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ABSTRACT

ROBERT ELIJAH BROADHURST: Compact Appearance in Object Populations Using
Quantile Function Based Distribution Families

(Under the direction of Stephen M. Pizer)

Statistical measurements of the variability of probability distributions are important in

many image analysis applications. For instance, let the appearance of a material in a picture

be represented by the distribution of its pixel values. It is necessary to model the variability of

these distributions to understand how the appearance of the material is affected by viewpoint,

lighting, or scale changes. In medical imaging, an organ’s appearance varies not only due to

the parameters of the imaging device but also due to changes in the organ, either within a

patient day to day or between patients. Classical statistical techniques can be used to study

distribution variability, given a distribution representation for which variation forms linear

subspaces. For many distributions relevant to image analysis, standard representations are

either too constrained or have nonlinear variation, in which case classical linear multivariate

statistics are not applicable. This dissertation presents general, non-parametric representations

of a variety of distribution types, based on the quantile function, for which a useful class of

variability forms linear subspaces. A key consequence is that principal component analysis can

be used to efficiently parameterize their variability, i.e., construct a distribution family.

The quantile function framework is applied to two driving problems in this dissertation:

(1) the statistical characterization of the texture properties of materials for classification,

and (2) the statistical characterization of the appearance of objects in images for deformable

model based segmentation. It is shown that in both applications the observed variability forms

appropriately linear subspaces, allowing efficient modeling. State of the art results are achieved

for both the classification of materials in the Columbia-Utrecht database and the segmentation

of the kidney, bladder, and prostate in 3D CT images. While the applications presented in

this dissertation use image-based appearance observations in the field of image analysis, the
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methods and theory should be widely applicable to the variety of observations found in the

many scientific fields, and, more specifically, to shape observations in the field of computer

vision.
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Chapter 1

Introduction

1.1 Motivation

The variability of probability distributions of image features plays an important role in

understanding the ever increasing number of observations of the world around us. Modeling the

variation of an observation by estimating its probability distribution density is a fundamental

technique in the sciences. Understanding the variation of more complex objects requires a

hierarchy of distribution estimates, when each object is itself a distribution estimate of a

collection of finer scale observations. In image analysis, observations take the form of many

pixel values in several images. A hierarchy can be formed by modeling the variation across

images of an object itself described by the variation of its pixel values across each image.

The goal of image analysis is to understand an image, which involves answering questions

similar to the following:

1. What is this a picture of?

2. What object is in this image? Where is it?

Such questions are usually asked in a supervised context where there is prior information about

the possible objects of interest. Prior information encapsulates such notions as what objects

to expect, their shape, or their appearance in an image. For instance, a picture of a material,

such as cork or sponge, can be identified after learning its appearance from pictures under

different viewing and illumination conditions. For the second question, the location and shape



of the object in the image also plays an important role. The task of locating specific organs,

such as the bladder or prostate, from 3D CT images is an example where there is strong

location, shape, and appearance prior information. This dissertation focuses on appearance

information.

These examples benefit from a statistical characterization of the available prior knowl-

edge, which comes in the form of a population of examples. To encode this information, a

representation of the location, shape, or appearance of the object must be chosen. Then a

probability distribution of the representation’s variability is estimated from the examples. A

key challenge in this process is to find an appropriate representation of appearance, where one

desired property is compactness. Compact representations have variation that is linear in their

parameters, which allows them to be estimated using efficient, classical statistical methods,

such as principal component analysis. This dissertation is concerned with representations of

probability distributions that naturally describe object appearance and with understanding

their variation so that they can be compactly and linearly modeled.

Previous approaches to modeling the variability of probability distributions have been based

on two types of distribution representations. In the first approach, a probability distribution

is represented as a member of a parametric distribution family. The family is chosen for an

application specifically so that the variation is linear in its parameters. Families, however,

are constrained models of distributions, which means they can only represent certain distrib-

utions. For example, the distributions arising from pictures of materials or from regions near

boundaries of organs in CT images, are often too complex to lend themselves to standard

distribution families.

In the second approach, a probability distribution is represented non-parametrically as a

histogram. This allows any arbitrary distribution to be represented, but their variation for

most applications forms nonlinear manifolds. Therefore, computing statistics of histogram

variation is difficult, so most work focuses on defining application-specific nonlinear distance

metrics. In this dissertation, the focus is instead on finding a representation for which the

distance metric is Euclidean.

This dissertation presents representations of several types of probability distributions that
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are a generalization of the quantile function (QF). The quantile function is a description of

univariate distributions that, when estimated discretely, allows general, non-parametric rep-

resentations for which a useful class of variability forms linear subspaces. This dissertation

extends these concepts to multivariate and conditional distributions, and distributions con-

sisting of a mixture of multiple underlying distributions.

The driving problems of this dissertation are two: (1) the statistical characterization of

the texture properties of materials for classification, and (2) the statistical characterization

of the appearance of objects in images for deformable model based segmentation. While the

applications presented in this dissertation use image-based appearance observations in the

field of image analysis, the presented representations and underlying theory should be more

widely applicable. Within image analysis and computer vision, descriptions of object shape

may lend themselves to particularly well suited probability distributions due to their complex

shape and variation. Beyond computer vision, the representation of observations as probability

distributions is a common technique in many scientific fields. The theory presented here should

help in understanding, and understanding the importance of, linear variation of distribution

representations in any application. Given this understanding, the specific representations

presented in this dissertation could also be directly applicable.

Sections 1.1.1 and 1.1.2 continue the motivation for the two driving applications of this

work: texture analysis and modeling object appearance.

1.1.1 Texture Analysis

Texture is a broad concept that describes the characteristic visual and tactile properties

of objects. Characteristic properties are distinctive as judged by human perception, making

it difficult to precisely define texture despite its use in computer science for decades. In this

dissertation, texture refers to the characteristic visual patterns of the surface of an object, or

that the object itself consists of, when observed through an imaging device. Such patterns

describe the spatially repetitive layout of many small pieces across the surface or interior of

the object, so is often described statistically, rather than attempting to explicitly model each

element of the texture.
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Texture analysis encapsulates the information in such patterns for (1) discrimination, (2)

synthesis, and (3) object inference. Discrimination seeks descriptions of texture classes in order

to differentiate them. Discrimination is used for classification tasks, where an entire image or

a prelabeled object is identified, and for segmentation tasks, where an object is located within

an image. Examples include the labeling of terrain type from arial photographs, retrieval

from a database of an image similar to a reference image, and the identification of pictures of

materials such as sponge, cork, and wood.

Texture synthesis is the process of generating an image of a texture with the same char-

acteristic properties as, but is not necessarily identical to, a given texture. Examples include

image restoration, where a damaged, textured portion of an image is replaced using a similarly

textured image region, and computer games, where textures are synthesized using a compact

description instead of storing large texture images.

Object inference is the process of inferring, from a given property such as texture, additional

object properties such as pose or shape. An example is the recovery of the parameters, such

as viewing and illumination directions, used to take a picture of a planar material.

Statistical descriptions, and more specifically, linear statistical descriptions such as the ones

presented in this dissertation, are useful in all of these tasks. For example, consider all of these

tasks in the context of a database of materials imaged under different viewing and illumination

directions. Chapter 3 presents the texture discrimination task of identification on such a

database. Future work section 5.2.2 discuses a synthesis task facilitated by a linear statistical

description: the generation of textures from arbitrary viewing and illumination directions,

given examples at specific directions. Section 5.2.2 also discusses object inference, where, for

example, the discrimination task above could be made more difficult by also estimating the

viewing and illumination directions used to capture each image.

1.1.2 Modeling Object Appearance

Object appearance is a general description of the appearance of an object with respect

to an imaging device; it is a function of both the object and the imaging device. Chapter 3

considers in depth one aspect of object appearance, texture, in the constrained situation of
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(1) having a homogeneous appearance across the object, and (2) modeling variation due only

to changes in the imaging device. Chapter 4 focuses on descriptions of organs in 3D medical

images, which requires building models of object appearance without such constraints.

The appearance of objects in 3D medical images is captured for a variety of tasks, such as

(1) segmentation, (2) identification, and (3) validation. Chapter 4 describes two segmentation

tasks in detail: the segmentation of the left kidney in 3D CT images using an across-patient

data set and the segmentation of the bladder and prostate in 3D CT images using several

independent, within-patient data sets. The segmentation of the bladder and prostate is re-

quired, for example, for planning external beam treatment for prostate cancer. Automatic

segmentation methods reduce the time of medical professionals, increase reproducibility, and

hopefully maintain a comparable level of precision. Identification and validation tasks both

ask hypotheses about an existing object. Example identification tasks include determining if

a tumor is present and distinguishing between a healthy and a diseased organ. Validation can,

for example, be combined with an automatic segmentation method to facilitate manual editing

of the segmented object by determining which portions of the object boundary are invalid.

The object appearance models used for these tasks are composed of representations of

observations (image region summaries) made at specific locations and scales. The construction

of appearance models of organs in medical images is driven by several factors. First, the model

must distinguish between the interior and exterior of the object. Second, the irrelevance both

of variation far from the organ boundary and of per voxel texture variation must be taken into

account. Third, the observations must be specific enough and the representation rich enough

to capture complex grey level appearances near the organ boundary. Finally, the expected

variation of the representation due to such factors as imaging device normalization and tissue

movement should form linear subspaces. Chapter 4 presents both an object appearance model

that addresses all of these issues and a learned likelihood of the model for use in several

segmentation tasks.
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1.2 Thesis and Claims

Thesis: Quantile functions provide a general framework for learning compact representations

of probability distributions. This allows accurate and efficient Bayesian methods for texture

classification and image segmentation using distributions of image-based appearance features.

The contributions of this dissertation are the following:

1. A geometric interpretation of the space of discrete quantile functions has been developed

and described. A key analysis linked the non-parametric representation of the quantile

function to several common parametric distribution families.

2. A novel framework has been developed for representing the variability of multivariate

and conditional distributions, and distributions consisting of a mixture of multiple un-

derlying distributions. These quantile function based representations are natural in the

sense that their Euclidean distance is an efficient approximation of the Mallows distance.

Their variation is parametrically estimated, which results in the learning of task-specific

distribution families.

3. Texture models using the QF based multivariate and conditional distribution represen-

tations have been demonstrated. Both filter bank texture models and Markov random

field texture models have been developed and expressed in a common framework, allowing

their strong similarities and specific differences to be described.

4. A method for the texture based classification of pictures of materials has been devel-

oped and demonstrated. It leverages the demonstrated linearity of the proposed texture

models to viewpoint and lighting variation to produce the best reported classification

accuracy to date on a standard CUReT database classification task. It is also at least an

order of magnitude more compact and computationally efficient than existing methods.

5. A multi-scale appearance model for objects in images has been developed. It leverages

surface correspondences supplied by a shape model to generate region descriptions at

scales as coarse as the entire inside or outside of the object, as fine as individual boundary

points, or in between at one of several novel, local scales.
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6. A likelihood term for the Bayesian segmentation of organs in 3D CT images has been

proposed and tested. It has been shown that between-patient variation and day-to-day

variation of object-relative image regions are efficiently modeled by the quantile function

mixture representation. State of the art segmentation results have been achieved in left

kidney, bladder, and prostate segmentation experiments.

1.3 Overview of Chapters

This dissertation is organized in five chapters. This chapter motivated the application of

quantile function based distribution representations to image analysis tasks, and it summarized

the contributions of this dissertation.

Chapter 2 presents several quantile function based distribution representations, the core

methodology of this dissertation. A basic review of univariate probability distributions is given,

and their various representations, including the quantile function, are compared. See Chapters

3 and 4 for more detailed background material specific to texture classification and medical

image segmentation. In Chapter 2 the quantile function based representations are presented

and their linear subspaces, Euclidean distance, and likelihood estimation are discussed.

Chapter 3 applies the statistical methods presented in Chapter 2 to texture classification.

Background material including related work, the CUReT database, and the MR8 filter bank

are presented. Filter bank and Markov random field based texture models are constructed

using the multivariate and conditional distribution representations. A likelihood is estimated

for classification that models viewpoint and illumination variation of pictures of materials.

Chapter 4 applies the statistical methods presented in Chapter 2 to the segmentation of

organs in CT images. Background material on medical image analysis and deformable shape

models is presented. A multi-scale appearance model of objects in images is developed and used

to describe the left kidney, bladder and prostate. A likelihood is estimated for segmentation

that models the day-to-day and between patient appearance variation of these organs.

Chapter 5 discusses the contributions of this dissertation and concludes with future possible

extensions and applications.
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Appendix A is a user guide that discusses in detail the basic algorithms developed in this

dissertation for computing and displaying QFs.
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Chapter 2

Quantile Function Based Distribution

Representations

This chapter lays out the properties of quantile functions for representing probability dis-

tributions and their variation. It then presents several generalizations of the quantile function

for representing probability distributions beyond standard, univariate distributions. The con-

struction of each representation is driven by the goal of understanding its linear subspaces,

Euclidean distance, and appropriateness for various estimation tasks. These representations

represent the core methodology of this dissertation, and they are used to build models of

texture and object appearance in the driving problems presented in Chapters 3 and 4.

First, Section 2.1 reviews the quantile function and other univariate distribution repre-

sentations, discusses their linear subspaces, and explores quantile functions as a geometric

space. Section 2.2 presents representations based on the quantile function of multivariate and

conditional distributions, and distributions consisting of a mixture of multiple underlying dis-

tributions. Section 2.3 presents a method for estimating the likelihood of these representations

given an example set. This likelihood is used for classification in Chapter 3 and segmentation

in Chapter 4.

2.1 Univariate Probability Distributions

Univariate probability distributions, long studied in statistics [Ros02], describe the likeli-

hood of a random variable attaining a specific value. The allowed values are either discrete,
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Figure 2.1: The probability distribution function (left), cumulative distribution function
(center) and quantile function (right) of several common distributions.

such as the integers Z, or continuous, such as the real line R. The remainder of this section

discusses continuous random variables; the treatment of discrete random variables is similar.

Let X be a continuous random variable with probability density function (PDF) f . f has the

constraints

f(x) ≥ 0, xεX∫
xεX

f(x)dx = 1.

Most probability distributions can be equivalently described by their PDF, cumulative

density function (CDF) F , or quantile function (QF) Q. The CDF describes the probability

of attaining a value less than or equal to x and is defined as

F (x) =
∫ x

−∞
f(u)du.

The QF is the inverse of the CDF, and it can be carefully defined as

Q(x) = inf{u : F (u) ≥ x}

when F (x) is not strictly increasing. Both the CDF and QF are non-decreasing functions.

Figure 2.1 shows the PDF, CDF, and QF for several common distributions. These are examples

of parametric distributions, where the PDF or CDF is given analytically and is expressed in

terms of a small number of parameters. For example, the PDF of the Gaussian distribution
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N (µ, σ) is f(x) = 1
σ
√

2π
e

(x−µ)2

−2σ2 . Distributions can also be described non-parametrically, where

the domain of f , F , or Q is divided into subsets and for each a value is specified.

2.1.1 Distribution Families

Example parametric distributions include the Gaussian, exponential, uniform, gamma, and

beta distributions. Each is considered a distribution family because they express a set of re-

lated probability distributions. Families can also be related, by the type of their parameters

or by other shared properties. The above examples are two-parameter families. The Gaussian,

exponential, and uniform distributions are examples composed of location and scale parame-

ters. So called location-scale families are common and easy to understand since they change

the mean and standard deviation of a distribution, respectively, without affecting the shape of

the PDF. Location and scale play an important role in understanding quantile functions and

are discussed more in Sections 2.1.3 and 2.1.4.

More general families are constructed using parameters beyond location and scale. These

additional parameters describe either mixture or shape changes. Mixture parameters con-

struct distributions using the PDFs of several existing distributions. Let f1, f2, . . . , fn be

the PDFs of n independent distributions. A mixture distribution with PDF f is defined as

f =
∑n

i=1 wifi, where
∑n

i=1 wi = 1 and 0 ≤ wi ≤ 1, i = 1, 2, . . . , n. Mixture distributions are

usually constructed using distributions from the same family, most commonly the Gaussian

family. Mixture parameters are important in understanding non-parametric distributions and

are discussed more in Section 2.1.3.

Shape parameters affect the characteristic shape of a distribution’s PDF. Several distrib-

utions, including the Weibull and the gamma, include a single extra shape parameter. These

distributions often generalize more specific location-scale families. For example, the Weibull

distribution generalizes the Rayleigh and exponential distributions, and the the gamma distri-

bution generalizes the chi-squared and exponential distributions. Jensen’s family is an example

that contains 2 shape parameters. This family generalizes many common distribution families,

including the Gaussian and Weibull families, which exist as a point and a line, respectively, in

Jensen’s two-dimensional space of shape parameters.

11



Many parametric distributions are also part of the general exponential family. The expo-

nential family has been extensively studied because the common form of its distributions leads

to desirable properties related to sufficient statistics, estimation, and conjugate distributions.

The exponential family includes the Gaussian, gamma, chi-square, beta, Dirichlet, Bernoulli,

binomial, multinomial, Poisson, negative binomial, and geometric distributions. The relation-

ship between the exponential family and other parametric distributions has been studied using

differential geometry [Ama85]. In this approach each parametric distribution family describes

a submanifold in the infinite-dimensional space of log-likelihoods. A key property is the curva-

ture of the submanifold, measured as changes in the submanifold’s tangent space. Exponential

families form linear submanifolds in the log-likelihood space.

Throughout Section 2.1 I use the same parametric families for demonstration. Some of

these families are chosen because they are standard. These include the Gaussian, uniform,

exponential, gamma, and beta distributions. Other distributions are chosen because they are

related to the application chapters, Chapters 3 and 4. These include the Weibull distribution,

which is related to stochastic textures in Chapter 3, and the Rayleigh and Fisher-Tippett

distributions, which are related to ultrasound images.

The above methods describe the relationships between parametric distribution families.

Non-parametric distribution representations do not construct families in the same manner as

parametric representations, since they are unconstrained. However, a notion of a distribution

family can be developed for non-parametric representations by considering submanifolds in

their space. In particular, this dissertation examines linear subspaces of quantile function based

representations. First, Section 2.1.2 defines the non-parametric distribution representations

and Section 2.1.3 describes and compares their Euclidean distances and their linear subspaces.

Section 2.1.4 describes the space of quantile functions in detail and concludes 2.1 by discussing

additional properties of the quantile function.

2.1.2 Estimation and Non-parametric Distributions

Estimation tasks seek parametric or non-parametric representations of a probability dis-

tribution derived from a set of samples from that distribution. Parametric estimation consists

12



of first choosing a distribution family and then estimating the parameters of the distribution.

Many methods have been developed in statistics to accurately estimate parameters according

to a metric and to measure the resulting estimation error. However, in many applications,

such as the image analysis applications considered in Chapters 3 and 4, the samples are from

complex distributions that do not fit existing parametric distribution families. It is in this con-

text, the estimation of complex distributions, that non-parametric distributions are typically

studied.

Non-parametric distributions are discrete representations of a distribution’s (1) probability

density function (PDF), (2) cumulative density function (CDF), or (3) quantile function (QF),

the focus of this dissertation. Non-parametric PDF estimates are the most popular; in this

dissertation these are referred to as histograms. To construct a histogram, the real line is

divided into subsets xi called bins whose frequencies are estimated. The location of the bins are

normally defined by their boundaries with b− 1 bin boundaries defining b bins. For univariate

distributions it is typical to use equally spaced bins. Section 2.2.1 discusses multivariate

distributions, where more complex binning strategies are often required. A histogram h with

b bins xi is defined as

hi =
∫

xi

f(u)du, i = 1, . . . , b, (2.1)

where
∑b

i=1 hi = 1 and 0 ≤ hi ≤ 1, i = 1, . . . , b.

Given a set of s samples, a histogram is easily constructed in O(s log b) time, or O(s)

time for equally spaced bins, by comparing each sample to the bin boundaries. The count in

each bin is then normalized into a frequency by dividing by s. Figure 2.3 shows a Gaussian

distribution estimated from 1024 samples for different values of b. Histograms are sensitive to

b; this is discussed more at the end of this section and in the next section.

Non-parametric representations based on the CDF are constructed using histograms. A

discrete CDF H is defined as

Hi =
∫

x1,...,xi

f(u)du, i = 1, . . . , b, (2.2)

where 0 ≤ H1 ≤ . . . ≤ Hb ≤ 1. H can be constructed from h by computing Hi =
∑i

j=1 hj .
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The construction of a discrete QF differs from that of PDFs and CDFs. Given a quantile c

and a random variable X, a QF computes the value x for which p(X < x) = c. The domain of a

QF is therefore between 0 and 1 and represents the cumulative probability of the distribution.

PDFs and CDFs, on the other hand, have domains based on the values the random variable

achieves; this is the range of QFs. A discrete QF is computed for regularly spaced values of c

between 0 and 1. Let Q be a discrete QF with b values. Each element, Qi, is called a quantile

and represents 1/b of the distribution. Similar to h, each element of Q actually represents a

piecewise integration of Q,

Qi = b

∫ i
b

i−1
b

Q(x)dx, i = 1, . . . , b, (2.3)

where Q1 ≤ . . . ≤ Qb. Each quantile is multiplied by b so that it is the average value of the

quantile function over the quantile’s domain.

In this dissertation, h, H, and Q are typically considered as estimates of f , F , and Q, even

though they are in fact piecewise integrations of these functions. Since integration is a linear

operation, this distinction is not crucial.

Given a set of s samples from a distribution, and if b = s, Q is constructed by simply

sorting the samples. To construct a lower dimensional representation with b < s, adjacent,

sorted samples are averaged together. In this case, complete sorting is not required, allowing

the QF to be computed in O(s log b) time. For continuous distributions this would require a

complex median search algorithm, so in this case I use a simple O(s log s) sorting algorithm.

For discrete distributions with v possible values, a O(s + v) algorithm can be constructed

without a loss in accuracy by first computing a v bin histogram. Also, some applications,

such as the image segmentation task in Chapter 4, supply weighted samples, which requires a

more complicated averaging step. Section A.1 gives MATLAB code for computing QFs from

unweighted samples, weighted samples, and weighted samples from a discrete distribution.

The s sorted samples are estimates of order statistics, so the b quantiles are averages of order

statistics [Dav70]. Also, Q can be understood by considering it as an adaptive bin histogram,

where each bin has the same frequency and the average of each bin is stored. Figure 2.2 shows

14
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Figure 2.2: The Gaussian distribution represented as (left) a discrete quantile function
with 25 values and (right) the QF’s corresponding adaptive bin histogram.

an example QF and its corresponding adaptive bin histogram, whose estimation is described

in Section A.2. The resulting adaptive bin histogram demonstrates two desirable properties of

quantile functions: (1) the bin locations are automatically set so that arbitrary bin boundaries

need not be defined, and (2) the bins automatically focus on the more likely portions of the

distribution, as shown by the variable width and location of the bins.

An intuitive understanding of QFs can be achieved by considering what a discrete QF

represents as its size is varied. Single value QFs represent a distribution’s mean, two values are

linearly equivalent to the mean and the standard deviation, and more values further describe

a distribution’s shape. QFs, therefore, gradually provide a detailed description of distribution

shape as its size is increased, after first capturing location and scale. The mean and standard

deviation equivalence of Q is based on Q being a piecewise integration of Q.

All three non-parametric representations have a single common parameter b, the number

of bins. The different representations, however, are sensitive to b in different ways, which often

depend on the relationship of b with s, the number of samples. These sensitivities are also

confounded by the need, often for comparison, to estimate multiple distributions using the

same bins. First, consider the case of a small b, for which PDF and CDF representations have

a large discretization error. This error depends upon how tight the domain can be restricted,

which is a function of the number, similarity, and tightness of the distributions. For example,

consider 10 Gaussian distributions with unit standard deviations and means that vary equally

spaced from 1 to 10. To estimate from samples the mean of these distributions using the same

15
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Figure 2.3: A discrete PDF, CDF, and QF of a Gaussian distribution estimated from 1024
samples. Notice the stability of the CDF and QF estimates.

bins for all the distributions, several 10s of bins are required to avoid large and misleading

errors. To accurately estimate their standard deviations, even more bins would be required.

QFs, on the other hand, do not suffer from this form of discretization error. In this example,

QFs exactly capture all 10 distributions using two bins, which is discussed in the next section.

Another case to consider is the so called over-binning situation. When b is large, possibly

larger than s, PDF estimates become unstable. Consider two sets of samples from the same

distribution. It is likely that many of the samples from the two sets will be in nearby but

different bins. Therefore, the histograms corresponding to these two sets of samples will be

incorrectly considered as dissimilar. Distance measures between histograms and the other

non-parametric representations are discussed more in the next section. For CDFs and QFs,

this is not an issue. Since they both consider the integration of the PDF, corresponding

bins correctly reflect the sampling error without introducing additional discretization errors.

Additionally, QFs capture all information in the samples once b = s, including the sampling

error, so increasing b beyond s has no effect.

Figure 2.3 shows PDF, CDF, and QF estimates of a Gaussian distribution from 1024

samples. The number of bins is varied from 8 to 128 to demonstrate the effects of changing the

number of bins on each of these representations. The PDF estimate is sensitive to the number

of bins while the CDF and QF estimates are stable. The CDF has a consistent shift to the

right as the number of bins is increased. This discretization error is a display artifact caused

by the fact that some samples get rounded down to the bin center, causing an overestimation
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in the integration. This can be fixed by displaying CDFs with respect to the right edge of the

bins instead of the bin centers.

This section described how to construct non-parametric distribution representations and

compared them with respect to their common parameter, b. CDFs and QFs were shown to

be less sensitive than PDFs, and QFs were shown to be more compact than PDFs or CDFs.

These desirable properties of QFs are well expressed by considering their construction. Only

two operations are performed during their estimation, sorting and averaging. Both operations

decrease noise and neither introduce artifacts.

Now that the non-parametric representations have been introduced and their construction

discussed, the next section discusses the linked properties of distance and interpolation.

2.1.3 Distance Measures and Interpolation

Representations are often analyzed through the linked ideas of distance and interpolation,

where desired interpolations correspond to paths of minimal distance. In general, a subman-

ifold of the representation’s feature space is of interest. This possibly nonlinear submanifold

can be specific to the data in a particular application; it can also be a general restricted sub-

manifold of interest. For instance, a representation’s feature space is often restricted to the

submanifold that corresponds to valid, or legal, representations of the object. Examples in-

clude a histogram h, which has the linear constraints 0 ≤ hi ≤ 1, i = 1, . . . , b and
∑b

i=1 hi = 1,

and a discrete QF Q, which has the linear constraints that Q1 ≤ Q2 ≤ . . . ≤ Qb. Desired

interpolations stay on the submanifold of interest and follow paths of minimal distance called

geodesics. The distance measure defines the geodesic paths and penalizes points for being off

of the submanifold.

In this dissertation I am particularly interested in analyzing variation. Depending on the

properties of the submanifold, this can be both theoretically and computationally challenging

[FLPJ04]. Thus representations are often sought for which the submanifolds of interest are lin-

ear, i.e., that have Euclidean distance as their distance metric, so interpolation follows straight

line paths. Therefore, both interpolations and distances can be computed efficiently using lin-

ear operators. Also, notions such as hyperplanes and linear projection are well established.
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There is also a large set of well developed statistical tools for linear submanifolds that leverage

the notions above. Section 2.3 uses Principal Component Analysis (PCA) in this setting for

covariance estimation. The usefulness of linear representations and their likelihood estimation

is further discussed in Section 2.3 for QF based representations of probability distributions.

For probability distributions, distance and interpolation can be considered for both para-

metric and non-parametric distribution representations. A parametric representation is chosen

for a particular application because the distributions of interest can be modeled by the para-

metric representation. Additionally, all distributions modeled by the representation typically

match those of interest. Therefore, distributions linearly interpolated by the representation are

valid for the application, and Euclidean distance is reasonable. For a particular application,

the existence of such a parametric representation is ideal.

For many applications, however, the distributions of interest do not fit any of the exist-

ing parametric representations. In this case, non-parametric representations are used since

all non-parametric representations can accurately estimate any distribution. Given a set of

distributions, however, a non-parametric representation should be sought that is close to ideal,

i.e., a representation that describes the variation in the sample set as a linear subspace. This

dissertation focuses on the usefulness of QFs for this task and how the variation in a partic-

ular sample set can be learned and expressed in a few parameters, in effect learning an ideal

application-specific parametric representation. Towards this end, the remainder of this sub-

section examines distance measures between probability distributions and the linear subspaces

of PDFs, CDFs, and QFs.

