
   

ABSTRACT 

Manjari I. Rao 

Analysis of a Locally Varying Intensity Template for Segmentation of 
Kidneys in CT Images 

(Under the supervision of Edward L. Chaney, PhD) 

 

The purpose of this study was to evaluate the use of a locally varying intensity 

template for automatic segmentation of kidneys in CT images. Kidney segmentation 

is often difficult because the surrounding soft tissue has varying contrast across the 

boundary.  

A set of 60 CT images was selected for training. The images were manually 

segmented using a slice-by-slice contouring tool. Mean left and right kidney 3D 

medial models were computed along with corresponding Principal Geodesic Modes 

of variation from a population of models fit to this manual segmentation data. The 

models were referenced via an intrinsic coordinate system to obtain templates based 

on intensity profiles at different points across the boundary of the model. The 

resultant template-based segmentations were compared to Gaussian derivative 

template-based segmentations. There was marginal improvement in the quality of 

the segmentations and significant improvement in the degree of automation 

achieved using this method. 
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CHAPTER 1 - Introduction    
     

The purpose of this thesis is to evaluate the use of a locally varying intensity 

template of the kidney for the purpose of automatic segmentation in CT images for 

radiation treatment planning. This chapter provides an introduction to radiation 

therapy and the procedures involved in treatment planning, primarily segmentation 

of anatomical structures. 

1.1 Radiation Therapy and Treatment Planning 

Cancerous tumors are made up of aggressive cells that have already beaten the 

immune system, allowing them to invade the surrounding tissue, or spread 

(metastasize) to other organs. Radiation therapy involves the delivery of a precisely 

controlled and monitored dose of radiation to a well-defined volume of tumor bearing 

tissue within a patient suffering from cancer. The radiation dose can be delivered by 

the use of radioactive implants, placed in the tumor region for a prescribed period of 

time, or by directing a beam of ionizing radiation, from an external source through 

the patient’s skin towards the tumor region. The ionizing radiation deposits energy 

that destroys or injures cells in the area being treated, making it impossible for these 

cells to grow. 
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A key objective in radiation therapy is to uniformly irradiate the tumor, while 

minimizing the non-useful and potentially harmful radiation dose to other parts of the 

patient’s body. The extent to which this can be accomplished depends on the 

location of the tumor and the characteristics of the radiation sources available. 

Tumors to be treated by radiation therapy may lie on the surface or at depths 

ranging from 1cm to about 15cm below the skin and their treatment may be 

complicated by the presence of radiosensitive organs such as eyes or spinal cord.  

Modern methods of radiation treatment in oncology enable the precise destruction of 

tumor tissue and minimize side effects on the surrounding tissue by irradiating rays 

from different angles that intersect in the tumor area. An important consideration in 

the process of radiation therapy is the accuracy with which tumors can be localized 

and distinguished from the surrounding normal tissue. 

The radiation treatment planning procedure that is performed prior to each treatment 

thus plays an important role in delivering high doses to the tumor while preventing 

the damage of critical normal structures, by defining the tumor volume with clinical 

examinations, operative findings, and from imaging studies such as computerized 

tomography (CT), magnetic resonance imaging (MRI), radiography with and without 

contrast media or other radiological examinations. Factors such as patient 

positioning, localization of tumor and vital organs, beam arrangement, appropriate 

dose, shielding and instructions for proper implementation of the treatment 

procedure should be taken into consideration for a good radiation therapy treatment 

plan. 
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1.2 Treatment planning for External Beam Radiotherapy 

The process of external beam therapy planning can be divided into two stages: 

 Simulation  

 Treatment Planning  

During simulation, the patient is placed in the treatment position on a special x-ray 

machine or CT scanner by the radiation therapist and simulation x-rays are taken. 

Masks, pads, or other devices may be used to help the patient to hold still during the 

simulation and treatment processes. The radiation oncologist then locates the tumor 

volume and the region to be treated on these images. The best arrangement of 

radiation beams needed to treat the patient are determined by the dosimetrist and 

the radiation oncologist, and then small marks are made on the patient by the 

radiation therapist to help guide the daily treatments. 

For treatment planning, special computers and appropriate software are used to 

calculate the radiation dose that will be delivered to the patient's tumor and the 

surrounding normal tissue. The duration of time for which the treatment beam must 

be left on to deliver the prescribed dose is calculated. 

Virtual simulation effectively integrates both simulation and treatment planning. It is a 

computer-aided design procedure in which 3D CT data information of a patient is 

used to build a computer-based graphical model of the patient for viewing tumor 

sites from different viewpoints, design the shape and angle of entry of irradiation 
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beams, and calculate dose distribution without the presence of the patient. After 

simulation and treatment planning have been completed, the treatment itself can 

begin. 

1.3 Segmentation in Treatment Planning 

In almost all radiation therapy centers in the US, radiation physicists and 

dosimetrists use computer models to plan the treatment. This computerized 

treatment planning allows the treatment to be delivered more accurately. Images of 

the patient are acquired before treatment from a CT or MRI scanner. The first step in 

the treatment planning process is the identification and contouring or segmentation 

of all targets and normal structures on each CT/MRI slice. 

The process of segmentation can be defined as splitting an image into segments  

that hold some property distinct from their neighbor. It is the basic requirement for 

the identification and classification of structures in an image. Segmentation is a 

process of extraction of information from an image in such a way that the output 

image contains much less information than the original one, but the little information 

that it contains is much more relevant to the purpose of the task.  Such a 

classification can be approached from two points of view; by identifying the edges 

that run through an image or by identifying regions within an image. 

 

Segmentation of medical image data is one of the most difficult tasks in image 

processing, and on this point the human visual system is still considered superior to 
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the computer. The procedure in clinical settings is performed using techniques 

similar to drawing programs. Typical planning systems depict both tumors and 

sensitive normal tissues in 3-dimensional space for every patient. Manual 

segmentation is quite tedious, though still the fundamental means of planning in 

most radiation treatment cases. However, manual outlining also has its limitations. 

The segmentation result is dependent on the operator’s experience and may also 

change for every trial by the same operator. It is also often difficult to identify 

structures on a two-dimensional CT image, especially when the normal anatomy has 

been altered by the presence of an infiltrating tumor. Objects of interest in the 

human body are non-rigid structures which change continuously day-to-day.  The 

complexity is increased when one considers alternate planes of orientation, i.e., 

coronal or sagittal.  

 

Application of automatic segmentation techniques to medical images for radiation 

treatment planning can save time and reduce inter and intra-operator variability. The 

present automatic segmentation methodology investigated in this study is based on 

the intensity variation perpendicular to the boundary of a given structure to be 

segmented, the kidney in this particular study. The idea is to apply an intensity 

template based on statistics generated on a population of images which would 

stabilize the method and provide good agreement with human performance. 



 

   

CHAPTER 2 - Background 
 

The first part of this chapter briefly discusses a particular class of medial models, 

called m-reps, as an effective means of representation and segmentation of 

anatomical objects. The second part focuses on the challenges in the segmentation 

of kidneys in CT images. 

 
 
2.1 Shape representation via M-reps 

The automated approach used in the present study is based on representing 

anatomical structures in 3D using the concept of medial models [Blum 1962, 1967, 

1973], known as “M-reps” [Pizer 1999 and Joshi 2001]. M-reps are medially based 

solid models that are particularly effective in representing anatomic objects in 3D 

and capturing geometric information in deformable model based segmentation 

approaches. 

