe is inserted into the body [Egorov et al., 2006].

2.1.1.2 Dynamic Elastography

Instead of static compressions, the external forces can be exerted through low-frequency

vibrations. The advantage over the static approach is that it can penetrate into deeper

tissues, although the effectiveness may be lowered for obese patients. An MRI or ul-

trasound machine in tune with the vibration can be used to find the displacement field
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[Manduca et al., 2001; Salcudean et al., 2006]. When the target tissue is deep-seated,

the vibration actuation mechanism may become sophisticated. For example, for an elas-

tography of the prostate, the vibrator can be inserted into the rectum or the urethra

[Chopra et al., 2009].

2.1.2 Inverse Modeling of Elastic Deformation

Once the displacement field is known, the elasticity can be computed by solving a least

squares problem [Zhu et al., 2003; Becker and Teschner, 2007; Eskandari et al., 2011],

if the algebraic equation resulting from the numerical solver is linear. Notice that the

elasticity can be computed only if the force is also measured during the static compression

or vibration actuation, and otherwise only the relative values can be found.

Alternatively, the error in the displacement field can be minimized by updating the

elasticities iteratively [Kallel and Bertrand, 1996]. This type of methods use numerical

optimization algorithms and are usually slower than direct methods. However, the

optimization scheme does not depend on the linearity of the deformation model and is

more general.

2.1.3 Other Elasticity Estimation Methods

The modality-independent elastography (MIE) [Washington and Miga, 2004] uses 3D

medical images such as the CT or MR images and maximizes image similarity measures

instead of finding the displacement field. The modality does not depend on the force

exertion scheme, but a number of landmarks within the tissue is required. Therefore,

the method is not suitable for organs with near-constant image intensities, such as the

prostate.

Risholm et al. [2010] proposed a Bayesian image registration framework, where the

physically-based registration problem is modeled with posterior probabilities, and a

Markov Chain Monte Carlo sampling technique is used to characterize the posterior
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distributions over deformation and elastic parameters. However, the high dimension-

ality requires a large number of samples to characterize the distribution and therefore

limits the number of degrees of freedom of the problem.

In cardiac function estimation, sequential data assimilation [Sermesant et al., 2006;

Moireau et al., 2008] has been applied to estimate the simulation parameters and predict

the state (displacements) jointly. The parameters and states are modeled with proba-

bility density functions conditioned on the observed states, and a filtering procedure is

applied over time to estimate the states. The accurate representation of the probabil-

ity density function also suffers from high computational complexity, and therefore the

dimension of the dynamic system is limited in practice.

2.2 Deformable Image Registration

The goal of an image registration is to find a voxel-to-voxel correspondence between

two images (2- or 3-dimensional). Mathematically, an image can be defined as an N -

dimensional real-valued function which maps a point x in the N -dimensional space to

the intensity value. The correspondence between two images If (fixed or target image)

and Im (moving or source image) can be represented as a function mapping a point to

another point, and the goal of an image registration is to find the transformation T such

that If (x) is as close to Im(T (x)) as possible.

A simple example of such a transformation is a rigid transformation, which is essential

during a radiation therapy in order to position the patient correctly with respect to the

radiation beam, since the treatment table may be located differently on each treatment

day. For most medical applications, however, a nonrigid registration is also desired since

human organs are always deforming. In this thesis, I assume that a rigid registration is

done as a preprocessing step [Foskey et al., 2005].

Image registration methods can be categorized based on the two main parts of the
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algorithm: the form of the transformation T and the way of measuring image similarities

of If (x) and Im(T (x)). I discuss two image similarity measures in Sections 2.2.1 and

2.2.2. Section 2.2.3 introduces the type of methods using a physically-based simulation

to generate the non-rigid transformation. See [Sotiras et al., 2012] for a survey on

non-rigid image registration.

2.2.1 Image-Based Methods

Thirion [1998] proposed using a simple optical flow method with intensity difference as

the similarity measure. The registration process is considered as an iterative process of

moving each voxel in the reference image If , until the voxel intensities of the deformed

reference image and moving image agree. Beginning with the initial If , in each iteration

t, a voxel x in I tf is moved in the direction of the image gradient∇I tf (x) with the distance

decided by the intensity difference

vt(x) =
(
Im(x)− I tf (x)

) ∇I tf (x)∥∥∇I tf (x)
∥∥ . (2.1)

Although vt(x) is computed by moving pixels in the reference image, the resulting non-

rigid transformation is applied to the moving image implicitly. Notice that Eq. 2.1 is

equivalent to a gradient descent optimization scheme using the sum of squared intensity

differences as the objective function. Even with matched intensity, however, the result-

ing displacement field may not be smooth since each voxel is moved independently. To

cope with the high dimensionality of the parameter space (displacement field), regular-

ization terms such as image smoothness can be added in the process of minimizing the

intensity difference. More sophisticated regularization terms based on compressible fluid

[Christensen et al., 1996; Foskey et al., 2005] and linear elasticity model [Bajcsy et al.,

1983; Holden, 2008] have also been used in the literature.
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2.2.2 Landmark-Based Methods

A major drawback of image-based methods is that the displacement field for regions

with nearly constant intensities (very low gradient) is inconclusive. It therefore can be

desirable to make use of salient feature points (landmarks) in the images to compute

displacements and interpolate the displacement field for the regions without features

using some radial basis functions such as the thin plate spline [Rohr et al., 2001]. For

organs with complex structures, landmarks may be found inside the organ, and a coarse-

to-fine approach based on the number of landmarks can be used [Shen and Davatzikos,

2002]. For most organs, however, only smooth edges can be found, and the the landmarks

could be vertices in the tessellation of surfaces of organs [Kaus et al., 2007], but the

distribution of vertices may be different for the two surfaces. Another solution is to

make use of sample points on the two m-reps [Pizer et al., 2003] from the two images.

The sample points with the same figural coordinates on the two m-reps provides a natural

correspondence and can be utilized for computing displacements [Levy et al., 2008].

2.2.3 Simulation-Based Methods

The displacement field can also be generated with a physically-based simulation to en-

force the physical constraints exactly and take different material properties into account.

The isotropic linear elasticity model with the finite element method has been a common

simulation method for image registration [Ferrant et al., 1999, 2000; Liang and Yan,

2003; Hensel et al., 2007]. Boundary conditions are usually obtained from the gradient

of the image [Ferrant et al., 1999] or from surface matching methods [Ferrant et al.,

2000; Liang and Yan, 2003; Hensel et al., 2007], but they may induce uncertainty to the

simulation since the surface matching is not unique. Material properties, on the other

hand, are adjusted manually. Recently, an optimization-based 2D registration algorithm

has been proposed [Alterovitz et al., 2006], where the boundary conditions and the ma-

terial properties are optimized with a gradient descent method, but it has been applied
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only to 2D images with a low-resolution triangular mesh. My method aims to solve the

parameter estimation problem automatically using an FEM simulator combined within

a numerical optimization method.

2.3 Parameter Estimation in Computer Graphics

Physically-based simulation is a popular method of generating realistic animations of

natural phenomena. In order to achieve artistic control of these phenomena, artificial

forces can be added into a simulated domain, or material properties can be adjusted to

achieve a certain look and feel.

2.3.1 Directing Simulations

Recent advances in physically-based fluid [Stam, 1999; Fedkiw et al., 2001; Foster and

Fedkiw, 2001; Enright et al., 2002] and deformable [Nealen et al., 2006; Teschner et al.,

2005] modeling have greatly enhanced physical realism in computer animations. How-

ever, in many cases, artistic control is also desired to achieve a certain effect. For

example, the artist may want to control the shape of the smoke while retaining the

physical realism. Such an effect could be achieved by controlling the wind forces, but

the process of adjusting parameters, simulating, and assessing the result is prohibitively

tedious. Treuille et al. [2003] proposed a nonlinear optimization scheme to minimize

the difference in density fields in order to achieve a keyframe-based control of the shape

of smoke. The work is further improved with the adjoint method and applied to liq-

uids as well [McNamara et al., 2004]. My method, on the other hand, solves an even

harder problem because material properties are also taken into account. And since both

the moving and reference models are acquired from real medical data, the accuracy

requirement is higher than that in computer animations.

Another approach to address the direction of simulation is by adding physical details
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to a rough animation. For example, wrinkles can be added to the skin of an animated

character with physically-based simulations. Bergou et al. [2007] used constrained La-

grangian mechanics approach to simulate thin shells to add details to an animated object.

Their work is different from mine in that I match simulated results rather than adding

simulated details to an existing animation.

2.3.2 Estimating Material Properties

Estimation of material properties is also of interest for animation of deformable objects

such as cloth and elastic bodies. An optimization scheme has been proposed to estimate

cloth simulation parameters [Bhat et al., 2003]. The cloth model has stiffness and

damping coefficients in an in-plane stretch term, an in-plane shear term, and an out-

of-plane bending term, giving a total of six parameters [Baraff and Witkin, 1998]. The

authors compared video of real fabric patches and simulated images to compute the

error metric based on the orientation of each edge pixel, and the error is minimized

with the continuous simulated annealing method [Press, 2007]. Syllebranque and Boivin

[2008] used a similar optimization method with a force capture device, so that the

boundary forces are known, to estimate the mechanical properties of deformable solids.

They used video-based metrics to optimize for Poisson’s ratio and used the errors in

computed boundary forces to optimize for Young’s modulus. A trinocular video system

can be used to further improve the video tracking. Bickel et al. [2009] used such a 3D

vision system with markers placed on the object, along with force measuring devices, to

estimate the nonlinear behavior of the elastic object. Their system is further applied to

computer-assisted material design [Bickel et al., 2010]. While these methods depend on

the rendering and computer vision algorithms, my technique directly uses the surfaces

of the deformed bodies to compute the error metric. In addition, these methods require

a highly controlled setting for capturing the videos, which may not always be feasible.
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Chapter 3

Simulation-Based Joint Estimation of

Deformation and Elasticity Parameters

Estimation of tissue stiffness is an important means of noninvasive cancer detection.

Existing elasticity reconstruction methods usually depend on a dense displacement field

(inferred from ultrasound or MR images) and known external forces. Many imaging

modalities, however, cannot provide details within an organ and therefore cannot pro-

vide such a displacement field. Furthermore, force exertion and measurement on the

boundary of the target region can be difficult for some internal organs, making boundary

forces another missing parameter. I propose a general method for estimating elasticity

and boundary forces automatically using an iterative optimization framework, given the

desired (target) output surface. During the optimization, the input model is deformed

by the simulator, and an objective function based on the distance between the deformed

surface and the target surface is minimized numerically. The optimization framework

does not depend on a particular simulation method and is therefore suitable for different

physical models. I show a positive correlation between clinical prostate cancer stage (a

clinical measure of severity) and the recovered elasticity of the organ. Since the surface

correspondence is established, my method also provides a non-rigid image registration,

where the quality of the deformation fields is ensured, as they are computed using a

physics-based simulation.



3.1 Introduction

Material property estimation has been an important topic in noninvasive cancer diagno-

sis, since cancerous tissues tend to be stiffer than normal tissues. Traditional physical

examination methods, such as palpation, are limited to detecting lesions close to the

skin, and reproducible measurements are hard to achieve. With the advance of medical

imaging technologies, it becomes possible to quantitatively study the material properties

using noninvasive procedures.

Computer vision methods in combination with force or pressure sensing devices have

been proposed to find material properties of tissues [Kauer et al., 2002; Syllebranque

and Boivin, 2008]. These methods require a controlled environment in order to capture

the video and force (pressure), and therefore the experiments are usually done ex vivo.

Kauer et al. [2002] combined the video and pressure capturing components into a single

device to simplify the measurement process, so that it can be performed in vivo during

a surgical intervention. However, the device still needs to be in direct contact with the

tissue, and only a small portion of the tissue can be measured due to the size of the

device.

Elasticity reconstruction, or elastography, is a noninvasive method for acquiring

strain or stiffness images using known external forces and a known displacement field

[Ophir et al., 1999; Manduca et al., 2001]. The reconstruction is usually formulated

as an inverse problem of a physically-based simulation of elastic bodies, and a popular

choice of the simulator is based on a linear elasticity model solved with the finite el-

ement method (FEM) [Zienkiewicz and Taylor, 2005], where the domain of the image

is subdivided into tetrahedrons or hexahedrons called elements, with vertices known as

nodes. Boundary conditions (displacement vectors or forces) on some of the nodes must

be given to drive the simulation. Under this framework, nodal displacement vectors need

to be computed based on a pair of images, and the force exertion mechanism needs to be

controlled so that external forces can be measured. Otherwise, without measured forces,
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only relative elasticity values can be recovered. Most existing elastography methods rely

on pixel-wise correspondence or a dense set of image features, along with known bound-

ary conditions, for reconstructing the elasticity. See Section 2.1 for a survey. While these

methods are instrumental in their respective fields of interest, they are less well suited

for a more general, multi-organ case where the image intensity may be almost constant

within an organ, such as the prostate, and the lack of image details within the object

makes it impossible to rely on pixel-wise correspondence. Moreover, the force exertion

or vibration actuation mechanism can become complicated when the target tissues are

deep inside the body.

I propose an entirely passive analysis of a pair of images that only uses information

about the boundaries of corresponding internal objects. I assume the images have al-

ready been segmented, that is, the organ boundaries have been found. Since I do not

assume a good correspondence for pixels inside an object, the resolution of the resulting

elastogram is limited to the object boundaries. Namely, I assume that the elasticity is

fixed within each object whose boundary can be identified. Natural movements inside

the body provide the deformation of the organs, and I do not need an additional force ex-

ertion or vibration actuating mechanism. I minimize the distance between the deformed

reference surface and the target surface and optimize for the elasticities and boundary

forces. Currently, as a simplification, I consider only Young’s modulus (which measures

the stiffness or elasticity of the material). It is the simplest parameter to work with, and

it is also important in noninvasive cancer detection techniques. The general optimization

framework extends naturally to the inclusion of other parameters such as Poisson’s ratio

(which measures compressibility of the material), and in fact is suitable for a variety of

physical models. In my experiments, the images are obtained from a prostate radiother-

apy case, where there is one reference (planning) CT image and multiple target (daily)

images for each patient, and the Young’s moduli of the prostate recovered from the pairs

of images are averaged. My initial investigation involving 10 patient data sets shows

28



that the recovered elasticity values positively correlate with the clinical tumor stages,

which demonstrates its potential as a means of cancer stage assessment complementary

to existing elastography methods. Furthermore, compared broadly to other work on

simulation parameter estimation, my method does not require the inclusion of forces as

part of the input and can therefore avoid the process of measuring the external forces

(at the cost of only providing relative force information in my results).