A large body of literature has explored many different distance measures between non-

parametric representations of probability distributions, including the Earth Mover’s distance

(EMD) [RTG00], diffusion distance [LO06], CDF Lp norm, χ2 distance, histogram intersection,

quadratic form, and Kullback-Leibler divergence (see [PRTB99] for a survey). The appropri-

ateness of a distance measure for a particular application depends on the type of variation of

the distributions of interest. To examine the properties of distance measures in the general

case, however, it is interesting to consider the distance measured with respect to the para-

meters of the various parametric representations. Since a non-parametric representation is
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(a) Two Gaussian distributions, N (0, 1) and N (10, 3), (left) and four PDFs linearly interpolated between
them (right).
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(b) Interpolation of CDFs displayed as CDFs (left) and PDFs (right).
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(c) Interpolation of QFs displayed as QFs (left) and PDFs (right).

Figure 2.4: Linear interpolation between two Gaussian distributions represented as PDFs,
CDFs, and QFs. PDF and CDF interpolation identically describe mixtures while QF
interpolation describe mean and standard deviation differences.

often used in place of a parametric representation, it is important to know the behavior of the

parametric representation in the non-parametric setting.

Interpolation of PDFs, CDFs, and QFs

In order to understand distance measures and the behavior of parametric distributions in

the various non-parametric settings, the linear subspaces of the non-parametric representations

must first be understood. To explore linear interpolation of PDFs, CDFs, and QFs, consider

Figure 2.4. Figure 2.4(a) shows two probability distributions; Gaussian distributions with

means of 0 and 10 and standard deviations of 1 and 3, respectively. A tempting question to

ask is “What is the correct interpolation between these two distributions”? However, given only
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two example distributions, there is inadequate information to correctly answer this question.

For an application the desired interpolation, or equivalently the desired submanifold, can be

given by more examples. Information can also be gleaned by knowing a particular parametric

family that approximately captures the distributions and variation of interest; the parametric

family corresponds to an approximately correct submanifold in the non-parametric spaces.

In Figure 2.4, the two Gaussian distributions are represented as PDFs, CDFs, and QFs.

MATLAB code to generate smoothed histograms from QFs is given in Section A.2; MATLAB

code to generate Figure 2.4.(c) is given in Section A.4. In Figure 2.4, linear interpolation

at each argument value for each representation is given, and on the right side of Figure 2.4

they are displayed for comparison as PDFs. The interpolation given by the PDF and CDF

representations is identical. As mentioned in 2.1.2, the CDF is a cumulative integration of

the PDF. Cumulative integration is a linear operation and it corresponds to the following

linear skew. If h is a b bin discrete PDF, the corresponding discrete CDF H is computed by

Hi =
∑i

j=1 hj , i = 1, . . . , b. This can also be expressed using a b× b matrix as

H =



1 0 0 0 . . . 0

1 1 0 0 . . . 0

1 1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1 0

1 1 1 1 . . . 1


h. (2.4)

This linear skew changes Euclidean distance but not linear interpolation.

In general, interpolation of PDFs and CDFs can be understood as mixture interpolation.

For the two Gaussian distributions considered in figure 2.4, with random variables X ∼ N (0, 1)

and Y ∼ N (10, 3), the PDF and CDF interpolations can be parametrically expressed as

(1− w) ∗X + w ∗ Y . In this example w = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0.

The linear interpolation given by the QF representation is quite different from the inter-

polations given by PDFs and CDFs. In general, location and scale changes are linear for QFs.

Given any b bin QF Q, changing a distribution’s mean and standard deviation corresponds to
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a simple affine transformation, defined as

Q′ = αIQ + c1, (2.5)

where I is the b× b identity matrix and 1 is the b×1 vector of ones. When Q corresponds to a

zero mean distribution, Q and 1 are orthogonal vectors, α only affects the standard deviation

of the distribution, and c only affects the mean. For the two Gaussian distributions considered

in Figure 2.4, N (0, 1) and N (10, 3), the QF interpolations directly interpolate µ and σ. The

interpolations correspond to Gaussian distributions N (0, 1), N (2, 0.6), N (4, 1.2), N (6, 1.8),

N (8, 2.4), and N (10, 3). This example highlights the fact that linear interpolation of QFs

from a location-scale family produces QFs that are also in the family.

The equivalent simple affine transformations can also be considered in the PDF and CDF

spaces. Unfortunately, for both PDFs and CDFs, both scaling and addition lead to illegal

representations. As mentioned in Section 2.1.2, a PDF h with b bins has the linear constraints∑b
i=1 hi = 1 and 0 ≤ hi ≤ 1, i = 1, . . . , b. Addition is orthogonal to the hyperplane of legal

histograms formed by the constraint that the histogram sum to one. Multiplication also does

not respect either the hyperplane or the boundary constraints. A CDF H with b bins has the

linear constraints 0 ≤ H1 ≤ . . . ≤ Hb ≤ 1. The full domain of a distribution is captured by H

if and only if H1 = 0 and Hb = 1. Therefore, both addition and multiplication lead to either

an invalid CDF or to an incompletely captured CDF.

As discussed above, the affine transformations of PDFs and CDFs include mixture changes,

and the affine transformations of QFs include location and scale changes. However, it is

difficult to understand the opposite cases of location and scale changes for PDFs and CDFs,

and mixture changes for QFs. Distances along the nonlinear manifolds that correspond to

these types of variation are also hard to interpret. Section 2.1.1 discussed how parametric

distributions are composed of location, scale, and shape parameters and how mixtures of

these distributions can be constructed. Since location and scale parameters, and often shape

parameters, are nonlinear in the PDF and CDF spaces, many parametric distributions form

hard to understand, strongly nonlinear submanifolds. The space of QFs, on the other hand,
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Figure 2.5: PDF and QF representations of distributions constructed by location or mix-
ture interpolation of delta distributions δ(0) and δ(1). The PDF representation is a his-
togram with bin centers at 0, 0.25, 0.5, 0.75, 1. Mixture interpolation is linear for PDFs
and location interpolation is linear for QFs, while the opposite cases form strongly non-
linear paths.

is linear in location and scale parameters and some shape parameters have known forms.

Parametric distributions, therefore, are better understood in the space of QFs; Section 2.1.4

discusses their corresponding manifolds in more detail.

To acquire some intuition about what interpolation of location parameters looks like in the

PDF and CDF spaces and what interpolation of mixture parameters looks like in the QF space,

consider the delta distribution. Let D0 ∼ δ(0) and D1 ∼ δ(1) be two delta distributions with

nonzero probabilities at 0 and 1, respectively. A histogram h that captures both distributions

can be constructed with bin centers at 0.0, 0.25, 0.5, 0.75 and 1. Using h and a 5 bin QF,

Figure 2.5 shows the two delta distributions and two types of interpolation between them. For

h, mixture interpolation is linear, as previously mentioned. Location interpolation for the five

steps shown for h, however, is nonlinear. The path iteratively moves along four orthogonal

paths, each a line segment with a slope of −1 defined in the plane of the corresponding,

adjacent dimensions. For the QF, location interpolation is linear, and mixture interpolation

forms a nonlinear path. Similar to the nonlinear path for h location interpolation, QF mixture

interpolation is composed of a series of orthogonal, linear segments. The path in Figure 2.5 is

a particular L1 path, where the dimensions are traversed from last to first (and is, in fact, the

only legal 5 segment L1 path).

Both types of nonlinear paths discussed above are more complicated when considering
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distributions other than the delta. Several of these nonlinear submanifolds are considered

numerically in Figures 2.6 - 2.10 and analytically in Section 2.1.4. We now turn our attention

to interpreting distance measures in the PDF, CDF, and QF spaces.

Distance Measures

Most of this section has discussed linear interpolation and manifolds formed by considering

particular types of variation. I now consider Euclidean distance, distance along these mani-

folds, and existing distance measures. Distances between QFs are considered first because the

linearity of some of the submanifolds discussed above gives its Euclidean distance the most

intuitive definition.

The examples above define Euclidean distance in the QF space for location-scale para-

metric families, and motivates and provides intuition for its use between arbitrary distribu-

tions. For example, between delta distributions δ(t1) and δ(t2) and Gaussian distributions

N (µ1, σ
2
1) and N (µ2, σ

2
2), Euclidean distance between their QFs using b bins is

√
b|t1− t2| and

√
b
√

(µ1 − µ2)2 + (σ1 − σ2)2, respectively. Euclidean QF distance corresponds, up to a scale

factor of
√

b, to a distance metric that has been studied in more general situations; it is most

often called the Earth Mover’s distance (EMD) or Mallows distance [LB01]. Intuitively, the

EMD measures the work required to change one distribution into another by moving prob-

ability mass. Each element of probability mass in one distribution is matched with mass in

the second distribution. The total work required (mass × distance) is the computed metric

[RTG00]. The EMD is a metric that accounts for both the frequency and position of prob-

ability mass, making it a highly nonlinear, cross-bin distance for histogram representations.

Section 2.2.1 further discusses the EMD and its definitions for multivariate distributions.

The Euclidean distances in the PDF and CDF spaces do not have the same intuitive

definitions in terms of the parameters of parametric distributions, except for the linear mixture

parameters. These distances are only Euclidean when their bins stay in correspondence, i.e.,

when there are mixture changes in each bin’s frequency but their locations do not shift. This

does not hold for several types of variation, including location and scale, so the research into so

called cross-bin distance measures such as the EMD and the diffusion distance. To examine the
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Euclidean PDF and CDF distances, consider delta distributions δ(t1) and δ(t2). As mentioned

above, the QF Euclidean distance is
√

b|t1 − t2|. The PDF distance is 0 when t1 = t2, and

is its maximum,
√

2, otherwise. The CDF distance, given a bin width of w, is
√

|t1−t2|
w , the

square root of the number of bins between t1 and t2.

Two common distance measures based on PDFs and CDFs are the χ2 distance and the

two–sample Kolmogorov–Smirnov goodness–of–fit test statistic. Between two histograms h

and g with b common bin locations and CDFs H and G,

χ2(h, g) =
b∑

i=1

(hi − gi)2

hi + gi
, and

KS(H,G) =
b

sup
i=1

(|Hi −Gi|).

The Kolmogorov–Smirnov test statistic is therefore the L∞ CDF norm. The χ2 distance is

a simple linear scaling of the Euclidean PDF distance, similar to the CDF transformation,

except it is specific to h and g. While the CDF scaling does cumulative integration, which

passes information (horizontally) between bins of the same distribution, the χ2 distance nor-

malizes bin differences by their frequency, which passes information (vertically) between the

two distributions.

Analyzing such distance measures, or the Euclidean PDF, CDF, and QF distances, between

distributions is difficult. Therefore, Figures 2.6 - 2.10 numerically consider the Gaussian, a

mixture of two Gaussians, the gamma, the beta, and the Weibull distributions, respectively.

For each, two parameters of the distribution are varied. In the top left of each figure, the four

corners of this sampled parameter space, a - d, are shown as PDFs. The first parameter is

varied from a to b and c to d. The second parameter is varied from a to c and b to d. The

Euclidean and manifold distances in the PDF, CDF, and QF spaces are given along with the χ2

distance and Kolmogorov–Smirnov test statistic. The manifold distances follow the geodesic

paths determined by interpolating the parameters. All of the distances are computed from a,

one corner of the sampled parameter space, to the rest of the sampled space. Each sampled

parameter space is displayed as a two-dimensional submanifold in the PDF, CDF, and QF

spaces using principal component analysis (PCA), which is discussed more in Sections 2.2.1
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and 2.3. Each submanifold is displayed in the first three principal directions; this supplies

the most possible information about the shape of the submanifold. To give a notion of the

linearity of the submanifolds, the relative cumulative eigenvalues are also displayed for each

space.

Figure 2.6 shows the Gaussian distribution. The Gaussian distribution is a location-scale

family so it forms a linear submanifold in the QF space. Its linearity is shown by the submani-

fold being flat, by the cumulative eigenvalues reaching 1 at 2 modes, and by the Euclidean and

manifold QF distances being identical. The nonlinearity in the PDF space is also evident. The

PDF Euclidean and manifold distances differ. Specifically, when interpolating from Gaussian

a to Gaussian b the Euclidean distance levels off while the manifold distance does not. This

effect is shown in the manifold by the curved arc formed by that path. The manifold shows

that larger sigmas make all Gaussians relatively similar while sigmas that are small relative to

the mean difference makes all Gaussians equally dissimilar.

Figures 2.6 - 2.10 show that the χ2 distance and Kolmogorov–Smirnov test statistic are

usually similar to Euclidean PDF distance. For all five distributions, the figures also show that

feature space for the PDF is more nonlinear than for the CDF or QF; the sum of the relative

cumulative eigenvalues is always the lowest for PDFs. Also, for four of the five distributions,

the exception being the case where a mixture parameter was modeled, the QF supplies the most

compact, and hence linear, representation. This linearity has been discussed for location-scale

distributions such as the Gaussian. In Figure 2.7 the mixture of two Gaussians distribution

has a location parameter; in Figures 2.8 and 2.10 the gamma and Weibull distributions have

a scale parameter. The Weibull distribution is discussed more in the next section. Figure 2.7

shows, as expected, that the mixture parameter in the mixture of two Gaussians distribution is

linear for PDFs and CDFs but not QFs. Figure 2.8 shows that in the QF space, the scale and

shape parameters of the gamma distribution form an approximately flat and convex, though

skewed, submanifold. Figure 2.9 shows that the beta distribution forms similar, nonconvex

submanifolds in all three spaces as viewed in their corresponding first 2 principal directions.

While similarly shaped, the submanifold is convex near d in the PDF and CDF spaces and

near a in the QF space.
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Figure 2.6: Gaussian distributions N (µ, σ2). The parameter space samples µ from 0 to 10
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space is flat and Euclidean QF distance equally penalizes mean and standard deviation
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space samples µ from 10 to 20 in the first dimension and w from 0.75 to 0.25 in the second
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Figure 2.8: Gamma distributions Γ(k, θ). The parameter space samples k from 1 to 3 in
the first dimension and θ from 0.5 to 1.5 in the second dimension. θ is a scale parameter
so is linear for QFs. Even though k is shape parameter, the manifold is approximately
flat and convex in the QF space.
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Figure 2.9: Beta distributions B(α, β). The parameter space samples α from 0.5 to 5 in
the first dimension and β from 0.5 to 5 in the second dimension. The three manifolds
are similar as displayed in their first two principal directions, though the PDF and CDF
spaces have additional twisting in the third direction.
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Figure 2.10: Weibull distributions W(λ, k). The parameter space samples λ from 0.5 to 2
in the first dimension and k from 1 to 11 in the second dimension. The PDF graph shows
the long right tail for large λ; the QF space is sensitive to this. The QF is linear in λ, a
scale parameter, and exponential in k, a shape parameter, as is discussed in Section 2.1.4.
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This section discussed the analytic properties of PDFs, CDFs, and QFs and numerically

considered some of the submanifolds of common parametric distributions in these spaces. QFs

were shown to more compactly represent both a single distribution and a variety of common

distribution families. The next section analytically considers the construction of submanifolds

corresponding to common parametric families for QFs. No further analysis of PDF and CDF

representations is given in this dissertation.

2.1.4 The Space of Quantile Functions

The space of quantile functions can be understood geometrically in several ways. This

section builds this geometric intuition by considering several additional properties of QFs,

including the space’s constraints, a small number of QF bins, the various Lp norms, and the

construction of submanifolds corresponding to several common parametric families.

Discrete quantile functions are constrained to be nondecreasing through its dimensions,

i.e., a b bin QF Q has the constraint Q1 ≤ Q2 ≤ . . . ≤ Qb. Since this constraint is linear, the

valid submanifold is convex. Convexity implies that QF averages and interpolation will always

be valid but that extrapolation can lead outside the valid submanifold. The submanifold is not,

however, a subspace of Rb nor is it a vector space. Valid QFs do not form a subspace because

it is not closed under multiplication; multiplication by negative numbers produce invalid QFs.

However, the addition of any two QFs produces valid QFs and an additive identity exists,

though additive inverses in general do not. Other representations of probability distributions

also do not form vector spaces, including most parametric families and discrete PDF and CDF

representations.

The valid submanifold of QFs has a sharp boundary at Q1 = Q2 = . . . = Qb. All points that

satisfy this constraint exist on the 1×b vector of ones, 1, which corresponds to the submanifold

of delta distributions. In particular, the delta distribution δ(t) has the b bin quantile function

t1. As mentioned in Section 2.1.3, changing the mean and standard deviation of a distribution

forms a linear submanifold that corresponds to the affine transformation αQ + c1. The delta

distribution consists simply of a location, or mean, change.

Location-scale distribution families include the Gaussian, exponential, uniform, double
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exponential, Rayleigh, and Fisher-Tippett. Each location-scale family exists on a linear sub-

manifold that intersects and ends at the delta distribution as the scale parameter goes to zero.

A basis of each submanifold can be analytically specified by two orthogonal vectors. The

first vector, 1, which corresponds to the mean of the distribution, is common to all of the

families. Moving along this vector changes the distribution’s mean, where c1 corresponds to

a mean of c. The second vector corresponds to the shape of the distribution and is specific

to each family. It often corresponds to a zero mean and unit standard deviation distribution,

to make it orthogonal to 1 and of unit length, respectively. Moving along this vector changes

the distribution’s standard deviation, where αQ corresponds to a distribution with a standard

deviation of α, when Q is zero mean and unit standard deviation. The standard deviation of

general QFs is discussed later in this section.

Figure 2.11 gives such an orthogonal basis for six distribution families mentioned above

that have location, scale, or location and scale parameters. For each distribution, the figure

defines the PDF f (if convenient), the CDF F , the QF Q, and the discrete QF Q. Q is given in

terms of 1 and the distribution family’s base distribution, and in terms of 1 and an orthogonal,

unit vector. The orthogonal, unit vector is constructed by either converting the family’s base

distribution to a zero mean, unit standard deviation distribution or by directly choosing such a

distribution from the family. For example, the two-dimensional, linear submanifold of Gaussian

distributions can be constructed from the orthogonal vectors 1 and the QF corresponding to

N (0, 1).

Several other common distributions contain a scale parameter, a shape parameter, and an

optional location parameter. One such distribution is the Weibull. The QF of the Weibull

function has a closed analytic form; it is given in Figure 2.12. Figure 2.12 shows that the

Weibull’s QF is exponential in the shape parameter. As shown in Figure 2.10, this leads to

a smooth and fairly flat submanifold. The gamma distribution also contains a scale and a

shape parameter. The QF for the gamma distribution is not easy to express. However, Figure

2.8 shows the extremely smooth and flat submanifold numerically found for a portion of the

parameter space. The beta distribution also does not have an easily expressed QF. Figure 2.9

shows the fairly linear, though distorted, submanifold numerically found for a portion of the
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Delta distributions, δ(t)
F (x) = 0 if x < t, 1 if x ≥ t
Q(y) = t
Q

δ(t)
= t1 = tQ

δ(1)

Gaussian distributions, N (µ, σ)

f(x) = 1
σ
√

2π
e

(x−µ)2

−2σ2

F (x) = 1
2(1 + erf(x−µ

σ
√

2
)

Q(y) = µ + σ
√

2erf−1(2y − 1)
QN (µ,σ)

= µ1 + σQN (0,1)

Uniform distributions, U(a, b)
f(x) = 1

b−a if a ≤ x ≤ b, 0 otherwise
F (x) = 0 if x < a, x−a

b−a if a ≤ x ≤ b, 1 if x > b

Q(y) = (1− y)a + yb = a + (b− a)y
QU(a,b)

= a1 + (b− a)QU(0,1)
(nonunit, nonorthogonal)

QU(a,b)
= 1

2(a + b)1 + 1√
12

(b− a)QU(−
√

3,
√

3)

Exponential distributions, Exp(λ)
f(x) = 1

λe−x/λ if x ≥ 0, 0 otherwise
F (x) = 1− e−x/λ if x ≥ 0, 0 otherwise
Q(y) = −λ ln(1− y)

Q
Exp(λ)

= λQ
Exp(1)

= λ1 + λ(Q
Exp(1)

− 1)

Fisher-Tippett distributions, FT (µ, β)

f(x) = e−
x−µ

β e−e
−x−µ

β

F (x) = e−e
−x−µ

β

Q(y) = µ− β ln(− ln(y))
QFT (µ,β)

= µ1 + βQFT (0,1)
(nonunit, nonorthogonal)

QFT (µ,β)
= (µ + βγ)1 + π√

6
βQFT (−γ

√
6/π,

√
6/π)

Rayleigh distributions, R(a)
f(x) = x

σ2 e−x2/2σ2

F (x) = 1− e−x2/2σ2

Q(y) = σ
√
−2 log(1− y)

QR(σ)
= σQR(1)

QR(σ)
= σ

√
π/21 +

√
4−π

2 σQ
R(
q

2
4−π

)

Figure 2.11: The PDF f , CDF F , QF Q, and discrete QF Q of several distribution families
with location, scale, or location and scale parameters. Q is given in its most convenient
form and in terms of an orthogonal basis composed of 1 and a unit vector. The second
vector corresponds to a zero mean, unit standard deviation distribution. The scalars in
front of the orthogonal vectors represent mean and standard deviation.
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Weibull distributions, W(λ, k)
f(x) = k

λ(x
λ)k−1e−(x/λ)k

F (x) = 1− e−(x/λ)k

Q(x) = λ(− ln(1− y))1/k

QW(λ,k)
= λQ

1/k
W(1,1)

Figure 2.12: The PDF f , CDF F , QF Q, and discrete QF Q of the Weibull distribution.
In the QF space, the scale parameter is linear and the shape parameter is exponential.

parameter space. The general Jensen and exponential distribution families also do not have

simple forms to their QFs. This dissertation supplies no intuition and reports no further on

these distribution families.

There are also standard, known relations among distribution families that can be consid-

ered geometrically in the QF space. For example, as mentioned in Section 2.1.1, the Weibull

distribution generalizes the exponential and Rayleigh distributions. Both the exponential

and Rayleigh have a scale parameter and have different fixed values for the Weibull’s shape

parameter. Specifically, Exp(λ) ∼ W(λ, 1) and R(β) ∼ W(
√

2β, 2). Because the shape pa-

rameter is fixed and the scale parameter is varied, the exponential and Rayleigh are both

straight lines on different parts of the Weibull’s curved submanifold. The gamma distribution

generalizes the exponential and chi-squared distributions. Specifically, Exp(λ) ∼ γ(1, λ) and

χ2(k) ∼ γ(k/2, 2). Therefore, on the submanifold of gamma distributions, the exponential

distribution follows a line and the chi-squared distribution follows a curved path (which inter-

sect at γ(1, 2)). Since both the gamma and the Weibull include the exponential distribution,

these two two-dimensional, curved manifolds intersect along the line of exponentials. There

are several other relationships between distributions, such as the beta distribution including

the unit uniform distribution, that are given in basic statistics sources [Ros02].

There is a strong relationship in the QF space between Lp vector norms and moments of

the corresponding probability distributions. The first moment, or mean, of a distribution with

a b bin QF Q is the L1 vector distance between the origin and Q, divided by b. This is identical
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to projecting Q onto the vector of ones and dividing by b: Q · 1/b. In general,

Lp(Q,R) = (
b∑

i=1

|Qi −Ri|p)1/p, and

µ′p(Q) =
1
b

b∑
i=1

Qp
i ,

where µ′p is the pth raw moment of Q. Therefore, µ′p = 1
b (Lp(0, Q))p. Central moments, µp,

can also be easily computed, where

µp =
1
b
(Lp(µ11, Q))p.

Since central moments are computed with respect to the mean of the distribution, it is conve-

nient to consider only zero mean distributions. The QF space of zero mean distributions can

be constructed by projecting out the dimension corresponding to 1. Let Q′ be the zero mean

distribution corresponding to Q. Then Q′ = Q− µ11 = Q− Q·1
b 1. The standard deviation of

Q′ is now equivalent, up to a constant scale factor, to the Euclidean distance between 0 and

Q′:
√

µ2 =
√

1/bL2(0, Q′) =
√

Q′ ·Q′/b.

For nonzero mean distributions,

√
µ2 =

1
b

√
b(Q ·Q)− (Q · 1)2 =

√
(Q ·Q)/b− (µ′1/b)2.

In the QF space of zero mean distributions, the origin represents the δ(0) distribution.

Concentric hyperspheres about the origin correspond to distributions of the same standard

deviation, where a radius of r corresponds to a standard deviation of r/
√

b. Location-scale

families exist solely on the vectors orthogonal to 1 given in Figure 2.11. Each vector correspond

to the shape of the distribution family and is unchanged in this space. Therefore, location-scale

families exist on vectors that radiate out from the origin. Normalized central moments can be

computed in this space by first changing the distribution to have a standard deviation of 1,

by scaling Q′ to the hypersphere of radius
√

b.
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Section 2.1.2 mentioned how Q is actually the piecewise integration of Q multiplied by

b. Not including the multiplication by b would simplify some of the distance equations. For

example, the L1 distance would then be exactly equal to the distribution’s mean. This de-

finition of Q was also used in Section 2.1.2 to understand what Q represents when b = 1

and b = 2. If Q was actually an estimate of Q, one bin would represent the distribution’s

median. Since Q is the average of the bin, which in this case is the whole distribution, it is

instead the mean. When b = 2, Q is linearly equivalent to mean and standard deviation, with

µ = 1
2(Q1 + Q2), σ =

√
1
2(Q1 − µ)2 + 1

2(Q2 − µ)2 = 1
2(Q2 − Q1). µ and σ correspond to the

vectors 1 and [−1 1]T . When b = 3, symmetric distributions follow the linear constraint that

Q2 = 1
2(Q1 + Q3).

Additional QF Properties and Relations with Random Variables

Many operations on a distribution have known effects on both the distribution’s QF and

on a random variable that follows the distribution. Let X follow a distribution with QF Q.

If f is a nondecreasing, deterministic function, then f(X) has the QF of f composed with

Q: f(Q(y)) or f ◦ Q. If f is a decreasing, deterministic function, then f(X) has the QF

f(Q(1− y)).

The addition of two independent random variables X and Y corresponds to the convolution

of their PDFs. The equivalent operation to their corresponding discrete QFs, Q and R, is

slightly more complicated. Let Q and R be b bin QFs. Then the b bin QF of X + Y can be

constructed by first considering the set of points formed by taking Qi + R, i = 1, . . . , b. The

resulting set of points are simulated samples from the distribution corresponding to X + Y .

Its discrete QF can now be constructed identically to the QF estimate used in Section 2.1.2,

which involves sorting the b2 samples and then averaging every b adjacent values.

Some operations on discrete QFs are based on the notion of the maximal correlation be-

tween two independent distributions. For example, given a discrete QF Q, one might want

to know the Gaussian distribution that Q has the minimum Euclidean distance to. This is

accomplished by projecting Q onto the submanifold of Gaussian distributions. If Q has a

mean µ and standard deviation σ, its projection will correspond the the Gaussian N (µ′, σ′),
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where µ′ = µ, σ′ = σ · max correlation(Q,QN (0,1)
), and max correlation is defined between

two independent probability distributions q and r as

max correlation(q, r) = max
f
{correlationf (X, Y ) : (X, Y ) ∼ f,X ∼ q, Y ∼ r}.

The notion of maximal correlation is also related to the addition of quantile functions. Let

µi and σi be the respective means and standard deviations of Q
i
, i = 1, 2, 3. If Q

3
= Q

1
+ Q

2
,

µ3 = µ1 +µ2. If Q
1

and Q
2

are in the same location-scale family, σ2
3 = (σ1 +σ2)2, σ3 = σ1 +σ2.

In general,

σ2
3 = σ2

1 + σ2
2 +

2
b

b∑
i=1

(Q
1,i
− µ1)(Q2,i

− µ2) = σ2
1 + σ2

2 + 2σ1σ2 ·max correlation(Q
1
, Q

2
).