 

By definition, a medial axis is a locus of the centers of spheres that are bitangent to 

the boundary of the object being represented (Fig.2.1). The center point of each 

such sphere is a point on the medial surface, and the radius of each sphere defines 

the radius function at that point on the medial surface. While the medial axis is a 

curve for objects in 2D, it is represented by a sheet for objects in 3D. Thus, the 
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surface of an object in 3D can be recreated given all the points on the medial locus 

and the associated radius. This is the basic idea behind shape representation using 

medial models. 

 

 

 (a)   (b)   (c)   (d) 

Fig.2.1. A 2D figure represented by (a) boundary (b) bitangent circles in the figure  

(c) medial axis (d) protrusion represented by a branch in the medial axis 

 

 

The present study focuses on the use of single-figure m-rep models for 

segmentation, i.e., the simplest m-rep consisting of a single figure with a non-

branching medial locus. An m-rep model consists of a grid of medial ‘atoms’, each of 

which is made of a hub and a pair of spokes. While the hub is the center of the 

relevant bitangent sphere inside the object, the spokes are the radii to the points of 

tangency (Fig.2.2). 

 

Each medial atom of an m-rep contains information regarding the coordinates of the 

medial sheet at a sample point x, the distance from x to the object boundary or  
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(a)    (b) 

Fig.2.2. (a) Figure illustrating a Medial atom (b) Boundary implied by an end atom. (See 

Pizer et al, IJCV 2001 for complete discussion) 

 

radius r, the two vectors of length r, representing the spokes which point to the 

points of tangency of the inscribed sphere, the angle Θ formed between each of the 

spokes and the angular bisector vector b, and a frame F = (n,b,b┴) that defines the 

tangent plane of the medial sheet at x. Another parameter η, elongation, is defined 

by atoms which lie on the outer edges of a mesh and specifies the curvature of the 

object about that point (Fig.2.2). 

 

M-rep models are represented by an object based coordinate system defined by 

(u,v,t,τ) (Fig.2.3), where u and v represent the row and column corresponding to the 

position of the medial atom, t ∈ [-1,1] indicates which side of the locus the point lies 

on, i.e., t = -1 or +1 for internal medial points and runs continuously around the crest 

region from –1 through 0 at the boundary through +1, and τ measures the distance 

along the spokes from the boundary with τ > 0 outside the boundary, τ < 0 inside the 

boundary and τ = -1 at the medial locus. This object-intrinsic coordinate system 
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provides spatial and orientational correspondence between an m-rep in two different 

states of deformation.  

     

Fig.2.3. M-rep coordinate system represented by (u,v,t,τ). The figures illustrate the variation 

of these coordinates along the medial axis. 

 

The medial locus is sparsely sampled to produce an approximate surface of the m-

rep or the ‘implied boundary’ (Fig.2.4). The real surface lies somewhere within a 

collar region, discussed in Section 2.2. 

   

(a)                                  (b)                      (c) 

Fig.2.4. (a) Example of a mesh of medial atoms for a kidney (b) Wire frame surface 

rendering of the boundary implied by the medial mesh (c) 3D surface rendering of the 

boundary implied by the medial mesh. 
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2.2 Segmentation using M-reps 

One of the main advantages of m-reps is that they allow classification of object 

deformations into along-object deviations, namely elongations and bendings, and 

across-object deviations, namely bulgings and attachment of protrusions or 

indentations (multifigure m-reps). An additional advantage is that distances can be 

expressed as a fraction of medial width. These properties allow positions and 

orientations to be followed through deformations of elongation, widening, or bending 

[Pizer et al, IJCV 2001]. 

 

Overview  

The m-rep segmentation process can be briefly described as follows: 

 

The method operates from large to small-scale levels, at each level deforming the 

m-rep model by optimizing in a Bayesian framework, an objective function over a set 

of geometric transformations available at that scale level. The objective function is 

the sum of two terms, namely, a term that measures the geometric typicality of the 

deformed m-rep (comparison of corresponding points in an m-rep before and after 

deformation) and the geometry to image match term (comparison of intensities at 

corresponding positions). 
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M-rep segmentation begins with interactive initialization to position the kidney model 

near the target kidney in the image data. Fully automatic segmentation proceeds 

through several stages at successively smaller levels of scale: 

 

1) Transformation of the whole kidney model based on both the similarity transform 

and Principal Geodesic Analysis or PGA that optimize the objective function 

based on the model and the image data; this involves translation, rotation, 

scaling of the entire model according to the similarity transform and shape 

variation based on the Principal Eigen modes of a mean model. 

2) Deformation of each medial atom in the model, in turn and recursively until 

convergence of the objective function is achieved. This involves translation, 

rotation and scaling of each individual atom of the medial mesh. 

3) Fine-scale surface refinement, i.e., each surface tile of the implied surface is 

shifted along its normal to optimize the objective function. This scale was not 

used in the present study. 

 

The transform that is performed on the m-rep model in the first step is based on the 

fact that medial descriptions are elements of a Lie group and uses Principal 

Geodesic Analysis or PGA to define the shape variability of the object. PGA is a 

statistical means of describing shape variability similar to Principal Component 

Analysis or PCA in Euclidian vector space [Styner 2001]. PCA is only applicable 

when model parameters are elements of a Euclidian space and medial parameters 

are not naturally elements of a Euclidian space. But they have been shown to be 
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elements of a Lie group [Fletcher et al 2003] and so the variations in shape can be 

statistically defined by the principal components of a geodesic mean (Fig.2.5) 

generated from a population of medial models. 

 

          (a)          (b) 

Fig.2.5. (a) The mean kidney model (b) The first three principal modes of deformation of the 

kidney m-rep. Each row displays the models corresponding to  

 , along the ith  principal component. 
 

Deformation of individual atoms in the next step, involves establishing a geometric 

correspondence between the deformed model and the initial model by measuring 

the displacement of each individual medial atom from its initial position in the m-rep 

as well as its relationship to the image data and its’ neighboring atoms. The 

neighborhood of a medial atom is made up of its immediately adjacent atoms. 
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An atom of an m-rep after deformation, identified by its figural coordinates illustrated 

in Fig.2.3, can be compared to the corresponding atom before deformation and the 

magnitude of the r-proportional distance between these points can be used to 

measure the local deformation (Fig.2.6). Calculating geometric typicality is done in 

terms of relating an atom’s coordinates predicted by the stage immediately previous 

to the current deformation stage, and by its neighbors at the current stage which 

enforces a local shape consistency with the model.  

 

 

 

 

 

 

      

          (a)    (b) 

Fig.2.6. 3D medial mesh of a kidney m-rep. (a) Initial model (b) Deformed model with  

change in position shown by the highlighted atom. 