My method also produces an image registration [Maintz and Viergever, 1998; Holden,

2008] (pixel-wise correspondence between images) since the distance between the pair

of surfaces (segmentations) is minimized. The FEM has been applied to image reg-

istration, given that the images are segmented [Ferrant et al., 1999, 2000; Bharatha

et al., 2001; Cash et al., 2005; Hensel et al., 2007; Wittek et al., 2007; Crouch et al.,

2007]. Material properties, however, are not trivial to find from the images, and most

authors use ex vivo experimental results to set up the materials. Moreover, due to the

patient-to-patient differences, these material properties sometimes need hand adjust-

ments. Alterovitz et al. [2006] incorporated an optimization of Young’s modulus and

Poisson’s ratio into an FEM-based registration, but the method has only been imple-

mented for coarse 2D meshes. As a non-rigid image registration method, mine improves

over previous simulation-based methods by providing an automatic means of finding

the parameters that are missing in the images. My current implementation uses both

standard linear and nonlinear material models, but the optimization framework should

be applicable to tissues with more advanced and complex physical models.

I explain the elastic model and the optimization scheme in Section 3.2, followed in

Section 3.3 by experimental results using two synthetic scenes and 10 sets of real CT

images to demonstrate the feasibility of my method. I conclude with a summary and

discussion of future work.
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3.2 Method

The idea of the algorithm is to optimize a function based on the separation between

corresponding organ boundaries. In each iteration, the objective function is computed by

first simulating and deforming the surface using the current set of parameters, and then

computing surface distances. I consider only the elasticity value (Young’s modulus), with

Poisson’s ratios being chosen according to previous work on simulation-based medical

image registration [Hensel et al., 2007].

The inputs to the correspondence problem are two segmented images: a fixed (target)

image with segmentation Sf and a moving (source) image with segmentation Sm. The

bones are already aligned using a rigid registration method described in [Foskey et al.,

2005]. Each segmentation is represented as a set of closed triangulated surfaces, one for

each segmented object. I construct a tetrahedralization of the moving volume such that

each face of Sm is a face in the tetrahedralization, so that Sm is characterized entirely

by its set of nodes. My optimization framework is built on a physically-based simulator

that generates deformation fields with n unknown parameters x = [x1, · · · , xn]T , and

a numerical optimizer to minimize an objective function Φ(x) : Rn → R defined by

the deformation and surface matching metrics. During the optimization process, the

physical model is refined in terms of more accurate parameters and converges to a model

describing the deformation needed for the particular surface matching problem. Here I

use the linear FEM to illustrate the optimization scheme, although the framework can

also be incorporated with a nonlinear FEM. A flow chart of my algorithm is shown in

Fig. 1.4 and will be explained in detail in this section.

3.2.1 Linear Elasticity Model and Finite Element Modeling

In the optimization loop, the displacement field u = [u, v, w]T is always generated by a

physically-based simulation, where the FEM is used to solve the constitutive equations
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of the linear elasticity model. Assuming isotropic linear elasticity, I can write σ = Dε,

where σ is the stress vector induced by the surface forces, ε is the strain vector defined by

the spatial derivatives of the displacement u, and D is a matrix defined by the material

properties (assuming an isotropic material, the properties are Young’s modulus E and

Poisson’s ratio ν). To solve the equations numerically, I approximate the derivatives

of the deformation with the FEM, where the domain is subdivided into a finite set of

elements, and each element consists of several nodes. Fig. 3.3a shows the finite element

model used in one of my experiments, where four-node tetrahedral elements are used.

The deformation field uel for any point p within an element is approximated with a

piecewise linear function ûel(p) =
∑4

j=1 uel
j N

el
j (p), where uel

j is the deformation of the

j-th node of the element, and N el
j (p) is the linear shape function that has value one at

node j and is zero at all other nodes and outside of the element. After combining the

approximated piecewise linear equation for each element, the resulting linear system is

Ku = f , (3.1)

where K is called the stiffness matrix, which depends on the material properties (Young’s

modulus and Poisson’s ratio) and the geometry of the elements; f is a vector of external

forces. For a 3D domain with Nn nodes, K is a 3Nn × 3Nn matrix. Notice that since

both K and f are unknown, they can be scaled by the same factor without changing the

output deformation field. Therefore, unless I know the exact values of the forces, only

the relative values of the material properties can be recovered.

To make the nodes deform, some boundary conditions need to be enforced, either

by assigning displacement values or by assigning forces to some nodes. If all the surface

nodes, including boundaries between two materials, are assigned displacement values,

then the simulation is essentially an interpolation of the displacement field from surface

matching results. This means that the elasticity values only affect internal nodes, for
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Figure 3.1: A sliced view of the synthetic scene, which consists of two concentric spheres;
the inner (red) and outer (green) regions have different stiffness values (blue triangles
represent outer surface, which is considered part of the green region).

which I do not know the target positions. Therefore the elasticity cannot be recovered.

Instead, I only assign boundary conditions to a part of the surface nodes, and other

surface nodes without boundary conditions will be affected by the relative elasticities.

For example, in a simulation of the male pelvis region, the bladder and the rectum are

usually the organs that drive the deformation of the prostate, while the pelvic bone

is considered static. An intuitive choice is to apply boundary conditions on boundary

nodes of the bladder, the rectum, and the pelvic bone, and set all other entries in the

force vector to zero (no external forces), as proposed in [Hensel et al., 2007].

3.2.2 Sensitivity Study

Since my method is based on the assumption that the deformed surface depends on both

the elasticity and the external forces, I first conduct an experiment of forward simulations

using different parameter values to see how sensitive the surface is to these parameters.

The synthetic scene consists of two concentric spheres that form two regions, one inside

the inner sphere, and the other between the two spheres, as shown in Fig. 3.1.

I fix the elasticity of the outer region and alter the elasticity of the inner sphere, as

only the ratio of the two elasticity values matters. A force with a specified magnitude
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Figure 3.2: The plots of the radius of the inner sphere (in cm) after deformation: (a)
inner radius versus elasticity value (in kPa) of the inner region; (b) inner radius versus
magnitude of forces (in N) acting on the outer surface; (c) inner radius (z-coordinate)
versus elasticity and force magnitude with isocontours of inner radius on xy-plane; (d)
outer radius versus elasticity; (e) outer radius versus magnitude of forces; (f) outer
radius (z-coordinate) versus elasticity and force magnitude with isocontours of outer
radius on xy-plane. The radii before deformation are 3 cm and 3.75 cm for two spheres,
respectively, and the elasticity for the outer region is 10 kPa. The Poisson’s ratios are
fixed to 0.40 and 0.35 for the two regions, respectively.

pointing towards the center of the spheres is applied on each node of the outer surface,

and no external forces are applied on the inner surface. Several simulations using differ-

ent elasticities of the inner region and force magnitudes were performed, and the plots

of the sphere radius versus the elasticity value and versus force magnitude are shown in

Fig. 3.2.

Notice that in these plots, the slope is much higher when the elasticity is low for

each curve, which indicates that the shapes of both spheres are much more sensitive to

the elasticity when the elasticity value is lower. These results suggest that my ability to

recover the parameters is limited by how stiff the object is. When an object has a very
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high stiffness, its shape becomes insensitive to the parameters. In this case, the shape

can still be recovered, but the resulting parameters may not be accurate. Notice that

the problem of solving for elasticity and for boundary forces is ill-posed with a single

object. For example, drawing horizontal lines at some inner radius value in the plots

in Fig. 3.2 would give multiple combinations of elasticity and external forces. However,

when both the inner and outer surfaces are taken into account, the problem becomes

well-posed: in the two-dimensional space formed by elasticity value and force magnitude,

there is one curve that implies some radius of the inner sphere (an isocontour on the

xy-plane in Fig. 3.2c) and another curve that results in some radius of the outer sphere

(an isocontour on the xy-plane in Fig. 3.2f). The solution is at one of the intersections of

the two curves, and I can eliminate unwanted solutions by limiting the range of elasticity

and force magnitude according to experimental results on the specific materials.

3.2.3 Distance-Based Objective Function

The parameters needed in the simulator are x = [E; F], where E consists of the material

properties (in my case, the Young’s moduli), and F is the vector of external forces on

boundary nodes. The objective function to be minimized is defined as the difference

between the segmentations in the moving and target images,

Φ(x) =
1

2

∑

vl∈Sm

‖d (vl + ul(x),Sf )‖2 . (3.2)

Here u(x) is the deformation field computed by the simulator with parameters x, inter-

preted as a displacement vector for each surface node vl in the tetrahedralization. The

notation d(v,S) denotes the shortest distance vector from the surface S to the node v,

and the sum is taken over all nodes of the moving surface.

The gradient of the objective function, which is needed in the iterative optimization,
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is given by the chain rule,

∇Φ(x) =
∑

vl∈Sm

[
∂ul

∂x

] [
∂d (vl + ul,Sf )

∂ul

]
d (vl + ul,Sf )

=
∑

vl∈Sm

JT
u JT

d d (vl + ul,Sf ) , (3.3)

where Ju =
[
∂ui

∂xj

]
is the Jacobian matrix of u(x) with respect to the parameters, and

Jd =
[
∂di
∂uj

]
is the Jacobian matrix of d with respect to the deformation vector. Here I

use the bracket [·] to represent a matrix and the curly braces {·} to denote a vector. Each

column of Jd, namely

{
∂d(vl+ul,Sf)

∂uj

}
, is the derivative of d (vl + ul,Sf ) with respect to

the j-th spatial coordinate (j = 1, 2, 3). The derivatives of u with respect to the material

properties are computed by differentiating both sides of (3.1),

[
∂K

∂Ej

]
u + K

{
∂u

∂Ej

}
= 0, (3.4)

Therefore I have
{

∂u
∂Ej

}
= −K−1

[
∂K
∂Ej

]
u. The Jacobian matrix can then be computed

by solving for each column of Ju. The derivatives with respect to the boundary forces

are computed in the same manner; by taking derivatives of both sides of (3.1), I have
[
∂K
∂Fj

]
u + K

{
∂u
∂Fj

}
= ej, where ej is the j-th coordinate vector. On the right hand side,

only the j-th entry is nonzero since dFi

dFj
= 0 when i 6= j. And since K is independent of

Fj,
∂K
∂Fj

= 0. Therefore I can solve for each column of the Jacobian with the equation

K
{

∂u
∂Fj

}
= ej. In practice, d (vl + ul(x),Sf ) can be looked up in the precomputed

vector distance map of the fixed organ, Sf , and the derivatives ∂d/∂uj can be approx-

imated with a centered finite difference operator applied on the map. Fig. 3.3b shows

one of the distance maps used in my experiments. Notice that the physical model can

be different, as long as the derivatives ∂ui/∂xj can be computed.

In my experiments, however, I observed that the magnitudes of gradients with respect

to the material properties, ‖∂Φ/∂E‖, are about 1000 times smaller than that with respect
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(a) (b)

Figure 3.3: Input to my algorithm: (a) a sliced view of the tetrahedral model of the
moving image (light-blue triangles represent surfaces, not FEM regions; bladder and
rectum are hollow); (b) a slice of the distance map of the prostate surface in the reference
image.

to the forces, ‖∂Φ/∂F‖, which caused the material properties to converge very slowly.

To obtain a faster convergence of E, I embed the optimization of the forces into the

objective function evaluation at each E value. That is, every time Φ(E) is evaluated, a

full optimization of F is performed with the fixed value of E.

3.2.4 Numerical Optimization

I use a line search scheme for optimization: in each iteration k, I find a descent direction

pk, find an optimal step size α in that direction with a line search algorithm, and then

update the parameters with xk+1 = xk + αpk. The descent direction can be computed

by using Newton’s method to solve the equation ∇Φ = 0: pk = −B−1
k ∇Φ(xk), where

B is the Hessian matrix,
[

∂2Φ
∂xi∂xj

]
. A modified Newton’s method has been used in

elasticity reconstruction [Kallel and Bertrand, 1996], but the Hessian matrices can only

be approximated and are usually ill-conditioned. Alternatively, I can use a Quasi-Newton

method such as the BFGS formula to avoid computing the Hessian [Nocedal and Wright,

1999].

Quasi-Newton methods can reduce the computation yet still retain a super-linear
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convergence rate. A line search enforcing the curvature condition (sTk yk > 0) needs

to be performed to keep the approximate Hessian positive definite. In my case, the

number of parameters can be in the thousands, and therefore I adopt a limited-memory

quasi-Newton method known as the L-BFGS method [Nocedal and Wright, 1999].

3.2.5 Initial Guess of Parameters

A good initial guess can prevent the optimizer from getting stuck in a local minimum.

My initial guess for the forces is based on the distance field of the target surface: each

node requiring a boundary condition is moved according to the distance field to compute

a Dirichlet boundary condition. A forward simulation is performed using the set of

boundary conditions and the initial guess of elasticities, and the output deformation is

used, via (3.1), to compute the corresponding forces, which become the initial guess for

the forces.

In the case of medical image registration, the initial guess of the elasticity is chosen

based on knowledge of the simulated organs. My example images involve two materi-

als: the prostate and the surrounding tissue. There have been ex vivo experiments on

the prostate using different elasticity models. Krouskop et al. [Krouskop et al., 1998]

reported an elastic modulus of 40-80 kPa for normal prostate tissue, 28-52 kPa for BPH

tissue, and 80-260 kPa for cancerous tissue when receiving 4% compression. They also

reported 10-30 kPa for breast fat tissue. Based on these numbers for fat tissue, I chose

an elasticity value of 10 kPa for the tissue surrounding the prostate. This value is fixed,

in my calculations, since only the ratio of the elasticity values matters.