In the QF space of zero mean distributions, the maximal correlation between two QFs

Q′ and R′ is the cosine of the angle between the two points at the origin. If θ is this angle,

max correlation(Q′, R′) = cos(θ) = (Q′ · R′)/(
√

Q′ ·Q′√R′ ·R′). If Q′ and R′ have unit

standard deviations, this simplifies to 1
b (Q

′ ·R′).

2.1.5 Summary

Section 2.1 discussed representations of univariate probability distributions in the context

of finding a compact representation of a given population of distributions. Compactness was

defined in terms of the linearity of the submanifold formed by the population and the resulting

low number of parameters needed to express the variability in the population. In this context,

parametric families are ideal. However, Section 2.1 primarily discussed the options when an

appropriate family does not exist. Then one must choose between the three non-parametric

options, discrete PDFs, CDFs, or QFs. Section 2.1.3 discussed how the compactness of non-

parametric representations can be studied in general in terms of the various parametric families.

Sections 2.1.3 - 2.1.4 used the relationship between QFs and parametric families to provide an

intuition to the types of populations for which QFs will be compact. This led to a geometric

intuition of the space of QFs, the first contribution of this dissertation mentioned in Section

1.2.
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Specifically, the relationship between QFs and parametric families were expressed in sev-

eral ways. Two common parameters of distribution families, mean and standard deviation,

were shown for QFs to correspond to linear variation. Euclidean QF distance was shown to

correspond to a known metric, the EMD, which has a simplified form for location-scale fam-

ilies. Submanifolds formed by parametric families were graphed numerically in Figures 2.6 -

2.10 and analytically constructed in Section 2.1.4. A geometric intuition of the space of QFs

was given by considering low dimensional QF spaces and the interpretation of location, scale,

and the other distribution moments as Lp vector norms.

2.2 Quantile Function Generalizations

Section 2.1 gave a detailed analysis of quantile functions, which are only defined for univari-

ate distributions. This section considers methods based on quantile functions for representing

multivariate, conditional, and mixture distributions. The goal is to produce representations

that allow easy estimation of their likelihood from population samples, which is discussed in

Section 2.3. This is insured by producing QF based representations that are natural in two

main senses. First, Euclidean distance is maintained as an invariant metric that is an efficient

approximation of the Earth Mover’s distance (EMD). The EMD is one possible generalization

of Euclidean QF distance and is discussed in Section 2.2.1. Second, I wish to understand the

types of variation that form linear subspaces of the representation and, in particular, to have

the representation maintain the linear subspaces of QFs.

Section 2.2.1 considers multivariate distributions. Section 2.2.2 considers conditional dis-

tributions for use in representing multivariate distributions. Section 2.2.3 considers univariate

distributions composed of a mixture of underlying distributions. Section 2.3 then constructs

models that estimate the probability of these generalized distributions for use in classification

and segmentation.
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2.2.1 Multivariate Distributions

Many interesting applications, such as the texture classification tasks considered in Chapter

3, require the representation of multivariate probability distributions. Therefore, this section

discusses a representation of multivariate distributions composed of several quantile functions.

For univariate distributions, the QF provides a representation in which Euclidean distance

and linear interpolation are understood. Also, given a population of distributions, the QF

estimates distributions accurately and efficiently with respect to the number of QF bins. For

multivariate distributions, it is difficult but still crucial to construct representations with these

desirable properties.

I represent a multivariate distribution using multiple one-dimensional projections of the

distribution. A single vector representation is obtained for a multivariate distribution by con-

catenating the QFs of each projection. A key issue, discussed later in this section, is the choice

of projection directions. First, the Earth Mover’s distance (EMD) is defined, the relationship

between the EMD and the Euclidean distance of this representation is discussed, and linear

interpolation of this representation is discussed. Briefly, Euclidean distance between two such

vectors is the L2 sum of each projection’s Euclidean QF distance. This can be understood as

a fast approximation and lower bound to the EMD between the original multivariate distrib-

utions.

The Earth Mover’s and Mallows Distances

In Section 2.1.3 the EMD was only defined for univariate distributions. As in the univariate

case, for multivariate distributions the EMD is equivalent to the Mallows, Lp-Wasserstein,

and Kantorovich distances [Lev02]. The Mallows distance between independent probability

distributions q and r is

Mp(q, r) = min
f
{(Ef‖X − Y ‖p)1/p : (X, Y ) ∼ f,X ∼ q, Y ∼ r},

the expected Lp distance between random variables X ∼ q and Y ∼ r assuming q and r

are maximally related. Throughout this dissertation I choose to use the L2 distance. The
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motivation given here for using the Mallows distance and the EMD leaves as arbitrary the

choice in the underlying distance measure. However, Section 2.1 focused on the advantages

of forming a Euclidean space, as made possible by the relationship of the quantile function to

the L2 EMD.

The EMD is computed between two point sets x and y with m and n points and corre-

sponding weights wx and wy. The EMD measures the minimum total work (mass × distance)

required to move the set with a smaller total mass so that it completely overlaps with the larger

set [RTG00]. Between each pair of points i in x and j in y, the EMD requires a distance, dij ,

and the optimal correspondence, or flow, fij . The EMD is a metric when dij is a metric and

the two sets have equal mass. When the total weight of each set is normalized such that∑
i w

x
i = 1 and

∑
i w

y
i = 1, these point sets can be viewed as discrete estimates of probability

distributions. Given normalized point sets and an underlying distance dij of ‖xi − yj‖p, the

EMD is equivalent to the Mallows distance, except that the EMD does not take the pth root

of the distance [LB01]. In this case the EMD is defined as

EMD(x, y) = min
f

m∑
i=1

n∑
j=i

fijdij

subject to the constraints:

fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n
n∑

j=1

fij = wx
i 1 ≤ i ≤ m

m∑
i=1

fij = wy
j 1 ≤ j ≤ n

m∑
i=1

n∑
j=i

fij = 1

The EMD is the solution to the well-known transportation, or Monge–Kantorovich, prob-

lem [Hit41, Rac84]. There are two situations which simplify the EMD. First, if all of the points

have equal mass, i.e., if m = n and wx
i = wy

i = 1/n, i = 1, . . . , n, a 1-1 correspondence will be

found. Second, if the points are in a one-dimensional space, the correspondence has a solution
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given through sorting. The quantile function framework discussed in Section 2.1 has both of

these simplifications, yielding the reduction of the L2 EMD to Euclidean distance.

The EMD has been successfully used to compare multivariate distributions represented as

histograms [RTG00]. While successful, this approach has weaknesses in three respects. First,

it is limited computationally by the optimization required to compute the EMD. Second,

understanding the variability in a population is limited by only having a distance metric,

instead of a Euclidean space. Third, histogram representations tend to be noncompact for

object populations. There is work into EMD approximations that addresses the first weakness,

but, similar to the EMD, these approximations are nonlinear distance measures for histograms

[GD04].

The multivariate distribution representation presented in this section addresses all three of

these issues. The first and second weaknesses are solved by having a Euclidean space, which

is discussed below in terms of Euclidean distance and linear interpolation. Euclidean distance

resolves the first weakness because it is a fast approximation and lower bound to the L2 EMD.

Thus, it can be used instead of the EMD itself. The ability of a Euclidean space to resolve the

second weakness is the topic of Section 2.3. The third weakness is addressed by using a QF

based representation, which tends to be compact, as discussed in Section 2.1 and again briefly

below.

Euclidean Distance

As mentioned above, I represent a multivariate distribution using QFs estimated from

multiple one-dimensional projections. To choose the projection directions, I use principal

component analysis (PCA) [Jol86]. PCA is a standard technique for modeling linear variation

in data with origins dating back to Hotelling [Hot33] and Pearson [Pea01]. PCA has the

desirable property that for an orthogonal basis, the directions maximally capture correlations

among the distribution variables. This implies that the projection coefficients are minimally

correlated. Therefore, when independent QFs are built for each projection, the least amount

of information about the joint distribution is lost. For separable distributions, such as the

multivariate Gaussian, being uncorrelated implies independence, and no information is lost.
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This is the most accurate representation of the multivariate distribution possible based on

orthogonal projections. Thus, for a population of multivariate distribution estimates given

as samples, I find common projection directions for the distributions using PCA on samples

pooled across the distributions.

The following argument shows that the Euclidean distance of this representation is an

approximation to and a lower bound of the L2 EMD between the multivariate distributions.

Let X and Y be two d-variate distributions with n samples qi
j and ri

j , i = 1, . . . , n, j = 1 . . . , d.

Let Qi
j and Ri

j be d n-bin quantile functions corresponding to d projections of q and r. Each

Qj and Rj corresponds to a sorted version of qj and rj , where Qj , Rj , qj , and rj are the

respective tuples over i. Let L2 denote Euclidean distance. The EMD between X and Y , or

more appropriately, EMD(q, r), is equal to L2(q, r′), where r′ is an optimal reordering of the

samples ri. L2(Q,R) will always be less than or equal to L2(q, r′), since Q and R are computed

using d optimal reorderings for each projection while r′ is computed using a single reordering.

L2(Q,R) can be considered in two equivalent ways. First, each Qi and Ri can be considered

as samples from X and Y . Qi and Ri correspond to samples when the d sortings are equivalent

to the single reordering of r′. There are several correlation structures of X and Y when this

would hold. One example is when the d projections are maximally correlated for both X

and Y . Second, L2(Q,R) can be considered as a more accurate estimate of EMD(q, r) when

the projections are independent. This is exactly the assumption made when constructing this

representation. When the d projections are independent, any mismatch between the d sortings

and the single reordering of r′ can be viewed as sampling error. L2(Q,R) is less than L2(q, r′)

because the two sets of d univariate distributions are estimated more accurately than their

corresponding multivariate distribution. Their difference is sampling error that is removed by

making the assumption X and Y are independent.

Linear Interpolation

Linear interpolation also has some understood properties. Changing a distribution’s mean

or scaling along the projection directions forms a linear path. Variation in the population

that corresponds to a rotation of the projection directions also has a known effect. However,
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rotational population variation forms a nonlinear manifold. Assume that PCA finds directions

for a distribution such that it is appropriate to consider the projected coefficients independent.

The effect of a rotation can then be considered using independent random variables X and

Y . Let X ′ be a random variable corresponding to a vector in the joint space (X, Y ) at an

angle θ to X. Since the projection directions are fixed in the population, a rotation by θ will

cause the distribution to be projected onto X ′ instead of X. Therefore, X ′ is distributed as

cos(θ)X + sin(θ)Y . Rotation of a distribution in the population corresponds to a weighted

convolution of the univariate marginal distributions. As mentioned in Section 2.1.4, convolu-

tion typically produces nonlinear paths in the space of QFs. One exception is the multivariate

Gaussian distribution. Rotation of this distribution corresponds to scalings of its projected

marginal distributions. This idea is often expressed by stating that any projection of a multi-

variate Gaussian is a Gaussian. With this understanding of linear interpolation and Euclidean

distance, it is appropriate to consider this QF based multivariate distribution representation

as belonging in a Euclidean space.

Compactness

The efficiency of the QF based multivariate distribution representation can be considered

in terms of its length (number of bins). First, for a distribution on d variables, d univariate

distributions are estimated. Thus the curse of dimensionality is avoided and the representation

can be accurately estimated given few samples. Second, similar to the univariate case, d

(2d) bins, represent the distribution’s mean (mean and standard deviations). This allows the

number of bins to be set based on the accuracy needed in the application. Compactness can

also be discussed in the context of a population of objects. It is easy to construct a compact

representation of a population when the population variation forms linear subspaces. The

linear subspaces of this representation were discussed above and the methods for building a

compact representation in this case are discussed in Section 2.3.
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Additional Details of the Multivariate Distribution Representation

As mentioned earlier, a key issue is the choice of projection directions. The PCA approach

is used in Section 3.3 for representing the joint probability of pixel intensities for texture clas-

sification. Section 3.2 uses simple marginal distributions, the projections onto the coordinate

axes, of a distribution of discriminative features (filter responses). The significant effort re-

quired to choose and calculate these features is strongly related to the PCA approach. This

relationship, which leverages a property of the PCA approach when done on variables with

spatial relationships, is discussed more in Section 3.3.2.

Multiple nonorthogonal projections can also be considered for distributions on a low number

of variables to capture relationships among the variables beyond correlation. This could be

applicable, for example, for shape descriptions based on the probability that an (x, y) position

in an image is part of an object’s contour in a population of such contours. This is considered

in future work in Section 5.2.1. Projection directions that maximize discrimination instead of

minimizing information loss could also be found using methods such as independent component

analysis (ICA).

The PCA approach is a supervised method for finding projection directions. Using mar-

ginals is unsupervised, so a training set is unnecessary. While supervised methods are usually

more accurate than unsupervised methods, sometimes for generality or computational reasons

unsupervised methods are preferred. The next section presents an additional unsupervised

approach based on conditional distributions. This approach is particularly useful when the

marginal distributions of a multivariate distribution are identically distributed. In this case

the d marginal distributions supply no more information than any one of the marginals, except

in reducing sampling error. Hence, it strongly benefits from capturing the correlations among

the distribution variables.

Representations of multivariate distributions based on univariate projections cannot cap-

ture all of the joint information in the multivariate distribution. The goal, however, is to

describe a population of multivariate distributions. The representations presented in this sec-

tion allow a computationally efficient two stage approach for this task. First, the representation

of each multivariate distribution captures the correlations among the distribution variables.
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Second, since this representation forms a space in which the variation of a population forms

approximately linear subspaces, the correlations among the one-dimensional projections across

the population can also be captured. This leads to compact representations of the population

that greatly simplify classification and likelihood estimation tasks on the population. This is

discussed more in Section 2.3.

2.2.2 Conditional Distributions

This section constructs an unsupervised representation of conditional probability distrib-

utions. The representation is primarily discussed in terms of its applicability for representing

multivariate distributions with identically distributed marginal distributions. The representa-

tion is used for this purpose in Section 3.3.1, for Markov random field (MRF) based texture

classification.

Let p(x|y) be the conditional probability distribution on the scalar variables x and y.

Similar to the multivariate representations presented in Section 2.2.1, I represent p(x|y) as the

concatenation of several quantile functions representing p(x|yi), where y1, . . . , yn are n subsets

that partition y. This is depicted in Figure 2.13. I partition y based on the n bin quantile

function of y, where yi equals the domain of bin i. To construct this representation given

samples from p(x|y), first separate the samples into their correct y quantile yi by partially

sorting y. Then, for each yi estimate an m bin QF using the corresponding set of x values.

The concatenation of these n QFs forms the final n × m dimensional vector representation.

The computation of this representation is detailed in Section A.3. When n = 1, p(x|y) nicely

simplifies to the marginal p(x).

Once again, this representation should be considered in terms of its Euclidean distance,

its linear interpolation, its ability to be accurately estimated, and its efficiency with respect

to its length. It should also be noted that this representation does not fully capture p(x|y); it

is invariant to monotonic functions of the conditioning variable y. This is because the values

of y are not directly represented but rather are represented through their relationship to x.

However, in two specific situations the representation is fully invariant. The first is when the

two random variables are identically distributed, i.e., when x ∼ y. Any change in y must have
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Figure 2.13: A depiction of the QF based representation of conditional distributions.
Left: Samples from the joint distribution p(x, y) are partitioned in y. Center: A QF on x
is estimated for each yi. Right: Each p(x|yi) is displayed as a histogram.

a corresponding change in x. The second case is when p(x|y) is being used as an intermediary

to represent a multivariate distribution. For example, p(x, y) can be represented as p(y)p(x|y).

The combined representation of p(y)p(x|y) will be fully invariant because changes in y are

accounted for in p(y). Both of these cases apply in the application of this representation in

Section 3.3.1.

The EMD is not defined for conditional probability distributions. Therefore, the Euclidean

distance and linear interpolation of this representation will be analyzed through the distribu-

tion p(x, y). The representation of p(x, y) as p(y)p(x|y) can be directly compared to the EMD

between distributions on two variables. First, consider changes to x and y that do not affect

which partition i that each sample corresponds to. Such changes to y only affect the QF repre-

senting p(y). Similarly, such changes to x only affect the QFs representing p(x|yi). Therefore,

any such changes that are linear for QFs will also be linear for this representation. However,

variation that changes a sample’s partition is more complicated, and it can easily form non-

linear manifolds in the feature space. One exception, once again, is variation consisting of the

rotation of a multivariate Gaussian distribution, which is linear.

Unfortunately, the Euclidean distance of this representation has a weak relationship to the

EMD. Any type of variation can make Euclidean distance differ from the EMD. As mentioned

in Section 2.2.1, the EMD between two distributions represented by samples computes a 1-1
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correspondence between the two sets of samples. The Euclidean distance of this representation

is comparable to the EMD only when it computes the same correspondence as the EMD.

This representation assumes that samples remain in the same partition of the conditioning

variable. Further, by computing independent QFs for p(y) and each p(x|yi), the representation

assumes the maximal correlation of x and y within each subset yi. Therefore, when the optimal

correspondence is computed, Euclidean distance is a lower bound on the EMD. In general,

however, any mismatch between the correspondence assumed in this representation and the

optimal correspondence will increase Euclidean distance as compared to the EMD.

The ability to estimate this representation from samples is also conveniently discussed

in the context of the joint distribution p(x, y). The n × m-vector representing p(x|y) can

be viewed as an adaptive binning of the space (x, y). Since each bin represents 1/(nm) of

the distribution, each bin is estimated with the same accuracy. However, this representation

requires n × m values instead of the 2n values required by the representation given in the

previous section. A generalization of this conditional representation for distributions on d

variables that would require nd values would be both computationally infeasible and impossible

to accurately estimate. Therefore, I now present a generalization requiring dn2 values.

Let p(xj) be a probability distribution on d+1 random variables. Partition xj into the ran-

dom variable y and d random variables xi, where y is chosen so that it is most correlated to the

other d random variables in xj . p(xj) can now be rewritten as p(y, xi) = p(y, x1, . . . , xd). Using

Bayes rule, p(y, x1, . . . , xd) = p(y)p(x1, . . . , xd|y). Then, assuming the conditional indepen-

dence of each xi given y, this simplifies to p(y)
∏d

i=1 p(xi|y). This assumption corresponds to a

known assumption in the MRF literature and is discussed in Section 3.3.1. When y and the d xi

marginal distributions are identically distributed, this can be rewritten as p(y)
∏d

i=1 p(y|xi).

A representation of p(y, x1, . . . , xd) can now be constructed by concatenating together the

representations for each of the reduced d + 1 independent distributions.

Sections 2.2.1 and 2.2.2 discussed represents of multivariate distributions. Next, Section

2.2.3 considers populations of standard, univariate distributions that contain mixture variation.
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2.2.3 Quantile Function Mixtures

Section 2.1 showed that the quantile function is appropriate for modeling distributions

with variation similar to location and scale change. Mixture variation, however, was shown

to form nonlinear paths in the space of QFs. One approach to modeling mixture variation

is to explicitly compute the underlying distributions and their mixture weights. This is the

approach taken in this section, where quantile function mixtures are computed by estimating

each underlying distribution by a quantile function. Let Y and X1, . . . , Xn be univariate

random variables, and let w1, . . . , wn be mixture weights such that Y ∼ w1X1 + . . .+wnXn. A

QF mixture Q = [w1, Q1, w2, Q2, . . . , wn, Qn] is defined where the QF Q defines the distribution

followed by Y , and the QF Qi defines the distribution followed by Xi, for i = 1, . . . , n.

This section focuses on understanding the linear subspaces of QF mixtures and on how to

relate their Euclidean distance to the EMD. The estimation of the QF mixture parameters

for a given distribution or for a given set of distribution samples is only briefly discussed.

However, this can be a complicated task that is the focus of a large body of literature in

mixture modeling [Has66, TSM85, MP00]. Parametric mixture models, such as a mixture of

Gaussian distributions, are constrained, i.e., they cannot exactly represent all distributions.

This leads to a parameter estimation task that must trade off between the accuracy of the

mixture model and the likelihood of the model parameters as given by a prior. QF mixtures

are able to exactly represent all distributions, so do not face this tradeoff.

This flexibility of QF mixtures, however, leads to the disadvantage that there is ambiguity

in the representation: a given distribution can be exactly represented by a variety of QF

mixtures. A prior on the model parameters resolves this ambiguity by allowing the most likely

QF mixture to be selected. In the medical imaging applications discussed in Chapter 4, a QF

mixture is estimated using thresholding, where n − 1 threshold values separate n underlying

distributions that correspond to different tissue types. When the underlying distributions are

widely separated, this approach is accurate as well as computationally simple, and it resolves

any ambiguities in the representation. This is further discussed in Section 4.2.

The linear subspaces of QF mixtures are easily understood. By construction, QF mixtures

have the linear subspaces of QFs plus the linearity given by the mixture parameters. Therefore,
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mixture changes between the Qi’s are linear, but mixture variation within each Qi remains

nonlinear. The additional mixture linearity, however, comes at a cost. As discussed above,

estimating a QF mixture can be more difficult than estimating the distribution’s QF. Also,

QF mixtures are less general than QFs; QFs are a purely nonparametric representation while

QF mixtures introduce specific model parameters that must be chosen in advance for an

application.

While linear interpolation of QF mixtures is appropriate, unfortunately Euclidean distance

is not. One simple requirement of a sensible Euclidean distance is for the dimensions to be in

commensurate units; the mixture weights and quantiles in a QF mixture are incommensurate.

I will now linearly scale the space of QF mixtures to make Euclidean distance appropriate while

leaving linear interpolation unchanged. Depending on the number of underlying distributions

in the QF mixture and the assumptions made, Euclidean distance can be made to be locally

equivalent to the EMD or to an upper or lower bound of the EMD.

First, consider mixtures of 2 quantile functions. Let Q = [w1, Q1, w2, Q2], where Qi has

bi bins. The EMD is measured in units of work, mass × distance. For a QF, each dimension

has a fixed mass and a variable location. A change in a variable is a change in location,

which is distance and it can be converted to work by multiplying by its mass, 1/b. In a QF

mixture, the weight of the quantiles in Qi are wi/bi. The weights, w1 and w2, can also be put

into units of work. A change to wi corresponds to moving mass from one of the underlying

distributions to the other. A change in mass can be converted to work by multiplying by the

fixed distance the mass must travel. The distance between the underlying distributions is their

EMD, EMD(Q1, Q2). I include both w1 and w2 in this representation, which counts both the

positive and negative movement of the distribution mass. Therefore, I instead multiply wi by

half the distribution distance, 1
2EMD(Q1, Q2). Alternatively, only w1 could be included in the

representation, but this approach does not generalize well for n > 2. Let Qave = 1
2(Q1 + Q2).

To summarize, Q can be scaled to Q′ by setting Q′
i = wiQi/bi and w′

i = 1
2EMD(Q1, Q2)wi =

EMD(Qi, Qave)wi. In practice, a lower bound of the EMD between Q1 and Q2 can often be

used. If the two distributions are well separated, the difference of their means is an accurate

lower bound on their EMD. In this case, w′
i = |µi − µave|wi.
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The scaling computed above is specific to the QF mixture Q. Euclidean distance is equal

to the EMD only when comparing QF mixtures close to Q. Otherwise the assumption that the

weights and quantiles can be independently scaled is false. It is also inappropriate to compare

QF mixtures that have been scaled with respect to different distributions. Therefore, I define

a metric between two QF mixtures using their average to determine the scaling. Similarly,

for a population of QF mixtures, distances can be computed with respect to the average QF

mixture of the population. For a population, this results in a Euclidean distance near the

population’s mean that is approximately equal to the EMD.

Currently, a distance metric has been defined for QF mixtures consisting of two underlying

distributions. When n > 2, a similar metric can also be constructed. However, the exact EMD

is difficult to express in terms of the parameters of a QF mixture. Therefore, an upper bound

of the EMD is used instead. Let Q = [w1, Q1, w2, Q2, . . . , wn, Qn] be a QF mixture with n

underlying distributions. The scaling computed for the quantiles in the n = 2 case are still

appropriate, where Qi is scaled to wiQi/bi. The scaling on the weights, however, does need

to be reconsidered. For n > 2, when mass moves from an underlying distribution, it is not

straightforward which underlying distribution it moves to. This problem is equivalent to the

underlying optimal matching done in the EMD itself. Therefore, I use an upper bound on

this distance that leverages the triangle inequality. For n = 2, w′
i = EMD(Qi, Qave)wi. This

distance is exactly the EMD because as the mass moves from Q1 to Q2, or vice versa, it must

pass through Qave. For n > 2, the mass does not need to pass through Qave. However, due

to the triangle inequality, forcing the mass to go through Qave makes the distance an upper

bound of the EMD. I use this scaling for the n > 2 case. Intuitively, the wi’s that increased

move extra mass to the mean distribution, and the wi’s that decreased grab needed mass from

the mean distribution. Therefore, knowing the matching between the wi’s is not needed. Thus,

the same scaling of Q is computed for all values of n, just its interpretation changes.

The space of QF mixtures forms a convex space. The constraint
∑n

i=1 wi = 1 is linear,

which implies that averaging and interpolation will be valid. Also, since the scalings computed

above are linear these properties also hold for the scaled QF mixtures.
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2.2.4 Summary

Section 2.2 presented three representations of probability distributions that generalize the

quantile function. The generalizations for multivariate distributions presented in Sections

2.2.1 and 2.2.2 are used in Chapter 3 to represent textured materials. The generalization

for univariate distributions containing mixture variation presented in Section 2.2.3 is used in

Chapter 4 to represent the appearance of organs in CT images. Next, Section 2.3 discusses

how to estimate likelihoods in all of these spaces from a population.

2.3 Population Likelihood Estimation

This section provides accurate and efficient descriptions of populations of objects repre-

sented using one of the quantile function based representations discussed in Section 2.2. Each

population is described by its mean and covariance using principal component analysis, under

the assumptions that the population is Gaussian, that only valid objects are of interest, and

that objects dissimilar to the population are expected and must be identified. The resulting

models are appropriate for the two related tasks considered in Chapters 3 and 4, classification

and segmentation. The segmentation task models a single population of objects. Then, the

object most likely to come from that population is sought, under certain constraints. The clas-

sification task models multiple populations labeled into different classes. Then, new objects

are presented, and the most likely, existing class that it belongs to is found.

This section presents an identical methodology for use in both classification and segmenta-

tion. Section 2.3.1 describes likelihood estimation of a single population. Chapter 4 discusses

how these likelihood estimates can be used in the posterior segmentation of organs in CT

images. Section 2.3.2 describes a classifier based on the decision boundaries implied by each

population’s estimated likelihoods. This classifier is used and discussed further in Chapter

3. Section 2.3.3 discusses other interpretations of this method; Section 2.3.4 discusses how to

select the parameters of the method.
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2.3.1 Modeling a Population’s Variability

Let {Qi} be a population of n objects described by one of the quantile function based

representations presented in Section 2.2. This section assumes that {Qi} are samples from

an underlying probability distribution P that must be estimated. The resulting estimate, P̂ ,

is used to define the likelihood that a new object is from P . I parametrically estimate P by

assuming it is Gaussian distributed as N (µ,Σ), i.e., I estimate its first and second order statis-

tics. The details of this model will now be discussed along with the factors that determine its

appropriateness and its ability to be accurately estimated using principal component analysis

(PCA).

First, µ can be simply computed as the linear average of {Qi}. Recall that µ will always

be a valid quantile function since the space of the representation is convex. Further, µ will

be representative of the population when it exists on a linear subspace. Section 2.1 described

in detail the convexity and linear subspaces of QF functions; Section 2.2 discussed how these

properties are conserved for the generalized QF representations. Chapters 3 and 4 discuss the

linearity of their particular populations.

Σ can be estimated using PCA. In order to understand if it is appropriate to use PCA

in this situation, it is important to remember that PCA is typically used for two different

tasks with different requirements. One task is to generate points of interest, which requires,

in increasing order of stringency, convexity, linearity, and a vector space. The other task

is to estimate the likelihood of points in a space, which requires convexity, linearity, and

Gaussianity (in increasing order of stringency). The first task is generative while the second

is discriminative. The generative task requires a vector space so that only valid points are

generated. The discriminative task, however, is typically not concerned with invalid points.