 

 

The match between geometry and the image is based on a model template. A 

‘template’ defines a target pattern at different locations in an image and gives 

maximum response when the intensity values of the pixels in the image correlate to 

the values at the same locations specified by the template. In the m-rep 

segmentation approach, it can be considered as a filter indicative of the presence of 
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a boundary of an object. This template is determined by training the model on a data 

set with known truth, which is taken to be user-approved segmentations. The 

template is defined only in a mask region defined by the set of figural coordinates 

discussed in Section 2.1. The width of the mask is choosable as a collar 

symmetrically placed about the boundary (Fig.2.7), with a width that is proportional 

to the object width at every point on the boundary. It is chosen by subdividing the 

boundary positions with a fixed mesh of m-rep figural coordinates (u,v) (Fig.2.3) and 

then choosing spatial positions to be spaced along each medial spoke (implied 

boundary normal) at that (u,v). These along-spoke positions are equally spaced in 

the figural distance coordinate up to a plus or minus a fixed cutoff value.  

 

Fig.2.7. The collar region for a kidney m-rep forming the mask for measuring geometry to 

image match in 2D 

 

 

For the present study, this cutoff value was 0.3, i.e., from -0.3r to 0.3r with 0 at the 

boundary. This corresponds to a boundary-centered Gaussian in the collar region, 
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 with a standard deviation half the width of the collar, i.e., σ = 0.15 for the present 

study. 

 

 

2.3 Kidney Segmentation  

Automatic extraction of kidneys from CT images is very challenging under typical 

conditions for treatment planning even with excellent image quality and initialization 

parameters. The crowded soft tissue environment that surrounds the kidney makes it 

hard to distinguish it from structures such as the adrenal gland, since the organs 

have similar consistency and are often pushed against each other. Most soft tissue 

also does not contrast strongly against its background. 

 

This particular study focuses on the kidney primarily because the kidney is an organ 

which is at high risk due to radiation exposure during treatment of abdominal and 

pelvic tumors. For this reason, the kidney is one of the primary organs that is 

segmented during radiation treatment planning to ensure that it does not receive an 

unacceptably high dose of radiation. 

 

Another reason for choosing the kidney as the organ of interest for this study is that 

the kidney is a fairly simple organ, which has a well-defined shape in most cases. 

The automatic segmentation methodology, which uses m-reps for shape 
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representation, is in the developmental stage and the kidney is an excellent example 

to study initially since it can be represented by a single figure object. It is located in a 

fairly distinguishable position in the body and is also identifiable by surrounding 

structures such as the liver, spleen and spinal cord.  

 

The present study addresses the fact that different parts of the kidney boundary 

have different types of surrounding structure and thus a single intensity description 

of the whole boundary is insufficient to achieve a good segmentation. For example, 

right kidneys have completely different intensity variations along the boundary 

adjacent to the liver (Fig.2.8). The goal of the study is to investigate a method for 

characterizing intensity variations at points on the surface of the kidney by three 

canonical profiles that are discussed in detail in Chapter 3. 
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   (a)         (b) 

 

   (c)         (d) 

Fig.2.8. A particular region along the boundary of the right kidney in two images. 

 

(a) Axial view- region where kidney is adjacent to the liver and liver appears brighter 

(b) Axial view- similar region, but kidney and liver have same intensity values 

(c) Coronal view- same region as (a) above, where the liver appears brighter 

(d) Coronal view- same region as (b) above 



 

   

CHAPTER 3 – Materials and Methods 
 
The first part of this chapter provides information about the CT images that were 

collected for this study based on a set of selection criteria for training and target 

purposes. Training involved generation of a medial model from a population of 

kidneys as defined by CT images and a corresponding locally varying intensity 

template. The next section focuses on the implementation of the method on the 

target image set using the locally varying intensity template. 

 

3.1 Template Match 

The image match for segmentation with m-reps in previous studies, was measured 

using the directional derivatives of a Gaussian defined in the entire collar region as 

described in Chapter 2 (Section 2.2). This made use of a single profile at each point 

on the surface of the m-rep (profiles are elaborated in Section 3.3 of this chapter). 

The locally varying intensity template used in the present study can be defined as an 

intensity template which is a function of figural positions along the boundary of an m-

rep, obtained from a set of training images that can be used for correlation in the 

target image to produce a geometry to image match measurement. 
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3.2 Training and Target Images 

The study required a set of training images to create the kidney m-rep and a set of 

target images to evaluate m-rep segmentation. The kidney m-rep was created by 

analyzing a population of training kidneys starting from their boundaries. The training 

set was also used to obtain intensity profiles that in turn were used to generate the 

template for the kidney m-rep. The target images were a set of 12 images (24 

kidneys in all), on which the study was conducted. Most of the images had a raster 

resolution (number of pixels per slice) of 512 X 512. The pixel size ranged from 

0.098mm X 0.098mm to 0.156 X 0.156 for the images. 

 

All the images used for this study were CT images obtained from the Department of 

Radiation Oncology, University of North Carolina at Chapel Hill. The scans were 

collected using a Siemens Somatom Plus 4 CT scanner. A database of over 700 

images was screened to select training images suitable for this study. The data 

included scans of various sections of the body, from head and brain structures, 

lungs to the pelvis and feet. Not all the images that kidneys present could be used 

for the study. Each of the images had to pass certain criteria for final selection. The 

images had to be carefully chosen since they constituted the training set of kidney 

data which had to encompass both the complete kidney geometry as well as 

surrounding intensity information for both kidneys. 

 

Table 3.1 on the following pages summarizes the criteria involved in the selection of 

training images. 
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Table.3.1. Criteria for selection of training CT images. 

 

Criteria 

 

Comments 

 

 

1. Presence of whole kidney(s). 

 

 

 

 

The CT scans had to completely include either or 

both kidneys. Diseased or abnormal kidneys 

were rejected. 

 

2. Position of patient during scan 

(Fig. 3.1). 

 

 

 

 

 

 

 

 

Images obtained for the purpose of radiation 

treatment usually involve the patient lying 

supine, i.e., on his/her back with head towards 

the gantry and feet away from it, unless 

otherwise necessary. Since the training method 

used a statistically generated intensity template 

for the kidney, the position of the kidney with 

respect to surrounding organs had to be 

consistent in the images. 

 

3. Absence of contrast agent. 

 

 

 

 

Presence of a contrast agent or ‘dye’ in a patient 

alters intensity values in an image, by enhancing 

contrast (Fig.3.2). 

 

4. Absence of tumor, disease or 

kidney stones. 

 

 

 

Tumors, disease and kidney stones also alter 

intensity values in an image (e.g., stones in the 

kidney are deposits of calcium which have a 

different intensity when imaged as compared to a 

healthy kidney). 
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Table.3.1. Criteria for selection of training CT images 

 

5. No more than moderate motion 

artifacts. 

 

Motion artifacts in CT images (Fig.3.3) are 

produced if the object is not static, e.g., due to 

respiration or cardiac pulsation. 

 

 

6. Margin of at least 2cm on the 

superior and inferior edges of the 

kidney. 

 

To provide sufficient surrounding intensity 

information for training and segmentation. 

 

 

 

7. Slice thickness less than or equal 

to 5mm per slice. 

 

Thinner slices provide better spatial resolution and 

structural detail. 
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Fig.3.1.1. Patient in prone position        Fig.3.1.2. Patient in supine position 

Notice the variation in the position and hence the variation in intensities of the kidney 

relative to surrounding structures between the two images 

 

 

Fig.3.2. CT image with contrast. Notice that the intensity of the kidney is brighter as 

compared to the surrounding structures. 
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Fig.3.3. CT image of the kidneys with strong motion artifacts due to breathing. ROI is 

indicated. 