The initial guess of elasticity for the prostate is chosen by a parameter search: I per-

form force optimizations with several elasticity values between 30 kPa and 200 kPa and

choose the elasticity with the lowest objective function value after the force optimiza-

tion. An example result of the parameter search is shown in Fig. 3.4, where the target

surfaces are generated by artificially deforming a set of organ boundaries, so that I know

37



20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

Material Property

E
rr

o
r 

F
u

n
c

ti
o

n

 

 

run.3115.syn.E50

E

Φ

Figure 3.4: Plot of Φ and E (in kPa) with several sample values for finding an initial
guess of elasticity value in a synthetic multi-organ scene. The plot suggests that the
best initial guess is 50 kPa.

the true elasticity value. The plot shows that the parameter search successfully located

the global minimum in the synthetic case with multiple organs. In my experiments

using synthetic and real organ boundaries of the male pelvis region, I have observed

similar curves with a single minimum. If more than one local minimum is observed, an

optimization can be performed using each of these values as the initial guess. To reduce

the computation time, I use a lower-resolution mesh for the parameter search, and the

resulting optimal forces are used as the initial guess when using a higher-resolution mesh

for elasticity optimization.

3.3 Experiments

I used the male pelvis region as the test scene. To build the reference surfaces, I obtained

segmentations of a 3D CT image of the male pelvis region, including the surfaces of the
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bladder, prostate, rectum, and bones. A tetrahedral finite element mesh is constructed

from a set of reference surfaces, as shown in Fig. 3.3a. The corresponding target surfaces

are used to compute the distance map, as shown in Fig. 3.3b. In the tetrahedral mesh,

the bladder and the rectum are made hollow to reflect the actual structure, and the bones

are fixed during the simulations. Since the prostate is the main organ of interest, I apply

forces only on the boundaries of the bladder and the rectum to reduce the uncertainty

on the prostate, which will be moved by surrounding tissues. The setting also reflects

the fact that the bladder and the rectum are the organs that have larger deformations

due to different amount of fluid and gas, and the prostate is usually deformed by their

movement.

During the iterative optimization, the objective function is evaluated over the sur-

faces of the bladder, rectum, and prostate. The Poisson’s ratios are fixed (0.40 for the

prostate and 0.35 for surrounding tissues, chosen based on literature in image registra-

tion [Bharatha et al., 2001; Tanner et al., 2006; Hensel et al., 2007]), and I optimize for

the elasticity values because of its importance in noninvasive cancer detection. Since

only the relative values of material properties can be recovered, I fix the Young’s mod-

ulus of the surrounding tissues (the region outside all organs and bones) to 10 kPa and

optimize that of the prostate.

I tested my algorithm on two types of surface data. First, I tested the accuracy of the

optimization scheme using synthetic target surfaces generated by forward simulations,

so that I know the true elasticity values. I then applied the technique to prostate cancer

stage assessment based on multiple segmented target images of the same patient to show

applicability to real data. Since the distances between reference and target surfaces are

minimized, I also compare the visual result (the warped image) with that of an image-

based image registration method.

The reference and target organ surfaces are obtained from real 3D CT images of the

male pelvis region using the software MxAnatomy (Morphormics, Durham, NC), and
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the bones are segmented using ITK-SNAP [Yushkevich et al., 2006]. Given the moving

surfaces in the form of triangle meshes, the tetrahedral model for the entire domain is

built with the software TetGen [Si, 2009], and the library ITK [Yoo et al., 2002] is used

to compute the vector distance maps of the target surface. The FEM simulator uses the

linear algebra library PETSc [Balay et al., 1997].

Mesh generation The image segmentation was done with an early semi-automatic

version of software MxAnatomy. For the prostate, the user typically needed to specify

15-20 initial boundary points on five image slices, and it usually took 20 minutes to

segment the three main organs (prostate, bladder, and rectum) in a CT image. The semi-

automatic segmentation of bones (ITK-SNAP) requires some initial pixels (specified with

a few spheres) that are roughly in line with the bones, and the algorithm iteratively grows

or shrinks from these initial pixels until an optimal binary image of the bone is achieved.

It usually takes 15 minutes for the segmentation of bones. Once the surface meshes are

generated, the tetrahedralization takes a few seconds using the software TetGen.

3.3.1 Synthetic Scene with Multiple Organs

To test how well my algorithm recovers elasticity values, I use synthetic target surfaces

generated with known elasticity and boundary conditions. The target surfaces are gen-

erated by a forward simulation with Dirichlet boundary conditions acquired from a real

pair of segmented images applied to the bladder and rectum surfaces. The moving sur-

faces and boundary conditions in the two synthetic scenes are shown in Fig. 3.5, where

the boundary conditions are shown with scaled 3D arrows. The elasticity value of the

prostate is controlled, and I can therefore compare the value recovered by my method to

the ground truth. I tested my algorithm with three elasticity values, and the results are

shown in Table 3.1. The optimization process is terminated when ‖∂Φ/∂E‖ < 10−7 ‖E‖

and ‖∂Φ/∂F‖ < 10−4 ‖F‖, or when the optimizer cannot find a direction in the parame-
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Figure 3.5: The moving surfaces and ground-truth boundary conditions in the two
synthetic multi-organ scenes: the arrows shows Dirichlet boundary conditions applied
to surfaces of bladder and rectum; the scaling of arrows are according to the magnitude
of displacements.

Table 3.1: Error in recovered modulus of elasticity in two synthetic multi-organ scenes;
note that the error becomes much larger for elasticity values greater than 150 kPa.

True Elasticity (kPa) 50 100 150 200 250 300 350

Scene Recovered Value 49 101.18 158.79 141.57 136.65 204.45 176
1 Relative Error 2% 1.2% 5.9% 29.2% 45.3% 31.9% 49.7%

Scene Recovered Value 51.33 102.90 167.5 225.0 222.91 275.0 277.97
2 Relative Error 2.7% 2.9% 11.7% 12.5% 10.8% 8.3% 20.6%

ter space that reduces the value of the objective function. The relative error is less than

12% in the cases where the elasticity values do not exceed 150 kPa, which corresponds

to an elasticity ratio of 15 between the prostate and the surrounding tissue. Notice that

according to the literature [Krouskop et al., 1998], the ratio is already beyond the range

for normal tissues and is within the range for cancerous tissues. Therefore I expect to

see worse accuracy in the case of stiffer cancerous tissues.

Effect of inaccurate Poisson’s ratios In order to show the effect of selecting differ-

ent Poisson’s ratios, I repeat the experiments using synthetic target surfaces generated

with five different Poisson’s ratios for the prostate (0.3, 0.35, 0.4, 0.45, and 0.49), while

the assumed value is fixed to 0.4 during the optimization process. (Most previous work

on image registration or elastography assumes values between 0.3 and 0.49). As shown
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in Fig. 3.6, the relative errors in recovered elasticity increase with larger deviation of the

Poisson’s ratio, and the effect is especially prominent in the cases with lower elasticity

values (soft) and low Poisson’s Ratios (compressible). I observe errors of 45–60% with

an elasticity of 50 kPa and a Poisson’s ratio of 0.3. The errors are generally below 13.3%

in cases with Poisson’s ratios of 0.40–0.45 and can be as high as 20% for a ratio of 0.49

(nearly incompressible). These results show that my method is robust to inaccurate

Poisson’s ratios in most cases.

3.3.2 Noninvasive Assessment of Prostate Cancer Stage

To show the effectiveness of my method applied to prostate cancer assessment, I repeated

the experiments on the multi-organ settings, but with both the deformed and target

surfaces taken from segmented 3D CT images of the male pelvis region. I consider 10

patient data sets (a total of 112 target images) taken throughout courses of radiotherapy

for prostate cancer. Each patient data set consists of a set of reference surfaces (bladder,

prostate, rectum, and bones), which is from the CT image (reference image) taken

before the radiotherapy, and multiple sets of target surfaces, each of them representing

the internal structures in one daily CT image during the therapy. The reference image

is taken about a week before the first treatment, and treatment (target) images are

typically taken twice a week. For each patient data set, I repeated the process of

deforming the reference surfaces toward a set of target surfaces with my method, so

that one elasticity value of the prostate is recovered for each daily image. Fig. 3.7

shows the histogram of surface-surface distance between pairs of reference and target

prostate surfaces used in the experiments. The surface-surface distance is defined as the

maximum of node-surface distance,

max
vl∈Sm

d(vl,Sf ), (3.5)
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Figure 3.6: Plots of relative errors in recovered elasticity vs. different Poisson’s ratios for
the prostate (0.3, 0.35, 0.4, 0.45, and 0.49) used for generating the synthetic surface data;
each plot shows the result from one test scene, and each curve represents a true elasticity
value (50, 100, and 150 kPa) used in the synthetic case. During the optimization process,
the assumed Poisson’s ratio is always fixed to 0.4.
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Figure 3.7: Histogram of distances between the pairs of corresponding reference and
target prostate meshes used in my experiments on segmented CT images.

where Sm is the reference (moving) prostate surface, and Sf is the target surface. The

average surface distance for the prostate among the 112 pairs of images is 0.41 cm, which

is less than 10% of the diameter of a typical prostate (around 4–5 cm).

The convergence graphs (plots of Φ and ‖∇Φ‖ versus iteration number) and for

boundary forces and for the material property from a typical image pair are shown in

Fig. 3.8 (convergence graphs for other experiments are similar). Note that the optimiza-

tion of forces was done in batches (in each evaluation of Φ(E)), and the convergence

graph for force optimization is the result of concatenating the steps for optimizing F.

With my current code, each iteration for the force optimizer takes about 19 seconds for

a mesh with 34,705 tetrahedral elements and 6,119 nodes on a Xeon X3440 CPU, and

the total number of iterations is around 1,700 (the total time is about nine hours), which

means that my current implementation is only suitable for off-line processes. Note that

I have not utilized any parallelism in the FEM computation. In the future, I plan to ex-

plore faster implementations of the FEM, such as those utilizing a many-core processor

and reduced-dimension models.

44



0 200 400 600 800 1000 1200 1400 1600 1800
10

−4

10
−3

10
−2

10
−1

10
0

10
1

step

Convergence Graphs with Respect to Forces

 

 

Φ

||∇ Φ||
2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

step

Convergence Graphs with Respect to Material Properties

 

 

Φ

||∇ Φ||
2

Figure 3.8: Convergence graphs (plot of Φ and ‖∇Φ‖ versus iteration number) for a pair
of CT image data: (left) convergence of the external forces; (right) convergence of the
elasticity.

Table 3.2: Average and standard deviation of elasticity values for the prostate recovered
from the patient data sets; the last column is the clinical cancer staging for the tumor
for each patient.

Number of Average Young’s Std. Clinical
Targets Modulus (kPa) Deviation T-Stage

Patient 1 8 48.60 2.41 T1
Patient 2 6 53.99 10.28 T3
Patient 3 7 71.97 4.35 T3
Patient 4 6 60.81 1.25 T2
Patient 5 16 38.06 13.91 T1
Patient 6 16 45.42 10.26 T1
Patient 7 17 40.67 16.34 T2
Patient 8 15 52.40 7.72 T2
Patient 9 9 51.47 7.50 T1
Patient 10 12 56.19 7.95 T2
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Table 3.3: Definition of clinical T-stages for prostate cancer

Stage Definition

TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
T1 Clinically inapparent tumor neither palpable nor visible by imaging
T2 Tumor confined within prostate
T3 Tumor extends through the prostate capsule
T4 Tumor is fixed or invades structures other than seminal vesicles

Each of the 10 patient data sets tested include 6 to 17 sets of target surfaces (daily

images), namely 112 target images in total, and the recovered elasticity values of the

prostate for each patient are shown in Table 3.2. Notice that the recovered values from

all image pairs are within the range suggested in the literature [Krouskop et al., 1998],

and the result shows consistency within each patient.

The aim of this study is to assess the relation between the recovered elasticity value

and the cancer stage of each patient, under the assumption that prostates with more

advanced tumors have higher stiffness. A common cancer staging system is the TNM

(Tumor, lymph Nodes, Metastasis) system, where the clinical T-stage describes the size

and extent of the primary tumor [Sobin, 2009]. The definitions of T-stages are shown in

Table 3.3. I focus on the T-stage because of its relevance to the stiffness of the prostate.

The clinical T-stages for the patients are shown in the last column of Table 3.2. In

order to analyze the data statistically, I treat the average recovered elasticities and

tumor stages as two random variables and use numbers 1, 2, and 3 to represent T-

stages T1, T2, and T3, respectively (T0 and T4 are not present in my data sets), and

I test if the recovered elasticity values and the T-stages are positively correlated. The

resulting Pearson (linear) correlation coefficient is 0.662, and the p-value for the two-

sided correlation test is 0.037, which indicates a significant positive correlation between

the recovered elasticity values and the T-stages, based on a p-value threshold of 0.05.

Since the tumor stage values are discrete and might be nonlinear with respect to the

elasticity, a rank correlation coefficient, such as the Spearman’s rank correlation ρ, may
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Figure 3.9: Box plot of average recovered elasticity value and cancer T stage for each
patient data set shown in Table 3.2.
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Table 3.4: The recovered elasticity values for the prostate as a homogeneous material,
when the organ contains a synthetic tumor of different sizes and a normal tissue; elas-
ticity values are set to 100 kPa for the tumor and 50 kPa for normal prostate tissue.

tumor size / prostate size (%)
10% 25% 50% 75%

Scene 1 51.24 54.98 62.15 63.44
Scene 2 53.55 56.90 69.62 70

be more suited for the test. From the samples I have Spearman’s ρ = 0.701 and an

estimated p-value of 0.024, which shows again a significant positive correlation. The

box plot of the elasticity values and cancer stages is shown in Fig. 3.9.