Both tasks considered in Chapters 3 and 4 are discriminative, and only the probability of valid

points are of interest. The likelihood of invalid points is never asked for, so the fact that they

get assigned a nonzero probability is of little concern. Σ is being estimated in this section for

such a discriminative task. The convexity of the space and the linearity of the population’s

variation have already been discussed. Approximate Gaussianity is assumed in this section

and for the populations considered in Chapters 3 and 4.
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Now, I consider how well Σ can be estimated using PCA. Assuming that the population

{Qi} is appropriately Gaussian, there are three main factors that determine how well Σ can be

estimated: the number of points in the population, n, the dimension of the space, d, and the

inherent dimensionality of the population, D. The inherent dimensionality of a population is

the dimensionality of the subspace (RD) that the population is restricted to in the full space

(Rd), disregarding any noise present in the population samples.

PCA is typically considered only in terms of n and d. The populations in chapters 3 and 4

typically have d > n, with n in the 10’s and d in the 100’s. This is known as a high dimension

low sample size (HDLSS) situation [MCAM]. A direct application of PCA can only estimate

a singular covariance matrix, Σ′, in HDLSS situations. Σ′ only estimates the likelihood of

points in a subspace of Rd. The likelihood of a point x in Rd is computed by first projecting

x into the computed subspace as x′ and then computing the likelihood of x′. Σ′, however, is

inappropriate for the tasks considered in Chapters 3 and 4. Both tasks need to estimate how

likely x is from P , when you expect to see points not from P . Thus, the likelihood of points

far from the estimated subspace need to be computed. Σ′ discards the difference between x

and x′, the information that in some situations is the most informative for determining if x is

from P .

In order to estimate a non-singular covariance matrix, I consider Σ in terms of the pop-

ulation’s variation in RD and an isotropic variation, or noise, in Rd. The covariance matrix

can then be thought of as Σ = Σ′ + σ′I, the sum of a singular covariance matrix and an

isotropic variance. The populations considered in Chapters 3 and 4 are shown to exhibit a low

inherent dimensionality, allowing this formulation to be effective and efficient despite the high

dimensionality of the space (large d) and the limited sample sizes (small n). Therefore, for the

remainder of this section I will assume that D < n < d.

Before discussing how to estimate Σ using PCA, first I first express Σ in a different form.

Any non-singular covariance matrix in Rd can be written as Σ = UΛU−1, where U is a rotation

matrix composed of orthogonal unit vectors and Λ is a diagonal matrix. PCA expresses

Σ in such a form where the columns of U are eigenvectors of Σ and the diagonal entries

of Λ are eigenvalues of Σ. The above Σ can be expressed in this form using eigenvalues
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[λ1, . . . , λD, σ, . . . , σ], where there are d − D σ’s. The maximum likelihood estimate (MLE)

of covariance matrices of this form can be estimated as follows. Use PCA to compute, in

decreasing order by eigenvalue, the n non-zero eigenvalues, λi, with corresponding eigenvectors,

Ui, in the d dimensional space. The columns of U are U1, . . . , UD and an arbitrary orthogonal

basis in the remaining d − D dimensional subspace. Λ is composed of λ1, . . . , λD and σ =∑n
i=D+1 λi/(n − D), the sum of the remaining eigenvalues normalized appropriately for the

HDLSS situation.

In my experiments in Chapters 3 and 4, I have found the above formulation to be overly

sensitive to σ. This is due to the fact that often d >> d−D, making σ much more important

in the likelihood estimate than the D eigenvalues. Therefore, in my model I do not normalize

σ by dividing by n−D, instead I set it as the simple sum of the remaining eigenvalues. This

formulation can be viewed as measuring the expected projection error onto the measured RD

subspace. The resulting Gaussian likelihood estimate contains D + 1 Mahalanobis distances

rather than the d in the original formulation, which seems sensible since it is based on the

inherent variability of the population instead of the arbitrary dimension of the space.

This section described an approach to estimating the likelihood of a population of objects

described by a QF based distribution representation. Next, Sections 2.3.2 and 2.3.3 discuss

other interpretations of µ and Σ. Section 2.3.4 then considers how to select the new parameter

this approach introduces, the number of kept eigenvalues.

2.3.2 Classification

This section describes how the population likelihoods presented in the previous section can

be used for supervised classification. Classification has 2 phases. First, the classifier is trained

using samples from each of the c classes. Second, novel objects are presented and identified by

the classifier into 1 of the c classes learned during training.

I train the classifier by learning a mean, µi, and a covariance, Σi, for each class. Novel

target objects are identified by assigning them to the class for which it has the maximum

likelihood. This classification strategy is known as quadratic discriminant analysis (QDA)

[DHS01]. QDA finds optimal class decision boundaries under the assumption of Gaussian class
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variation. When a common covariance structure is learned for all the classes, linear decision

boundaries are defined, and the classification strategy is known as Fisher linear discrimination

(FLD). When per class covariances are learned, as is the case here, QDA defines quadratic

decision boundaries [DHS01].

I use standard QDA with two exceptions. The first is in the estimation of each Σi, as was

discussed in the previous section. The second is in the selection of the number of eigenvalues

for each class. This is discussed in Section 2.3.4.

2.3.3 Other Interpretations

Learning a mean and covariance matrix from samples of a population has other inter-

pretations. First, instead of the likelihood that µ and Σ define, consider the corresponding

Mahalanobis distance. The Mahalanobis distance is a linear scaling of the underlying Euclid-

ean distance metric (by Σ) to account for the variability in the population samples. In a

classification context, QDA can then be thought of as a nearest neighbor (NN) classifier with

one prototype, µi, and class specific scalings of the distance metric. The appropriateness of

PCA can also be reconsidered in this context. In Section 2.3.1 I claimed that a vector space

was unnecessary for discriminative uses of µ and Σ. Since the Mahalanobis distance is a lin-

ear scaling of Euclidean distance, it is appropriate when two things hold. The first is when

Euclidean distance is appropriate, which has been discussed in detail. The second is when Σ is

appropriate. Σ exactly describes multivariate Gaussian distributions, but it can be descriptive

and useful in many situations when the distribution is simply unimodal.

The model can also be interpreted as a distribution family. Recall that µ and Σ measure

the variation of a population in a D dimensional subspace. The D eigenvectors λi measure

the expected variation in each of the directions given by Ui. Using different coefficients on the

eigenvectors generates points of interest that are similar to the samples. Let F (α1, . . . , αD) =

µ +
∑D

i=1 αiUi. F is a function of D parameters that generates points of interest. Recall that

every point in this space is a representation of a probability distribution. Therefore, F defines

a parametric distribution family with D parameters. Similar to standard distribution families,

only certain combinations of the parameters will produce valid probability distributions. Also,
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F cannot describe all distribution families. While any single distribution can be represented, F

is restricted to the distribution families that linearly vary in the underlying space of QF based

representations. This includes the location–scale families detailed in Section 2.1. Chapters 3

and 4 give examples of the learned, population specific, distribution families.

2.3.4 Determining the Number of Principal Components

This approach introduces a parameter for each population that must be determined, the

dimensionality of the estimated subspace. Both the classification and segmentation tasks

considered in Chapters 3 and 4 contain multiple populations. The classification task contains

a population for each class. The segmentation task often splits a higher dimensional probability

distribution into multiple, independent distributions with their own likelihood estimates.

Typically, it is too difficult to manually select, or automatically tune, this parameter sep-

arately for each population. Therefore, the parameters are constrained so that there is only 1

free variable. One standard approach is to constrain each population to have the same number

of components. However, this makes the assumption that the covariance of the populations

are similarly distributed, which is unfounded. Another standard approach is to constrain each

population to have similar relative remaining variances. Thus, the same percentage of the

covariance is captured for each population. This approach is standard for generative, or com-

pression, purposes, since error is explicitly tracked. However, in a discriminative context this

approach assumes each population has the same total variance.

In this work, I choose to constrain each population to have the same absolute remaining

variance, which is the computed expected projection error, σi. This constraint leverages the

fact that Euclidean distance is sensible, so it should allow a consistent measure across the

populations of which variation is important. Such a consistent measure assumes that each

population has the same level of noise in their variable estimates. This is often a reasonable

assumption and it allows the chosen projection error to be considered as the common noise level

across classes. Additionally, one rationale for choosing the same absolute remaining variance

across classes, is that the likelihood model is built with the goal of having the same level of

sensitivity when considering objects from different populations. Allowing different σis might
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introduce a bias or sensitivity to the estimated likelihoods.

I have found it convenient to parameterize the desired σ by the minimum number of

components across the population. This sets σ as follows. I compute σi for each population

given the input number of components. Then, I set the target σ to the minimum σi. Next, each

population determines the number of components it needs so that σi ≤ σ. In chapter 3, I use

cross-validation on the training populations to automatically determine this parameter. I show

the sensitivity of the model to this parameter, and I compare this constraint on the number

of components to constraining each population to have an equal number of components. In

Chapter 4, I manually tune the number of components. However, the range of number of

components considered is quite small, typically between 1 and 3.

2.4 Summary and Conclusions

Chapter 2 presented a methodology for estimating the likelihood of several types of prob-

ability distributions from populations. These likelihoods are used to build models of texture

and object appearance in the driving problems presented in Chapters 3 and 4.

The underlying theme throughout Chapter 2 is compactness. Section 2.1 introduced this

theme by describing the general context of this dissertation: finding compact representations of

a population of distributions. Next, methods of analyzing compactness were introduced, which

was in terms of linearity and the resulting low number of needed parameters. Representations

of univariate probability distributions where discussed in this context, for which parametric

families are ideal. However, Section 2.1 primarily discussed the non-parametric options when

an appropriate parametric family does not exist. Quantile functions were shown to have several

advantages over other non-parametric representations. First, they compactly describe a single

distribution using notions such as mean and standard deviation. Second, this advantage is not

lost when describing a population of distributions. Third, several general forms of distribution

variation are linear, including mean change and standard deviation change. Lastly, several

parametric families form known submanifolds in the space of quantile functions, which gives

a geometric understanding to the space.
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Section 2.2 considered methods based on quantile functions for representing multivariate,

conditional, and mixture distributions. The compactness of the representations were discussed

by showing they had linear properties similar to quantile functions. Specifically, Euclidean

distance and linear interpolation were discussed for each. Euclidean distance was shown in each

situation to be an approximation to the Earth Mover’s distance. The multivariate distribution

representations presented in Sections 2.2.1 and 2.2.2 are used in Chapter 3 to represent textured

materials. The univariate distribution representation that models mixture variation and that

is presented in Section 2.2.3 is used in Chapter 4 to represent the appearance of organs in CT

images.

Section 2.3 discussed how to estimate likelihoods from a population in such spaces. The

presented methods leverage the fact that the population is expected to have linear variation

and to be compact. Linearity and compactness greatly simplify estimation tasks and allow for

fairly standard techniques to be used. In particular, Section 2.3 discussed the appropriateness

of principal component analysis for estimation in these spaces, methods for handling high

dimension low sample size situations, and methods for selecting the introduced parameters.
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Chapter 3

Quantile Function Based Texture

Classification

This chapter applies the methodology described in Chapter 2 to texture classification.

Specifically, photographed materials are represented using probability distributions of texture

features and identified from examples. Texture classification consists of three main elements:

1) texture features that are typically dense and per pixel, 2) the representation of these fea-

tures for an entire texture (image), and 3) the classifier or comparison measure between texture

representations. A driving concern throughout this chapter is the relationship between tex-

ture features and their representation. I consider these two elements together with the goal

of compactly and discriminatively describing a population of textures. A compact popula-

tion representation greatly simplifies the actual classification task, allowing the accurate and

efficient classification techniques discussed in Section 2.3.

Section 3.1 discusses previous texture classification work. First, Section 3.1.1 describes

texture and existing data sets in the texture community. Particular interest is given to the

Columbia-Utrecht reflectance and texture database (CUReT) [DvGNK99]. All experiments

reported in Sections 3.2 and 3.3 are on CUReT. Then Section 3.1.2 describes existing methods

for texture classification. Existing approaches are stressed that use histograms with bin loca-

tions defined through clustering. This approach to representing multiple features is common

across many applications, so it is of particular interest to this work, which spans multiple

applications itself. Particular interest is also given to the MR8 filter bank [VZ02]. This fil-



ter bank was introduced by Varma & Zisserman for CUReT, and I use it for my classifier in

Section 3.2.

Section 3.2 describes my filter bank based classification methodology and gives results.

Section 3.3 describes my Markov random field (MRF) based classification methodology and

gives results. The similarity, strengths, and weakness between these two approaches as well

as between my approaches and previous work are discussed. An early version of this work

appears in [Bro05].

3.1 Texture Classification Background

Texture analysis has a rich history dating back three decades. Due to the breadth of

the texture analysis literature, this section focuses on the statistical texture classification

techniques most related to this work. Also, the challenges and techniques in texture analysis

are not unique to this task. This section describes some related methods that are not from

the texture analysis community.

As mentioned in Section 1.1.1, texture refers to the characteristic visual patterns exhibited

by particular types of objects in images. Objects that can be described well in terms of texture

have surfaces that exhibit some degree of approximate spatial periodicity, either deterministic

or stochastic. Texture analysis seeks to represent images of such objects in a way that captures

the characteristic patterns in the texture while being invariant to other information specific

to the image, such as viewing and illumination angle. In other words, a representation of the

object is sought that is more compact than the image and that only captures information that

helps distinguish between different sets of textures.

Section 3.1.1 further describes texture and existing data sets in the community. Section

3.1.2 discusses existing methods to analyze such databases.

3.1.1 Texture and Existing Databases

Below are two early definitions of texture compiled by Coggins [Cog82] and also given in

[TJ98].
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1. “We may regard texture as what constitutes a macroscopic region. Its structure is

simply attributed to the repetitive patterns in which elements or primitives are arranged

according to a placement rule.” [TMY78]

2. “A region in an image has a constant texture if a set of local statistics or other local prop-

erties of the picture function are constant, slowly varying, or approximately periodic.”

[Skl78]

The above definitions correspond to structural and stochastic views of texture. Structural

models decompose texture into two elements, underlying texture elements and their arrange-

ment [Har79, BA88, VP88]. Stochastic models focus on the random properties instead of

the deterministic properties of the texture, and they describe local properties of the texture

sufficient for characterization [HB95, GS05]. Both definitions leverage the important texture

property of spatial homogeneity at a particular scale, which allows texture to be identified

by local statistics. Julesz analyzed the set of local statistics used in preattentive human tex-

ture perception, the process that makes textures “effortlessly distinguishable” [Jul81, BJ83].

Julesz introduced the term “texton” to describe the basic texture primitives recognized in

preattentive perception. Textons are analogous to phonemes in speech recognition. Textons

are described as “elongated blobs (of given orientation, width and aspect ratios) and their

terminators” [Jul81]. Julesz hypothesized that the human preattentive system analyzes the

frequency of textons and does not perform any higher order statistical analysis of spatial in-

teractions in the texture. Both the structural and stochastic models can be decomposed into

and thought of in terms of such textons.

There is a large variety in the types of textures considered in the texture analysis com-

munity. Textures can be generated or imaged through various devices such as cameras, aerial

satellites, microscopes, sonar, computed tomography (CT), magnetic resonance (MR), and

ultrasound (US). There are purely structural and stochastic textures, as well as textures with

both structural and stochastic aspects, such as natural textures and imaged materials. This

chapter focuses on natural and material textures imaged using standard cameras. Imaged

textures are divided according to their surface properties into either two-dimensional (2D)

61



or three-dimensional (3D) textures [DvGNK99, LM01, CHM05]. 2D textures have smooth,

locally planar surfaces whose primary, physical cause is local variation in surface spectral re-

flectance. 3D textures have rough surfaces whose texture is related to local height variations.

Even in the restricted domain of imaged 2D and 3D textures, the texture databases used in

the community have varied over the years.

As mentioned in the beginning of Section 3.1, the relevant information and desired invari-

ances in a texture description depend on the specific set of textures being examined. This

points out one difficulty in texture analysis: the generalizability of methods beyond the exam-

ined database. However, specific types of texture variation are of interest in the community,

and methods and databases can be generally discussed in terms of the types of variation they

handle or express.

Early texture classification work used databases such as the Brodatz collection [Bro66].

Typical experiments acquired multiple training and target images per class by partitioning the

single per class image supplied by the database. Therefore, the texture variation within a class

is limited and only includes sampling variation caused by large scale features or deformations

in the physical material being imaged. Later texture databases, such as the MIT Vision [vis]

and MeasTex Image [mea] texture databases, introduced variability that would be expected

in less constrained, “real world” situations. Such situations include variation due to lighting

and viewpoint angle. However, the variation included in these databases is not comprehensive

because only a small number of lighting conditions or viewpoint angles are given.

More recently, the CUReT [DvGNK99] and the KTH-TIPS2 [CHM05] databases have been

introduced, which supply a much more comprehensive collection of images. CUReT, which is

described in detail below, supplies 205 images of 61 materials taken in a controlled environment

under varying viewing and illumination angles. Such a database allows texture models to be

constructed and analyzed in terms of these specific variations. KTH-TIPS2 supplies images

similar to CUReT but that contain two additional forms of variation. First, changes in scale,

i.e., zoom, in the camera are included for each material. Second, multiple example materials

for each class are defined. Multiple examples allows the classification of true texture categories,

instead of identification of specific examples in a category.
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Figure 3.1: The 61 materials in the CUReT database. Image taken from [VZ02].

The Columbia-Utrecht Reflectance and Texture Database

CUReT was collected by researchers at Columbia University and Utrecht University [DvGNK99].

Figure 3.1 shows each of the 61 materials at a frontal viewing angle. Each class contains images

from one material that exhibit 3D effects such as specularities, inter-reflections, and shadow-

ing, as shown in Figure 3.2. This large intra-class variability makes correct classification of

the database a challenging task. The limitations of CUReT include a lack of significant scale

change, limited in-plane rotation, and small-scale texture features. Small-scale features tend

to simplify classification tasks by allowing more compact and better sampled texture measure-

ments.

In Sections 3.2 and 3.3, I follow an experiment on CUReT designed by Varma & Zisserman

[VZ02] and followed in [VZ03, HCFE04] (and also, roughly, in [PNMT04]). The experiment

uses 92 of the 205 per class images, those with the largest minimum number of valid pixels

across the samples. Each of these 61×92 = 5612 images are cropped to a resolution of 200×200,

converted to grey scale, and processed to have zero mean and unit variance. In Sections 3.2

and 3.3, I use exactly the same images as Varma & Zisserman, which Varma supplied [VZ02].

In Section 3.3, I discuss the necessity of the grey-scale intensity normalization, which is done
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Figure 3.2: Thirty images from the “Zoomed Plaster B” material (number 30) illustrating
the large intra-class variability present in CUReT.

to achieve partial invariance to linear intensity variation across images.

An experiment must also split the 92 per class images into disjoint training and test sets.

Varma & Zisserman typically reported results for two cases, each with 46 training and 46

target images per class. The first case alternates training and target assignment in the order

the images are given. The second case gives results averaged over a small number of random

splits. These splits yield a total of 61 × 46 = 2806 training images and 2806 test images for

each split. In Sections 3.2 and 3.3, unless otherwise specified, I report results averaged over

100 random splits with equally sized training and test sets. For consistency, the test set is not

modified when smaller training sets are examined.

Of the 5612 images considered in CUReT, one of the images has a corrupted file. It is

image 60-101 (sample 60, view 02-62). The effects of this corrupted image are not discussed

further, beyond noting that parametric classifiers, such as QDA, are more sensitive to outliers

than non-parametric classifiers, such as nearest neighbor.

3.1.2 Existing Methods

As mentioned at the beginning of this chapter, texture classification consists of three main

elements: 1) texture features that are typically dense and per pixel, 2) the representation

of these features for an entire texture (image), and 3) the classifier or comparison measure

between texture representations. The choice of these elements depends on the textures of

interest. Of concern are the types of expected textures and their variation, which influence

the effectiveness and appropriateness of the various texture analysis elements.

This section continues with a discussion of texture features and their representations with
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an emphasis on dense features that are statistically represented. Then, invariances are dis-

cussed in terms of the 2D and 3D texture databases described in Section 3.1.1. Finally, texture

classification is discussed.

Texture Features

One category of texture features is based on the spatial statistics of pixel intensities. Fea-

tures include co-occurrence matrices (or gray level co-occurrence matrices (GLCMs)) [HSD73]

and Markov random fields (MRFs) [Pag04]. Spatial statistics are characterized by their order

and have the following definitions. First-order statistics measure the distribution of gray values

of a single pixel, which is simply the marginal PDF of intensity in the image. Second-order

statistics measure the intensity distribution of two pixels at a fixed spatial relationship. These

2-variate distributions can be thought of as measuring the intensity at the ends of a dipole at

a fixed orientation and length [Jul81]. There are many possible second-order statistics in an

image. Higher-order statistics, n-order with n > 2, can be similarly defined as the n-variate dis-

tributions of gray values of n pixels at a fixed spatial relationship. A GLCM is a second-order

statistic represented, if there are G gray values, by the full G×G two-dimensional histogram.

Since this histogram is large and several spatial relationships may want to be modeled, sum-

mary statistics of GLCMs are often computed as texture features, such as autocorrelation,

entropy, and homogeneity (see [TJ98] for their definition). Such summary statistics are simi-

lar to scale or orientation summaries of the fourier transform, which all form non-dense texture

features that will not be discussed further.

MRF models measure the distribution of intensities in compact pixel neighborhoods. Given

a 3×3 (5×5) neighborhood, MRFs estimate its 9(25)-variate joint distribution or, equivalently,

its 8(24)-variate distribution conditioned on the center pixel’s intensity. This 9(25)-variate dis-

tribution is a specific 9(25)-order statistic. MRFs are further related to spatial order statistics

by the Hammersley-Clifford theorem [HC71], which allows MRFs to be decomposed into dis-

tributions on a set of cliques. The cliques of a 3× 3 neighborhood are all of the first, second,

third, and fourth order statistics with the spatial constraint that all pixels in the statistic are

neighbors. Some MRF models, such as the Derin-Elliot [DE87] and auto-binomial [Bes74], are
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constrained to first and second order cliques, capturing equivalent information to GLCMs.

Another category of texture features is based on spatial filtering. Spatial filters are a

generalization of global measures of frequency like the Fourier transform to local measures of

orientation and scale. Features are the response of a bank of linear spatial filters convolved

with the image. Many such approaches have been proposed since the 1980s [KG83, KvD87,

MP90, HB95]. Filters include Gabor functions, Gaussian derivatives, Laplacians, differences

of offset Gaussians, order moments, wavelets, and image pyramids. Invariant filters and the

representation of distributions of filters are discussed later in this section. Spatial filters are

linked to MRF models since a linear filter is a one-dimensional projection in the joint space of

intensities modeled by MRFs. This is discussed more in Section 3.3.2.

Spatial filtering was inspired by models of processing in the early stages of the primate vi-

sual system, which suggested that a retinal image is transformed into a local spatial/frequency

representation [VV88, BA88, VP88, MP90, Hee93]. Several methods have attempted to model

this visual system, which has resulted in filter banks with particular properties. For example,

Malik & Perona used only even-symmetric, second-order filters [MP90]. After filtering, Malik

& Perona and Heeger perform half-wave rectification, where the positive and negative responses

of each filter are separated into their own features [MP90, Hee93]. After rectification, these

methods perform additional nonlinear normalization based on inhibition. In later work, Malik

also argues that the PDF of filter responses captures information equivalent to the first order

statistics of textons [MBLS01], similar to the human preattentive system [Jul81]. Continuous

filter responses measure translation and rotation variate responses to discrete textons. Hence,

clusters in the filter response PDF space represent textons [MBLS01].

Local binary patterns (LBPs) are texture features similar to a discrete valued filter re-

sponse [OPH96]. For each pixel, LBPs construct a binary mask (code) that describes the

local neighborhood by thresholding neighboring pixels by the gray value of the center pixel.

An entire texture is represented by the frequency of each binary mask. This is similar to the

frequency of clusters in the joint space of filter responses [MBLS01].

There are other texture features that do not easily fit into one of the categories above.

Geometric features were not discussed since they can be principally applied only to black and
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white structural textures. Also of note are dense fractal features such as the fractal dimension

[CS95]. Roughly speaking, fractals appear similar at all scales, which means a fractal is

composed of n copies of itself scaled by a factor s. Fractal dimension, d, assumes n and s

are related by a power law, i.e., n ∝ s−d. Local fractal dimension can be computed using the

sum of intensities at a radius r from the center pixel as the “number” of copies and r as their

“scale” [CS95].

Feature Representations

Dense, per pixel texture features were stressed above. Such features are represented across

an entire texture by their probability distribution. Distributions leverage the large scale ho-

mogeneity in textures to form a more compact representation than the image. The types of

distributions that represent a texture depend on the texture features, the texture, and the

variation within the set of textures. For specific combinations of these three variables, appro-

priate parametric representations, i.e., families, have been found. Further, if an appropriate

family exists, as was discussed in Chapter 2, the family is an ideal representation of the texture

in terms of compactness and linearity. If an appropriate family does not exist, non-parametric

representations are used instead.

MRFs have a long history of parametric estimation. The corresponding Gibbs distribution

is broken down into distributions on several cliques each with a set of model parameters.

Examples include the Derin-Elliot [DE87] and auto-binomial [Bes74]. For stochastic textures,

Geusebroek has shown that spatial statistics of intensity differences, including those assessed

by Gaussian derivative filters, are well modeled by Weibull distributions [GS05]. Grenander

presents a simplified parametric model for clutter in natural images [GS01]. However, the

textures in the CUReT and KTH-TIPS2 databases do not fit into any one of these categories,

which highlights the difficulty in finding an appropriate parametric model for texture analysis.

Non-parametric, histogram-based probability distribution representations are widely used

and are effective because they provide a rich, unconstrained estimate of the distribution of tex-

ture features [MBLS01, CD01, VZ02, VZ03, LW03, Blu04, VG07]. Many features have been

represented using standard, uniformly binned marginal or two-dimension histograms, includ-
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ing GLCMs [Har79], LBPs [OPH96], and filter responses [LW03]. For filter based methods,

recent approaches have estimated the joint PDF of the filter responses. Some methods have

argued that this is essential [MBLS01, VZ02] while others argue that the marginal distribu-

tions are sufficient and preferred [LW03, GS05]. Joint PDF estimates are more expressive than

marginals, but they require more data for estimation and are therefore prone to overfitting.

Section 3.2 presents a texture classification algorithm based on marginal distributions. Malik

et al. proposed a method for estimating the joint distribution of filter responses using clus-

tering [MBLS01]. Representative cluster centers define a texton dictionary, yielding a texton

histogram representation for each image. Such an approach is common in computer vision,

where it is referred to as a bag of visual words model. Similar joint distribution estimates have

since been used for filter responses [CD01, VZ02, CD04], MRFs [VZ03, Blu04], and fractal

features [VG07].

Two major drawbacks of histogram based representations is that they tend to be noncom-

pact (high dimensional) and texture sets tend to form nonlinear submanifolds. These proper-

ties lead to more difficult classification tasks, as is discussed later in this section. Despite this

drawback, a trend in the community has been to use such histogram based representations

for generality and to compensate for their drawbacks using elaborate classification methods.

Additionally, methods based on histogram estimates of joint PDFs tend to have many para-

meters and to be computationally complex. This is partially due to the need to learn and

select a representative texton library using k-means clustering. However, it is also due to the

representation being sensitive to certain variations in the texture features. For example, filter

bank features require both intensity and filter response normalization. Sections 3.2 and 3.3

demonstrate the effectiveness of several alternative non-parametric distribution representations

based on the quantile function. This work extends that of Levina, who represented textures

by a set of independent filter response empirical distributions [Lev02].

Invariance in 2D and 3D Textures

Natural textures, such as those in the Brodatz collection [Bro66], are often only weakly-

homogeneous due to large scale changes in the texture or deformations in the imaged material.
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Thus, though many are 2D textures, they exhibit local effects from being imaged in our 3D

world. Such local effects generated a large interest in local texture features that are invariant

to the expected imaging effects. Some local invariances of interest are related to viewing angle,

including in-plane rotation, out of plane rotation (projection), scale, or full affine invariance.

Other desired invariances are to lighting conditions, such as lighting angle and intensity.

By design, some of the features already discussed have certain invariances. LBPs are

invariant to scaling of intensity [OPH96]. Varma & Garg showed that two fractal features,

local fractal dimension and local fractal length, are affine and intensity shift invariant, and

in-plane rotation and intensity shift invariant, respectively [VG07]. Particular spatial filters,

such as the Gaussian and Laplacian of Gaussian, are also rotationally invariant.