 

 

Method 

3.3 Generation of a Locally Varying Kidney Template 

The process of generating the intensity profiles for the kidney to statistically produce 

a single ‘template’ involved the following steps: 

 

1. Hand segmentation of kidneys from the training set (Fig.3.4). 

2. Conversion of the contours into a blurred binary image (Fig.3.5). 

3. Deformation of an m-rep model into the blurred binary images produced in step 2 

(Fig.3.6), to produce a mean model with principal geometric modes of variation 

via PGA. 
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4. Generation of intensity profiles at many points on the surface of the segmented 

kidneys (Fig.3.9 and Fig.3.10) by correspondence with the respective training 

gray-scale images. 

5. Classification of each of the intensity profiles from step 4 into one of three 

categories, based on the best match among three analytic filter types (Fig.3.11). 

The final step in the study was the segmentation of kidneys in the target images 

using the locally varying intensity template to compute image match (Fig.3.15 

through Fig.3.20). 

 

Manual segmentation of the training images was performed using software similar to 

drawing tools for painting and tracing. The contours were traced on each ‘axial’ or 

cross-sectional slice using the mouse and cursor. Intensity windowing was carried 

out to enhance the contrast of the displayed image during segmentation. 

 

Fig.3.4. Cross-section (Axial) slice-by-slice contours  

(Software: Anastruct_editor - part
of the PLanUNC suite of
RadioTherapy Tools, developed at
UNC Radiation Oncology since
1986 by George Sherouse, Edward
Chaney, Tim Cullip, Gregg
Tracton, Julian Rosenman and
others.) 
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The output of the hand segmentations was a series of cross-sectional contours 

which represented the kidney for each individual training image. These ‘contour 

stacks’ were used to generate binary images, i.e., images that have only two 

intensity values (0 for black and 1 for white). A Gaussian smoothing operator was 

applied to these images to produce smooth edges (Fig.3.5). The standard deviation 

of the Gaussian operator varied for each image and was the equivalent of one cubic 

voxel of each image (approximately 1mm - cubic voxel sizes in the training images 

ranged from 0.98mm to 1.5mm). 

 

 

       (a)         (b) 

Fig.3.5. (a) Binary image of the kidney created from a stack of manual contours  

(b) Smoothed image created by applying a Gaussian operator to (a) 

 

The m-rep kidney model used in the study was generated using the population of the 

hand segmented training kidneys, by defining shape variability using Principal 

Geodesic Analysis (PGA) described in Chapter 2.  A single figure medial mesh of 15 

atoms (3 columns and 5 rows) was fit into each of the training binary images 

(Fig.3.6) via the automatic segmentation method described in Chapter 2, to generate 

an m-rep segmentation for each kidney in the training data set [Dam 2003]. The fit of 

the m-rep model to the training binary images was achieved using the Gaussian 
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derivative template for the image match since the boundary of the kidney in these 

images could clearly be defined by the Gaussian derivative. The mean model and 

the principal modes of variation corresponding to that mean were calculated from 

this population of kidney m-reps [Fletcher 2003]. The initial m-rep model was 

replaced by this mean and the process of fitting the kidney m-rep into the training 

binary images was iterated until the mean converged to an m-rep model that did not 

vary much from the previous iteration. This mean kidney m-rep was used for further 

training to generate the locally varying intensity template. 

 

           

(a) (b) 

Fig.3.6. (a) M-rep model of a kidney in 3D fit into a training binary image – the boundary is 

represented by a wire frame (b) Boundary represented by a solid surface 

 

 

For generating the intensity template for this study, three analytic filters were 

considered (Fig.3.7), light-to-dark (higher intensities in the kidney as compared to 

surrounding structures), dark-to-light (lower intensities in the kidney as compared to 
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Points along the normal 

surrounding structures) and a ‘notch’ (similar intensities in the kidney as well as 

surrounding structures with a narrow dark region in between). 

 

 
 

Fig.3.7.Initial Analytic Filters 

 

               

(a) Image region corresponding to the light-to-dark filter (ROI is marked) 

Notch 

Light-to-dark 

Dark-to-light 
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(b) Image region corresponding to the dark-to-light filter (ROI is marked) 

 

 

(c) Image region corresponding to the notch filter (ROI is marked) 

Fig.3.8.Images corresponding to the three filters above. The regions of interest are indicated. 
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The end points of the spokes of the outer atoms in the medial lattice of an m-rep are 

linked together to form a quadrangular mesh surface. This surface is subdivided by 

applying a variant of subdivision surface methods [Catmull 1978] described by [Thall 

2002], which provided a natural framework for defining the boundary at 2562 

(Fig.3.9) points on the surface of the m-rep. At each point, a normal of length 0.6r (r 

being the length of the spoke of a medial atom, and the normal going from –0.3r 

inside the m-rep to 0 at the boundary and 0.3r outside, defined by the collar region 

described in Chapter 2) was generated.  

 
(a) (b)   (c) 

Fig.3.9. Surface of the kidney m-rep formed by (a) linking the ends of the spokes of edge 

atoms (b) subdividing the quad mesh in (a) by interpolation (c) 3D rendering of the kidney 

m-rep defined by 2562 points on the surface  

 

 

Each normal was sampled at 11 different points (Fig.3.10) to generate an intensity 

profile at each of the 2562 points along the surface of the m-rep. The sampling rate 

was chosen as 11 based on the resolution of the training images, to be able to 

capture sufficient intensity information since the collar region (0.6r) was 

approximately 11 pixels in width for these images.  
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Fig.3.10. Normals drawn at points on the surface of the m-rep sampled at 11 points with the 

6th sample being the point on the surface of the m-rep 

 

The mean m-rep kidney model was used to segment each of the blurred binary 

images from the training data set and the normals at the 2562 points on the surface 

of each training m-rep were similarly sampled. The intensity values corresponding to 

each of these points along the normals were obtained from the corresponding points 

in the training gray-scale images. These intensities defined the profiles at all the 

2562 points on the surface of the m-rep. 

 

The above process resulted in a large number of intensity profiles (2562 times the 

number of training cases for each kidney). To determine the intensity template, the 

three analytic filters shown in Fig.3.7, were applied to the profiles collected at each 

point. The responses were computed by taking the dot product of the profiles with 

each of the filters. In other words, if X is considered as the vector defining a profile at 

a particular boundary point and Y is the vector defining one of the analytic filters 

then, 
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is defined as the response at that particular point to the filter. The highest response 

among the three filters for each point determined the filter type classification for that 

point (Fig.3.11).  

 
   (a)       (b) 

 
(c) 

Fig.3.11. Example illustrating the response of a profile drawn at the same point on the 

surface of an m-rep for all 52 right kidneys. (a) Intensities at 11 different points along the 

40.66

16.82 

-34.74 

Notch 

Light-to-dark

Dark-to-light

52 profiles 
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normal at a particular point across 52 training right kidney m-reps (b) Initial Analytic Filters 

(c) Responses of each of the profiles for all 52 cases obtained by taking the dot product of the 

profile with each of the three filters. The sum of all the responses for each filter is indicated 

on the right of the plot. For this particular point, the sum of responses for the light-to-dark 

filter, 40.66, was the highest. 