3.3.3 Study: Inhomogeneous Materials

I assume a constant material property within an organ due to the limitation of the image

modality, where the intensity is almost constant within the prostate, so that it is impos-

sible to segment the tumor. The elasticity values recovered by my method are therefore

“average” values in some sense, and a higher recovered elasticity indicates either a stiffer

tumor or a larger tumor. Since the clinical T-stage for prostate cancer depends on the

extent of the tumor, I conducted a study to show the correlation between the tumor size

and the recovered elasticity value. Based on the settings in the synthetic multi-organ

experiments in Section 3.3.1, I embedded an additional tumor inside the prostate for

generating synthetic target surfaces, as shown in Fig. 3.10. The elasticity values for the

tumor and the normal prostate tissues are set to 100 and 50 kPa, respectively. Notice

that in the elasticity recovery process, I do not know the extent of the tumor due to

the imaging limitation, and I only recover one value for the prostate. Table 3.4 shows

the recovered elasticity values with different tumor sizes relative to the entire prostate.

The results show increasing elasticity values with increasing tumor sizes in both scenes.

Even though I assume homogeneous materials, the recovered values can still be used as

an indicator of the extent of the tumor and are therefore correlated to cancer stages.
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Figure 3.10: A sliced view of the tetrahedral mesh with a tumor (yellow) embedded in
the prostate (red); the mesh is used to generate the synthetic target surface, while the
prostate is still considered homogeneous in the optimization process.

Figure 3.11: Close-up view of the surfaces before (left) and after (right) deformation;
the transparent white surface shown is the target surface of the prostate. Notice how
the prostate surface move towards the white surface. Bladder and rectum surfaces are
those with external forces applied.
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(a)

(b)

Figure 3.12: Registration results for a pair of test images: (a) axial and sagittal views
of the moving image, and a 4x4 checkerboard comparison with the planning image,
before registration; (b) the two views of the registered image, along with a checkerboard
comparison with the planning image; superimposed by segmentations of the reference
image, shown in red, and the segmentation of the prostate in the daily image, shown in
blue; notice that the image deforms towards the red contours.
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3.3.4 Application: Registration of Segmented CT Images

Since the distance between the fixed and moving surfaces is minimized during the opti-

mization process, I also have an image registration as a result of optimizing for forces

and elasticities. In my experiments, the final average value of the objective function is

0.09, corresponding to an RMS error of 0.01 cm, and a maximum of 0.22 cm, which

are within the image resolution, 0.1 × 0.1 × 0.3 cm. The deformed images of a typical

image pair before and after registration are shown in Fig. 3.12, with the segmentations

of the reference image (red) and the prostate in the moving image (blue) superimposed

on the image. Notice how the prostate in the images moves from the blue contour to the

red contour. Fig. 3.11 shows a 3D close-up view of the deforming surfaces from another

image pair, where the surfaces of the bladder and the rectum are those with external

forces applied, and the target surface of the prostate is shown in white.

I also compared my registration results with a popular image-based approach, the

Demons method [Thirion, 1998], by looking at some landmarks inside the prostate. In

most cases, the image intensity is almost constant inside an organ, but five of the patient

data sets (a total of 32 image pairs) I experimented on have three “seeds” implanted in

the prostate for location tracking during each treatment fraction, resulting in bright

spots that can be observed in the CT image. The distance between the target and the

deformed landmark positions from the two methods are shown in Table 3.5, and the two-

tail t-tests for paired samples (distances) show that my method produces statistically

significantly better results in three out of five patient data sets, with a p-value threshold

of 0.05 (if Bonferroni correction is used, my method performs significantly better in only

one data set). For regions with nearly uniform intensity, the deformation computed

by the Demons method is entirely governed by the registration regularization terms,

which do not need to be physically meaningful for the image-based method. my method

enforces physically-based constraints and results in errors within the diameter of the

spot. Notice that for the Demons method, I replaced the voxel values inside the prostate

51



Table 3.5: Average error in landmark positions (distance in cm) inside the prostate,
computed with the Demons method and my method; t-tests show that my method
performs statistically significantly better in three of the five data sets. (If Bonferroni
correction is used, my method is significantly better only for Patient 3.)

# Target Demons My Method Paired t-test
Images Avg. (cm) Std. dev. Avg. (cm) Std. dev. p-value

Patient 1 8 0.27 0.17 0.26 0.18 0.07
Patient 2 6 0.21 0.11 0.16 0.11 0.03
Patient 3 7 0.18 0.06 0.10 0.04 1.5e-4
Patient 4 6 0.17 0.07 0.13 0.03 0.02
Patient 5 5 0.21 0.15 0.20 0.08 0.86

with the average intensity within the organ, since the intensity and gradient information

from the landmarks could also be utilized in the image-based registration, giving it an

additional advantage, while my method is based purely on the physics-based simulation

and does not take advantage of the landmarks.

3.3.5 Extension: Nonlinear FEM

To demonstrate that my optimization framework can also be applicable to nonlinear

models, I incorporated a geometrically nonlinear FEM and the neo-Hookean model with

the elasticity optimization scheme. The linearized equilibrium formulation of the non-

linear FEM is

K(un) ·∆u = f ext − f int, (3.6)

where f ext and f int are the external and internal force vectors, K(un) is the stiffness

matrix that depends on the current displacement vector un, and ∆u is used to update

the vector un in a Newton iteration (un+1 = un + ∆u). The Jacobian matrix Ju =
[
∂ui

∂Ej

]
(derivative of displacements u with respect to the elasticity parameter Ej) for

the elasticity optimizer is approximated using the finite difference method due to the

complexity of differentiating the internal forces with respect to the elasticity. Notice

that I have not implemented force optimization for the nonlinear model, and boundary
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Table 3.6: Error in recovered nonlinear modulus of elasticity in two synthetic multi-organ
scenes.

True Elasticity (kPa) 50 100 150 200

Scene Recovered Value 50.18 105.64 159 174
1 Relative Error +0.35% +5.6% +6% -13%

Scene Recovered Value 45 105 141.5 197
2 Relative Error -10% +5% -5.67% -1.5%

conditions given by a surface matching is always used in the simulation.

3.3.5.1 Synthetic scene with multiple organs

I used the same multi-organ scenes in Section 3.3.1 and deformed them using the non-

linear FEM to generate the synthetic target surfaces. That is, the nonlinear FEM is

used in both generating synthetic cases and in the optimization scheme. The resulting

recovered elasticity values are shown in Table 3.6. The errors are within 13% for the

range I tested (50-200 kPa).

Effect of inaccurate elasticity values for surrounding tissues The elasticity

value for tissue surrounding the prostate is fixed to 10 kPa in my experiments. While

only the ratio between two elasticity values can be recovered with a linear model without

knowing true force values (as discussed in Section 3.2.1), the surrounding tissue elasticity

could have a different effect on nonlinear models. However, with the small amount of

displacement I have observed, I expect the surrounding tissue elasticity to have a similar

effect as in the linear model. For example, if the true elasticity values for the prostate

and surrounding tissue are 100 kPa and 20 kPa, respectively, I expect to recover the

value 50 kPa for the prostate since the surrounding tissue elasticity is fixed to 10 kPa in

the optimization. Table 3.7 shows the results using the nonlinear FEM where the true

elasticity is twice the value used in the optimization process. The recovered elasticities

for the prostate are very close to what I expect, with relative errors below 13%.
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Table 3.7: Error in recovered nonlinear modulus of elasticity in two synthetic multi-organ
scenes where the elasticity of surrounding tissue is doubled (20 kPa) when generating the
synthetic data. The surrounding tissue elasticity is still set to 10 kPa in the optimization
process, and I expect to see recovered values for the prostate to be half of the true values.

Elasticity for Surroundings 20 kPa
Elasticity for Prostate (kPa) 50 100 150 200
Expected Value for Prostate 25 50 75 100

Scene Recovered Value 28.05 50.17 72.98 106.17
1 Relative Error +12.2% +0.34% -2.7% +6.17%

Scene Recovered Value 25 45 76.52 108.16
2 Relative Error 0% -10% +2.02% +8.16%

3.3.5.2 Assessment of prostate cancer stage

I repeated the experiments in Section 3.3.2 using the nonlinear FEM. The recovered

elasticity values for the 10 patient data sets are shown in Table 3.8, and the box plot

of average recovered elasticity and clinical T-stage is shown in Fig. 3.13. The Pearson

(linear) correlation coefficient for recovered elasticity values and T-stages is 0.704 with

a p-value of 0.023, and the Spearman’s rank correlation ρ is 0.636 with a p-value of

0.048, which again shows a significant positive correlation between the stiffness value

and the cancer stage for this group of patients. However, the recovered values are

less consistent than those from the linear FEM implementation. I conjecture that the

implementation using nonlinear FEM is more sensitive to the material properties and

boundary conditions, and therefore the recovered values vary more than those using the

linear FEM.

3.4 Conclusion and Future Work

I have presented a novel physically-based method for simultaneously estimating the 3D

deformation of soft bodies and determining the unknown material properties and bound-

ary conditions. Previous elastography methods are limited by imaging modalities and

54



Table 3.8: Average and standard deviation of elasticity values for the prostate recovered
from the patient data sets using nonlinear FEM; the last column is the clinical cancer
staging for the tumor for each patient.

Average Young’s Std. Clinical
Modulus (kPa) Deviation T-Stage

Patient 1 47.29 3.25 T1
Patient 2 69.28 8.09 T3
Patient 3 78.91 4.81 T3
Patient 4 63.62 2.92 T2
Patient 5 47.45 16.62 T1
Patient 6 59.85 18.37 T1
Patient 7 62.73 18.34 T2
Patient 8 60.23 11.93 T2
Patient 9 69.74 11.46 T1
Patient 10 69.25 17.64 T2
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Figure 3.13: Box plot of average recovered nonlinear elasticity value and cancer T stage
for each patient data set shown in Table 3.8.
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force measurement schemes, and I overcome these limitations by utilizing the surface

information extracted from 3D images. Although the resolution of the resulting elas-

togram is limited to the object boundaries, I showed that the recovered value reflects

the distribution of materials within the object, and the recovered elasticity values have

a significant positive correlation with clinical prostate cancer staging in small-scale ex-

periments. Therefore, my method has the potential to become a means of noninvasive

cancer detection.

As a non-rigid image registration method, mine automatically determines the patient-

specific material properties during the registration. The resulting deformation field is

enforced to be physically plausible, since it is computed by the 3D FEM simulator with

appropriate contact constraints among organs. The observed error on the boundary is

within the resolution of the segmented images, and the error on the internal bright spots

as landmarks in the prostate is comparable to the diameter of the spots.

The optimization framework for joint estimation of both 3D deformation and mate-

rial parameters is generalizable. It is not limited to elasticity reconstruction and could

be used for more sophisticated physiological models than the basic linear and nonlin-

ear elasticity models I chose for simplicity in my current implementation. As an image

registration technique, my method is reliable in terms of the registration error; as a

parameter estimation method, my system can save an enormous amount of efforts ad-

justing the simulation parameters manually by automatically extracting patient-specific

tissue properties. Furthermore, since only the 3D surfaces are used in my algorithm,

applications other than medical image analysis could also adopt the method.

My current implementation assumes that the Poisson’s ratio can be treated as known,

which is also the case in most elastography studies, since the Young’s modulus has more

clinical significance in cancer detection. However, it has been reported that the Poisson’s

ratio plays a more important role than the elasticity in modeling deformation of breasts

[Tanner et al., 2006], where the optimal Poisson’s ratio also depends on the boundary
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conditions — lower values could improve the results when volume changes need to be

modeled. Therefore, a study of how different Poisson’s ratios affect elastography results

could be a topic for future investigation.

In the near future, I plan to accelerate performance of the iterative scheme by many-

core computing and model reduction. The resulting implementation can then be applied

to more complicated physical and geometric models, such as situations with complex

material property distributions, surface sliding, and large deformations. I would also like

to explore the possibility of clinical trials of my method to noninvasive cancer staging

based on the stiffness value. Virtual surgery and material engineering are some exam-

ple application domains that would benefit from an automatic estimation of material

properties and they can also directly benefit from this framework, worthy of further

exploration.
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Chapter 4

Treatment Image Estimation Based on

Marker Locations for Dose Calculation

Tracking implanted seeds in the prostate during each radiation treatment delivery pro-

vides a high-frequency and accurate approximation of the organ locations, which enables

the use of higher daily doses with tighter margins of the treatment beams and thus im-

proves the efficiency of the radiotherapy. However, the lack of 3D image data with such

a technique has prevented the use of dose calculation for assessing treatment results. I

propose to use a reference statistical shape model generated from the planning image

and a deformed version of the reference model fitted to the implanted marker locations

during treatment to estimate a regionally dense deformation from the planning space to

the treatment space. I also apply the optimization framework introduced in Chapter 3

to estimate the deformation by minimizing the distance between deformed and target

marker locations.

My methods provide a means of estimating the treatment image by mapping plan-

ning image data to treatment space via the deformation field and therefore enables the

calculation of dose distributions with marker tracking techniques during each treatment

delivery.



4.1 Introduction

In order to deliver a high dose of radiation to cancerous tissue while sparing nearby nor-

mal tissues, modern radiotherapy protocols create steep dose gradients near the bound-

ary of the target volume (I consider the prostate in this chapter). These techniques,

however, are very sensitive to treatment uncertainties such as day-to-day changes in

the geometry of the internal organs, because they have only a narrow margin of high

dose around the target volume. To cope with this difficulty, image-guided radiother-

apy (IGRT) [Wong et al., 2005] uses a CT image taken at planning time (the planning

image) and a CT image taken immediately before a dose fraction (a treatment image)

to detect potential positioning errors and changes in anatomic geometry relative to the

planning image. Patients are realigned and beam apertures are reshaped to correct for

these errors prior to treatment. Treatment images can also be used to calculate and as-

sess the delivered dose in the context of adaptive radiation therapy, a form of treatment

that compensates for differences between planned and delivered doses. The delivered

dose is calculated in the treatment space given the known treatment parameters. A

non-rigid transformation from the treatment space to the planning space is established

by mapping the treatment image to the planning image using an image registration

method [Maintz and Viergever, 1998; Foskey et al., 2005]. The transformation for each

treatment day is then used to deform the radiation dose calculated for each treatment

day to the planning space, where it can be added to dose delivered on other days. The

result can then be used if necessary to modify the treatment plan to compensate for

any discrepancy between the planned and actual cumulative delivered doses [Yan et al.,

2000]. A problem with this approach is that the patient geometry is not sampled during

actual treatment delivery [Litzenberg et al., 2007; Noel et al., 2009].