One common approach to developing texture features with particular, desired local in-

variances is to modify existing variant features. Several types of features have been modified

to have in-plane rotational invariance, including generalized co-occurrence matrices [DJA79],

LBPs [PNMT04], filters [VZ02], and MRFs [VZ03]. Varma & Zisserman developed a rotation-

ally invariant filter bank called MR8 that is discussed in detail later in this section [VZ02].

Local scale invariance has been discussed in [HCFE04, Blu04].

More recently, 3D textures, such as those in CUReT [DvGNK99] and KTH-TIPS2 [HCFE04],

have been extensively studied [LM01, CD01, VZ02]. Such textures are typically planar and

contain explicitly introduced global variation, due to in and out of plane rotation, scale, or

illumination angle. Such variation is global because a set of homogeneously textured images

are produced. The dependence of 3D textures on viewing and illumination directions has been

referred to as the bidirectional texture function (BTF) [DvGNK99]. Early work analytically

modeled the BTF of textures restricted to Lambertian, isotropic, and randomly rough surfaces

[DN98]. Other methods have estimated properties of the BTF to quantify, for example, the

magnitude of the 3D effects [SH98]. However, for texture classification direct learning ap-

proaches have been the most popular. Such approaches typically modeled 3D textures using

either the locally variant or invariant features discussed above. Methods using both types of

features have been successful, often without either being clearly superior. Neither set of fea-

tures are ideal in terms of invariances. Variant features maintain full discriminative power, but
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they model more variation than desired. Locally invariant features introduce more invariance

than desired, reducing discriminative power. Therefore, the preferred features depend on the

parameters of the specific experiment, such as training set size.

A texture representation with global invariances would be ideal. Global invariances need

to be modeled by the representation rather than at the local scale of the features. Sections 3.2

and 3.3 describe a method that learns, so is approximately invariant to, the types of global

variation expected in a class.

Leung and Malik presented one of the few approaches that explicitly learns a 3D repre-

sentation of the texture [LM01]. The local appearance of the surface at several viewing and

illumination conditions was learned using registered images at known viewing and illumina-

tion configurations. The resulting distribution of so called 3D textons was used to classify

a texture given between 1 and 4 registered images also at known viewing and illumination

configurations. However, compared to more recent, similar 2D approaches [VZ02], the 3D

approach is computationally more complex, it requires registered images at known viewing

and illumination configurations, and it is less accurate. Recently, methods have focused on

the classification of single, unregistered images acquired under unknown viewpoint and illumi-

nation configurations. Such methods use experiments similar to the one described in Section

3.1.1 on CUReT.

The MR8 Filter Bank

As defined by Varma & Zisserman, the MR8 filter bank consists of 38 linear filters but

only 8 filter responses [VZ02]. There are two isotropic filters, a Gaussian and a Lapla-

cian of a Gaussian (LOG), both at scale σ = 10. The 36 other filters are first derivative

(edge) and second derivative (bar) Gaussian filters at 6 orientations and 3 scales (σx, σy) =

{(1, 3), (2, 6), (4, 12)}. Figure 3.3 displays these 38 filters. Rotational invariance is achieved by

storing only the maximum response over all orientations of a given filter type and scale. The

filters are L1 normalized, and the filter responses are nonlinearly normalized based on Weber’s

Law [VZ02]. I refer to this as the MR8-1W filter bank.

The 38 filters that comprise MR8 are a subset of a filter bank designed by Leung & Malik
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Figure 3.3: The linear filters in the MR8 filter bank. Image taken from [VZ02].

[LM01]. These filters were not designed to mimic the human visual system. Therefore, they

contain many differences with filter banks that were. For example, compared to the filter bank

used by Malik & Perona [MP90], the MR8 filter bank 1) contains first derivative filters as

well as second derivative filters, 2) performs full-wave rectification, in which the absolute value

of the filter responses are taken, instead of half-wave rectification, and 3) performs response

normalization based on contrast instead of inhibition of spurious responses. Also, the scale and

orientation of the MR8 filters where chosen for discrimination, unlike the filters used to define

some other types of spatial filters. For example, steerable image pyramids chose filter scale

and orientation based on the efficient representation and computation of the image description

[HB95].

Hayman made a slight modification in his implementation of the MR8 filter bank [HCFE04].

He used a filter support of 41 × 41 instead of 49 × 49. I refer to this as the MR8-2W filter

bank. In Section 3.2, I use two additional, slight modifications of the MR8. First, I change

the scale of the two isotropic filters to σ = 2 and the three scales of the other filters to

(σx, σy) = {(0.5, 1.5), (1, 3), (2, 6)}. The resulting more local filter bank I refer to as MR8-3W.

Second, I normalize each filter response by the maximum attained over the training set instead

of the normalization based on Weber’s Law. This change can be made with all of the versions

above, making the MR8-1M, MR8-2M, and MR8-3M versions of the filter bank.
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Classification

So far Section 3.1.2 has discussed general texture analysis techniques for the representation

of textures. Now, their actual classification is discussed. The results of these classification

schemes are discussed in Sections 3.2 and 3.3.

Many of the methods discussed above use histogram based distribution estimates of dense

local features [MBLS01, LM01, CD01, VZ02, HCFE04, PNMT04]. As mentioned earlier,

histogram based representations tend to be high dimensional and tend to have nonlinear vari-

ation in the set of textures that comprise each class. Parametric classification is very difficult

under these conditions [DHS01]. High dimensional data is prone to overfitting; standard

parametric classifiers assume linear class variation. The approaches above recognize the inap-

propriateness of parametric classification for histogram based representations and instead use

non-parametric, distance based classifiers, such as nearest neighbor (NN) and support vector

machines (SVMs), with a nonlinear distance measure.

The NN classifier is a well known and often used classification method [DHS01]. NN

classifiers use a specified distance measure, which allows methods to account for the specific

nonlinear variations in their application. The χ2 distance measure combined with a 1-NN

classifier is prevalent in recent texture classification work [MBLS01, LM01, VZ02, VZ03].

Pietikäinen et al. use a log likelihood measure [PNMT04]. Many different distribution distance

measures have been used in computer vision. Several were discussed in Section 2.1.3; see

[PRTB99] for a survey. Sections 3.2 and 3.3 perform classification based on the EMD.

Several modifications to NN classification have been proposed. NN can be computationally

expensive since the classification of each target texture requires commuting a distance to every

training texture. One approach to alleviate this is to remove unnecessary training samples

that do not significantly contribute to classification [VZ02, PNMT04]. Levina estimated the

marginal distributions of several features and argued that each should be considered indepen-

dently. This led Levina to estimate a target texture’s distance to a class as the product of

several independent NN computations [Lev02]. Recently, Varma & Ray described a method

to enhance NN classification with a per class, isotropic variance for a given distance measure

[VR07]. Such a method that learns a class’s second-order statistics could be combined with a
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distance based method to learn the class’s first-order statistics, i.e., its intrinsic, or Fréchet,

mean [Fre48, Fle04]. The classification methods discussed in Sections 3.2 and 3.3 estimate for

each class a mean and a rich, non-isotropic covariance structure.

Moving beyond NN classification given nonlinear variation, however, is both computation-

ally and theoretically difficult. One popular approach is to find nonlinear decision boundaries

using kernel support vector machines (kernel SVMs), which map the input space to a higher

dimensional feature space in which class-separating hyperplanes are found. Hayman et al.

used kernel SVMs to extend Varma & Zisserman’s filter bank classifier, improving results and

reducing the number of stored vectors [HCFE04]. However, kernel SVMs are computationally

intensive and lack a principled approach to kernel selection. Recently, class-specific kernel and

feature selection methods have been shown to improve kernel SVM results on KTH-TIPS2

[CHM05].

Other approaches to handling nonlinear variation in the computer vision community try to

find a linear parameterization of the space. Data specific nonlinear manifolds can be learned

using methods such as Isomap [TdSL00] or local linear embedding [RS00], but this is a difficult

and computationally intensive task. For texture classification, Cula & Dana represent a class by

a one-dimensional nonlinear manifold in a histogram based space. Classification is performed

by finding the minimum Euclidean distance to the one-dimensional curves [CD04].

3.2 Filter Bank Based Classification

Section 3.1 reduced the representation and classification of homogeneously textured images

to the representation and classification of multivariate distributions of local texture features.

This allows the techniques discussed in Chapter 2 for the representation and classification of

multivariate distributions to be directly applied. In this section, the local texture features of

interest are the responses of the MR8 filter bank described in Section 3.1.2; Section 3.3 uses

local features composed of simple pixel intensities. Both Sections 3.2 and 3.3 present results

on the experiment on CUReT discussed in Section 3.1.1.
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3.2.1 Implementation

The implementation of the methods presented in Chapter 2 to this task starts by applying

the MR8 filter bank to 92 normalized, CUReT images for each of the 61 classes. Each image is

then a multivariate distribution estimate composed of an empirical distribution of 200×200 =

40, 000 points in an 8-dimensional space. Each empirical distribution is then reduced to 8

quantile functions from each filter response marginal distribution. Typically 32 bins per QF

are used, which creates a 256-dimensional vector representation of each image.

The marginal distributions use the simplest strategy for choosing projection directions,

which was discussed in Section 2.2.1. The results in Section 3.2.2 show that filter marginals

are adequate and efficient on CUReT. In Section 3.3, more complicated projection strategies

are required since the marginal distributions of interest are identically distributed. However,

Section 3.3.2 discusses the equivalence of the approaches taken here and those taken in Section

3.3.2.

The 92 image in each class are split into equally sized training and test sets. PCA is

used on the training set to estimate a per class mean and covariance matrix. Examples of this

representation and its first and second order statistics are given in Figure 3.4. These examples,

unlike those used for classification, are per filter and use all 92 images. The first mode captures

a high percentage of each class’s variation, and its linear path matches the samples. For the

classes in CUReT, QFs form approximately linear spaces with low inherit dimensionalities,

which can be compactly represented using PCA.

3.2.2 Results

Quadratic discriminant analysis (QDA), as discussed in Section 2.3.2, is now used to classify

the distribution estimates given in Section 3.2.1. QDA classification using these QF estimated

filter marginals is termed QF-QDA. QF-QDA is first compared to previous classification results

on CUReT. Next, the sensitivity of QF-QDA to the number of training samples, QF bins, and

principal modes is examined. Unless otherwise stated, all results use 32 values per QF, use

leave-one-out cross-validation on the training set to determine a common expected projection

error across classes, and use 46 training images per class. All results are averaged over 100
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Figure 3.4: Filter responses from all 92 images in materials 12 (left) and 46 (right).
Responses are shown for two filters in MR8-3M. On top is the Gaussian filter. On bottom
is the edge filter with (σxσy) = (0.5, 1.5). QFs and histograms are given for both the 92
responses and their mean and ±1 standard deviation along the first eigenvector. The
coloring of the histograms is set by each QF’s projection coefficient onto the first mode.
In parenthesis is the relative variance of each class in the first mode.

random training and test splits.

Comparative Results

Table 3.1 shows the accuracy of QF-QDA using the original and modified MR8 filter banks

described in Section 3.1.2. The primary interest of Table 3.1 is in its comparison with previous

methods, though the filter bank modifications are also discussed. Two of the results in Table

3.1 are directly comparable with previous methods. Using MR8-1M, QF-QDA achieves an

accuracy of 99.00% versus the 97.43% achieved by Varma & Zisserman [VZ02]. Using MR8-

2M, QF-QDA achieves an accuracy of 99.12% versus the 98.46% achieved by Hayman et

al. [HCFE04]. These comparisons use the QF-QDA results with maximum based response

normalization instead of Weber’s Law based response normalization as in [VZ02, HCFE04].

However, I feel this comparison is fair because the maximum based normalization is simpler
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Table 3.1: QF-QDA classification accuracy on CUReT for three versions of the MR8 filter
bank and two normalization schemes. MR8-1 and MR8-2 allow a direct comparison with
Varma & Zisserman (97.43%) [VZ02] and Hayman (98.36%) [HCFE04], respectively.

Normalization scheme
Filter Bank Weber’s Law (W) Maximum in Training (M)

MR8-1 (Varma & Zisserman) 98.73% ± 0.52 99.00% ± 0.43
MR8-2 (Hayman) 98.92% ± 0.41 99.12% ± 0.39
MR8-3 (proposed) 99.48% ± 0.30 99.60% ± 0.27

and the Weber’s Law based normalization seems detrimental to the QF representation. A

comparison of the two normalization schemes for QF-QDA is given in Table 3.1.

Using MR8-3M improves accuracy to 99.60%. QF-QDA achieves a near perfect accu-

racy with all three versions of MR8, which outperforms all other known existing methods.

Pietikainen et al. perform a similar experiment on CUReT using multi-scale, rotationally in-

variant local binary patterns (LBPs) with nearest neighbor (NN) classification to achieve an

accuracy of 96.55% [PNMT04]. The results of Cula & Dana are not easily compared since

their experiments did not use all 61 material classes [CD04]. Later in this section the methods

of [VZ02, CD04, HCFE04, PNMT04] are also compared to the QF-QDA approach in terms of

compactness and computational complexity.

The MR8 filter bank is a modification of a filter bank designed by Leung & Malik [LM01].

Both were designed and first applied to CUReT. Despite these efforts, QF-QDA achieves

better results using MR8-3 than using MR8-1. While this result could be specific to QF

representations, I believe it would also hold true for the histogram based representations used

by the designers of MR8. If this is true, the MR8-1 filter bank is not ideal for CUReT.

Specifically, more local features like those introduced in MR8-3 are useful. These results

correspond to findings in Section 3.3, which show that extremely local features are all that is

required to distinguish the materials in CUReT.

Figure 3.5 gives classification results for the smaller training set sizes of 12 and 23. Hayman

et al. gave these results for their proposed SVM classifier and for their implementation of Varma

& Zisserman’s NN classifier [HCFE04]. A single training and target split was used, where the

images were chosen in an alternating order to provide an even distribution of the viewing and
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Figure 3.5: A comparison of QF-QDA using MR8-2M with Hayman et al.’s NN and SVM
classifiers [HCFE04]. Training set size is varied from 12, 23, to 46 and results are reported
for a single training and target split.

illumination directions between the training and target splits. Equivalent results using QF-

QDA with MR8-2M are given in Figure 3.5 to allow a direct comparison with Hayman et al.’s

results. QF-QDA consistently outperforms Hayman’s NN classifier. However, Hayman et al.’s

SVM classifier appears to be more efficient for extremely small training sizes. For training set

sizes of 12 and 23, the differences between QF-QDA and the SVM classifier are roughly 1% and

0.6%, respectively. These results are given for a single training and test split. Given random

splits, QF-QDA’s performance varies with standard deviations of roughly 2% and 1% for these

training set sizes. Therefore, the statistical significance of the comparison between QF-QDA

and Hayman et al.’s SVM classifier is difficult to judge. To further analyze the behavior of

QF-QDA for various training sizes, I next consider NN, SVM, and QDA classification using

the QF based distribution estimates.

Training Set Size

I now explore NN, SVM, and QDA classification using the QF based distribution estimates.

The NN classifier is a 1-NN classifier and is termed QF-NN. The SVM classifier uses linear

decision boundaries and is termed QF-SVM. Figure 3.6 (left) shows the sensitivity of QF-

NN, QF-SVM, and QF-QDA to training set size. The error bars in Figure 3.6 represent one

standard deviation in the results from the 100 random training and target splits. QF-QDA
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Figure 3.6: Varying the number of images available during training (left). Varying the
size of each marginal’s QF (right). The accuracy of QF-QDA increases faster than both
QF-NN and QF-SVM as more of both types of information are introduced. The MR8-3M
filter bank is used.

quickly becomes the most accurate method as the size of the training set is increased. Given

4 training samples, QF-QDA performs the worst; given 8, it is equivalent to QF-SVM. Cross-

validation limits QF-QDA for small training sets. For example, given 4 training samples,

cross-validation limits QDA to using 1 of the 2 available principal components.

QF-SVM used the libSVM library to perform SVM training and classification [CLvm].

The parameter C is set through cross-validation. I also tried a nonlinear SVM kernel, radial

basis functions, but accuracy remained within 0.1% of linear SVM. While a more appropriate

kernel may exist, a fundamental difference between SVM and QDA is that SVM places class

boundaries with an equal margin on each side while QDA scales the distance metric for each

class.

Quantile Function Size and Compactness

Figure 3.6 (right) shows the sensitivity of the three QF based classifiers to QF size. In all the

other experiments this has been set to 32. As QF size is varied from 4 to 256, QF-QDA achieves

a consistent accuracy of over 99%. QF-QDA also achieves the good classification results of

89.25% and 98.50% using simple 1 and 2 bin QFs, respectively. This shows that most of the

information needed for classification is encoded in 2 QF values, which are linearly equivalent

to mean and standard deviation. This finding is in contrast with [LM01, VZ02, CD04], which
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have focused on rich, histogram based models of the joint variation of the filter responses.

Here, 4-bin QFs for each marginal are shown to almost completely characterize the materials.

For the MR8-2W and MR8-3M filter banks, 4 bins have an accuracy of 98.61% and 99.35%,

and 32 bins have an accuracy of 98.92% and 99.60%, respectively. In both cases, using more

than 4 bins only increases accuracy by approximately 0.3%. This consistent and gradual

improvement of accuracy with QF size demonstrates that larger QFs gradually incorporate

useful information about the marginal distributions. The accuracy of QF-QDA using a small

number of bins shows that QFs are a compact, descriptive representation. The accuracy of

QF-QDA using a large number of bins shows that QFs do not dramatically suffer from “over-

binning”. Section 3.3.2 gives similar results using simpler linear filters, which demonstrates

that these properties are not specific to the MR8 filter bank.

Using 4 and 32 bin QFs for each of the 8 feature marginals yields 32 and 256 dimensional

representations per image. QF-QDA learns an even more compact representation for the

images in each class. On average, cross-validation keeps 18 and 32 principal modes for the 4

and 32 bin QF cases. For the 32 bin case, accuracies over 98% are achieved for MR8-3M and

MR8-2W using 6 modes minimum, 15 on average, and 12 modes minimum, 23 on average,

respectively. Recall that the classes are typically constrained to have an equal projection error

across classes, parameterized by the minimum number of modes.

These QF based representations are more compact as well as more accurate than previous

methods. Varma & Zisserman [VZ02] and Hayman et al. [HCFE04] report their best results of

97.43% and 98.46% using 2440 bin texton histograms. The NN classifier achieves accuracies of

96.93% [VZ02] and 96.1% [HCFE04] with 610 and 200 textons, respectively. The SVM classifier

achieves an accuracy of 97.9% with 200 textons [HCFE04]. The QF based representation is

approximately two orders of magnitude more compact. Pietikainen et al.’s multi-resolution,

rotationally invariant LPBs form a compact set of 54 binary masks [PNMT04]. Pietikainen et

al. achieve compactness by allowing only a few discrete feature values while QFs compactly

describe a set of continuous feature values.

Hayman et al. report that either SVM classifier reduces the size of the histogram based

training model by 10% - 20% [HCFE04]. Cula and Dana [CD04] used a joint PDF representa-
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tion similar to [LM01, VZ02, HCFE04], but they additionally performed dimension reduction

using PCA. They report good performance given at least 300 textons and 70 principal modes,

where PCA reduces the model by approximately 75%. As mentioned above for the QF repre-

sentation, QDA reduces the 256 and 32 dimensional representation for each image to approx-

imately 15 - 30 and 15 values, respectively. This is a reduction of about 90% - 95% for the 32

bin QFs and 50% for the already compact 4 bin QFs. The better PCA based compression of

the QF distribution representation over the histogram representation reinforces the believed

strong linearity and low inherent dimensionality of the QF representation.

The success of low bin count and PCA compression with QFs can also be considered in

terms of known parametric representations of the local texture features. As mentioned in

Section 3.1.2, Geusebroek has shown that stochastic textures have marginal filter responses

that follow the Weibull distribution [GS05]. The variation of stochastic textures affect the

scale and shape parameters of the Weibull while the scale parameter is fixed at zero. If QFs

were equally ideal for representing such distributions, 2 bins (values) would also be all that is

required. As mentioned in Chapter 2, scale is a linear QF parameter, and the Weibull shape

parameter is exponential (see Figures 2.10 and 2.12 on pages 30 and 34). With 4 QF bins the

scale and shape parameters of the Weibull can be well estimated. The connection of marginal

filter responses with the Weibull distribution is consistent with the success achieved when

using a small number of QF bins. The Weibull distribution also gives insight to the success of

using PCA. In the space of QFs, Weibull distributions live on a two-dimensional submanifold

that is linear in one dimension and exponential in the second. PCA estimates a locally linear

subspace around each class’s average distribution. The success of the approach shows that this

is an adequate approximation. Recall, however, that many of the textures in CUReT have a

mix of stochastic and structural properties. Therefore, distributions other than the Weibull

are of interest. QFs nicely handle this situation since they can compactly represent any set of

distributions with variation similar to the Weibull.
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Computational Complexity

The slowest part of the MR8 QF-QDA classifier is in the two preprocessing steps. First,

computing the filter bank responses for all 5612 images takes approximately 7 hours for MR8-2

and 2 hours for MR8-3. This step requires convolving each image with 38 filters. MR8-2 is

more complex than MR8-3 since MR8-2 uses a fixed filter support of 41 × 41 while MR8-3

uses a maximum filter support of 25 × 25. For each of the 200 × 200 = 40, 000 pixels in each

image, the MR8-2 convolutions require 8 ∗ 412 = 13, 448 operations. This step could be more

efficiently done in the Fourier domain. Second, computing the quantile function representations

for all 5612 images takes approximately 10 minutes. This step requires sorting the 8 sets of

filter responses for each image . This corresponds to roughly 8 ∗ log2(40, 000) = 122 per-pixel

operations, since sorting is a O(n log n) algorithm.

For each training and test split, training the QDA classifier takes approximately 0.3 seconds,

and QDA classification takes approximately 15 seconds. For all 100 splits, this adds up to

training and classification times of about 30 seconds and 30 minutes, respectively. Cross-

validation adds approximately 5 minutes to the training time. Timing is given on a 3.4 GHz

Pentium R© 4 with 2 GB of RAM using MATLAB R©.

QF-QDA training is computationally inexpensive. Previous histogram methods performed

k-means clustering in at least an 8-dimensional space [LM01, CD04, VZ02, HCFE04]. In con-

trast, QF-QDA computes 8 independent partial sortings. Additionally, the PCA computations

required for QDA are less expensive than the computations required for SVM training, though

neither is overly burdensome due to the compact representations.

Classification time is greatly impacted by compactness. NN and QDA classifiers have a

classification time that is linear in the size of the training set. For NN this is clear since

a distance must be computed to every training model. For QDA, even though only a sin-

gle Mahalanobis distance is computed to the class average, a Mahalanobis distance requires

projection onto each principal component. Computationally, each projection is comparable

to a Euclidean distance computation between two models. Since QF-QDA learned a texture

model that is at least two orders of magnitude more compact than those in [VZ02, HCFE04],

classification speed is two orders of magnitude faster. Each classification result given in this
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section, which is averaged across 100 splits, would have taken approximately 50 hours, instead

of 30 minutes, for the histogram based approaches in [VZ02, HCFE04].

Parameterization of the Number of Principal Components

As mentioned in Section 2.3.4, a parameter of the QDA model is the minimum allowed num-

ber of principal components, which determines the common expected projection error across

classes. I now compare this parameter to an alternative global constraint parameterized by the

number of common modes across classes. Table 3.2 gives classification results comparing the

two approaches. Equal projection error improves classification results over equal component

number by 0.5% when using MR8-1W and MR8-2W. For MR8-3M there is not much room for

improvement.

To ensure that this improvement is not an artifact due to cross-validation, Figure 3.7

shows the difference between equal projection error and equal component number for several

values of their parameters. Figure 3.7 (left) gives equal projection error results in terms of its

parameter, the minimum number of components across classes. Figure 3.7 (right) compares

the two approaches in terms of the average number of per class components. The bigger dot on

each curve is the approximate position found through cross-validation. Figure 3.7 shows that

cross-validation works equally well for the two approaches. Equal component number is more

efficient given a small of the number of modes, but equal projection error has a higher maximum

accuracy. I hypothesize that this increased accuracy is a result of the equal projection error

method assigning more components to the classes with more variability, which avoids over-

fitting for as long as possible. Figure 3.7 also shows that good performance is achieved for

a wide range of values, which demonstrates that QF-QDA is relatively insensitive to either

parameter.

Conclusions

Section 3.2 presented classification results using the QF-QDA classifier with the MR8 filter

bank. The results were shown to be accurate, compact, and insensitive to its two parameters,

the number of QF bins and the common projection error across classes. QDA was also shown
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Table 3.2: Classification accuracy of QF-QDA for two schemes of selecting the number
of components across the classes. In parenthesis is the parameter found during cross-
validation, which corresponds to the average and minimum number of per class modes,
for equal number and equal projection error, respectively.

Selection scheme for number of components
Filter Bank Equal Number Equal Projection Error

MR8-1W 98.27% ± 0.68 (31.5) 98.73% ± 0.52 (30.7)
MR8-2W 98.47% ± 0.61 (32.6) 98.92% ± 0.41 (31.6)
MR8-3M 99.54% ± 0.32 (33.9) 99.60% ± 0.27 (30.4)
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Figure 3.7: Left: Varying the minimum number of principal components learned by QF-
QDA when the expected projection error is kept constant across the classes. Right: A
comparison of keeping projection error (blue) versus component number (red) constant
across classes. The larger dot on each curve is the point found through cross-validation.

to perform better than SVM and NN for all but extremely small training sets.

The MR8 filter bank, the current top-of-the-line for CUReT, was demonstrated to be less

than ideal; the materials in CUReT are better distinguished by more local features. This

highlights the difficulty in constructing an ideal filter bank. This finding, combined with the

results presented in Section 3.3, shows that the reliance of QF-QDA on a particular filter bank

is a limiting factor. Also, the computation of the MR8 filter responses is expensive compared

to the rest of the method.

The difficulties of filter bank selection and computation are addressed in Section 3.3 using

MRF based texture models, which use the simpler distributions of intensities in a pixel neigh-

borhood. Section 3.3.1 presents a texture method related to GLCMs and the Strong-MRF

assumption. This model, like the filter bank based model presented in this section, has the
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advantage of using unsupervised local features. The filter bank model uses features preselected

for a specific task while the MRF model in Section 3.3.1 uses general features based on pair-

wise pixel interactions. Section 3.3.2 also presents a texture model based on non-preselected

features that is able to capture multiple pixel interactions. It produces features by learning

projection directions in the joint space of a pixel neighborhood. This approach is shown to

be equivalent to supervised filter learning. Both MRF approaches are compared to the filter

bank approach in terms of accuracy, compactness, and sensitivity to training set size.

3.3 Markov Random Field Based Classification

Markov random fields (MRFs) estimate probabilities of complete local neighborhoods of

pixel intensities. Filter banks are bypassed by directly modeling pixel intensities. Small,

compact neighborhoods are examined, of sizes 1×1, 3×3, 5×5, and 7×7. I give results using

the 1×1 neighborhood, which is simply the image’s marginal distribution of pixel intensities, for

comparison when no texture features are available. Each image gives an empirical distribution

estimate for each of these 1-, 9-, 25-, or 49-variate probability distributions. As in Section

3.2, each image is a multivariate distribution estimate. Therefore, the methods presented in

Chapter 2 can once again be directly applied for their representation and classification. This

section reports classification results on the task evaluated in Section 3.2.

In Section 3.2, the multivariate distribution of filter responses was represented by its mar-

ginal distributions. This simple strategy will not work for a multivariate distribution of pixel

intensities since their marginals are identically distributed. Two alternative representations

are considered in this section. First, Section 3.3.1 uses the multivariate distribution represen-

tation presented in Section 2.2.2 based on conditional distributions. Section 3.3.1 discusses the

equivalence of this approach to GLCMs and second-order Strong-MRF models [Pag04]. Sec-

ond, Section 3.3.2 uses the multivariate distribution representation presented in Section 2.2.1

based on projection directions learned through PCA. Section 3.3.2 discusses the equivalence

of this approach to learning a set of linear filters. The accuracy of the model presented in

Section 3.3.1 is shown to be limited by its pairwise pixel features, while the model presented
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in Section 3.3.2 is shown to be as accurate as the hand-tuned MR8-3M filter bank.