 

 

Each profile collected from the training images was placed in a bin corresponding to 

the analytic filter giving the best response to the dot product. The means of the 

profiles in each bin were calculated and the three initial analytic filters were replaced 

by these mean filters. The entire procedure was repeated until the mean profiles 

converged to a stable shape (Fig.3.12). These converged filters were used for the 

final intensity templates. 

 

 

Fig.3.12. Converged Mean Filters 

 

To determine which filter to assign to each of the boundary points, the responses 

(Fig.3.11) to each of the three converged mean filters for all 2562 points over all the 
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training cases were calculated in same procedure as stated before. These 

responses were then summed and the filter which had the highest value over all the 

cases was decided as the filter to be used at that particular point along the surface 

of the m-rep (Fig.3.11). The same procedure was repeated for all the remaining 

points for both the left and right kidneys which resulted in the filter distributions 

shown in Fig.3.13 and Fig.3.14.  

 

 

 

Fig.3.13. Distribution of the three mean filters over the surface on both sides of the Right 

Kidney 
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Fig.3.14. Distribution of the three mean filters over the surface on both sides of the Left 

Kidney 

 

 

3.4 Segmentation of Target Images 

The intensity template generated as described in Section 3.3 was used to segment 

kidneys in target CT images (Fig.3.21 and 3.22) via the m-rep deformation method 

described in Chapter 2. 

 

The following figures illustrate typical segmentations for six cases from the target 

image data set. The initial hand placements (black contours) and final 

segmentations (white contours) are shown. 

 

Notch 

Light-to-dark 

Dark-to-light 
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    (a)       (b) 

Fig.3.15. Case 646R, Right Kidney - Initial Hand Placement (black contour), Final 

Segmentation (white contour) - (a) Axial View (b) Coronal View.  

 

 

(a) (b) 

Fig.3.16. Case639L, Left Kidney - Initial Hand Placement (black contour), Final 

Segmentation (white contour) - (a) Axial Slice (b) Coronal Slice 
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(a) (b) 

Fig.3.17. Case 648L, Left Kidney - Initial Hand Placement (black contour), Final 

Segmentation (white contour) - (a) Axial Slice (b) Coronal Slice 

 

 

(a) (b) 

Fig.3.18. Case 633R, Right Kidney - Initial Hand Placement (black contour), Final 

Segmentation (white contour) -  (a) Axial Slice (b) Coronal Slice 
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(a) (b) 

Fig.3.19. Case 646L, Left Kidney - Initial Hand Placement (black contour), Final 

Segmentation (white contour) - (a) Axial Slice (b) Coronal Slice 

 

 

   (a)      (b) 

Fig.3.20. Case 648R, Right Kidney - Initial Hand Placement (black contour), Final 

Segmentation (white contour) -  (a) Axial Slice (b) Coronal Slice 
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Fig.3.21. Segmentation, step-by-step: Initial Hand Placement (black contour), Final 

Segmentation (white contour)- all rows, from left to right, results on Coronal, Sagittal and 

Axial CT slices. The overlaid contours compare progress through two consecutive stages of 

deformation. Top row: The two stages are the initial position of the kidney model vs. the 

figural similarity transform and transform via PGA. Middle: Similarity transform + PGA vs. 

medial atom transformations. Bottom: medial atom transformations vs. 3D boundary 

displacements (This step was not used in the study).           (Courtesy Pizer et al 2002) 
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       Fig.3.22. M-rep fit to a kidney in a CT image shown in axial planes. 

 

 

3.5 Evaluation  

The results obtained from the automatic segmentation method were compared to 

manual segmentation done by two different experts. The comparison between 

human and automatic segmentation was done using a software package, Valmet 

[Gerig 2001, Stough 2002], which involves voxel-based comparison using the 

following parameters: 
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(1) Volume overlap  

An accepted measure of volume overlap is the intersection of the two volumes 

divided by their union. A score of 1 implies perfect agreement while 0 is complete 

disagreement. For the manual binary segmentations, a surface was computed using 

Marching Cubes [Lorensen and Cline 1987], with sub-voxel accuracy.  

 

(2) Maximum surface distance or Hausdorff distance 

This metric defines the largest distance between two surfaces. Given two contours 

A and B, for each point a on A, the minimal distance to all the points on contour B is 

calculated and the maximum of these distances is the ‘worst case’. The Hausdorff 

metric is not symmetric since the closest distances from the first object  

to the second (a) in Fig 3.16, are not the same as those from the second to the first 

(b) in Fig.3.16. This is accounted for by finally calculating,  

Hauss_Dist (A,B) = max { dist (A,B), dist(B,A)} 

 

 

 

 

 

Fig. 3.23. The closest distance (a) from the first curve to the second is not the same as the 

closest distance (b) from the second curve to the first. 

 

 

 

Curve1 

Curve 2 b 

a 
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(3) Mean surface distance 

The mean absolute surface distance describes how much on average the two 

surfaces differ. Point to point correspondence on the surfaces is required for this 

measure. The mean surface separation for a given kidney is defined in terms of 

closest points, i.e.,  

 
  

where N1 and N2 are the respective numbers of boundary voxels in the two kidneys 

being compared, and  and   are the coordinates of the boundary voxel centers 

of the respective kidneys. This calculation is also not symmetric. A common average 

is therefore derived by combining the two averages. 



 

   

CHAPTER 4- Results 
 

This chapter summarizes the analysis of data generated using the locally varying 

intensity template for automatic segmentation. M-rep segmented kidneys were 

compared to manual segmentations performed by two human raters (A and B), 

using the metrics discussed in Chapter 3. The results of this comparison were 

weighed against an earlier study that used m-reps with a Gaussian derivative 

template based image match [Pizer et all 2002]. 

 

Manual segmentation by A and B was performed slice-by-slice using the program, 

MASK [Tracton 1994]. For the 12 target images, within-slice pixel size was 

approximately 1 mm, and slice thickness varied image to image between 3mm and 8 

mm. Metrics in the following tables are given for 12 kidney pairs (12 right kidneys 

and corresponding left kidneys). 

 

The results in Table 4.1 were obtained from an earlier study in which segmentation 

was performed using the Gaussian derivative based image match [Pizer et all 2002]. 

Metrics for m-reps segmentation compared to manual segmentation for the 24 

kidneys are presented. Distances are in cm and volumes in cubic cm. Human raters 
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are A and B. C is the computer. The best and worst overlap cases are shaded gray. 

Mean and Standard Deviation values for each metric are also listed. 

 

The results in Table 4.2 were obtained from segmentations performed using the 

locally varying intensity template generated from this study for image match. Metrics 

for m-reps segmentation compared to manual segmentation for the 24 kidneys are 

presented. Distances are in cm and volumes in cubic cm. Human raters are A and B. 

C is the computer. The best and worst overlap cases are shaded gray. Mean and 

Standard Deviation values for each metric are also listed. 

 

Table 4.3 is a comparison between the volume overlaps obtained using the 

Gaussian derivative based template and the locally varying template for image 

match. The entries are volume overlap values expressed in percentage points. 

Negative values indicate that the volume overlap was greater for the Gaussian 

derivative based image match. The greatest and least differences are highlighted in 

gray for each rater. 