An alternative method to monitor the prostate motion is by tracking several (usually

three) markers that are implanted in the prostate. For example, in the Calypso system,

the markers take the form of electromagnetic transponders that can be tracked to sub-
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each treatment fraction to provide localization (right). Courtesy of Calypso.

millimeter accuracy at a sample rate of 10 Hz, using a GPS-like system [Langen et al.,

2008; Balter et al., 2005]. The locations of the markers are used to position the patient

accurately in the treatment machine, thus eliminating the need for image guidance or

external marks on the patient’s skin or fixation device. Although the tracking informa-

tion is accurate and takes intra-treatment motion into account, the image data needed

for dose calculation is missing, eliminating the promise of calculating and accumulating

delivered dose. In this chapter, I demonstrate that the non-rigid mapping from the

planning space to the treatment space can be inferred in a neighborhood of the prostate

from the three marker locations and used to estimate the missing treatment image data

from the planning image.

My problem is different from the image registration problem in that the image data

on the treatment day is missing, therefore the methods based on voxel-scale intensity

matching [Foskey et al., 2005] or based on surface matching [Kaus et al., 2007] cannot

be applied. Landmark-based registration methods [Rohr et al., 2001] require much more

than three marker locations to interpolate the deformation field and are not directly

applicable to my problem.

My first approach is to use a statistical shape model for the prostate so that the

most likely prostate shape can be estimated given the measured marker locations. As
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my shape model I choose to use the m-rep (medial representation) [Pizer et al., 2003]

because it provides a coordinate system that can represent the interior and the nearby

exterior of the object, so that the markers in the prostate can be also represented relative

to an m-rep model of the prostate. I create a reference m-rep from the planning image

and one for each treatment day, based on the marker locations. The deformation between

the reference m-rep and estimated treatment m-rep provides a transformation between

the planning space and the treatment space that can be used to estimate the treatment

image to calculate delivered dose.

I also propose to use the simulation-based optimization framework presented in Chap-

ter 3 to estimated the deformation around the target organ by minimizing the distance

between the reference and treatment marker locations. A finite element (FE) model

[Zienkiewicz and Taylor, 2005] for the reference organ and a bounding box is built and

deformed during the optimization process. The external forces acting on the organ

surface is optimized, and the resulting deformation field can be used to estimate the

treatment image. The simulation-based approach can provide more reliable deforma-

tion at locations far from the sample points on the surface since the entire 3D domain

is simulated, while with m-reps correspondence, the deformation also depends on the

interpolation method.

I compare the estimated images with the real treatment images to demonstrate the

ability to reconstruct treatment images, and I compare the dose histograms computed

using the estimated treatment images to the histograms generated by an IGRT procedure

(using actual CT images) to establish the feasibility of dose calculation using estimated

treatment images.

For the rest of the chapter, I first present the deformation estimation method based

on m-rep correspondence in Section 4.2 and the simulation-based approach in Section

4.3. The aspect of dose calculation for radiotherapy is reviewed in Section 4.4, followed

by experimental results presented in Section 4.5.
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4.2 Deformation Estimation Based on M-reps

Given the planning image, a reference m-rep of the prostate is created based on the gray-

scale image and several user-specified landmarks on the organ boundary [Pizer et al.,

2005]. Calypso markers are ∼8.5 mm in length and ∼1.5 mm in diameter that appear as

bright spots in the image data. The location of each marker is computed as the center

of mass of the bright spot, which closely corresponds to the origin of signals emitted by

the miniature electromagnetic coil housed in the marker. For each treatment fraction,

the three marker locations are given by the Calypso system, and the reference m-rep is

then fitted to those locations by an optimization procedure. This procedure is similar

to organ segmentation except that the seed locations, rather than image intensities,

are what drive deformation within the trained shape space describing day-to-day shape

variations of the prostate [Pizer et al., 2005]. The diffeomorphism implied by the two

m-reps is then computed with a shape interpolation method called rotational flows [Levy

et al., 2008]. The deformation is used to transform the planning image to generate an

estimated treatment image for dose calculation.

4.2.1 M-reps

The discrete m-rep [Pizer et al., 2003] can be thought of as a discrete generalization

of the medial axis [Blum and Wathen-Dunn, 1967]. A simple m-rep model consists

of a discretely sampled medial surface. Sample points are referred to as hubs, and

associated to each hub are two vectors (known as spokes) extending, on opposite sides

of the medial sheet, from the hub to the boundary of the modeled object. The model is

trained from a population of shapes by adjusting the parameters (the locations of the

hubs and the directions and lengths of the spokes) to make the model fit each shape.

From this data, a mean shape and its modes of variation can be determined [Merck et al.,

2008]. This statistical representation can be used to reduce the effective dimension of the
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Hub 

Spoke 

Figure 4.2: A simple 3× 4 m-rep. A single shape is represented by the locations of the
hubs and the lengths and directions of the spokes. The boundary of the object (not
shown) passes through the ends of the spokes.

shape space, so that the limited information available from the three marker locations

can be applied most effectively. For instance, changes orthogonal to the plane of the

three points may be implied by their relative motions, given the statistical behavior

of the shape space, even though that orthogonal direction is not explicitly sampled.

At planning time, a patient-specific m-rep is created from the planning image for each

patient. For each treatment fraction, the patient-specific m-rep is deformed using the

modes of variation to fit the treatment image (in an IGRT) or the marker locations

measured for each treatment fraction (in the case of using markers instead of treatment

images).

An object-relative coordinate representation (figural coordinates) of the interior and

nearby exterior of the organ is used to interpolate the locations of unsampled spokes.

Two coordinates, u and v, reflect the arrangement of the hubs on the medial surface.

Each hub, along with its associated spokes determines integer values for u and v, and

points between them have non-integer values. An additional coordinate, φ, is equal to 1

along the entire top surface (bounded by the upper spokes extending from the outermost

hubs) and -1 along the bottom surface, varying smoothly between those values over the

intermediate portion of the boundary. A fourth coordinate, τ , gives the fraction of the

distance from the medial sheet to the boundary of the organ. This fraction may be
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Equation (9) is a general statement: the new shape
formed by rotating a shape about another similar shape, in
the manner we have defined, is also similar to the original
shape. When σ is 0, (9) simplifies to a well known truth:
rotation about a single point is a rigid transformation.

The center pane of Fig. 2 shows the result of various
rotations of a curve about a similar curve.

Theorem 3 (Rotational flows between similar objects)
Suppose again that S [0] and S [1] are related by a similar-
ity transform with rotational component φ, scaling factor
σ, and an arbitrary translational factor. Any S [t] is similar
to S [0]. The square of scaling factor from S [0] to S [t] is
given by (8).

Equation (8) follows from substituting (5, 6) into (9)
and from (2) which states that ∠ (xi,0; ci;xi,t) = tφ. The
rotational-flows interpolation between two similar curves is
shape maintaining. An example of this property can be seen
in the right pane of Fig. 2.

The special case of (8) when σ = 1 shows that
the rotational-flows interpolation between two congruent
curves is shape and size maintaining. When σ > 1, the
derivative of (8) with respect to t is strictly positive over
the interval t ∈ [0, 1]. Likewise, when 0 < σ < 1, d

dt (8)
is strictly negative over that interval. Although (9) allows
the set of points to collapse onto a single point, the mono-
tonicity of scale when (8) is restricted to t ∈ [0, 1] guaran-
tees that the interpolation between similar, but non-trivial,
shapes will not pass through the degenerate configuration.

2.2. Interpolation in three dimensions

Let (x0,E0) and (x1,E1) be corresponding oriented
points in R3. There exists a unit vector v that defines the
axis of rotation from E0 to E1. Let the magnitude of this
rotation be denoted by 0 ≤ φ ≤ π. The three dimen-
sional rotational-flows interpolation between these points is
designed to rotate x0 by φ about the axis v.

Since x0 and x1 may lie in different planes that are nor-
mal to v we cannot assume that the desired rotational path
between them exists. If we project x0 and x1 along v into a
common plane, we can form a path that combines rotation
about v with translation along v. Let v0 = (x0 · v) and
x′

0 = x0 −v0v. Let v1 and x′
1 be defined in a similar fash-

ion. Let f2 (t) = (x′
t, ·) be the two-dimensional rotational-

flows interpolation between these projected points. The
three-dimensional rotational-flows interpolation is given by
(10) and is illustrated in Fig. 3.

f (t) = (x′
t + (v0 + t (v1 − v0))v,Rv,tφE0) (10)

Figure 3. Three-dimensional rotational-flows interpolation. xt lies
on a helix whose axis is the axis of rotation between E0 and E1.

Our method can be understood as a generalization of
Rossignac’s method for rigid body interpolation [11]. Each
sample (x,E) is analogous to an independent rigid body.
An interpolated surface S [t] is produced by allowing each
sample to follow its own screw-like path.

When the surfaces S [0] and S [1] are similar, each S [t]
produced by rotational-flows interpolation is related to S [0]
by a transformation that is linear with respect to the ver-
tex positions in homogeneous coordinates. The interpolated
shapes are not necessarily similar to S [0] and S [1] since
scaling within the v = 0 plane per (8) and scaling due to the
translation along the the v axis have different scale factors.
In Section 3.2 we argue that rotational-flows interpolation
is more shape preserving than a straight-line interpolation.

2.3. Interpolation of m-rep shape models

The discrete m-rep [10] provides a sampled medial rep-
resentation for a shape in three dimensions. This represen-
tation has been used for a variety of applications in medical
image analysis including shape modeling [7], image seg-
mentation [9], and statistical shape analysis [6].
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Figure 4.3: 3D rotational flow between two oriented points (x0,E0) and (x1,E1) lies
on a helix whose axis is the rotation axis between E0 and E1. Courtesy of Levy et al.
[2008].

greater than 1 for points outside the organ.

4.2.2 Rotational Flows and Deformation Field Generation

Given the reference m-rep m0 and the target m-rep m1 created by fitting m0 to the

marker locations, the deformation from m0 into m1 is computed by interpolating between

the sets of boundary points b0 and b1, which are sampled using the same set of figural

coordinates {(ui, vi, φi)|i = 1, . . . , n}, on the boundary of m0 and m1, respectively. Thus

for each point x0 in the sets b0, there is a point x1 in b1 that has the correspondence

with x0 given by the m-reps and the figural coordinates. The goal of the rotational

flows method is to interpolate between each pair of corresponding oriented vertices

in R3, (x0,E0) and (x1,E1), where Ei = {e1, e2, e3} is the set of orthonormal bases

representing the orientation for the point xi. In 3D cases, each oriented vertex moves

along a helical path along the axis of rotation, as shown in Fig. 4.3. It can be shown

that the interpolation is shape-maintaining if the two objects are similar and is size-

maintaining if the two models are congruent [Levy et al., 2008].

Once the curved path for each pair of corresponding points is computed, the deforma-

tion for each voxel is computed by numerically integrating the subdivided displacement

along each curved path. At each integration step, a radial basis function (RBF) inter-
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polation is used to compute the deformation field in a rectangular box containing the

prostate with a small margin, using the collection of landmarks. Some static landmarks

are added on the boundary of the box to make the transition across the box boundary

smoother. The deformation outside of the rectangular box is assumed to be zero. Due

to the physics of dose deposition at high energies, this assumption has negligible effect

on the accuracy of dose calculation.

4.3 Simulation-Based Estimation of Deformation

Given a reference surface model of the main organ (prostate) and three marker loca-

tions at the planning and treatment time, I create a finite element (FE) simulation that

deforms to match the marker locations. A tetrahedral FE mesh is built from the segmen-

tation of the planning image and a bounding box (region of interest). The deformation

is modeled as an elastostatic process, where I assume different material properties for

the main organ and for the surrounding tissue, and boundary forces are applied to the

surface nodes of the main organ. During the optimization process, the external forces

are updated to minimize the error in marker locations. A dense deformation field is then

interpolated from the nodal displacements to generate the estimated treatment image.

4.3.1 Finite Element Modeling

The finite element method is based on a volumetric mesh representing the simulated

domain. See Section 3.2.1 for more details. In this chapter, I consider a domain limited

by a bounding box that roughly aligns with the surrounding bones (pelvic bones and

the spine) where the main organ (prostate) resides. A tetrahedral mesh is built from the

surface mesh of the main organ extracted from the planning image and the bounding box,

as shown in Fig. 4.4. The two regions in the domain (organ and surrounding tissue) are

each assigned a material property chosen based on previous work on FEM-based image

65



Figure 4.4: A finite element mesh used for estimating the deformation using the
simulation-based approach. The red elements represent the prostate.

registration [Hensel et al., 2007; Lee et al., 2010b], and boundary conditions (prescribed

nodal displacement or forces) are assigned to the surface nodes to drive the simulation.

The bounding box is assumed to be static, and I optimize the nodal boundary forces at

the organ surface.

4.3.2 Optimization

The objective function to be minimized is the sum of squared difference between de-

formed and treatment marker locations

Φ(f) =
∑

i

‖p̂i − pi‖2 ,

where p̂i is the marker location in the deformed model, pi is the corresponding marker

location in the treatment space, and f is the external force vector, which is the param-

eters to be updated in the optimization loop. In practice, the marker locations in the

planning space is modeled as nodes in the FE mesh, and the distances are computed by

comparing the deformed node positions and the treatment marker locations. I employ

the L-BFGS method [Nocedal and Wright, 1999] for the optimization. Once the optimal

forces are computed, the displacements given by the FE simulation can be interpolated
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Figure 4.5: Two examples of nodal displacement field resulted from the simulation-based
optimization framework; the white transparent surface is the prostate.

and used for estimating the treatment image. Fig. 4.5 shows two example visualizations

of nodal displacement around the prostate resulted from FE simulations with optimal

boundary forces. An advantage of the simulation-based approach over the m-reps-based

method is that the entire 3D domain is considered in the FEM, and therefore the result-

ing deformation at internal pixels is more accurate physically. The fitted m-reps provide

displacements only at sample points on the surface, and the deformation at internal

pixels is a result of both the point correspondence and the interpolation method, which

may not be as reliable at locations far from the sample points.