3.3.1 The Conditional Distribution Representation: Second-Order Strong-

MRFs

The multivariate distribution representation given in Section 2.2.2 assumes the conditional

independence of intensities in a pixel neighborhood given the center pixel’s intensity. Let x

be the intensity of a pixel and let y1, . . . , yn be the intensities of x’s neighboring pixels. In

Section 2.2.2, it was shown that p(x, y1, . . . , yn) can be rewritten as p(x) ·
∏n

i=1 p(yi|x) us-

ing Bayes rule and conditional independence. This is exactly the equation used by Paget

to describe second-order Strong-MRF models [Pag04]. Paget describes Strong-MRF models

in detail and demonstrates that they capture sufficient information for the synthesis of some

natural textures. The Strong-MRF model simplifies the MRF model by additionally assuming

that a neighborhood’s cliques are independent. This allows a neighborhood’s joint intensity

distribution to be reduced to the product of the clique probabilities. The equation above cor-

responds to a second-order Strong-MRF model since it is constructed from the neighborhood’s

first-order (single pixel) and second-order (two pixel) cliques.

Second-order Strong-MRF models are also related to gray level co-occurrence matrices;

both only capture pairwise pixel information. Specifically, p(x) ·
∏n

i=1 p(yi|x) consists of the

first-order distribution p(x) and n GLCMs p(yi|x) at specific pairwise spatial relationships.

The representation of each p(y|x) given in Section 2.2.2 can be viewed as an alternative, QF

based representation of GLCMs. This representation is typically much more compressed than

the full histogram of pairwise intensities, and it has a Euclidean distance related to the EMD.

Figure 2.13 on page 46 depicts the representation of each p(yi|x). Each conditional distri-

bution is represented by j × k bins, where x is divided into k quantiles. For each of these k

conditions, j-bin QFs of yi are estimated. Typically, j = 4×k = 4 bins are used for each condi-

tional distribution. These are well estimated from the approximately 40,000 sample empirical

distributions estimated from each image. Each conditional distribution is an independently

estimated local feature, much like each filter response used in Section 3.2.

Next, the construction of multi-scale neighborhoods are discussed before classification re-
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sults using this texture model are presented.

Multi-scale Neighborhoods

This section describes an MRF texture model that uses compact pixel neighborhoods of

sizes 3 × 3, 5 × 5, and 7 × 7, with 9, 25, and 49 local texture features, respectively. While

this model has a much smaller spatial extent than filter bank methods, it quickly produces

more features as neighborhood size is increased. This quadratic increase in the number of

local features can become computationally prohibitive. Therefore, I also explore multi-scale

neighborhoods to more compactly increase spatial extent. Pioneering work on multi-scale

image representations was done in [HB95].

I define a pixel’s multi-scale neighborhood to include the original 3×3 local neighborhood.

Then, I use a Gaussian filter with σ =
√

2 to generate successively blurred images with pixels

that summarize progressively larger spatial extents. At each scale, a 3 × 3 neighborhood is

defined by doubling the distance between each of these 9 pixels and the center pixel.

Results

Classification results are now presented using this Strong-MRF model on the experiment

discussed in Sections 3.1 and 3.2. As in Section 3.2, unless otherwise specified all results are

averaged over 100 random training and target splits, cross-validation is performed to estimate

the common projection error across classes, and training uses 46 images per class.

Table 3.3 summarizes the classification accuracy of QF-NN and QF-QDA for different

neighborhood sizes 1. As found in Section 3.2, QF-QDA consistently outperforms QF-NN.

QF-QDA achieves the high accuracy of 98.24% using a 3 × 3 neighborhood and accuracies

> 99% for larger neighborhoods. These results use 4×4 bins for each conditional distribution,

which constructs 16, 144, 400, 784, 288, and 432 dimensional vector representations of each

image for 1× 1, 3× 3, 5× 5, 7× 7, 2 scale 3× 3, and 3 scale 3× 3 neighborhoods, respectively.

Compared with the MR8 QF-QDA results from Section 3.2, the Strong-MRF results using

neighborhoods larger than 3×3 surpass the results using the original MR8-1 and MR8-2 filters
1An early version of these results where presented in [Bro05], where n× 1, instead of n× n, neighborhoods

were computed due to a programming error.
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Table 3.3: Classification accuracy of QF-NN and QF-QDA using second-order Strong-
MRF texture features. The results use 4× 4 bins for each conditional distribution, 4 QF
bins for each of 4 conditions.

Neighborhood Size Strong-MRF QF-NN Strong-MRF QF-QDA

1x1 63.05 ± 1.72 65.66 ± 1.57
3x3 89.19 ± 1.16 98.24 ± 0.58
5x5 93.12 ± 1.01 99.31 ± 0.41
7x7 94.58 ± 0.87 99.43 ± 0.34

3x3, 2 Scales 93.33 ± 1.01 99.33 ± 0.38
3x3, 3 Scales 95.04 ± 0.93 99.55 ± 0.35

and are equivalent to results using the hand-tuned MR8-3 filters. These results also surpass the

previous best MR8 filter bank based results, the 98.46% achieved by Hayman’s SVM classifier

[HCFE04].

The results summarized in Table 3.3 can also be compared to previous MRF based texture

models. Varma & Zisserman constructed several MRF models that, like their method based

on the MR8 filter bank, estimate the joint distribution of a neighborhood’s intensities through

clustering [VZ03]. Their best model clusters in the joint space of a pixel neighborhood without

the center pixel. Then for each cluster the univariate distribution of the center pixel’s intensity

is modeled with a histogram. This model with a NN classifier achieves an accuracy of 95.87%,

97.22%, and 97.47%, using 3×3, 5×5, and 7×7 neighborhoods, respectively. These results use

610 textons and 90 bins for the center histogram, for a 54,900 dimensional representation. Their

best classification result of 98.03% uses 2440 textons (219,600 values) and a 7×7 neighborhood.

The results presented in Table 3.3 are more accurate and compact.

Good classification results are also achieved by the Strong-MRF QF-QDA classifier when

modeling each conditional distribution with fewer than 4×4 bins. For example, the 3-scale, 3×3

strong-MRF QF-QDA classifier achieves an accuracy of 99.47% using 1× 4 bins. This model,

which only computes the mean of 4 conditions for each conditional distribution, constructs a

more compact, 108 dimensional vector representation for each image.

Figure 3.8 shows the accuracy of the 3-scale, 3 × 3 Strong-MRF QF-NN and QF-QDA

classifiers as training set size and the size of each conditional distribution is varied. The right

graph shows that for smaller training set sizes, the Strong-MRF QF-QDA classifier performs
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Figure 3.8: Left: Varying the number of QF and conditional bins for the 3 scale, 3x3
Strong-MRF QF-QDA (solid lines) and QF-NN (dashed lines) classifiers. Right: Varying
the number of images available during training, using 4× 4 bins. The MR8-3M QF-QDA
and QF-NN results are in black.

similarly to but not as accurately as the MR8-3M QF-QDA classifier. The left graph shows

that for the 3-scale, 3× 3 conditional distributions, only a small number of conditions and QF

bins are required. QF-QDA achieves an accuracy of 96.4% using 1 condition per distribution,

which only models the three multi-scale, marginal intensity distributions.

The Strong-MRF QF-QDA model achieves excellent classification results for small neigh-

borhood sizes. However, compared to the MR8 QF-QDA classifier, it is not as compact, and it

does not perform as well for smaller training set sizes. The Strong-MRF model also requires 2

parameters for each conditional distribution to be specified. These issues are addressed by the

second MRF model presented next in Section 3.3.2. The accuracy and compactness of these

MRF models are discussed further at the end of Section 3.3.2.

3.3.2 The PCA Based Projections Representation: Learning a Linear Filter

Bank

Section 2.2.1 described a multivariate distribution representation that uses PCA to select

a set of orthogonal vectors within that distribution. The representation is a concatenation of

QFs estimated from samples projected onto each vector. This section uses this multivariate
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distribution representation to represent pixel intensities in compact neighborhoods. In this

context, the learned vectors correspond to linear filters, as discussed in more detail below. I

term the model built using these local features to be the PCA-MRF texture model.

PCA-MRF can be compared to the MR8 filter bank. PCA-MRF is computationally more

complex but more straightforward. It is more complex since it must learn its filters during

training. Also, PCA-MRF learns many filters, n2 filters for an n × n neighborhood. PCA-

MRF combined with QF-QDA leads to a straightforward classification algorithm compared to

classification using the MR8 filter bank for several reasons. First, PCA-MRF uses small 3× 3

and 5× 5 pixel neighborhoods. This is in contrast to MR8, which uses filters computed from

49× 49, 41× 41, and 25× 25 neighborhoods for the MR8-1, MR8-2, and MR8-3 filter banks,

respectively. Second, PCA-MRF does not require a preselected filter bank. Third, PCA-MRF

requires few normalization steps. The MR8 model uses images with a normalized intensity

distribution, filters that are L1 normalized, and responses normalized by either Weber’s Law or

the max. achieved in training. PCA-MRF uses L2 normalized filters and unmodified responses.

At the end of this section, image normalization is discussed and QF-QDA classification using

PCA-MRF is shown to not require such normalization. Later, the results section compares

classification accuracy using both models.

PCA-MRF can also be compared to the Strong-MRF model. PCA-MRF is not restricted to

pairwise pixel features like the Strong-MRF model. In the results section, the PCA-MRF fea-

tures are shown to be more discriminative than the Strong-MRF features. This allows smaller

neighborhoods to be used. However, learning these features increases training complexity.

Also, PCA-MRF has a single parameter for QF bin count while the Strong-MRF model has

two parameters.

The Learned Linear Filters

Section 2.2.1 presented a multivariate distribution representation based on multiple pro-

jections. For the representation, it was shown that PCA computes an ideal set of projection

directions. The directions produce maximally uncorrelated coefficients, which minimizes in-

formation loss when QFs are independently built for each projection.
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Linear projections have special meaning for distributions of intensities in a pixel neigh-

borhood. Projection onto a vector is a linear function of a pixel neighborhood, an identical

operation to a linear image filter. Therefore, a vector is a L2 normalized linear filter and

projecting all the samples of a distribution onto a vector is equivalent to image convolution.

In this context, PCA can be considered as an approach to learning a task-specific filter bank

composed of minimally correlated, orthogonal linear filters.

In this section, a common set of filters is learned across classes. They are computed using

PCA on a random sample of 400 pixels from every training image pooled across classes. Figure

3.9 shows all 9, 25, and 49 filters learned for 3× 3, 5× 5, and 7× 7 neighborhoods, in order of

decreasing eigenvalues across the rows. PCA seeks directions that best represent the samples.

Such generative directions have similar goals as lossy image compression techniques. There is

a strong resemblance between the learned directions and the discrete cosine transform (DCT),

which is used in jpeg image compression. Figure 3.10 shows the DCT for an 8×8 image patch.

Both methods generate orthogonal, nonlocal vectors, where local vectors are constrained to a

portion of the image patch.

The filter banks used for texture classification have distinctly different properties from

the vectors found through PCA. Many of these differences arise from filter bank design being

focused on discrimination while PCA focuses on generative vectors. Filter banks are typically

spatially smooth and have locality about the center pixel. They are often selected to have

certain invariances, such as rotational invariance. Filter banks are also often not constrained

to have linear responses. The MR8 filter bank, for example, takes as a response the maximum

of several filters. These properties of preselected filter banks generally tend to increase their

discriminative power, especially when training sets are limited. Limited training sets could

also prevent PCA from learning sufficiently general directions. The sensitivity of PCA-MRF

to training set size is examined later in this section. Many of these desirable properties of

preselected filter banks could be incorporated into a more compex, PCA based learning process.
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Figure 3.9: All 9, 25, and 49 principal directions found by applying PCA to 3 × 3 (left),
5× 5 (center), 7× 7 (right) image patches pooled across classes. Each set represents both
a learned filter bank and an uncorrelated, orthogonal basis.

Figure 3.10: The discrete cosine transform for an 8 × 8 image patch. Image taken from
[dct].
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Table 3.4: Classification accuracy of QF-NN and QF-QDA using PCA-MRF with and
without image normalization. The QF-QDA results demonstrate that 3 × 3 pixel neigh-
borhoods are sufficient to discriminate the CUReT materials. QF-QDA is also insensitive
to image normalization compared to QF-NN.

Neighborhood QF-NN QF-QDA
Size Raw Norm. Raw Norm.

1x1 51.65 63.04 69.31 65.60
3x3 74.95 93.09 98.76 99.62
5x5 78.92 94.75 99.28 99.72

Results

Classification results using PCA-MRF are given in Table 3.4 and Figure 3.11. Unless

otherwise specified all results use 32 values per QF. I first discuss the results using normalized

images in Table 3.4; a discussion of the other results is given later in this section. QF-QDA

achieves an accuracy of 99.62% and 99.72% using 3× 3 and 5× 5 neighborhoods, respectively.

Previous methods have pointed out that small, compact neighborhoods specify the CUReT

materials. However, these 3×3 results allow the stronger statement that the CUReT materials

can be completely distinguished by simple 3×3 neighborhoods. As mentioned in Section 3.3.1,

Varma & Zisserman report results of 95.87% and 97.22% using their MRF model with 3 × 3

and 5 × 5 neighborhoods, respectively [VZ03]. Pietikainen et al. report results of 87% using

LBPs constrained to a 3× 3 neighborhood [PNMT04].

QF-QDA using PCA-MRF outperforms QF-QDA using MR8-1, MR8-2, and Strong-MRF,

and it is equivalent to QF-QDA using MR8-3. This finding holds not only for the results in

Table 3.4 based on a training set of size 46, but also for all training set sizes, as shown in

Figure 3.11 (top).

Similar to the MR8 QF-QDA classifier, the PCA-MRF QF-QDA classifier is also compact.

PCA-MRF QF-QDA achieves an accuracy of 99.04% using just 4 values per QF and a 3 × 3

neighborhood, for a compact 36 dimensional representation. Figure 3.11 (bottom) shows the

sensitivity of PCA-MRF to QF size. QF-QDA results using PCA-MRF are very similar to

MR8-3M results. The only exception is the failure of PCA-MRF when only one QF value is
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Figure 3.11: Accuracy of PCA-MRF compared to the MR8-3M filter bank for varying
training set and QF sizes. The 3×3 and 5×5 PCA-MRF QF-QDA results are very similar
to those using the hand-tuned, non-linear, MR8-3M filter bank.

used. One QF bin is equivalent to the mean of each projection, which has been effectively

normalized to zero for every image. Therefore, this failure is expected. The MR8 filter bank

model avoids this problem by taking the absolute value of several of the filter responses (before

taking their max.).

Image Normalization

I also examine the dependence of classification using PCA-MRF to image normalization.

All results discussed so far have used preprocessed images with zero mean, unit standard devi-

ation marginal intensity distributions. Table 3.4 gives classification results with and without

this normalization. Results show that the normalization is crucial for the QF-NN classifier. In

contrast, with no normalization QF-QDA performs nearly as well for 3 × 3 and 5 × 5 neigh-

borhoods and actually better for 1 × 1 neighborhoods. Since mean and standard deviation
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are linear changes for QFs, this information can be useful for classification, as it is for 1 × 1

neighborhoods, or easily down-weighted in the covariance matrix when more discriminating

texture information is available.

The effect of this normalization can also be considered geometrically in the space of QFs.

As mentioned in Section 2.1.4, all zero mean, unit standard deviation distributions exist on

a hypersphere. Since all of the marginals in the various neighborhoods are approximately

identically distributed, this normalization makes the concatenated QF vectors live in an ap-

proximately spherical space. This could confound the linear estimation performed by QDA.

However, the results in Table 3.4 show that this normalization is useful, if possibly not ideal,

for QF based representations.

3.3.3 Conclusions on the Strong-MRF and PCA-MRF Texture Models

Section 3.3 presented two MRF based texture models. Both models demonstrated that

accurate and efficient classification is possible without preselected, nonlinear filter banks. The

models are both more accurate and spatially more compact than in other non-filter bank

approaches [VZ03, PNMT04].

Section 3.3.1 presented the Strong-MRF classifier, which uses local features based on pair-

wise pixel interactions. Section 3.3.2 presented the PCA-MRF classifier, which uses local

features equivalent to learned, linear filters. The PCA-MRF model outperformed the Strong-

MRF model. The restriction of the Strong-MRF model to pairwise pixel features limits its

discrimination power, which forces the model to use larger pixel neighborhoods.

The PCA-MRF model achieved an accuracy equivalent to MR8-3M for various training set

sizes and QF sizes. Thus, the hand-tuned MR8-3M features have no benefit over the linear

filters learned by PCA-MRF for the evaluated experiment on CUReT.

3.4 Summary and Conclusions

This chapter presented three texture classification algorithms and gave results for a stan-

dard experiment on the CUReT database. The three algorithms use different local texture
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features, including the rotationally invariant, nonlinear MR8 filter bank, pairwise intensi-

ties in a pixel neighborhood, and linear filters learned using PCA on intensities in a pixel

neighborhood. For each set of local features, one of the quantile function based multivariate

distribution representations developed in Chapter 2 was shown to be appropriate. One focus

of the chapter was to compare these classifiers to previous histogram based algorithms. QF

based representations were shown to be an accurate and compact alternative to histogram

based representations.

The success of the presented classifiers on CUReT is due in large part to two properties

of the database, its controlled variation and the small-scale features present in the materials.

The variation between images in the same class is due to controlled and well sampled changes

in viewing and lighting angles. This type of variation was shown to be approximately linear

for QF based distribution representations, an important finding that should generalize beyond

the CUReT database. The controlled, linear variation within each class also made possible the

use of the QDA classifier, which was shown to be more accurate and efficient than SVM and

NN. The covariances learned by QDA were also shown to be effective for reducing the amount

of required normalization. Specifically, QDA was shown to not require image normalization.

The materials in CUReT were shown to be completely distinguishable by extremely local,

3×3 pixel neighborhoods. Previous works demonstrated the small-scale nature of the CUReT

materials, but they did not demonstrate that such features completely characterize the ma-

terials. The success of simple linear filters and pairwise features using 3 × 3 neighborhoods

demonstrate that CUReT supplies poor experiments for the analysis of different local texture

features. This finding was only possible, however, due to the success of QDA and QF based

representations for a variety of local texture features. These findings even held for smaller

training set sizes, where a greater benefit was expected from features with invariances, such

as the MR8 responses. The most striking results presented in this chapter were achieved by

the QDA classifier using PCA-MRF features. An accuracy of 99% was achieved using 3 × 3

neighborhoods with a compact 36 dimensional representation for each image.

Additional experiments should be performed on the classifiers presented in this chapter.

Two challenges will come from the two key properties of CUReT mentioned above being
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removed. First, textures that can only be distinguished by larger scale features could be

considered, which would require larger pixel neighborhoods. This would be computationally

expensive for the MRF based features presented in this chapter since n2 local features are

found for n× n neighborhoods. Multi-scale neighborhoods or filter selection techniques could

be used to help alleviate these issues. However, large scale features should not affect the

appropriateness of QDA or QF based representations.

Second, the more fundamental issue of additional types of variation within each material

class could be considered. Variation due to scale, i.e., camera zoom, should be examined.

Since the KTH-TIPS2 database measures such variation in a controlled, well sampled, manner,

I believe it should be possible to extend the classifiers presented in this chapter to this type

of variation. It is more difficult to extend QDA to uncontrolled or undersampled sources

of variation. The inclusion in KTH-TIPS2 of multiple but few physical materials for each

category is one such challenging addition.

The success of the presented texture models may not be limited to texture classification.

These models could be applied to other areas of texture analysis. In particular, the linear

properties of the QF representations for differing viewing and illumination angles could be

very beneficial for the synthesis of texture onto arbitrary surfaces or for object shape inference.

These are briefly discussed in the future work proposed in Section 5.2.2.
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Chapter 4

Quantile Function Based Image

Segmentation

Segmentation seeks to identify and label image regions. Often a specific object is sought,

and segmentation finds where the object is in the image. Segmentation is a complex task that

in a Bayesian-like framework integrates shape and appearance information with a search for

the most likely location of the object. This chapter focuses on the application of quantile

function based distribution representations for describing object appearance.

The amount of available prior information widely varies among segmentation tasks. Tasks

with little prior information may not know which objects are possibly in the image. A shape

prior may not exist, which leads to each pixel being considered independently. These tasks use

a limited appearance prior characterized by a homogeneous boundary feature such as edginess.

This chapter focuses on the segmentation of 3D medical images in which there is strong prior

information available from manually segmented training images. For these tasks, a known,

specific set of objects are segmented. Expected object shapes are given by a strong shape

prior that supplies an explicit 3D volume or 2D surface model. Expected object appearances

are given by a strong appearance prior that measures nonhomogeneous boundary and regional

features in object-relative locations.

The appearance model presented in this chapter is demonstrated on organs in 3D computed

tomography (CT) images. Segmentation is performed by deforming a 3D volume shape model.

An objective function is optimized over the parameters of the model until the object in the



image is located. In this context, Section 4.1 discusses related work in the entire segmentation

pipeline. Particular interest is given to components used by the segmentation algorithm in

Section 4.3. This includes the m-rep shape model and its training and segmentation in a

Bayesian framework, which are described in Sections 4.1.1 and 4.1.2. Section 4.1.3 discusses

the properties and requirements of appearance models and previous work in this area.

Section 4.2 presents an appearance model for use in deformable model segmentation. The

model uses the QF based distribution representations presented in Chapter 2. Section 4.2.2

presents a function learned from training examples that expresses expected object appearances.

Section 4.3 demonstrates the appearance model and its learned appearance function on several

CT data sets. The appearance model is shown to adequately describe the appearance of the

left-kidney, bladder, and prostate in CT images. The learned appearance function is shown

to adequately describe the variation in a population of such organs. Populations with both

between-patient variation and day-to-day variation are examined. Successful segmentation

results are reported on a data set of left kidneys from different patients and on multiple data

sets each of the bladder and prostate in the same patient on multiple days.

Earlier versions of this work were presented in [BSPC05, BSPC06, BPC+06] and used in

[PBJ+06, SBPC07b, PBL+07, SBPC07a, LBR+07, LGL+07, LBJ+07].

4.1 Image Segmentation Background

This chapter presents a novel appearance model for use in segmentation. In order to

understand this appearance model, this section first discusses the entire segmentation pipeline.

Section 4.3 presents segmentation results for a segmentation methodology based on deformable

models and a Bayesian point of view. Deformable models have a rich history in 3D medical

imaging. The image segmentation background presented in this section focuses on the previous

work in this area.

Deformable models are defined by a set of parameters m that determine which image pixels

get labeled as belonging to the object. Deformable models segment an image I by optimizing

an objective function f(m, I) over m. Typically, f is decomposed into two functions fshape(m)
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and fappear(m, I), which capture prior knowledge about the model’s shape and appearance,

respectively. fappear(m, I) is often expressed as fappear(a), where a(m, I) is a model of the

appearance of the object, a representation of I relative to m. fappear(a) is discussed in depth

in Section 4.1.3.

Prior information about the likely shape of an object can be expressed in three ways.

The first is by the choice of deformable model. The model must be able to represent the

objects of interest and to be able to deform from one to the other. An ideal model meets this

requirement using few parameters that linearly describe the variation in the objects of interest.

These properties greatly simplify components of the segmentation pipeline discussed below.

Deformable models are either geometric or voxel (3D pixel) based. Geometric models

directly represent the object’s shape. Typically the boundary is represented, using local pa-

rameters, such as the vertices of a mesh [MD97, CTCG95], or global parameters of a specific

shape model, such as spherical harmonics [GSS02]. Section 4.1.1 discusses the m-rep shape

model, which represents a medial structure of the object and implies its boundary [PFF+03].

Voxel based methods define the object as a function of voxel values. Two examples are de-

formable atlases [CRM94, Jos97], which supply object labels for each voxel, and level sets

[LFGW00, TYW+03], which define an object’s boundary as a particular level set of a func-

tion whose value is given at each voxel. The deformable atlases approach deforms the entire

underlying space using diffeomorphisms. Level sets directly modify the voxel values, an ap-

proach which allows arbitrary topologies but does not compute voxel correspondences between

deformations. All of these models except level sets supply pixel correspondences across defor-

mations of an object in the volume near the object boundary. This is the sole requirement of

the appearance model presented in Section 4.2.

The second method to encode prior shape information is to limit the models that are

optimized over. Recall that segmentation requires an optimization over m to find the object in

the image. Hard shape constraints can be imposed by limiting the optimization to a portion

of the search space. Cootes & Taylor were the first to optimize in a bounded, linear shape

subspace learned using PCA, instead of optimizing directly on the model primitives [CT01].

PCA estimates the ideal, low parameter shape model mentioned above. The segmentation
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framework used in section 4.3 uses a variant of PCA termed PGA that is appropriate for

the m-rep shape representation [Fle04]. Optimizing in this reduced subspace also has a large

computational advantage. The learned subspace typically has 10’s of parameters or fewer while

m typically has 100’s.

The third method to encode prior shape information is to use fshape(m). fshape places a

soft constraint on m that penalizes unexpected models. Some fshape functions measure local

geometric features, such as curvature. The snakes model is an example that uses only local

features [KWT88]. Other fshape functions measure global features, such as a distance measure

from a target model to one of the training examples. Both local and global features are either

specified in advance or learned from training examples. Local features are easy to specify

and can be stably estimated, but they cannot capture rich shape descriptions so tend to be

underconstrained. Global features tend to not be specific enough, since they are both hard

to adequately specify and hard to learn. Multi-scale approaches, which use global then local

features and optimization parameters, address both shortcomings. Section 4.3 uses such an

approach. Appearance models have similar scale issues; these are discussed in Sections 4.1.3

and 4.2.

Both shape and appearance prior information benefit from a statistical characterization. A

Bayesian segmentation framework nicely incorporates prior information in two phases. First,

task-specific prior knowledge is used to select the shape model m and appearance model a.

Then the variation of these models is statistically estimated from training examples to specify

fshape(m) and fappear(a). Bayesian frameworks specify the desired segmentation of image I

as maxm p(m|I); the most probable model is sought for the image. This objective function is

called a posterior, and its optimum, the desired segmentation, is the maximum posterior. Using

Bayes Rule, maxm p(m|I) = maxm(log p(m) + log p(I|m)) for a fixed I. log p(m) corresponds

to fshape, and log p(I|m) corresponds to fappear. log p(m) is referred to as the log (shape) prior.

log p(I|m) is referred to as the log (image) likelihood. Both the prior and the likelihood need

to be estimated from training examples. Details of this process are given in Section 4.1.2.

Section 4.2 presents an image likelihood for a quantile function based appearance model.
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Figure 4.1: The m-rep shape model is a grid of medial atoms (left). The figure shows
an m-rep of a bladder (center) with its implied surface (right). This image is taken from
[PBJ+06].

4.1.1 M-Reps

The segmentation framework used in Section 4.3 is based on the m-rep shape model

[PFF+03]. For simple shapes, such as the ones segmented in Section 4.3, the object rep-

resentation is a sampled sheet of medial atoms. Each atom in the interior of the sheet consists

of a hub and two equal-length spokes. Atoms along the edge of the sheet additionally need to

control the boundary crest, so they have one additional parameter that controls the length of a

“crest” spoke, which bisects the other two spokes. See Figure 4.1. The representation implies

a boundary that passes orthogonally through the spoke ends. Medial atoms are sampled in a

discrete grid and properties, such as spoke length and orientation, are interpolated between

grid vertices. The model defines a coordinate system which dictates surface normals and a

correspondence between deformations of the same m-rep model and the 3D volume in the

object boundary region.

4.1.2 Training and Segmentation for Bayesian Methods

Bayesian, deformable model segmentation frameworks must learn the two components of

their objective function, the shape prior p(m) and the image likelihood p(I|m). This section

focuses on the shape prior; an in-depth discussion of the image likelihood is given in the

next section. Training the shape prior requires three steps: fitting, alignment, and statistical

learning. Segmentation requires two main steps: initialization and optimization. These steps
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of the Bayesian segmentation pipeline are now discussed.