 

 

 

 

 

 

 



 44  
 
 

Table.4.1. Results for Gaussian Derivative Template based Segmentations 

Kidney  
code 

Average 
surface 
distance 
(A to C) 

Average 
surface 
distance 
(B to C) 

Hausdorff 
distance  
(A to C) 

Hausdorff 
distance  
(B to C) 

Volume  
Overlap  
(A to C) 

Volume  
Overlap 
(B to C) 

630L 0.200 0.206 1.497 1.511 0.722 0.730 

630R 0.249 0.221 0.829 1.059 0.723 0.733 

633L 0.121 0.167 0.855 1.345 0.862 0.817 

633R 0.157 0.210 1.050 1.233 0.830 0.790 

634L 0.226 0.241 1.808 1.751 0.791 0.781 

634R 0.258 0.221 1.706 1.657 0.735 0.779 

635L 0.117 0.145 0.592 0.514 0.875 0.850 

635R 0.156 0.200 0.852 1.130 0.837 0.802 

636L 0.128 0.104 1.516 0.537 0.847 0.885 

636R 0.148 0.154 1.249 1.168 0.835 0.837 

637L 0.148 0.110 1.317 0.494 0.791 0.868 

637R 0.168 0.162 0.799 0.787 0.805 0.810 

638L 0.116 0.137 1.269 0.972 0.865 0.848 

638R 0.305 0.327 1.685 1.678 0.756 0.744 

639L 0.159 0.136 2.198 1.617 0.856 0.882 

639R 0.089 0.077 1.234 0.897 0.917 0.919 

640L 0.095 0.103 1.340 0.743 0.893 0.871 

640R 0.123 0.155 1.456 1.203 0.872 0.853 

642L 0.167 0.285 1.463 1.688 0.785 0.702 

642R 0.145 0.200 0.689 0.785 0.829 0.795 

646L 0.091 0.106 0.814 0.530 0.899 0.893 

646R 0.126 0.157 1.248 1.329 0.857 0.840 

648L 0.116 0.165 1.298 1.434 0.880 0.836 

648R 0.129 0.190 1.335 0.973 0.835 0.794 

Mean 0.155 0.174 1.254 1.126 0.829 0.819 

SD 0.055 0.059 0.391 0.408 0.055 0.056 
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Table.4.2. Results for Locally Varying Template based Segmentations 

Kidney  
code 

Average 
surface 

Distance 
(A to C) 

Average 
surface 
distance  
(B to C) 

Hausdorff 
distance 
(A to C) 

Hausdorff 
Distance 
(B to C) 

Volume 
Overlap 
(A to C) 

Volume 
Overlap 
(B to C) 

630L 0.157 0.168 0.320 0.250 0.792 0.790 

630R 0.213 0.178 0.490 0.310 0.753 0.768 

633L 0.138 0.164 0.640 0.610 0.869 0.848 

633R 0.132 0.144 0.650 0.40 0.878 0.868 

634L 0.140 0.162 0.710 0.50 0.863 0.842 

634R 0.245 0.260 0.550 0.370 0.662 0.681 

635L 0.125 0.140 0.470 0.530 0.871 0.865 

635R 0.146 0.178 0.530 0.550 0.850 0.836 

636L 0.104 0.119 0.480 0.440 0.889 0.878 

636R 0.148 0.138 0.610 0.480 0.849 0.864 

637L 0.162 0.165 1.160 0.560 0.799 0.833 

637R 0.156 0.160 0.590 0.550 0.842 0.840 

638L 0.156 0.141 0.940 0.80 0.836 0.859 

638R 0.127 0.114 0.870 0.690 0.849 0.871 

639L 0.241 0.174 1.090 0.80 0.787 0.852 

639R 0.228 0.160 0.880 0.780 0.816 0.869 

640L 0.212 0.177 1.650 1.360 0.802 0.834 

640R 0.182 0.137 0.690 0.510 0.847 0.884 

642L 0.118 0.214 0.750 0.360 0.858 0.782 

642R 0.157 0.232 0.540 0.620 0.827 0.772 

646L 0.185 0.149 1.190 0.80 0.805 0.854 

646R 0.194 0.111 0.80 0.410 0.797 0.857 

648L 0.140 0.156 0.910 0.390 0.870 0.861 

648R 0.187 0.146 0.70 0.410 0.825 0.863 

Mean 0.166 0.162 0.758 0.561 0.826 0.836 

SD 0.039 0.034 0.294 0.232 0.048 0.046 
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Table.4.3. Difference in Volume Overlap Values 

Kidney 
Code 

Difference in  
Volume Overlap 

(A to C) 

Difference in  
Volume Overlap 

(B to C) 

630L 0.069 0.059 

630R 0.030 0.035 

633L 0.006 0.031 

633R 0.047 0.077 

634L 0.071 0.061 

634R -0.074 -0.098 

635L -0.004 0.014 

635R 0.012 0.033 

636L 0.041 -0.008 

636R 0.013 0.027 

637L 0.007 -0.035 

637R 0.037 0.029 

638L -0.029 0.010 

638R 0.093 0.126 

639L -0.070 -0.031 

639R -0.101 -0.051 

640L -0.091 -0.038 

640R -0.026 0.030 

642L 0.073 0.080 

642R -0.002 -0.023 

646L -0.095 -0.039 

646R -0.060 0.017 

648L -0.010 0.024 

648R -0.010 0.068 

Mean -0.003 0.0165 

SD 0.056 0.050 
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Distribution of the Average surface distances for the 24 kidneys for rater A Vs  

m-rep for both Gaussian derivative as well as the template based segmentation. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Case

A
ve

ra
ge

 s
ur

fa
ce

 d
is

ta
nc

e

Gaussian Derivative

Locally varying template
 

Fig.4.1. Average surface distance distribution for A Vs C 

 

Distribution of the Average surface distances for the 24 kidneys for rater B Vs  

m-rep for both Gaussian derivative as well as the template based segmentation. 
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Fig.4.2. Average surface distance distribution for B Vs C 
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The results from Tables 4.1, 4.2, 4.3 and Figures.4.1 and 4.2, show that out of the 

24 kidneys segmented by rater A, the segmentation done using the locally varying 

template method generated better results for 12 of the cases. On the other hand, out 

of the 24 kidneys segmented by rater B, the template method generated better 

results for 19 of the cases. The average increase in volume overlap over all the 

cases was 1.3%. The mean surface separation between human segmentations and 

M-rep segmentation, averaged over all the cases was 0.33cm for segmentation 

done using the Gaussian derivative template while it was 0.32cm for segmentation 

done using the locally varying template.  

 

 

4.1 Comparison of Segmentation Results 

The following figures illustrate cases in which the results in the segmentation using 

the locally varying intensity template (white contours) showed improvement over 

segmentation results obtained using the Gaussian derivative template (black 

contours) for image match. 

 

The volume overlap for Case 634L (from Table.4.1) was 79.1% (A to C) and 78.1% 

(B to C) for segmentation done using the Gaussian derivative template, while (from 

Table.4.2) it was 86.3%  (A to C) and 84.2% (B to C) for segmentation done using 

the locally varying intensity template for image match. Visual inspection indicated 

that the contrast at the boundary between the spleen and the left kidney was very 
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poor in this particular case and the spleen also appeared brighter in some areas 

along this boundary (Fig.4.3). 