4.4 Dose Calculation

Calculation of delivered dose is a well-established part of radiation therapy planning.

CT intensities are based on the absorptivity of tissue to radiation, so it is possible to

calculate the amount of energy a given beam deposits in each portion of tissue it passes

through or near, taking into account the attenuation of the beam and the scattering

of radiation into neighboring tissue. I use the treatment planning system known as

PlanUNC [Schreiber et al., 2006] to calculate dose. Dose calculations for treatment

planning are expected to be ±3% compared to measurements.

67



These calculations are most commonly used in treatment planning. But when images

are available for treatment fractions, dose can be calculated for those days too. Then,

if a mapping can be constructed between the image of each treatment fraction and a

common reference frame, the dose can be accumulated to determine the total amount

of radiation received by each portion of the tissue. My approach is a reversal of the

most common methods of dose accumulation. Taking the planning image as given, I

derive a deformation first and derive the treatment image from it, rather than acquiring

a treatment image first and then deriving the deformation.

4.5 Experiments

I evaluated my method on four patient data sets, which contain eight, six, seven, and six

treatment fractions, respectively. The data for each patient consist of a planning image,

treatment images, and Calypso marker locations during treatment. Note that for each

treatment fraction, the patient is positioned in the treatment machine according to the

Calypso origin, which also serves as the isocenter of the treatment plan (i.e., the point

in the space where the central beam of radiation passes), and treatment images are

taken only for comparison with estimated images. Since the treatment images are taken

before the patient is positioned for treatment, they are visually aligned to the Calypso

marker locations before the comparison with estimated images and the non-rigid image

registration for dose calculation.

4.5.1 Comparison of Organ Surfaces

In order to assess the similarity between the estimated image and real treatment image,

I create an m-rep of the prostate for each treatment image based on the gray-scale image

and user-specified landmarks. The estimated m-rep (mmarker, reference m-rep fitted to

the marker locations) is then compared to the treatment m-rep (mtreat, m-rep created
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Table 4.1: Average errors in prostate surface and volume for the four patient data sets.
The surface error is measured with average distance between two sets of sample points
(D), and the volume overlap is measured with the ratio of intersection and union of the
two volumes ( Intersection

Union
).

M-reps-based FEM-based
Patient D (cm) Intersection

Union
D (cm) Intersection

Union

1 0.08 0.90 0.07 0.91
2 0.04 0.93 0.07 0.90
3 0.10 0.85 0.06 0.90
4 0.04 0.95 0.05 0.94

with the treatment image) by computing the distance between sample points on the

surfaces. For each sample point p on the surface of mtreat, its distance to the m-rep

mmarker is approximated as D(p,Bmarker) = min {d(p, q)|q ∈ Bmarker}, where Bmarker is

the set of sample points on the surface of mmarker, and d(p, q) is the Euclidean distance

between the two points p and q. For the surface deformed by the FE simulation, I use the

surface nodes of the prostate in the volumetric mesh as the sample points. The quality

of object matching can also be measured in terms of the ratio of intersection and union

of the two volumes, which takes the value in [0, 1], with the value one representing a

perfect match, and zero meaning no overlap. Fig. 4.1 shows the average surface distances

and volume overlap of the treatment prostate estimated using the two methods.

Note that these average distances are within the image resolution of the four data

sets; two of them are 0.12× 0.12× 0.3 cm, and the other two are 0.12× 0.12× 0.3 cm.

Fig. 4.6 shows an example visual comparison of the estimated image (using m-reps and

the simulation-based scheme) and corresponding treatment image.

4.5.2 Comparison of Calculated Dose

The dose calculation using the estimated image is compared against the dose calculated

with real treatment images to evaluate the accuracy of my method. The non-rigid

transformation with the treatment images is computed in the same manner as with
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(a) Image estimated using fitted m-reps

(b) Comparison of (a) and real treatment image

(c) Image estimated using simulation-based optimization scheme

(d) Comparison of (c) and real treatment image

Figure 4.6: Axial (left), coronal (center), and sagittal (right) views of an example m-rep
comparison; blue contour: m-rep fitted to Calypso marker locations during the treatment
fraction; green contour: surface deformed by the simulation-based scheme; red contour:
m-rep created with real treatment image; the green crosshairs show the Calypso origin,
which also serves as the isocenter of the treatment plan; (a, c) CT images estimated using
fitted m-reps and the simulation-based scheme, respectively; (b, d) 4 × 4 checkerboard
images comparing (a) and (c) to the real treatment image, respectively.
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the image estimated using m-reps, as described in Section 4.2.2. The dose calculation is

based on radiotherapy plans with the radiation beam targeting at volumes with different

margins around the prostate (5 mm, 7 mm, 9 mm, 11 mm, and 13 mm). I consider the

dose in the prostate and in the anterior rectal wall (the part of the rectum right next

to the prostate). Fig. 4.7 shows the differential and cumulative dose-volume histograms

(DVH) of one of the data sets using the estimated images and real treatment images

(with 5 mm margin). Besides visual similarity, I also numerically compare the DVHs by

considering the equivalent uniform dose (EUD) [Wu et al., 2002] of the differential DVHs,

as shown in Tables 4.2 and 4.3, along with the errors of the values given by my methods

relative to those given by the real images. There are no generally accepted standards for

errors in calculating delivered dose, but ±5% is a reasonable goal. I observed relative

errors of less than 3.2% in EUD for the four patient data sets I experimented on.

4.6 Summary

I presented two methods for estimating the treatment image using the planning image

and locations of implanted markers during the treatment. The simulation-based ap-

proach has the advantage that the entire 3D domain is simulated, while the fitted m-reps

only provide displacements at sample points on the surface, and the resulting deforma-

tion field depends more heavily on the interpolation method than in the simulation-based

framework. I demonstrated the feasibility of image estimation by comparing the esti-

mated images to real treatment images, and I also showed that the calculated dose

histograms using the estimated images are close to those using real treatment images.

My methods complement the Calypso system, where the prostate motion can be tracked

accurately at a high frequency during the treatment but the image data is missing, so

that the delivered dose distribution can be calculated and a safe delivery can be ensured.

In the future, I will experiment on more patient data. I will also investigate the
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Figure 4.7: Differential (a) and cumulative (b) dose-volume histograms for the prostate
(left) and anterior rectal wall (right); blue lines represent results with real treatment
images, green lines represent results with images estimated using m-rep fitting, and red
lines represent results with images estimated using FE simulation.
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Table 4.2: Comparison of equivalent uniform dose of the dose-volume histograms for
the prostate for the four patient data sets; the errors resulted from estimated images
(using m-rep and FE simulation) are relative to the values given by the IGRT (using real
treatment images). Each patient is experimented on using five target volume margins
around the prostate.

Patient Target Margin IGRT EUD (cGy) M-reps Est. Error FE Est. Error

5 mm 4680.41 -0.10% -0.17%
7 mm 4665.60 0.04% -0.27%

1 9 mm 4665.88 0.13% 0.11%
11 mm 4668.44 0.11% 0.05%
13 mm 4669.89 -0.10% 0.01%

5 mm 4,647.33 1.67% 0.96%
7 mm 4,634.99 1.71% 1.28%

2 9 mm 4,627.81 1.72% 1.47%
11 mm 4,479.13 1.73% 1.59%
13 mm 4,629.33 1.52% 1.39%

5 mm 4,651.24 -0.23% -0.33%
7 mm 4,617.89 -0.11% -0.20%

3 9 mm 4,617.67 -0.04% -0.09%
11 mm 4,599.79 -0.03% -0.03%
13 mm 4,591.71 0.04% 0.01%

5 mm 4,477.87 0.35% 0.29%
7 mm 4,467.08 0.37% 0.45%

4 9 mm 4,459.99 0.36% 0.52%
11 mm 4,460.13 0.32% 0.28%
13 mm 4,458.89 0.56% 0.55%
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Table 4.3: Comparison of equivalent uniform dose of the dose-volume histograms for
the anterior rectal wall for the four patient data sets; the errors resulted from estimated
images (using m-rep and FE simulation) are relative to the values given by the IGRT
(using real treatment images). Each patient is experimented on using five target volume
margins around the prostate.

Patient Target Margin IGRT EUD (cGy) M-reps Est. Error FE Est. Error

5 mm 4,348.68 0.27% 0.39%
7 mm 4,417.91 -0.00% 0.08%

1 9 mm 4,533.19 -0.22% -0.25%
11 mm 4,528.29 -0.19% -0.21%
13 mm 4,811.30 -0.63% -0.71%

5 mm 4,463.73 1.19% 1.52%
7 mm 4,479.61 1.31% 1.55%

2 9 mm 4,504.62 1.42% 1.47%
11 mm 4,333.20 1.48% 1.65%
13 mm 4,543.98 1.61% 1.58%

5 mm 4,108.74 -2.12% -3.12%
7 mm 4,059.30 -2.10% -3.15%

3 9 mm 4,110.98 -1.95% -2.94%
11 mm 4,154.21 -1.73% -2.63%
13 mm 4,158.04 -1.80% -2.70%

5 mm 3,757.31 1.15% 0.54%
7 mm 3,916.76 0.97% 0.47%

4 9 mm 4,043.46 0.83% 0.46%
11 mm 4,182.75 0.70% 0.46%
13 mm 4,255.77 0.64% 0.45%
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feasibility of adjusting the treatment machine to compensate for the intra-treatment

motion observed.
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Chapter 5

Fast Optimization-Based Elasticity

Parameter Estimation Using Reduced

Models

Elasticity parameters are central to physically-based animation and medical image anal-

ysis. I present an accelerated method to automatically estimate these parameters for

a deformation simulator using an iterative optimization framework, given the desired

(target) output surface/shape. During the optimization, the input model is deformed

by the simulator, and the distance between the deformed surface and the target surface

is minimized numerically, as discussed in Chapter 3. To accelerate the optimization

process, I introduce a dimension reduction technique to allow a trade-off between the

computational efficiency and desired accuracy. The reduced model is constructed using

statistical training with a set of example deformations. To demonstrate this approach, I

apply the computational framework to 2D animations of elastic bodies simulated with a

linear finite element method. I also present a 3D elastography example, which is simu-

lated with a reduced-dimension finite element model to improve the performance of the

optimizer.



5.1 Introduction

Physically-based simulations can help generate realistic scenes or animations without

low-level control of a 3D model [Nealen et al., 2006]. To achieve a particular appear-

ance, however, it frequently requires many iterations of adjusting simulation parameters,

simulating, and assessing the results. For a large number of parameters and a complex,

high-cost simulation, such an iterative process becomes extremely tedious and time-

consuming, making parameter estimation a topic of significant interest in computer

graphics [Treuille et al., 2003; McNamara et al., 2004; Bergou et al., 2007]. For example,

estimation of material properties are essential in simulating the appearance of a particu-

lar type of cloth [Bhat et al., 2003], as well as in designing and fabricating materials for

a certain deformation behavior [Bickel et al., 2010]. These material property estimation

methods focus on materials that can be put into a specialized video capturing system to

measure displacements, and a force measuring device is needed in the case of elasticity

parameters [Bickel et al., 2009].

In 2D shape deformations, the notions of “rigidity,”“stiffness,” and “compressibility”

are also conveyed in order to improve the physical plausibility of the animation [Igarashi

et al., 2005; Weng et al., 2006; Yang et al., 2008]. However, physically-based methods

have seldom been applied partly due to the difficulty in tuning simulation parameters.

Elasticity estimation is also of interest in non-invasive cancer detection, since human

tissues are not always easy to obtain, and it is sometimes impossible to measure the

actual parameters of a live patient. 2D Elastography [Ophir et al., 1999; Zhu et al., 2003;

Kallel and Bertrand, 1996] is a method for estimating the elasticity value for each pixel

in medical images, and most existing methods are based on a dense displacement field

established by pixel-wise correspondence between pre- and post-compression images.

However, in some imaging modalities, the intensity inside an organ is almost constant;

only the displacements at the organ boundaries can be approximated using a surface

matching or an intensity-gradient-based method, and it is difficult to find a reliable
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dense displacement field.

In this chapter I introduce a fast elasticity parameter estimation method suitable

both for 2D shape deformation and for 3D elastography. I extend the simulation-based

framework introduced in Chapter 3, where two segmented images are registered using

physics-based deformation. I minimize an (error) objective function that is based on the

distance between the deformed surface and the target surface, with the elasticities and

boundary forces as the parameters to the iterative optimizer. The framework does not

require a force measuring device for finding elasticities (Young’s modulus) in a multi-

material system, instead only the ratios between the elasticity values are computed.

However, in applications where the dimensionality of the boundary forces is very high,

the optimizer may become slow to converge and is more likely to get stuck in a local

minimum. For such applications with example deformations available, I propose a novel

method for statistically training a set of basis to represent the degrees of freedom for

boundary forces, thereby improving the performance of the optimizer by more than

an order of magnitude. I firstly acquire example deformations by matching the moving

surface to several example target surfaces. A principal component analysis (PCA) is then

performed with these example deformations to find the linear basis for model reduction.

For the rest of the chapter, I first review related work in Section 5.2. I give an

overview of the optimization framework and the reduced-dimension finite element mod-

eling in Section 5.3. I demonstrate the effectiveness of my approaches by showing ex-

perimental results in 2D shape deformation and 3D elastography in Section 5.4 and

analyze the accuracy of the recovered elasticity values. I conclude with a summary and

discussion of future work.
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5.2 Previous Work

Physically-based deformable models have been applied to computer graphics for more

than two decades, and there have been significant advances in many subareas such as

numerical partial differential equations, multi-resolution modeling, modal analysis, and

collision detection [Nealen et al., 2006; Teschner et al., 2005; Müller and Gross, 2004].