The shape prior is estimated from training images that have been manually segmented by

a human expert. This task is typically challenging, and different experts produce different

manual segmentations. This effect is called rater bias. The challenges with accounting for this

variability are not discussed in this chapter. Instead, a single expert is used, and automatic

segmentations are sought that mimic this specific expert.

Manual segmentation typically supplies a segmentation in a format equivalent to voxel

labels. To train the shape prior, parameters of the shape model must be found that match the

voxel labels. This is itself a segmentation task. I term “fitting” to be the segmentation of a

label image by a shape model. Fitting has the same requirements as segmentation, namely an

objective function and an optimization. However, fitting is simpler than segmentation since

the appearance of the object is well defined. For fitting, fappear(m, I) compares m’s implied

voxel labeling to the voxel labeling of I. Comparison measures are either boundary based

or region based. Region based comparisons typically use a volume overlap measure between

the two voxel labelings. A popular boundary based comparison measure computes the sum of

squared distances from many points on the object boundary given by m to the closest point

on the object boundary implied by I, and vice-versa. However, computing distances from

the boundary given by m is computationally expensive for an m that is varying, so this is

often either not computed or approximated. Such an approximation is used for the fappear

function used for fitting in Section 4.3 [MTS+08]. The fshape functions used for fitting are

identical to those used for non-Bayesian segmentation. fshape is composed of soft geometric

constraints that are designed to obtain non-self-interpenetrating shapes and good model-to-

model correspondences.

The above first step of training produces a set of models {mi} fit to each training image.

As Section 4.2 discusses in more detail, {mi} and their corresponding training images are all

that are required to train the image likelihood. Computing the shape prior, however, often

additionally requires alignment. Here, I consider alignment to include any variation within

{mi} that one does not wish to statistically model. For example, there is often a change in the

global coordinate system of each image which one does not wish to model. Alignment produces
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a modified set of models {m′
i} that are either expressed in a new coordinate system or have

had some of its variation subtracted out. The segmentation tasks examined in Section 4.3 use

organ specific alignments that are further discussed in Section 4.3. Alignment is also linked to

the initialization and optimization performed during segmentation, which is discussed below.

Given the aligned training models {m′
i}, the shape prior can finally be estimated. This

is typically done using PCA. The segmentation framework used in Section 4.3 uses the PGA

generalization of PCA to compute a multi-scale fshape function on m-reps [Fle04]. First the

Fréchet mean m-rep model mµ of {m′
i} is computed with respect to a distance metric. Then

an appropriately scaled, linear tangent plane in the m-rep shape space is computed at mµ.

The training models are projected onto the tangent plane. PCA is used on the projections to

compute several global modes of variation and several local, per-atom residual modes of vari-

ation. These modes are used for optimization, and their corresponding Mahalanobis distance

functions define fshape.

Segmentation begins by placing mµ at an initial position in the target image. This starting

object is the most likely object as determined solely by the shape prior. Then the maximum

of the posterior is found by optimizing over the coefficients of the model’s learned modes of

variation. The initial position or deformation of mµ for each target image is termed its initial-

ization. The initialization used for each target image should be identical to the alignment used

for each training image. Otherwise, the learned variation that is optimized over will not match

the variation needed to segment the target images, i.e., the prior will be inappropriate. Sec-

tion 4.3 further discusses specific initializations and alignments. The segmentation framework

used in Section 4.3 performs a multi-scale, conjugate-gradient optimization. It is multi-scale

since the optimization is first constrained to the learned global models of variation. Then the

local residues are independently optimized with fshape functions that are independent of each

other and the global prior. Conjugate-gradient optimization finds the local maximum of the

objective function [PFF+03]. It proceeds by first numerically sampling the derivative of the

objective function. Then it computes the gradient direction and the gradient’s first conjugate

direction. Next, for each direction in series, the optimum of the objective function along each

line is found using a Brent linear search. This process is repeated until convergence.
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The entire training and segmentation pipeline for Bayesian, deformable model frameworks

has now been described except for appearance models. Next Section 4.1.3 discusses this re-

maining piece of the segmentation pipeline. Then Section 4.2 presents a novel quantile function

based appearance model.

4.1.3 Object Appearance

Prior information about an object’s appearance is encoded into the model of its appear-

ance a and its corresponding fappear function, which determines if a particular appearance

is expected. Appearance models are composed of several measurements that summarize ob-

ject relative image regions at specific locations and scales. In medical images, each region

experiences intensity variations due to five factors:

1. Imaging device settings

2. Random noise

3. Texture due to the physical properties of a tissue

4. The amount of each tissue in the region

5. Imaging artifacts

Different data sets have different amounts of each type of variation. For example, CT data

sets are considered in this chapter, which have little type 1 variation because each image is

absolutely calibrated so that values are in Hounsfield units. Typical errors in this calibration

lead to variation that appears similar to scaling, a linear form of variation for QF based

representations. Data sets of the same patient day-to-day have less type 4 variation than

across-patient data sets. This is discussed in more detail in Sections 4.2 and 4.3. Variation

due to imaging artifacts can be difficult for appearance models to account for. In this chapter,

images with this type of variation are generally excluded.

The primary aim of an appearance model is to allow an fappear function that can identify

and distinguish the object interior and exterior. This requires rich and spatially specific mea-

surements that can capture complex gray level appearances near the object boundary. Also,
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an ideal fappear function should penalize only relevant, unexpected variation. For example, a

candidate prostate model with rectal gas in its interior should be penalized. However, variation

far from the object boundary is irrelevant and should not be modeled. Bayesian appearance

models must also linearly represent the expected variation so that it can be modeled via PCA.

This is examined for the Bayesian, quantile function based appearance model presented in

Section 4.2

Appearance Models

Existing appearance models can be characterized by the scale of the regions they model.

Local appearance models have many parameters at the scale of a voxel while global models

have few parameters in entire object interior and exterior regions. The simplest local models

measure edginess as given by the gradient magnitude at the object boundary. However, the

objects considered in Section 4.3 do not have boundaries characterized by uniformly strong

edges. The appearance of such objects must be specified using more complex features. One

category of more complex local models uses tri-linearly interpolated voxel values acquired along

profiles normal to the object boundary [SPCR04]; such models include active shape models

[CHTH93, CTCG95]. These models capture a rich description of the image in the object

boundary region. Another category of local models uses voxel values from entire object-

relative image regions; such models include active appearance models [CET98, CT01] and

deformable atlas methods [CRM94, JDJG04, RBR06]. These regions are typically rectangular

bounding boxes around the objects of interest. The voxel values used by both categories of

models are typically intensity as given by the image. The local models can also use image

filters to generate per-voxel features that summarize information at larger spatial scales and

that measure image structures such as texture or gradients [SCT03, ZS06].

Global appearance models measure the distribution of voxel values in object interior and

exterior regions. Typically the univariate distribution of pixel intensity is modeled using stan-

dard parametric or non-parametric distribution representations. Some parametric representa-

tions measure simple region statistics, such as mean and variance [CV01, TYW+03]. However,

these statistics capture limited information and have not been shown to be successful for the
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segmentation tasks considered in Section 4.3. Other parametric representations use more com-

plex families, such as a mixture of Gaussians [PD99], but no families have been shown to be

able to model the complex intensity patterns that exist in the boundary regions of the objects

considered in Section 4.3. Such complex boundaries are typically modeled non-parametrically

using histograms [FRZ+05, CDA07].

Appearance models at the fixed local and global scales described above are not ideal for

the medical imaging tasks considered in Section 4.3, though both could be appropriate in

a multi-scale framework. Global models do not capture all of the relevant information for

segmentation. Inhomogeneity in the boundary region cannot be modeled due to the lack of

spatial locality. On the other hand, local models capture too much information. Given exact

voxel correspondences, there is still expected variation due to types 2 and 3 above, noise and

tissue texture. Also, errors in correspondence produce more type 4 variation, i.e., changes

in tissue type. These difficulties with both local and global appearance models indicate the

promise of an appearance model at an in-between, regional scale. Recently, Costa et. al.

presented a regional model that allows some nonhomogeneity by dividing the object interior

into 1-3 large regions [CDA07]. Section 4.2 presents a regional appearance model that estimates

the distribution of intensities in multiple regions. Each region is at a scale large enough to

stably estimate tissue texture and tissue type but small enough to provide spatial locality.

Appearance Functions

Appearance models support and use different types of fappear functions. Existing fappear

functions can be divided into three categories: functions that do not require training, functions

that learn a template appearance model, and Bayesian functions that learn an average model

and its expected variation. These types of fappear functions will be compared to the ideal

function, which only penalizes unexpected variation of object-relative appearance.

The first category of fappear functions do not require training. That is, they are solely

a function of the target appearance model. For example, a local appearance model that

measures edginess at each boundary point can use an fappear function that simply sums these

values. Such fappear functions rely on the voxel feature to measure unexpected variation while

106



being invariant to expected types of variation. However, such a feature does not exist for the

complex, inhomogeneous object boundaries that need to be described for the segmentation

tasks examined in Section 4.3. For global models, an example untrained fappear function

estimates an interior region distribution from the target image. Then the current interior and

exterior distributions are compared to this interior estimate, with the exterior region desired

to be dissimilar to the interior estimate [CDA07]. Another global model example defines an

fappear function based on the mutual information between the voxel values and the model’s

implied voxel labeling [TWT+03]. Such global fappear functions also tend to be inadequate for

the inhomogeneous regions considered in Section 4.3. For example, in the work of [CDA07],

their segmentations of bladders in CT images “leak” into the prostate due to their similar

appearance being unexpected.

The second category of fappear functions learn their optimal appearance, i.e., a golden tem-

plate, from training examples. Local models are able to learn an arbitrary, nonhomogeneous

appearance while global models are restricted to rich estimates without locality. Such fappear

functions first specify a dissimilarity measure between appearance models. Then fappear is

set as the dissimilarity between the target appearance model and a reference model learned

from training. Local models have used dissimilarity measures such as normalized correlation

[SPCR04], mutual information [RBR06], and Euclidean distance [CRM94, JDJG04]. Local

models use a reference model that is either a single training example or a mean appearance

model computed from a training set. Global models with parametric distribution estimates use

dissimilarity measures that are simple expressions of their parameters [CV01, TYW+03]. For a

reference model they can use a single training example or averaged parameters from a training

set. The histogram based representation of Freedman et al. uses a CDF Lp norm distance

[FRZ+05]. However, histogram based models are restricted in their choice of reference model.

A mean appearance cannot be computed because the variation of histogram based models is

nonlinear, which results in the linear mean not being representative of the training examples.

Freedman et al. address this issue by computing the minimum distance between the target

appearance model and all training examples [FRZ+05]. This category of fappear functions can

richly describe optimal object appearance, but they cannot distinguish between expected and
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unexpected variation. For this a Bayesian based fappear function is required.

The third category of fappear functions is Bayesian based. Existing Bayesian methods model

fappear as the image likelihood p(I|m) and assume that it is Gaussian distributed, which al-

lows the model’s average appearance and its expected variation to be linearly modeled using

PCA. Two Bayesian local appearance models have been proposed by Cootes et al., associated

with active shape models (ASMs) [CHTH93, CTCG95] and active appearance models (AAMs)

[CET98, CT01]. AAMs define a global fappear function via PCA on the entire tuple of voxel

values. ASMs define independent fappear functions for each profile. For each profile, PCA is

computed on the tuple of voxel measurements along the profile, which have been converted to

normalized derivative values. AAMs and ASMs highlight a difficulty with estimating Bayesian

fappear functions for local appearance models. Local appearance models contain a large num-

ber values, so they correspond to high dimensional tuples. Also, as mentioned above, each

measurement captures more variation than required. Therefore, globally estimating fappear as

is done by AAMs is difficult. This issue is prominent for the segmentation tasks considered

in Section 4.3 due to the images being 3D, which dramatically increases the number of voxel

measurements, and the limited training examples. ASMs address this issue by independently

estimating fappear for each profile. These are much easier to estimate, but the interrelations

among the profiles are lost.

Distribution based regional and global appearance models do not suffer from the estimation

difficulties of local models. Distributions model less variation than per-voxel measurements,

so they have a lower inherent dimensionality. Regional and global models are also much more

compact: they define lower dimensional tuples. Therefore, they can be stably estimated while

still capturing pixel interrelationships. However, existing histogram based distribution models

have nonlinear variation, so they cannot be modeled using PCA. Next, Section 4.2 presents a

quantile function based regional appearance model without this difficulty.
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Figure 4.2: The appearance of objects in CT images. Left: the left kidney (red mesh)
displayed in a tri-orthogonal display of the 3D image. Right: bladder (blue mesh), prostate
(green mesh), and rectum (brown mesh) displayed with a single 2D slice of the CT image.

4.2 The QF Based Regional Appearance Model

This section presents an appearance model for use with objects in 3D CT images, which

have boundary regions characterized by complex intensity patterns. Figure 4.2 displays four

objects: the left kidney, bladder, prostate, and rectum. Organs, such as the kidney, bladder,

and prostate, typically have fairly homogeneous interior boundary regions. Exterior to these

organs there is often fatty tissue around a portion of the boundary. Such regions have the char-

acteristic light-to-dark transitions sought by simple, edge-based appearance models. However,

other portions of the object boundary may be adjacent to other tissues with similar intensities.

The bones might be nearby, which would generate strong dark-to-light edges. Only a narrow

strip of fatty tissue may be present, which would generate two strong edges in the region.

Therefore, a richer description of the object boundary region is needed beyond edginess.

Modeling these exterior intensity patterns would be extremely difficult if they occurred

randomly. Fortunately, they are far from random and instead correspond to objects with

spatial relationships given by human anatomy. Therefore, it is possible to learn the likely

intensity patterns in each object relative boundary region. As mentioned in Section 4.1.3,

measurements in regions the scale of a voxel are highly variable and therefore difficult to learn.
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Figure 4.3: An illustration of global image regions (left and center) and the centers of
local image regions (right). Left: A prostate displayed as a red mesh with a tri-orthogonal
display of the 3D CT image. Center and right: A bladder, prostate, and rectum displayed
as contours on a single slice of a 3D CT image.

Measurements in entire interior and exterior regions cannot measure where these different,

expected intensity patterns are located. Such information may be required to correctly identify

the object boundary. Therefore, this section proposes an appearance model that can be defined

at any scale at or between these extremes.

This appearance model describes spatially localized image regions near the object bound-

ary using QF based distribution representations. Section 4.2.1 discusses the details of this

appearance model and its computation. A Bayesian image likelihood is estimated for this

model from training data. Section 4.2.2 discusses this learned image likelihood function and

its training.

4.2.1 The Appearance Model

I define this appearance model at two fixed scales. The definition of these image regions are

discussed next. Then the QF based representation of each regional distribution of intensities

is discussed. Finally, the computation of this appearance model is discussed when using the

m-rep shape model.

Region Definition

I examine two region definitions in detail. The first definition I refer to as my global

appearance model; it is depicted in Figure 4.3. For each object being modeled, two regions are
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defined, the near object interior and exterior. The contribution of each voxel to its distribution

is Gaussian weighted by its distance to the object boundary. Therefore, each region has a hard

cutoff at the object boundary and a soft cutoff that gradually falls off away from the boundary.

The Gaussian weighting allows narrow regions to be defined that have larger capture ranges and

smoother likelihood functions during segmentation than equivalent non-weighted regions. This

model has a single free parameter, the common scale σboundary of the Gaussian weighting used

for both the interior and exterior region. This parameter is only set in common for the interior

and exterior regions to reduce the amount of required parameter tuning. For computational

simplicity during segmentation, only voxels within a certain distance from the boundary are

found, creating a hard cutoff. However, this distance is typically set to 2σboundary, so that the

affect of the hard cutoff is minimal and so that an additional free parameter is not introduced.

This global appearance model is local to the object boundary, but it does not have any

locality along the object boundary. Models with more locality have the flexibility to choose

the scale, location, and number of image regions. I now give a region definition for what I refer

to as my local appearance model. This model sets the scale, location, and number of image

regions based on the choices of these three parameters made by the shape model. This choice

may not be ideal since the optimal description of an object’s appearance may be at a different

scale than the optimal description of its shape. However, much of the inhomogeneity along the

object boundary is due to changes in the location and shape of surrounding anatomic objects.

Therefore, the scale of the m-rep atom, which has been shown to be a useful scale at which

measure the shape of some of these surrounding objects, is used to guide these parameters of

the appearance model. In future work, Section 5.2.5 proposes a method to estimate the ideal

scale of the appearance model at each stage of the multi-scale segmentation pipeline.

Recall that the m-rep shape model is composed of a grid of medial atoms. Each atom

implies a boundary point at the end of each of its 2 or 3 spokes. My local appearance model

defines two local image regions centered at each spoke end, interior and exterior regions near

the spoke end. Section 4.3 uses m-rep models with atom grids that are approximately 5 × 6,

which define 78 spoke ends with 156 image regions. Therefore, this model is fairly local with

a dense set of regional estimates spread along the boundary. Each region has a hard cutoff
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at the object boundary, a soft cutoff like the global model based on σboundary, and a hard

cutoff based on the Euclidean distance between the spoke end and the voxel’s corresponding

boundary point. This distance, dspoke, is set in common for all regions. This parameter is

typically set so that every voxel near the boundary belongs to at least one region, which leads

to significant overlap between the regions.

A third region definition at a scale between these presented global and local appearance

models was also examined in my early work [BSPC05]. This model was composed of a small

number of manually defined, non-overlapping regions that partitioned the object boundary.

However, this model was not pursued further due to the success and simpler interface of the

local appearance model.

Section 4.3 presents segmentation results using both region definitions. The local appear-

ance model is shown to give more accurate segmentation results than the global model, which

demonstrates the benefit of adding locality to the regional estimates.

The QF Based Representation of each Regional Distribution

The probability distribution of voxel intensities is modeled for each image region in the

appearance model. Each distribution is represented by the quantile function mixture repre-

sentation presented in Section 2.2.3. Additional voxel features could be modeled using one of

the multivariate distribution representations discussed in Section 2.2.1. This is discussed as

future work in Section 5.2.4.

In choosing a distribution representation, the types of distributions that need to be modeled

and their variation across images should be considered. The ideal distribution representation

would be rich enough to describe the distribution of interest while still being compact. It would

be able to be stably estimated given few samples. Also, since a Bayesian image likelihood is

desired, its variation would be linear across a set of distributions.

For distributions measured in object boundary regions in CT images, quantile functions

have many of these desirable properties. QFs are a non-parametric representation, so they can

model the complex distributions measured in these regions. Also, as discussed in Section 2.1,

they are more compact than other non-parametric representations. The distributions estimated
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from the object relative image regions discussed earlier in this section could theoretically be

from extremely local regions consisting of a single voxel or global regions with a hundred

thousand samples. The QF is a natural representation across these scales. Recall that the QF

representation is basically a sorted list of the available samples. Given extremely local regions

containing a single voxel, the QF representation is exactly that voxel value. Therefore, the

QF representation reduces to existing local appearance models as region size is reduced to the

scale of a voxel.

Section 4.1.3 discusses how each regional distribution experiences variation across images

due to CT normalization, noise, tissue texture, and tissue frequency. QFs are approximately

linear in the first 3 types of variation, but they are nonlinear in the last type. To partially

alleviate this issue, the QF mixture representation is used. The distributions measured in

these image regions can be roughly characterized as a mixture of four tissue types, where each

tissue is roughly a Gaussian distribution. Additionally, some samples are a linear combination

of more than one of the Gaussian distributions due to partial voluming. The four types of

intensities correspond to gas (air), fatty tissue, other tissue, and bone.

The ideal QF mixture representation would be composed of four components, one for each

intensity type. Such a QF mixture would be defined as [wg, Qg, wf , Qf , wt, Qt, wb, Qb], where

wi corresponds to the frequency of QF Qi. Section 5.2.3 discusses in future work such an ideal

representation. Here, however, a simpler representation is proposed. CT intensities are in

Hounsfield units, which are normalized such that gas, fat, tissue, and bone have typical values

of -1,000, -100 – -50, 10 – 60, and 1,000, respectively. Therefore, the underlying gas and bone

distributions are easy to identify. However, the underlying fat and tissue distributions have

significant overlap due to partial voluming, noise, and texture.

I propose using the simpler QF mixture representation [wg, Qft, wb]. Since the underlying

gas and bone distributions are well separated from the other distributions, I use thresholding

to separate them. Typically threshold values of -224 and 176 are used for gas and bone,

respectively. Additionally, I chose not to model Qg or Qb. Both QFs characterize only limited

information related to partial voluming. Also, the underlying fat and tissue distributions are

not estimated. Instead their pooled distribution Qft is modeled for computational simplicity.
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Figure 4.4: QFs estimated from global image regions of the bladder and prostate from a
single patient over 15 days. For each region, the mean QF and ±2σ along the first principal
is given, where the modes for region are computed independently. Histogram estimates
of these QFs are also displayed.

Their pooled frequency wft is not modeled, since changes in wft are already modeled by wg

and wb. Figure 4.4 shows this pooled fat and tissue distribution for global bladder and prostate

regions from a single patient day-to-day. The figure also shows the result of applying PCA to

each region’s Qft, which is discussed more in Section 4.2.2.

The expected variation of the regional distributions represented as QF mixtures [wg, Qft, wb]

is approximately linear except for mixture changes in the frequency of fat and tissue. Fortu-

nately, the amount of fat and tissue mixture variation is limited, particularly for day-to-day

variation within the same patient. Interior regions for objects such as the left kidney, blad-

der, and prostate are expected to have little tissue mixture variation. Exterior object-relative

image regions are expected to have fairly constant tissue frequencies at appropriately large

scales. This is true within a patient day-to-day because exterior fat and tissue are physically

associated with the organs. Thus, their locations are stable relative to the organ. This fact

holds less strongly across patients, where consistency in fat and tissue locations is based only

on the consistency of human anatomy.

Additionally, the degree to which fat and tissue mixture variation is nonlinear can be

examined. As mentioned in Section 2.1.3, the degree of nonlinearity of QFs undergoing mixture
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changes is a function of the distance between the underlying distributions. Based on their mean

CT values, the underlying gas and bone distributions are very dissimilar to each other and the

fat and tissue distributions. Therefore, changes in their frequencies are extremely nonlinear

in the space of QFs; this is why the QF mixture representation is being used. However, the

underlying fat and tissue distributions are much more similar to each other. Hence, their

mixture variation is much more linear. In Section 4.2.2, an image likelihood using this QF

mixture representation is estimated assuming its variation is linear.

Computation of the Appearance Model

The appearance model is a tuple of QF mixtures [wg, Qft, wb] for each image region con-

catenated together. Given an m-rep shape model and an image, I now discuss how to compute

this tuple.

First, every voxel near the object boundary must be assigned object coordinates. These

are used to assign a voxel to one or more regions and to compute their contribution (weight)

to each distribution. However, I do not start at every possible voxel of interest and compute

its object coordinates. Instead, an inverse algorithm based on following boundary normals

is used that starts with many points in the boundary region with known object coordinates.

Then the voxels that the points belong to are computed. This approach is computationally

less expensive though it is not guaranteed to find all of the voxels near the boundary. However,

for the largely convex objects that are modeled, the voxels most likely lost will be exterior and

far from the boundary.

For the m-rep shape model, many points with known object coordinates are generated as

follows. Recall that m-reps define a boundary point with a normal at every spoke end. A

detailed boundary is defined using a surface subdivision algorithm that generates both point

positions and normals. Every level of subdivision increases the number of points by a factor of

4. Typically 4 levels of subdivision are needed for the objects and images examined in Section

4.3. A dense set of points in the boundary region are generated by sampling each normal in

this detailed boundary representation. For each paired interior and exterior image region, each

voxel is assigned object coordinates based on the first point to find the voxel. However, care
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is taken to guarantee the following properties: 1) the voxel is correctly identified as interior or

exterior based on the location of its center, 2) the first point to find a voxel has the highest

weight of all points that will find the voxel, by sampling from the boundary out and from the

region center out, and 3) every voxel is used no more than once per paired interior and exterior

region.

The computation above generates a list of weighted samples for every image region. When

each distribution is represented using a single QF, this QF is computed by sorting the samples

and averaging adjacent values to compute the specified number of equally weighted bins.

When each distribution is represented using the QF mixture representation discussed in the

previous section, a computationally more efficient approach is used. The use of the gas and

bone thresholds leaves only 400 possible unique CT values. Therefore, the list of weighted

samples is converted to a 400 bin histogram with additional gas and bone counts. Then a QF

is computed from the 400 bin histogram without a loss in accuracy.

4.2.2 The Image Likelihood

A Bayesian appearance function is now defined for the appearance model presented in

the previous section. Such appearance functions learn from training examples the probable

appearance models of objects segmented using the shape model. This is often characterized

by a Gaussian model, which learns both the expected appearance model and its expected

variation across correctly segmented images.

The Bayesian framework defines the appearance function fappear(m, I) as the log likelihood

p(I|m). The previous section defined an appearance model a that is assumed to capture all

relevant information in image I. This allows p(I|m) to be simplified to p(a|m). Recall that

a is computed relative to m. Here, I additionally assume that a is conditionally independent

of m beyond this, which simplifies p(a|m) to p(a). This is a common assumption made by

appearance functions [CRM94, CTCG95, CV01, SPCR04, JDJG04, FRZ+05, CDA07], with

the exception of active appearance models [CET98, CT01]. This assumption is sensible for

medical imaging when modeling variation across patients, which is dominated by anatomy dif-

ferences that are not known to correspond to specific appearance changes. However, variation
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of the same patient day-to-day often does correspond to specific changes in appearance. For

example, in the pelvic region 1) increased bladder size is due to an increase in the amount of

urine, which affects the intensities in its interior since urine has a slightly different appearance

than the bladder wall, 2) the rectum is often distended due to gas, in which case more gas

intensities are expected in its interior, and 3) the above changes move or squish the prostate

possibly towards the pelvic bones, which affects its exterior appearance. In this work, these

effects are ignored to reduce the number of training examples needed to adequately train the

image likelihood.

Bayesian methods typically assume both the shape prior and the image likelihood are

Gaussian distributed, and they are estimated using PCA. The image likelihood defined in

this section is similar. PCA is only appropriate when the variation of the model is linear in

the training set and when its parameters are in commensurate units. Great care was taken in

Section 4.2.1 to construct an appearance model a with such properties. Recall that a is a tuple

of concatenated quantile mixtures. Section 2.2.3 defined quantile mixtures and a method to

scale its elements into commensurate units so that PCA could be used. This scaling allows

PCA to be used on the entire a tuple to jointly estimate the appearance of the image regions in

a. However, this is typically not done. Instead, different levels of independence are assumed,

which allows each distribution to be more stably estimated given a limited training set.

Both the local and global appearance models defined in the previous section can be de-

scribed as a concatenation of n pairs of interior and exterior image regions with quantile

mixtures [wi
g, Q

i
ft, w

i
b], where i = 1, . . . , 2n and the n interior regions are indexed before the n

exterior regions. I typically assume that the quantile mixtures are independent. This simpli-

fies the image likelihood p(a) to
∏2n

i=1 p(wi
g, Q

i
ft, w

i
b). Additionally, for each quantile mixture

I also typically assume that the frequency of gas and bone is independent of the distribution

of fat and tissue. This simplifies the likelihood to
∏2n

i=1 p(wi
g)p(Qi

ft)p(wi
b). Most of the results

presented in Section 4.3 use image likelihoods that make all of these assumptions. However,

in Section 4.3 it is demonstrated that for the examined data sets, the segmentation results are

insensitive to this choice.

Appropriate density estimates of these distributions must address one major concern. Dur-
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ing segmentation the likelihood of incorrectly segmented objects must be computed. Recall

that p(a) only captures the expected variation of correct segmentations. Therefore, an incorrect

notion of variability is applied to the sequence of segmentations that ideally are successively

less incorrect as the optimization proceeds. Such a likelihood term is overly sensitive in the

shape space. An objective function that uses such a likelihood tends not to be smooth in the

shape space, so it is difficult to optimize. However, the optimum of the objective function is

still correct, since the optimum of p(a) is correct and it is correctly weighted against the shape

prior for correct segmentations. A method for resolving this issue is discussed as future work

in Section 5.2.5.