 

 

(a)        (b) 

Fig.4.3. Case 634L - Gaussian Derivative (black contour) and Locally Varying Template 

(white contour) based segmentations - Left Kidney (a) Axial View (b) Coronal View 

 

 

The distribution of the three different filter types along the surface of the left kidney 

for the locally varying template based approach shown in Fig.3.14 indicates both the 

dark-to-light and notch filters in this region which agrees with the image data in this 

example. On the other hand, the Gaussian derivative based segmentation was 

unable to find the exact kidney boundary due to low image match in this particular 

kidney-spleen boundary region. 
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The volume overlap for Case 630R (from Table.4.1) was 72.3% (A to C) and 73.3% 

(B to C) for segmentation done using the Gaussian derivative template, while (from 

Table.4.2) it was 75.3% (A to C) and 76.8% (B to C) for segmentation done using 

the locally varying intensity template for image match. Visual inspection indicated 

that the high contrast at the liver-kidney boundary due to brighter intensities in the 

liver caused a repulsive force when the Gaussian derivative template was used for 

image match (Fig.4.4). 

 

 
(a)       (b) 

Fig.4.4. Case 630R - Gaussian Derivative (black contour) and Locally Varying Template 

(white contour) based segmentations - Right Kidney (a) Axial View (b) Coronal View 

 

 

The distribution of the three different filter types along the surface of the right kidney 

for the locally varying template based approach shown in Fig.3.13 indicates the 

dark-to-light filter in this region which agrees with the image data and resulted in a 

better image match as compared to the Gaussian derivative. 
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The following figure (Fig.4.5) illustrates a case in which the result when the 

Gaussian derivative template (black contour) was used for image match was better 

than segmentation result from the locally varying template (white contour). The 

volume overlap for Case 634R (from Table.4.1) was 73.5% (A to C) and 77.9% (B to 

C) for segmentation done using the Gaussian derivative while (From Table.4.2) it 

was 66.2%  (A to C) and 68.1% (B to C) for segmentation done using the locally 

varying intensity template for image match. 

 

 

   (a)       (b) 

Fig.4.5. Case 634R - Gaussian Derivative (black contour) and Locally Varying Template 

(white contour) based segmentations - (a) Axial View (b) Coronal View 

 

 

A significant finding from this particular case was the fact that there was a certain 

amount of human intervention in the segmentation results produced from the earlier 
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study which used the Gaussian derivative template for image match. The similarity 

transform stage where the model is deformed as a whole (discussed in Chapter 2) 

was eliminated in this case during segmentation and the hand initialization was 

directly used as input to the atom deformation stage. On the other hand, 

segmentation in the present study was performed with no such human intervention 

to generate better segmentations but the results were comparable. To make a better 

comparison between the two segmentation results for this case, the similar 

procedure (eliminating model stage) was carried out for segmentation using the 

locally varying template for image match (Fig.4.6), by human intervention and the 

metrics of comparison (discussed in Chapter 3 and Tables 4.1 and 4.2) were 

recalculated. The volume overlap values were 80.8% (A to C) and 77.9% (B to C). 

This shows a significant improvement from the values in Table.4.2 for this case 

when there was no human intervention involved. It is possible to attribute this 

change in segmentation at the model stage to the fact that the geometry of the 

object might not have been completely defined by the PGA modes used for this 

study at the end of the first step in the segmentation process (Chapter 2, Section 

2.2). This possibly caused the image match to be calculated on a local optimum 

based on the width of the collar region (discussed in Chapter 2). Further 

investigation is required to arrive at firm conclusions for this particular case. 

 

Another interesting observation during the study was a particular case (638R), which 

revealed that segmentation done using the locally varying template was closer to 

segmentation done by a human expert. This CT image had significant breathing 
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artifacts that created spurious sections that were not included in the segmentations 

by both the raters (Fig.4.7 and Fig.4.8). The earlier study performed with m-reps 

using the Gaussian derivative for image match, resulted in a segmentation that 

included this portion of the kidney (Fig.4.9). 

      

   (a)       (b) 

Fig.4.6. Segmentation results without and with human intervention for the locally varying 

template method. Case 634R - (a) Gaussian Derivative (black contour) based segmentation 

with human intervention and Locally Varying Template (white contour) based segmentation 

without human intervention (b) Gaussian Derivative (black contour) based segmentation with 

human intervention and Locally Varying Template (white contour) based segmentation also 

with human intevention 

 

 

On the other hand, segmentation via m-reps on the same image with the locally 

varying template for image match, produced a model which did not include this 

section of the kidney (Fig.4.9) and thus had a better volume overlap when compared 
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to the manual segmentations. Since the image data was ambiguous due to the 

motion artifacts, no firm conclusion could be drawn. However, auto segmentation 

could find either of the two possible results. 

 
(a)      (b) 

Fig.4.7. Case 638R (a) Coronal view of image with a spurious kidney section due to motion 

artifact (b) Human segmentation of the same kidney shaded in a darker gray.  

 

 
   (a)      (b) 

Fig.4.8. Case 638R (a) Sagittal view of image (b) Human segmentation shaded in a darker 

gray 
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Fig.4.9. Case 638R (right kidney) - Shows a spurious section (Coronal and Sagittal slices) 

produced due to motion artifact. The black contour was segmentation done with Gaussian 

derivative image match and the white contour is segmentation done using the locally varying 

template for image match.  

 

A test was also conducted as part of this study to eliminate any bias in the final 

segmentation due to differences in the initial hand-placement of the M-rep model. 

Two cases were selected and the first step in the deformation process was 

performed with ten different interactive hand-placements for each of the cases. The 

displacements were selected to approximately position the kidney m-rep in a 

suitable position in the image before the first step in the m-rep segmentation 

process. The differences in the placements varied to a maximum of 0.015mm (tenth 

of a voxel in the image) in X. The similarity transform (geometric penalty term) was 

calculated at the end of the first step and saved for each of the trials. These 
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numbers were compared to eliminate any possibility of bias due to variation in hand-

placements by the user and are listed in Table.4.4. 

 

The numbers from Table.4.4 and Fig.4.10 indicate that there is a slight variation 

(maximum of 8.7% for a placement difference of 0.015mm) at the end of the first 

step due to differences in the hand-placements before initializing m-rep 

segmentation. This indicates that the bias introduced due to initial hand-placements 

did not severely influence the m-rep segmentations. 

Table.4.4. Image Match Values for 10 Trials 

 

 

Image Correlation 

Case 639R 646R 

Trial 1 0.674 0.602 

Trial 2 0.690 0.608 

Trial 3 0.687 0.586 

Trial 4 0.686 0.608 

Trial 5 0.677 0.615 

Trial 6 0.669 0.618 

Trial 7 0.684 0.640 

Trial 8 0.668 0.631 

Trial 9 0.685 0.616 

Trial 10 0.667 0.584 

Mean 0.687 0.611 

SD 0.008 0.017 

 

Table.4.4. Image match values for 10 trials for two separate cases (least and most variation). 

Geometry to image match term is measured in rms-proportional intensity squared units 
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resulting from the correlation of the template image and the target image, normalized by 

local variability in these image intensities [Pizer et al 2001]. 
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Fig.4.10. Distribution of values for the Similarity Transform ( represented by Geometric 

Penalty) at the end of the first step in the m-rep segmentation process for 10 different hand-

placements for the same image (639R). The displacements are in mm along the X-direction 

in the image. 