Artistic control of physically-based simulation has been an important topic in computer

animation. For example, the visual shape of simulated fluid can be controlled with

external forces [Treuille et al., 2003; McNamara et al., 2004]. By minimizing an ob-

jective function that measures the difference between the simulated density fields and

the keyframes provided by the user, one can achieve the desired shape or look of the

simulated fluid. Example-based methods has also been applied to art-directed elastic

bodies [Martin et al., 2011], where a space of deformation is formed with example strains

(keyframes). During a simulation, the configuration (deformation) is projected to the

space of deformation. Additional external forces are then applied in order to match

the projected and simulated configurations. My method, on the other hand, not only

matches the deformed shape but also estimates the optimal elasticity values to achieve

such a behavior. Optimizing elasticity and forces jointly is a much harder problem be-

cause the error function has different sensitivities to forces and to elasticity parameters.

The problem of directing a simulation can alternatively be solved by adding physical

details to an object (surface) animated by hand using the constrained Lagrangian me-

chanics approach [Bergou et al., 2007]. Their work is different from mine in that I are

matching simulated results rather than adding simulated details to an existing anima-

tion.

Some work in computer graphics has explored parameter estimation for deformable

model simulation. For example, Becker and Teschner [2007] proposed a framework us-

ing quadratic programming to find linear elastic parameters and analyzed the effects

of noise in measurements. Pai et al. [2001] combined a trinocular stereo system and a
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force measurement device to model deformable objects. The linear relationship between

the tractions and displacements is estimated using a least squares formulation. Bhat

et al. [2003] estimated cloth simulation parameters by comparing video of real fabric

patches and simulated images and computing the error metric based on the orientation

of each edge pixel, and they minimized the error using the continuous simulated anneal-

ing method [Press, 2007]. Syllebranque and Boivin [2008] used a similar optimization

method with a force capture device, so that the boundary forces are known, to estimate

the mechanical properties of deformable solids. They used video-based metrics to opti-

mize for Poisson’s ratio and used the errors in computed boundary forces to optimize

for Young’s modulus. Bickel et al. [2009] estimated non-linear heterogeneous material

properties using a force sensor and a trinocular stereo vision system, so that the displace-

ments of the vertices on the surface and the applied forces are known. They estimated

the material properties by minimizing the error in vertex locations. While these methods

depend on rendering and/or computer vision algorithms, my technique directly uses the

surfaces of the deformed bodies to compute the error metric. In addition, the boundary

conditions are unknown in my problem.

In 2D shape deformation, there have been attempts to optimize some quantities

such as the area of the deformed mesh in order to create physically plausible results.

Igarashi et al. [2005] presented an interactive shape manipulation method using only

a few control points. They optimize for the rotation and the area of each triangle in

the 2D mesh to create plausible deformations, and linearized optimizers are used due to

the real-time constraint. Weng et al. [2006] formulated the problem using a non-linear

optimization minimizing the Laplacian coordinates of the boundary curve as well as the

local area of the interior. Yang et al. [2008] further improved the framework to make

the stiffness tunable by allowing different amount of mesh distortion. However, these

methods are not physically-based. My method can estimate the material properties and

boundary conditions needed to achieve the desired shape, and the physical plausibility
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is guaranteed by the simulator used in the optimization loop.

Estimation of material properties of human tissues is also important in the area

of medical image analysis for detecting cancerous tissues, since cancerous tissues tend

to be stiffer. Elasticity reconstruction, or 2D elastography, is a non-invasive method

to acquire strain or elasticity images of soft tissues [Skovoroda and Emelianov, 1995].

Elastography is usually done by first estimating the optimal deformation field that relates

two ultrasound images, one taken at the rest state, and the other taken when a known

force is applied to the skin [Ophir et al., 1999; Rivaz et al., 2008]. Alternatively, the

displacement field can be found with a modified MRI machine in tune with a mechanical

vibration of tissues [Muthupillai and Ehman, 1996; Fu et al., 2000]. Once the deformation

field and external forces are known, the material properties can be found by solving a

least-squares problem [Zhu et al., 2003], assuming that the physical model is linear, or

by using iterative optimization algorithms to minimize the error in the deformation field

[Kallel and Bertrand, 1996; Balocco et al., 2008; Schnur and Zabaras, 1992]. Although

slower than directly solving the inverse problem, these iterative methods do not require

linearity of the underlying model and are therefore suitable for any physical model.

Another kind of 2D elastography seeks to to maximize image similarity while treating

the displacement field as unknown [Washington and Miga, 2004]. However, the method

depends on salient features within the object, which may not be present in human

organs.

Surface capturing and registration are essential to my parameter estimation method.

Computer vision methods such as trinocular stereo [Pai et al., 2001; Bickel et al., 2009]

and 2D video tracking [Bhat et al., 2003; Syllebranque and Boivin, 2008] has been used

to track the surfaces or landmarks. For medical images, statistical model-based seg-

mentation methods such as those based on active shape models [Cootes et al., 1995]

and m-reps [Pizer et al., 2003] can be used to extract smooth surfaces of organs. The

extracted surfaces from different medical images needs to be registered in order to es-
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timate nodal displacements. A typical polygonal surface registration method usually

involves minimizing a surface distance error and a regularization term for maintaining

vertex distribution [Kaus et al., 2007].

Finite element methods [Zienkiewicz and Taylor, 2005] (FEM) have become a stan-

dard simulation approach for elastic continua. In many engineering and medical ap-

plications, such as design analysis and image-guided surgery, some forms of simplified

elasticity models and numerical methods are usually adopted in order to meet the per-

formance requirements. For example, dimensional model reduction [Krysl et al., 2001]

reduces the dimension of the finite element domain by finding a set of linear basis,

or reduced basis, to transform the nodal displacement and boundary conditions into a

lower-dimensional space. Subsequent solutions or integrations are done in the reduced

space. Since high-frequency modes of the displacements are also removed in the process

of dimension reduction, the reduced model saves computation through both the reduced

matrix size and increased critical time step (for explicit integration), at the cost of re-

duced details in displacement. The set of reduced basis, however, is not trivial to find.

Krysl et al. [2001] suggested the use of example displacements as a training set, where

each sample is a snapshot of the displacement vectors when a certain load is applied to

the full-dimension FE model. A PCA is then performed to find the most significant,

important dimensions. Taylor et al. [2010] used the same training scheme with multi-

ple load cases and implemented the simulator on the GPU. They applied the method

to simulate brain shift during a synthetic surgery scene and reported a speedup of 9.6

times when using just five basis vectors. Barbič et al. [2009] used reduced-dimension

control for keyframe animation. Animator-specified keyframes, along with some FEM-

generated deformations filling the gaps in between and some natural vibration modes,

are used as training samples for the PCA.
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Figure 5.1: Flow chart of the optimization loop; the displacement field generated by the
simulator is used in the objective function for the optimizer to update the parameters;
updated parameters are fed back into the simulator, and so on.

5.3 Method

My algorithm minimizes an (error) objective function based on the separation between

corresponding shapes. In each iteration, the objective function is computed by first

simulating and deforming the surface using the current set of parameters, and then

computing surface distances. My current implementation of the simulator uses the

isotropic linear elasticity model, because it is widely used in real-time graphics with

stiffness warping to reduce effects of non-linearity [Müller and Gross, 2004]. Other

simulators can also be integrated with this framework.

The inputs to the problem are two triangulated 2D or 3D surfaces: the fixed (tar-

get) surface Sf and the moving (source) surface Sm. For 3D objects, I construct a

tetrahedralization of the moving volume such that each face of Sm is a face in the

tetrahedralization, so that Sm is characterized entirely by its set of nodes. The frame-

work is built on a physically-based simulator that generates deformation fields with Np

unknown parameters x =
[
x1, · · · , xNp

]T
, and a numerical optimizer to minimize an

objective function Φ(x) : RNp → R defined by nodal displacements and surface match-

ing metrics. During the optimization process, the physical model is refined in terms of

more accurate parameters and converges to the model that can describe the deforma-

tion needed for the particular surface correspondence problem. The flow chart of my

algorithm is shown in Fig. 5.1 and explained in detail in this section. I briefly review

the optimization framework in Section 5.3.1 and present the acceleration method using
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reduced-dimension modeling in Section 5.3.2.

5.3.1 Optimization-Based Framework with Finite Element Mod-

eling

In the optimization loop, each nodal displacement ul = [ul, vl, wl]
T is always generated

by a physically-based simulation, where any simulation method can be used to solve the

elastostatic problem. Using a linear FEM, I have

Ku = f , (5.1)

where u is the displacement vector that consists of ul, K is the stiffness matrix con-

structed using some material properties, and f is the vector of external forces. The

resulting deformed surface is compared against the target surface to evaluate the cor-

respondence error (objective function). The optimizer then finds a descent direction to

update the parameters, and the new parameters are fed back to the simulator for the next

iteration. See Section 3.2 for detailed formulation of the FEM and the distance-based

objective function.

5.3.1.1 Initial Guess of Parameters

The initial guess of external forces is important in avoiding local minima. I use a simple

iterative surface matching to roughly match the boundary nodes, and the matching

provides estimated displacements of the boundary nodes, which are substituted into the

FEM (Equation 5.1) to find an initial guess of forces. For the material properties, I

evaluate the values of Φ(E) using several E values, and use the one that results in the

smallest error as the initial guess for E.

The iterative surface matching is based on the gradient of the distance map and

vertex redistribution: in each iteration, each vertex on the source surface is moved along
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the direction of the distance map of the target surface in order to minimize the surface

distance. To avoid degenerate polygons, imaginary spring forces are applied to each edge

to maintain the vertex distribution. Formally, in iteration n + 1, each node vn
l (from

previous iteration) is pulled by an imaginary force

fn+1 = −kDd(vn
l ,Sf ) +

∑

vn
N∈N (vn

l )

kN(vn
N − vn

l ),

where kD and kN are constants controlling magnitudes of imaginary forces, and N (vn
l ) is

the set of neighboring nodes of vn
l . In the first term, −d(vn

l ,Sf ) pulls the node towards

the surface Sf , and in the second term, (vn
N−vn

l ) maintains the relative spacing between

the nodes so that degenerate triangles are avoided.

5.3.2 Acceleration using Reduced-Dimension Modeling

The iterative optimization scheme requires a large number of solutions of the global linear

system provided by the FEM. While the performance is acceptable for simple models

with low degrees of freedom, it may take more than eight hours for some complex 3D

models with many thousands of degrees of freedom for boundary forces. Here I present

an acceleration method that reduces the dimensionality of the parameter space (the

boundary forces) and thus improves the convergence of the optimizer.

5.3.2.1 Reduced-Dimension FEM

Krysl et al. [2001] suggested that the FE model could be simplified with a set of basis

for the displacement field. The reduced-dimension displacement vector û is computed

with

u = Wû, (5.2)

where W is the column matrix of orthonormal basis called the reduced basis. Substi-

tuting Equation 5.2 into Equation 5.1 and left-multiply both sides with WT , I have the
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reduced-dimension linear system

WTKWû = WT f

K̂û = f̂ , (5.3)

where K̂ = WTKW and f̂ = WT f .

5.3.2.2 Training of Reduced Basis

In order to obtain W, a set of example displacements is used in a PCA, and some

of the resulting principal components are chosen as the reduced basis. However, the

generation of the example displacements is nontrivial and depends on the specifics of

the application. In keyframe-based animation, for instance, the keyframes can serve as

the examples [Barbič et al., 2009]. In the case where there is one source surface and

multiple target surfaces, example displacements are generated by matching the source

surface to the target surfaces (using the method described in Section 5.3.1.1).

Notice that only the degrees of freedom (DOFs) of the boundary nodes (where bound-

ary forces are applied) are reduced, whereas in [Krysl et al., 2001], all the DOFs are

reduced. My approach does not provide as much acceleration in the FEM itself, but

the dimensionality of the parameter is greatly reduced, and thus the performance of the

optimization is improved. Moreover, example displacements are much easier to obtain

for the boundary nodes than for all the internal nodes.

5.3.2.3 Training for Multiple Source Surfaces

I consider a more general setting where there are multiple source surfaces that are

similar, and I want to find a common set of reduced basis for each FE model built from

a similar source surface. For example, in medical image analysis, there can be multiple

3D images of each patient taken on different days. Once the organs in the images are
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delineated, they can provide examples of organ deformations. Further, if images from

different patients can all be used as example deformations, the resulting basis can more

effectively represent the general set of displacements, even for surfaces that are not used

in the training process. In order to achieve this, a one-to-one correspondence must be

established between the boundary nodes in all the FE models, and only the degrees of

freedom for these boundary nodes are reduced (and other DOFs are not affected by the

basis matrix W).

Correspondence of boundary nodes. I first choose an atlas surface mesh Sa con-

sisting of only the boundary nodes. The surface Sa is deformed through an iterative

surface matching (using the method described in Section 5.3.1.1) to fit each specific

source surface Sm. The atlas surfaces fitted to Sm serve as the standardized source

surface S′m, from which the FE mesh for that source surface is created. Namely, the

boundary nodes in each specific FE mesh are all from the deformed atlas surfaces (fitted

to Sm), while other surface nodes that has no boundary forces applied are directly from

Sm. As a result, a one-to-one correspondence is established between the boundary nodes

from the FE meshes that are created through the same process. Example deformations

are then generated by matching each S′m to the corresponding target surfaces. The

process of generating the node correspondence and example deformations is shown in

Fig. 5.2. Because all these FE meshes share the same set of boundary nodes, the PCA

training can make use of all these example displacements, and the resulting reduced

basis can be used for any of these FE meshes. Although the nodal correspondence be-

tween each pair of S′m may not be accurate, I show in the experimental results that the

cross-patient PCA training works well in practice.
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Figure 5.2: The process of generating the the node correspondence and example defor-
mations for one source surface; this procedure is repeated for multiple source meshes,
and the resulting reduced basis can be applied to other FE meshes using the same node
correspondence procedure.

5.4 Implementation and Results

I have applied my method to 2D shape deformations and a 3D elastography example

using the reduced-dimension modeling.