 

 

 



 

   

CHAPTER 5 - Conclusions and Discussion 

 

5.1 Analysis of the Results 

The main idea of this study was to analyze a medical image segmentation method 

that uses deformable medial models known as m-reps. This work describes a way of 

obtaining a locally varying template based on intensity profiles measured at many 

points over the surface of a given object in 3D. 

 

The results of this study show that given set of training images, a common intensity 

template can be generated, which in the majority of cases studied in the 

investigation, provided a slightly better image match to the target image data as 

compared to segmentation done using the Gaussian derivative template. 

 

The Gaussian derivative template was designed such that there is increased 

response at target object boundaries surrounded by regions with darker intensities.  

There are several disadvantages in using this kind of analytic template. For 

example, a kidney m-rep can penetrate bony objects such as ribs or vertebral bodies 

because the high dark-to-light contrast results in a high model to image match value 

when a section of the m-rep boundary overlays a brighter structure (Fig.5.2). 

Similarly, the boundary at the liver does not provide a strong image match for the m-
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rep when the Gaussian derivative is used since the liver usually has brighter or 

equal intensity as compared to the kidney in most CT images (Fig.5.1).  

 

Fig.5.1. Example illustrating poor contrast at the kidney-liver boundary 

 

 

Fig.5.2. Example illustrating slight penetration of m-rep into the liver at the end of the first 

step during segmentation when Gaussian derivative is used for image match 
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M-rep segmentation using a locally varying intensity template provided improvement 

in image match since the template was generated on a population of training images 

which better represents intensity variation in an image. On the other hand, the 

Gaussian derivative uses a fixed intensity value over the entire boundary which is 

unsuitable to extract objects that appear without high contrast over most of their 

boundary. This finding supports the notion that more sophisticated intensity 

templates that use an arbitrarily large number of intensity profiles (not just three), 

can do an even better job. 

 

An important observation of this investigation was the degree of automation that the 

locally varying intensity based method achieved. The m-rep segmentations from the 

previous study involved a certain amount of user-intervention to achieve accurate 

segmentations in some of the cases as discussed in Chapter 4 (Case 634R - 

Fig.4.6). Case 635R was another such example. The similarity transform step of the 

m-rep segmentation process was eliminated and the hand-placement of the model 

was directly used for atom deformation for this case in the earlier study. The shape 

of the kidney in this particular case was more elongated as compared to the kidneys 

in the other images (Fig.5.3). The similarity transform failed to capture the entire 

shape description of the kidney, for two main reasons. Firstly, this transformation did 

not involve PGA along with the similarity transform and more importantly the 

boundary seemed to be repelled by both the liver on one side and the spinal cord on 

the other when the Gaussian derivative template was used for image match. 
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        (a)           (b) 

Fig.5.3. Case 635R (a) Axial View (b) Coronal View. Contours of m-rep boundary at the end 

of the similarity transform stage with image match calculated using the Gaussian Derivative 

Template. 

 

A similar example was Case 642R. The parameter that controls the variation of an 

atom with respect to its neighbors (as described in Chapter 2) was relaxed in the 

atom deformation stage during segmentation of this particular image to better 

capture the shape of the kidney. This was possibly again a result of the fact that the 

model deformation (Fig.2.5) prior to the atom deformation stage did not capture 

enough geometry information due to surrounding brighter intensities of the liver and 

spinal cord which cause decrease in image match values when the Gaussian image 

match is measured. 
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(a) (b) 

Fig.5.4. Case 642R (a) Axial View (b) Coronal View. Contours of m-rep boundary at the end 

of the similarity transform stage with image match calculated using the Gaussian Derivative 

Template. 

 

These two cases (Fig.5.3 and Fig.5.4) and case 634R (Chapter 4, Fig.4.6) indicate 

the fact that there were certain changes made by human intervention to match 

segmentations to specific target images in the previous study. Human intervention in 

these cases improved the quality of segmentation. The present study which used the 

locally varying template based approach for image match, was conducted with 

constant parameters over all the cases (for both the similarity transform with PGA as 

well as the atom deformation stages), which resulted in segmentations comparable, 

if not better, to the segmentations from the previous study. This indicates an 

improvement in the amount of automation involved during segmentation when 
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profiles generated from a population of images are used to measure the match of 

the model to the image rather than a single analytical profile over the entire surface 

of an m-rep model.  

 

The results from the study showed improvement in the segmentations for 65% of the 

entire set of kidneys segmented. One of the limitations in the present study was the 

pre-selection of the target data set, which was chosen as the target set for the earlier 

study based on certain selection criteria that favored the Gaussian derivative 

template for image match. These were CT images which had relatively high-contrast 

boundaries along the kidneys. On the other hand, the training data set that was 

selected to generate the locally varying intensity template did not have high contrast 

along the boundary of the kidney in most of the images. The manual segmentations 

initially generated were also dependent on intensity windowing of the images. This is 

possibly another limitation of the method, since there can be a huge amount of inter-

operator variability in human segmentations depending on the intensity window 

selected and only segmentations from a single human rater were considered in 

generating the template. The primary metric used for comparison was volume 

overlap. Use of other more precise metrics might probably better illustrate the 

variations in the results. Segmentation in this study also did not involve the final step 

of the m-rep segmentation process, namely, fine-scale boundary refinement. 
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5.2 Future Directions 

The study of the current technique was one of the preliminary studies conducted 

using a locally varying intensity template for segmentation using m-reps. A more 

extensive analysis of this technique would be to compare results using a template 

generated for more than three filter types, since profile information along normals 

drawn at boundary points cannot be optimally represented with just three filters. A 

complete answer to the question of how to classify intensity profiles, could be 

produced based on statistical studies of the variation of each of the profiles along the 

boundary normals for all the training cases under consideration and analysis of 

Eigen modes and Principal Components of the entire data set. Taking a much larger 

data set into consideration would perhaps produce more statistically  

significant results.  

 

Another interesting future direction in the training process would be the study of a 

template generated not based on profiles along normals at individual boundary 

points, but on profiles at each boundary point generated by taking the profiles along 

normals of neighboring boundary points into consideration as well. In other words, 

the response at a particular point would be the ‘weighted’ sum of responses of all 

neighboring profiles. The training images in this study were blurred to remove high 

frequency noise, but the possibility of residual noise even after blurring cannot be 

eliminated. A training process involving responses dependent on neighboring 

profiles would provide a robust method of handling noise in the training image data 

since considering the responses of neighbors to calculate the profile at a particular 
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point would eliminate the possibility of assigning an inappropriate filter due to noise 

at that point. 

 

The present study was performed using a 5X3 mesh kidney m-rep (5 rows and 3 

columns). A significant area of study would be the use of an m-rep model with higher 

density (more number of rows and columns describing the same shape) for profile-

based segmentation. A sample test conducted during this study resulted in a profile 

distribution for a 6X4 kidney m-rep model that was different from the profile 

distribution obtained for the 5X3 model. This is possibly due to differences in 

curvature and the variation in the fit of the model to the image data. A model with 

higher density would also provide a means of smoothing the m-rep model rather 

than smoothing the image data prior to segmentation. 
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