5.4.1 Physically-Based 2D Shape Deformation

In 2D shape deformation with a single material, the elasticity (Young’s modulus) cannot

be estimated, since I do not know the true force applied. On the other hand, the

compressibility (Poisson’s ratio) is the main source of difference in deformed shape, if

the same first-type boundary conditions are applied. A perfectly incompressible material

has the value 0.5 (but in the isotropic linear elasticity model, the value cannot be exactly

0.5). Fig. 5.3 shows the difference caused by two different Poisson’s ratios.

Given the source piecewise linear (represented by vertices and edges) shape, I build

the triangular finite element mesh that fills the shape. The target shape is also given in

the piecewise linear format, and the distance function between the two shapes is based

on distance between corresponding vertices. The boundary forces to be optimized are
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Figure 5.3: Example 2D shape deformations showing different results with different
Poisson’s ratios ν (each column results from the same first-type boundary conditions);
top: ν = 0.1; middle: ν = 0.49; bottom: comparison by overlaying the two results.

applied to a subset of nodes, which can be chosen by the user. Fig. 5.4 shows the flow

chart of the estimation process. The FE mesh and the recovered Poisson’s ratio can be

used to generate other deformations of the same object.

To test the accuracy of the estimated values, I perform a series of experiments where

each target shape is generated with FEM using a Poisson’s ratio ν, so that I know the

ground truth. The dimension reduction approach is not applied to the 2D problem,

since the number of DOFs is already small. Fig. 5.5 shows the target shape and a plot

of surface errors for each ground truth ν value. The error in the ν value is about 10%

in the four cases. In these examples, the nodes at the bottom of the alphabet ’A’ are

fixed, and I optimize for the boundary forces at the top of the ’A.’ The results also

show that the shape is more sensitive to Poisson’s ratio when the value is close to 0.5

(nearly incompressible). The entire optimization process takes about four seconds for

each case. The experiments show that my framework can be easily applied to 2D shape

deformations with very high accuracy and efficiency.

5.4.2 3D Elastography using Reduced Modeling

I apply my framework to 3D elastography of the prostate. The domain considered

consists of the bladder, the prostate, the rectum, and the bones. The space is filled
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Figure 5.4: Flow chart of Poisson’s ratio estimation given source and target 2D shapes;
an FE model is built according to the source shape, and the distance between the
deformed source shape and the target shape is minimized. The red cross marks the
nodes with boundary conditions applied.

with tetrahedral elements, and the bladder and the rectum are hollow to reflect their

structure, as shown in Fig. 5.6. There are two material properties, one assigned to the

prostate (red elements in Fig. 5.6), and the other assigned to the elements between

organs (shown in green in Fig. 5.6). The goal of the elastography is to find the ratio of

Young’s moduli of the prostate to that of the other elements. (The bone is always fixed,

so its material property is irrelevant.) The Young’s modulus is the material property to

be optimized here because of its significance in non-invasive cancer detection. Poisson’s

ratios are set to 0.4 and 0.35 for the two materials, based on common values used in

medical simulations [Hensel et al., 2007]. Boundary forces are applied to the surface

nodes of the bladder and the rectum. The parameters to be optimized are the Young’s

modulus of the prostate and the boundary forces applied to the bladder and the rectum.

I have not yet been able to estimate the Poisson’s ratio along with the Young’s modulus

because the surface distance is much less sensitive to the Poisson’s ratio.
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(b) ν = 0.3
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(c) ν = 0.4

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

0

10
1

10
2

10
3

10
4

Error in Landmark Positions

Poisson’s Ratio

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

(d) ν = 0.49

Figure 5.5: Test of accuracy of the recovered Poisson’s ratios ν; the four target shapes
are generated using four different ν values; for each subfigure, on the left is the target
shape, and on the right is the plot of surface errors versus ν values.
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Figure 5.6: The tetrahedral mesh of the bladder-prostate-rectum area (left) and a close-
up view of the three organs (right), where the white surface is the target prostate surface.

Reduced basis training. The degrees of freedom for the boundary forces is around

4,900, which makes the optimizer slow to converge (taking thousands of iterations).

Therefore, a dimension reduction is performed with 108 example deformations from

CT images. These images are from nine patient data sets, each has one source image

and several target images. The first step of generating examples is to create the node-

to-node correspondence between source surfaces from different (patient) data sets. I

use a surface matching approach to establish the correspondence: an atlas surface is

iteratively deformed to match each patient-specific source surface, and therefore each

patient-specific surface has the same set of nodes. The patient-specific source surface is

then matched with corresponding target surfaces to generate the example deformations

for the organ. Fig. 5.7 shows visualizations (as nodal displacements) of the first two

principal components (basis vectors) resulted from the PCA. I choose to use 92 basis

vectors for the bladder and 100 for the rectum due to the high accuracy requirement

in elasticity parameter estimation. Fig. 5.8 shows the relationship between the number

of basis vectors used, the accuracy of recovered elasticity, and the performance of the

optimizer (in terms of number of iterations needed). A reduced accuracy of recovered

elasticity is expected with a smaller number of basis vectors, since the accuracy in the

simulated displacement is reduced due to the model simplification. I observe better
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Figure 5.7: The first two principal components (visualized as nodal displacements on
bladder and rectum surfaces) resulted from a PCA using 108 example deformations.

accuracy and slower convergence with a larger number of basis vectors used. Namely,

the reduced basis provide a trade-off between the accuracy and the performance. Also

notice that even with 191 basis vectors, the performance is still 32 times of that using a

full-dimension model (which has 4,932 DOFs). The slight increase in error (see Fig. 5.8)

when the number of basis vectors increased to 139 is likely the result of optimizer sticking

to a local minimum.

I then test the accuracy of estimated elasticity values using two patient-specific FE

models that are not used in the training process. The models are deformed using three

different elasticity values to generate the target surfaces, so that I know the ground truth

for the optimization. The recovered elasticity values in the six test cases are shown in

Table 5.1. The relative errors in Young’s modulus range from 0.1% up to 8.1% and are

generally less than 10% for the set of basis chosen. The average surface error (distance) is

0.08 cm, down from 1.81 cm with only rigid alignment. The accuracy is higher around the

prostate (where the deformation is more predictable); the average error is 0.01 cm, down

from 0.44 cm before deformation. The error in forces is not considered because force

measurements are not present in my framework – only the surface data are required, and
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Figure 5.8: The number of reduced basis vectors provides a means of trade-off between
optimizer performance and accuracy of recovered elasticity values; the error (blue) de-
creases and the number of optimization iterations (green) increases with the number of
basis vectors used. The slight increase in error with 139 basis vectors is likely the result
of optimizer sticking to a local minimum.
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Table 5.1: Error in recovered modulus of elasticity for two synthetic multi-organ scenes
using a reduced-dimension FEM; the 18 to 62 times speedup is compared against an
optimization using a full-dimension FEM.

True Elasticity (kPa) 25 50 75

Scene Recovered 25.80 54.07 75.60
1 Error (%) 3.2% 8.1% 0.8%

Speedup 32x 62x 30x
Scene Recovered 24.00 53.38 74.95

2 Error (%) 4.0% 6.8% 0.1%
Speedup 60x 19x 18x

the synthetic data sets are deformed using first-type boundary conditions (prescribed

displacements at boundary nodes). The optimizer takes around 50-250 iterations to

converge – in the amount of time that is about 1/60 to 1/20 of what would otherwise be

needed when using a full FE model. The average time needed for each iteration of force

optimization is about 9 seconds. These results show that the optimization framework

using the dimension reduction approach can achieve an accuracy comparable to that

using a full FEM, while taking substantially less time.

5.5 Conclusion

I presented an accelerated method based on a general framework for estimating de-

formable body simulation parameters for achieving a certain target shape. The simu-

lation parameters can be a combination of Young’s modulus, the Poisson’s ratio, and

the external forces, depending on the application. The error metric can be based on

surface distance map or landmarks, depending on the features that one can find on

the surfaces. The main contribution of my work is the acceleration of the optimization

framework using reduced-dimension modeling: a set of example deformations are used

for the statistical training for the basis, which are used to reduce the dimensionality of

the parameter space. Furthermore, my acceleration method provides a trade-off between

performance and accuracy by controlling the number of basis vectors used. However,
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the accuracy of the reduced model is limited by the quantity of example deformations,

and therefore my acceleration method is not suitable for applications lacking examples.

I demonstrated this optimization-based framework on an implementation using a linear

FEM and reduced-dimension modeling to accelerate the overall performance by more

than an order of magnitude. More complex models, such as the non-linear FEM, can

also be used. I have also shown that this method can be easily applied to 2D shape

deformation and 3D elastography for the prostate.

In the future, I would like to experiment with different elasticity models, so that large

deformations in character animations can also be simulated. Since the convergence of

this approach depends on the number of basis vectors needed, the reduced-dimension ac-

celeration technique could benefit from a better statistical training method, such as the

non-linear PCA. Modal analysis of the FE model could also further reduce to the com-

putation. I would also like to integrate the material property estimation with patient-

specific virtual surgery, in order to provide a more accurate, patient-specific model.

96



Chapter 6

Discussion

In this dissertation, I have presented a general simulation-based optimization scheme

for estimating simulation parameters with surface information. The method does not

depend on known displacement field or external forces and is therefore suitable for any

imaging modality where the objects can be segmented. I demonstrate the feasibility of

using the optimization framework for medical image analysis by showing examples in

prostate cancer staging, nonrigid image registration, and treatment image estimation

using marker locations. The performance of the optimization scheme is improved by re-

ducing the number of degrees of freedom in the FEM, thus providing a trade-off between

speed and accuracy.

6.1 Summary of Results

My method is applied to prostate cancer stage assessment since the stiffness of the

prostate is related to tumors inside the organ. I show experimental results with ten

patient data sets, and the recovered elasticity values for the prostate are positively

correlated to clinical cancer stages. Since the resolution of my elastogram is limited

to organ boundaries (assuming constant material for each region), I present synthetic

experimental results showing how the overall elasticity value for the prostate reflects

the size of the tumor. The optimization framework is also integrated with a nonlinear



FEM when only the elasticity is optimized, and the experiments with real patient data

also show significant positive correlations with cancer stages. With a linear FEM, only

the ratio of elasticity values can be recovered, and the nonlinear FEM exhibits results

(recovered ratios) that are very similar to the linear case under small deformation.

Since the optimization framework minimizes the surface distance, the resulting simu-

lation also provides an image registration. Compared to image-based approaches, the de-

formation is generated by a simulator and therefore the quality of the displacement field

is guaranteed by the simulation. Compared to landmark- or model-based approaches,

my method generates displacements not only for the sparse set of points but also for

nodes in the volumetric mesh. The resulting displacement field, therefore, is much less

affected by the interpolation method employed. I also show experimental results showing

image matching quality that is comparable to an image-based approach.

My optimization framework can also be based on landmark locations. For example, in

radiotherapy with marker localization, the three marker locations instead of the surface

data can provide information for generating a dense displacement field, which is used for

estimating the treatment CT image for dose calculation. Compared to a model-based

method such as using the m-reps fitted to the markers, the simulation-based approach

generates more consistent deformation field since all the nodes in the mesh are simulated.

Material properties other than the elasticity can also be recovered using my method.

For example, when only one object is present, the Poisson’s ratio, rather than the elas-

ticity, is the key to achieve a certain shape. I demonstrate the optimization of Poisson’s

ratio for 2D shape animations using landmarks in the error metric.

Finally, to address the efficiency issue of the force optimization, I propose to use

statistical training of example surface displacements to reduce the degrees of freedom

in the FEM, and therefore the dimension of the optimized parameters (forces). The

examples are built from surface matching results of real patient data, and the FE mesh

for each patient is built so that a common set of reduced basis can be used for all these
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meshes. Synthetic experiments show the accuracy of the reduced-dimension method,

and the speed up over the full-dimension method is more than an magnitude. The

trade-off between speed and accuracy is achieved by choosing different numbers of basis

vectors.

6.2 Future Work

There are several possible research directions extending this dissertation. Firstly, the

accuracy of my method is currently verified using synthetic data with known parameters.

Further verifications could involve building phantoms with known materials and taking

3D images of the phantom under different amount of compressions.

Since the error function in the optimization loop depends on surface distance, the ac-

curacy will inevitably be affected by the quality of the segmentations, which depends on

the algorithm and the image modality used. For example, segmentations for ultrasound

images are usually less reliable due to the speckles, and the smoothness of the resulting

surface can depend on the image resolution. Therefore, a more thorough analysis on

errors in the segmentation and in recovered parameters can be conducted to clarify how

much effect the segmentation method has.

In terms of the clinical application in cancer detection, a larger scale clinical trial of

cancer stage assessment could provide more real patient data and better statistics. Along

with other indicators of cancer (such as the antigen level), I could build a classifier using

machine learning approaches. The accelerated optimization framework using reduced-

dimension models can also benefit from more example displacements, since more sample

in the PCA results in more principal components. Besides increasing the number of

samples, a better statistical training method could also improve the simulation and

optimization. A more thorough comparison between the reduced and full dimensional

models can be conducted using more real patient data sets.
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Application in patient-specific modeling. My method can also be applied to

model patient-specific tissue parameters. For example, an image-guided surgery usu-

ally involves deformable tissues, and the deformation during the surgery makes the

image guidance inaccurate. In order to compensate for the movements, physically-based

modeling has been applied to approximate the deformation. Since each patient exhibits

different tissue parameters, the simulation can be further improved if one knows the ma-

terial properties of each patient. Since a planning image is already taken for the surgery,

an additional image under different pose could be useful for estimating the tissue pa-

rameter, if taking such an additional image is possible. The resulting patient-specific

simulation can also be applied to surgical training in order to prepare the surgeons for

handling different material properties from different patients.

Application in computer graphics. Since simulation parameter estimation has

been a difficulty in physically-based modeling, my approach can improve applications

using physically-based simulations. For example, I have shown applications in 2D shape

animation, and I can further extend the method to handle 3D animations. However,

the surface matching (for providing initial guess of the force) can become much more

difficult in general cases other than medical applications, where the difference between

surfaces is usually small. Thus, a robust surface matching method can be crucial for a

successful optimization.
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