Standard PCA-based estimates of the aforementioned inappropriate likelihood function

p(a) will not reliably penalize incorrect segmentations. Therefore, the following likelihood

function from Chapter 2 is used to give a more appropriate penalty. p(a) is estimated by ap-

plying PCA to appearance models computed from m-reps fit to training images. The subspace

learned by PCA is the subspace of correct appearances. Therefore, the incorrectly segmented

objects evaluated during segmentation will have appearances far from the learned subspace.

This makes measuring the projection distance of such appearance models onto the learned

subspace crucial. This is done using the estimation techniques described in Section 2.3. More-

over, this projection distance can be the primary penalty in the objective function for incorrect

segmentations. Therefore, the sensitivity of p(a) to deformations away from the correct seg-

mentation depends on its estimated expected projection distance. When p(a) is estimated as∏2n
i=1 p(wi

g, Q
i
ft, w

i
b), it is important that each distribution estimate have the same expected

projection distance. Otherwise, some measurements will be more sensitive than others. This

is particularly important for the distributions corresponding to paired interior and exterior

regions. If the distributions in each pair do not have similar expected projection distances, an

interior or exterior bias could be introduced into the segmentations. Therefore, the number of

principal components in each is set so that the estimated projection distances are similar. This

is either manually done or, as is described in Chapter 2 and used in Chapter 3, the number

of components estimated for one distribution is manually set and the others are automatically

set to best equalize their projection distances. This not an issue when the appearance in these

118



regions are jointly estimated.

Additionally, when estimating p(a) there is often additional prior knowledge that should

be taken into account. Specifically, it is usually known in advance if gas or bone are expected

in the object interior or exterior. For example, the bladder and prostate should have neither

gas nor bone in its interior, and they may have gas or bone in their exterior. I incorporate

this prior knowledge into the estimation of p(a) by introducing ad hoc weights αint
g , αint

b , αext
g

and αext
b , which specify the interior and exterior importance of gas and bone variation. During

segmentation each estimated wi
g and wi

b is scaled by its corresponding α. Since this scaling is

not done on the training data, an α < 1 reduces the importance of the variable while an α > 1

increases its importance. When p(wi
g) and p(wi

b) are independently estimated, this scaling is

equivalent to artificially modifying their estimated variances by 1/α2. Typically, α is set to

0.1 or 0 where the gas or bone is expected, and it is set to 1 where it is unexpected. For

example, neither gas nor bone should be interior to the bladder and prostate. Therefore, αint
g

and αint
b are set to 1. In their near exterior, the location of gas is very variable, which makes

its expected locations difficult to learn. Therefore, αext
g is often set to 0. αext

b is often set to

0.1 so that some information about expected bone position is preserved.

Training the Image Likelihood

The image likelihood p(a) is estimated from m-rep models fit to training images. The

estimation of each independent distribution in p(a) proceeds as described in Section 2.3, except

for one complication. Each fit m-rep model does not perfectly describe the training objects,

i.e., there is tolerance in the fitting. Such error is common to all shape models, which segment

the training objects at a particular spatial scale. The optimum of the likelihood function should

not include these errors. Otherwise, during segmentation, models that happen to segment the

object better than expected will be penalized. Additionally, global appearance models cannot

localize where these errors occur. Not correcting the optimum would allow global models to

accumulate these appearance errors into a localized portion of the object instead of spreading

them out along the boundary as desired.

To correct the optimum of the likelihood function, a modified set of appearance models are
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estimated from each training image that takes into account the label image. Let {aT
j } be the

set of m original training appearance models. I additionally measure {aT,L
j } that uses image

regions with interior/exterior correction computed by its label image. I define the optimum of

the likelihood function to be µL = 1
m

∑m
j=1 aT,L

j , the mean of the corrected training set.

However, it is insufficient to use {aT,L
j −µL} as the input for PCA to estimate the expected

covariance. This variation does not include the expected segmentation errors, which will cause

the likelihood function to be overweighted in the objective function. Instead, covariance is

estimated by applying PCA to {aT
j − µL}. This solution pools the variation of the correct

segmentations and the variation due to fitting error. A more elaborate solution is proposed in

Section 5.2.5, where these sources of variation are separately modeled. That section discusses

the appearance variation due to the deformations expected during segmentation. The fitting

error considered here is the smallest expected deformation error.

Figure 4.4 on page 114 shows {aT,L
j } for global bladder and prostate regions taken from

the same patient on 15 different days. Also displayed is µL and ±2σ along the first principal

direction learned from {aT,L
j − µL}. The high degree to which µL and the first component

match {aT,L
j } demonstrates that the variation in this set is indeed approximately linear for

QFs.

Typical results in Section 4.3 assume each region is independent. These results learn 2

principal components for every interior region and 3 principal components for every exterior

region. These numbers were chosen so that roughly 95% of the total variance is captured and

so that their expected projection distances are roughly equal. These numbers are consistent

with the expectation for organs that exterior regions are typically more variable than interior

regions.

One additional small issue is in the independent estimation of each p(wi
g) and p(wi

b). In

regions where gas and bone are not expected, such as the interior of the bladder and prostate,

it is probable that no gas or bone will be measured in the training set. In this case, a variance

cannot be estimated. Therefore, a common minimum variance of 0.0001 is defined for all gas

and bone frequencies.
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Normalizing the Image Likelihood

During optimization, the importance of the log likelihood and the log shape prior is based

on the magnitude of their variation. The variations of the log likelihoods defined in this section

tend to be very large compared to the variation of the log shape prior. This mismatch leads

to objective functions whose optimization is dominated by the likelihood term, which I have

empirically found to degrade segmentation results.

The high degree of variation of the log likelihood during segmentation is caused by two fac-

tors. First, when the log likelihood is composed of many independent estimates, its expected

variation is large. Second, as mentioned previously, the likelihood function does not model the

expected appearance changes due to shape deformations from correct segmentations. There-

fore, the actual variation in the log likelihood function during optimization will be greater than

expected. I propose the following somewhat ad hoc solution to downweight the log likelihood

term in the objective function. I modify both the log likelihood and the log shape prior so that

their expected variances are 1. A more principled solution would instead estimate the actual

variation of the log likelihood during optimization; this is discussed in Section 5.2.5.

Recall that segmentation finds maxm(fshape(m) + fappear(a)). For the Bayesian model

used in this section, fshape(m) = log p(m) and fappear(a) = log p(a). Further, since both

the prior and the likelihood are Gaussian distributed, their logarithms are characterized by

the Mahalanobis distances defined by each distribution up to an additive constant, which

can be ignored since it does not affect the optimum. Let MDshape(m) and MDappear(a) be

the Mahalanobis distances corresponding to p(m) and p(a). This allows segmentation to be

equivalently defined as finding minm(MDshape(m) + MDappear(a)).

Both MDshape and MDappear follow chi-squared distributions. The degrees of freedom in

each distribution equals its number of estimated components. Let nshape and nappear be the

number of components in each. The expected variances of MDshape and MDappear are 2nshape

and 2nappear. Therefore, an objective function that has equally weighted likelihoods and shape

priors in the sense of expected variance is
(

1√
2nshape

MDshape(m) + 1√
2nappear

MDappear(a)
)

.

The effect of this normalization is large when local image regions are used and when the

likelihood function is estimated assuming that the image regions, gas frequencies, and bone
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frequencies are independent. In this case, nappear can be as high as 1,000 (see page 136) while

nshape is typically no more than 10. This results in a normalization that downweights the log

likelihood by a factor of 10 as compared to the Bayesian model.

4.3 Segmentation Results

Several segmentation results are presented in this section. For each specific segmentation

task, the appropriateness of the appearance model and its corresponding likelihood function

is first discussed. Then the actual segmentation results are examined. Section 4.3.1 discusses

the segmentation of the left kidney and the learning of its across-patient variation. It also

compares the appearance model to a voxel-match-based appearance function. Section 4.3.2

discusses the segmentation of the bladder and prostate and the learning of their day-to-day

variation within the same patient. Section 4.3.3 discusses a clinically relevant variant of the

bladder and prostate segmentation pipeline that pools day-to-day variations across patients.

4.3.1 Across Patient Left Kidney Segmentation: A Comparison of Appear-

ance Models

This section examines the appearance of the human left kidney and its variation across

patients. Segmentation results using QF mixtures with the global appearance model are pre-

sented and compared with three other segmentation results. First, the benefit of specially

handling gas and bone using the QF mixture representation is examined. Second, these seg-

mentation results are compared to a voxel-scale appearance model. Third, the effectiveness

of the optimization performed during segmentation is examined by comparing these results to

the approximate global maximum of the objective function. These results are from an early

study presented in [BSPC06]. As is mentioned in the conclusions of this section, there have

been many recent improvements to the entire segmentation pipeline.

The data set consists of 39 slice-by-slice scanned CT images from different patients. Each

image captures a completely imaged kidney without pharmaceutical contrast. Each image was

acquired at an in-plane resolution of 512× 512 with voxel dimensions of 0.98 mm × 0.98 mm,
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and an inter-slice distance between 3 mm and 5 mm. For training, the left kidney in each image

was carefully segmented by a human expert slice-by-slice using an interactive contouring tool.

6 landmarks were also identified for each kidney: 2 at the north and south poles, and 4 on a belt

around the midsection of the kidney. These landmarks are used for two purposes. First, the

landmarks are used to enforce an anatomic correspondence between m-reps fit to each training

image. This is accomplished by forcing, via a penalty in the objective function, the ends of

6 pre-identified spokes to correspond to the 6 landmarks. Second, a similarity transform is

computed from the landmarks for both alignment and initialization. This initialization uses

manually defined information. Therefore, this segmentation pipeline is semi-automatic.

A leave-one-out segmentation experiment was performed. The parameters of the global

appearance model were set as follows. 200 bins were used for each quantile function. A

scale factor of 0.1 was used for exterior gas and bone frequencies, i.e., αint
g = αint

b = 1 and

αext
g = αext

b = 0.1. Two principal components were learned for the interior QF and three

components were learned for the exterior QF. Voxel weights were determined using a Gaussian

with a standard deviation of 3 mm, i.e., σboundary = 3 mm.

Evaluation of Appearance Model Variation

Figure 4.5 shows the Qi
ft QFs estimated from all 39 images in the data set. Also displayed

is the mean QF and ±1.0 standard deviation along the first two principal directions of variation

for each region. Two principal components capture 94.8% of the variation in the interior region

and 97.4% of the variation in the exterior region.

For the interior region, the QF mean and principal modes visually appear to characterize

the 39 input QFs. Therefore, the variation of these QFs is approximately linear. For the

exterior region, the 39 QFs contain mixture variation in the amount of fat versus other tissue

in the distributions. This mixture variation generates slightly inappropriate QF means and

principal modes. The principal modes appear to adequately model the variation of the QFs that

roughly correspond to fat. However, it has difficulty capturing the intensities that correspond

to other tissue. Instead, a higher than desired probability is assigned to intensities between

the desired fat and tissue intensities.
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Figure 4.5: Quantile functions estimated from global image regions of the left kidney from
39 patients. For each region the Qft QFs are displayed. The mean QF and ±1.0 standard
deviation along the first two principal components of variation are displayed. Histogram
estimates corresponding to these QFs are also displayed.

Evaluation of Segmentation Results

The global appearance model and its likelihood function are now evaluated by its success

on this segmentation task. Success is quantified in two ways. First, an expert can decide if

the results are clinically acceptable. Second, the segmentations can be compared to manual

segmentations using a performance measure. This section reports both a volume based mea-

sure and a boundary based measure. Volume overlap is reported, defined as the volume of

the intersection of the two objects divided by the average volume of the two objects. This

measure is known as the Dice coefficient. The average closest-point surface distance is also

reported. This average surface distance is computed by first computing the minimum distance

from many points on both object’s boundaries to the other object’s boundary. The average of

all of these minimum distances is then computed. Improvements in these performance mea-

sures often have clinical significance. For example, improvements in average distance often

corresponds to large improvements in the most inaccurate portion of the object, instead of

many small improvements across the object. This notion of improvement corresponds to clin-

ical improvement. However, other performance measures such as maximum surface distance

or 90th percentile surface distance may be more clinically relevant.
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Figure 4.6: Left kidney segmentation results on 39 cases. The legends gives the average
performance of each set of segmentations. An objective function based on the QF mix-
ture global appearance model has both an accurate approximate global optimum and an
accurate local optimum found via semi-automatic segmentation.

Figure 4.6 reports both of these performance measures for 6 different segmentation results

discussed next. First, the accuracy of the models fit during training is reported. The training

results represent the best possible results expected during segmentation. They are a good

measure of the scale at which the m-rep shape model can represent the left kidney. Second,

the quality of the landmark based initialization is reported. Recall that initialization places the

mean m-rep model learned from training into the image by applying a similarity transform to

the model. The relatively high accuracy of this initialization demonstrates the quality of both

the mean m-rep model and the similarity transform. Ideally, segmentation will only improve

the results.
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Third, Figure 4.6 reports results for the QF mixture based global appearance model pre-

sented in Section 4.2.1. Approximately 30 of these 39 segmentations were deemed clinically

acceptable by an expert. These results are largely high in quality and they tend to be a signif-

icant improvement over the initialization. Average surface distance is improved 0.4 mm from

initialization on average across the 39 segmentations.

Fourth, the importance of specially handling gas and bone intensities using QF mixtures

is tested. To test this, segmentation is performed using only a QF in each region for all of the

intensities. The accuracy of these QF based segmentations is reported. While these results

still improve upon the initialization, the QF mixture representation is clearly beneficial.

Fifth, segmentation results are reported for a voxel-scale appearance model that estimates

intensities at several positions on many boundary normals [SPCR04]. Its appearance function

computes normalized correlation to a carefully constructed template. This model is typically

unable to improve the segmentations beyond the initialization, which highlights the difficulty

of this segmentation task.

While the QF mixture based segmentation results are largely acceptable, they fail to ap-

proach training accuracy. This degradation in performance could be due to many factors

related to the shape space, the optimization, and the appearance model. To determine the

magnitude that the appearance model is responsible for this issue, the quality of the global op-

timum of the objective function was estimated. In order to estimate this global optimum, each

image was segmented using as initialization the m-rep fit to the label image. These segmen-

tations find the local optimum closest to the ideal training segmentation. The segmentations

used as the approximate global optimum are the segmentations with the better objective func-

tion values, chosen between these segmentations and the QF mixture based segmentations

with the landmark based initialization. In 35 of the 39 cases this optimization found a better

estimate of the global optimum of the objective function. Figure 4.6 reports this sixth set of

segmentation results. Assuming these results are representative of the true optimum of the

objective function, they show the high quality segmentations defined by the QF mixture based

global appearance model. 35 of these segmentations are clinically acceptable. Figure 4.7 shows

three clinically unacceptable segmentations and three typical segmentations. The first poor

126



segmentation in Figure 4.7 is due to contrast in the bowel, which is atypical in the data set.

The second poor segmentation is due to reconstruction artifacts in the CT image.

Conclusions

In this experiment, the QF mixture based global appearance model was examined. Its

estimated likelihoods showed that interior region distributions were well modeled while exterior

region distributions contained some nonlinear artifacts. Despite these artifacts, high quality

segmentation results were achieved. In future work, these results should be further compared

to existing methods.

This experiment used an early version of the segmentation pipeline. Several improvements

and bug fixes have been made to the pipeline since this experiment was performed. Most

notably for the appearance model, local image regions have been defined. Also, an atom scale

shape prior is now available to refine the results of the object scale segmentation. These

features should improve the segmentation results presented in this section and give a clearer

view of the comparisons described above.

4.3.2 Day-to-Day Bladder and Prostate Segmentation: Evaluating Appear-

ance Model Scale and Statistical Choices

This section examines the appearance of the bladder and prostate in CT images, and the

variation in their appearance day-to-day in the same patient. Three experiments are performed

that analyze different properties of the appearance model and its learned likelihood function.

First, the benefit of appearance functions that estimate a mean and covariance from training

examples is examined. Second, global and local image regions are compared. Third, when

estimating the likelihood function, different levels of independence are examined.

Each experiment uses a data set of 5 patients each with 13 to 18 daily CT scans of the

male pelvic area. The images have an in-plane resolution of 512 × 512 with voxel dimensions

of 0.98 mm × 0.98 mm and an inter-slice distance of 3 mm. Four of the patients were acquired

at University of North Carolina, and one was acquired at William Beaumont Hospital. Expert

manual segmentations of the bladder and prostate are supplied for each image. The manual
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(a) 3 of the 4 segmentations deemed clinically unacceptable.

(b) 3 typical segmentations from the remaining 35.

Figure 4.7: Segmentation results using the estimated global optimum of the objective
function defined using the QF mixture based global appearance model. Each column is a
single patient viewed in an axial and coronal slice. The solid contours are the segmentation
results and the dotted contours in (a) are the training fits. Note the contrast enhanced
bowel in the left column of (a) and the imaging artifacts in the center column of (a).
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segmentations are used to produce training m-rep fits for each image. An m-rep shape model

with a 5 × 6 atom grid is used for the bladder; a 4 × 7 atom grid is used for the prostate.

Figure 4.8 gives an example of the day-to-day variation in the manual segmentations and m-

rep fits. For alignment and initialization, two additional pieces of information are supplied

for each image. First, a similarity transform is supplied that was automatically computed

from the bones in each image. Second, a similarity transform is supplied from two prostate

landmarks. Each experiment in this section uses an alignment and initialization based on one

of these similarity transforms.

The experiments in this section consider each patient separately. Each patient is segmented

using a leave-one-day-out strategy, where training is based on all the images for the patient

except the target image. This strategy is clinically unrealistic since the images for each patient

are sequentially acquired. A more clinically applicable strategy is discussed in Section 4.3.3.

Figure 4.9 displays global regions of the bladder for all days of 15 patients. The interior and

exterior distributions contain little mixture variation within a patient day-to-day. Therefore,

day-to-day variation should be accurately modeled via PCA on their QFs. This is supported

by the example learned principal components given in Figure 4.4 on page 114.

Expected Appearance and Expected Appearance Variation

The appearance function presented in Section 4.2.2 estimates both an object’s expected

appearance and its expected appearance variation. The expected appearance of the model is

its mean in the training set; its expected variation is its covariance in the training set estimated

using PCA. With both, the appearance function is a true image likelihood. The benefits of

estimating both is examined in this experiment.

This experiment was an initial examination of the appearance model. Its results used

a preliminary version of the appearance model and the rest of the segmentation pipeline

[BSPC05]. The experimental setup was as follows. A single patient of the 5 described above

was used. Alignment and initialization was done via the bone-based similarity transform.

Shape training learned 6 modes of variation for optimization. The shape prior was not used,

i.e., maximum likelihood segmentation was performed. The appearance model used global
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(a) Manual segmentations.

(b) Training M-rep fits.

Figure 4.8: The bladder (yellow) and prostate (red) in 3 days of the same patient.

image regions with a sharp 1 cm boundary. Each region was represented by a 25 bin QF; the

QF mixture representation was not used to specially handle gas and bone intensities.

To measure the impact of the computed mean and covariance, three appearance functions

for the global appearance model are examined. The remainder of the segmentation pipeline

is kept unmodified. The three appearance functions described next learn increasingly more

information about the appearance of the object from training. First, the EMD-to-day-1 func-

tion creates a reference appearance model from the first image. The function is defined as the

earth mover’s distance to the reference model, which is Euclidean distance for this appearance

model. Second, the EMD-to-mean appearance function is defined as the EMD to the average

appearance model, which is computed from all the other images. Third, the Mahalanobis-to-

mean appearance function is the image likelihood function presented in Section 4.2.2, which

learns both the mean and covariance of appearance models from training. The interior and

exterior regions are considered as independent, and two principal components are learned for

each.
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(a) Global image regions of the bladder for the 5 patients considered in Sections 4.3.2 and 4.3.3.

(b) Global image regions of the bladder for 10 other patients.

Figure 4.9: Interior (blue) and exterior (yellow) global regions of the bladder for all days
of 15 patents displayed as histograms.

Segmentation results are given in Table 4.11. Segmentation accuracy improves with in-

creased statistical training, and there is a clear benefit to estimating the mean and covariance

of this appearance model. These results highlight the appropriateness of the QF for these

linear estimation tasks. The global appearance model is also compared to a voxel based ap-

pearance model (see Section 4.3.1 and [SPCR04]). The EMD-to-day-1 function allows a direct

comparison to the voxel method, since both use only the first image and neither are statisti-

cally trained. The global appearance model with EMD-to-day-1 outperforms the voxel based

method. The clinical appropriateness of these results is discussed in Section 4.3.2.

This experiment examined the likelihood function proposed in Section 4.2.2. Next, global
1These results are reported using the more stringent volume overlap measure defined as intersection volume

divided by union volume.
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Table 4.1: Bladder and prostate segmentation results using an early version of the QF
based global appearance model. The results indicate the usefulness of estimating the
mean and covariance of the appearance model. The average result over a single patient’s
17 images is given below.

Volume Overlap (Int./Union %) Ave. Surface Dist. (mm)
Appearance Model Bladder Prostate Bladder Prostate

Training 88.6 87.8 1.11 1.05
Voxel, correlation-to-day-1 79.8 76.0 2.07 2.20
Global, EMD-to-day-1 80.7 78.4 1.97 1.94
Global, EMD-to-mean 81.8 79.4 1.84 1.86
Global, Mahalanobis-to-mean 84.8 79.6 1.53 1.86

image regions are compared to local image regions.

A Comparison of Global and Local Image Regions

Both the previous experiment and the experiment on the left kidney described in Sec-

tion 4.3.1 used the appearance model with global image regions. This experiment presents a

set of segmentation results using local image regions. A similar experiment was reported in

[SBPC07b].

Recall that local image regions are defined such that there is an interior and exterior

region centered on and localized to every spoke end of the m-rep shape model. The m-rep

shape models used for the bladder and prostate in this experiment have 78 and 74 spokes,

respectively. As defined in Section 4.2.1, each region has a soft boundary as it falls away from

the object boundary and a hard boundary based on the distance to the spoke end. Specifically,

σboundary is set to 5 mm and dspoke is set to 1 cm. The QF mixture representation was used

with αint
g = αint

b = 1 and αext
g = αext

b = 0. 128 bins were used for each QF.

This experiment used all 5 patient data sets described at the beginning of Section 4.3.2. The

bladder and prostate were segmented independently. During shape training, 8 and 4 principal

components were learned, respectively. These components were used both for optimization

and to define the shape prior. Alignment and initialization were performed using the prostate

landmark based similarity transform.
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Segmentation results are given in Tables 4.2, 4.3, and 4.4. Using local image regions consis-

tently improved segmentation results for both the bladder and the prostate. This demonstrates

the benefit of modeling the appearance inhomogeneity across the boundaries of these objects,

which was discussed in Section 4.2. Local image regions capture distinguishing features near

the boundary, which is useful for segmentation. The local appearance model depends on a

correspondence in the boundary region supplied by the m-rep shape model. The success of

the local appearance model suggests that the correspondence provided by m-reps is useful for

describing a patient’s day-to-day anatomic variation in the pelvic region.

The clinical acceptability of these segmentation results can also be discussed. However,

clinical acceptability is application specific, and careful observer studies are necessary to rate

the segmentation results discussed here. In the informal studies for radiation oncology that

we have conducted so far, clinically acceptable bladder segmentations have had 90% or greater

volume overlap, and clinically acceptable prostate segmentations have had 1.5 mm or less

average surface distance. There are 80 total images for the 5 patients. Initialization, global

region segmentation, and local region segmentation produce 9, 62, and 72 such segmentations

for the bladder and 54, 67, and 70 such segmentations for the prostate, respectively. The

prostate experiences mostly rigid day-to-day variation, which is well captured by the landmark

based initialization. However, many of the prostates that were not adequately captured by the

initialization were still segmented acceptably.

Joint Versus Independent Image Region Estimation

All of the segmentation results presented so far have used likelihood functions estimated

assuming that the image regions, gas frequencies, and bone frequencies are independent. The

main benefit of their assumed independence is increased stability in their estimation. However,

the resulting model has four undesirable properties. First, these assumptions are not valid

because the intensities in the image regions are highly correlated. Therefore, information is

discarded that could be useful for segmentation. Second, the minimum expected variance of

gas and bone frequencies must be defined. This variance effectively defines an ad hoc penalty in

the likelihood function. Third, when combined with local image regions, the expected variance
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Table 4.2: Bladder segmentation results. Median per patient results are given below.
Local regions are more accurate than global regions for all 5 patients.

Patient Volume Overlap (Int./Ave. %) Ave. Surface Distance (mm)
Global Local Global Local

1 91.5 92.7 1.38 1.07
2 93.4 94.3 1.26 1.09
3 91.2 92.1 1.56 1.32
4 93.7 95.2 1.15 0.94
5 90.1 91.6 1.90 1.53

Table 4.3: Prostate segmentation results. Median per patient results are given below.
Local regions are more accurate than global regions for 4 of the 5 patients. The other
patient has excellent results for both methods.

Patient Volume Overlap (Int./Ave. %) Ave. Surface Distance (mm)
Global Local Global Local

1 90.8 91.1 0.93 0.89
2 92.5 94.3 1.30 0.97
3 92.3 92.5 0.96 0.87
4 94.4 94.4 0.90 0.89
5 90.5 92.1 1.70 1.38

Table 4.4: Bladder and prostate segmentation results comparing global and local image
regions. Average and standard deviation results for the 5 patients pooled together are
given below.

Volume Overlap (Int./Ave. %) Ave. Surface Distance (mm)
Method Bladder Prostate Bladder Prostate

Training Fits 95.3 ± 0.8 95.4 ± 0.8 0.83 ± 0.08 0.65 ± 0.07
Initialization 79.9 ± 8.9 90.4 ± 4.4 3.62 ± 1.61 1.38 ± 0.75
Global 91.6 ± 3.3 91.7 ± 3.2 1.51 ± 0.54 1.22 ± 0.60
Local 92.7 ± 3.2 92.1 ± 3.5 1.31 ± 0.55 1.14 ± 0.61
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of the likelihood function is very large compared to the shape prior. As discussed in Section

4.2.2, this could be detrimental to segmentation performance. Fourth, the estimated interior

and exterior likelihood functions may have different levels of sensitivity, which could lead to

segmentations biased towards either the object interior or object exterior.

This experiment examines learned likelihood functions that relax these independence as-

sumptions and address the undesirable properties above. Recall that the appearance model

is a tuple of concatenated quantile mixtures. Section 2.2.3 defined quantile mixtures and a

method to scale its elements into commensurate units so that PCA could be applied. This

scaling allows PCA to be used both across image regions and within an image region to jointly

estimate gas frequencies, bone frequencies, and the fat and tissue QF.

Two levels of joint estimation are examined. First, the In/Out Joint likelihood function

jointly estimates each paired interior and exterior region. For local image regions, this jointly

models all measurements for each spoke end. For global regions, all measurements made by

the appearance model are jointly estimated. Using the notation from Section 4.2.2 (see page

117), the In/Out Joint likelihood function estimates
∏n

i=1 p(wi
g, Q

i
ft, w

i
b, w

n+i
g , Qn+i

ft , wn+i
b ).

This likelihood function directly addresses the second and fourth properties above while only

lessening the first and third properties. Second, the All Joint likelihood function jointly

estimates the entire appearance model. For global regions, this likelihood is the same as

the In/Out Joint likelihood. The All Joint likelihood function addresses all four concerns

above. However, it may be difficult to adequately estimate.

This experiment used an identical setup to the previous experiment that examined global

and local image regions. Table 4.5 presents segmentation results. The results of the three

likelihood functions are comparable. That is, segmentation does not appear to be sensitive

to the assumed level of independence in the appearance model. However, an experiment

with a less accurate initialization might highlight differences in their segmentation results.

Beyond accuracy, as discussed above, more effort was needed to define the parameters of the

independent likelihood function. Also, the joint likelihood functions estimate a more compact

statistical representation of the appearance variability. When independently estimated, the

interior and exterior QFs learned 2 and 3 principal components, respectively. Including the
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Table 4.5: Bladder and prostate segmentation results under different assumptions of in-
dependence of the image regions. The median result is given over all 80 images of the 5
patients. Results suggest that segmentation is not sensitive to this choice.

Volume Overlap (Int./Ave. %) Ave. Surface Distance (mm)
Method Bladder Prostate Bladder Prostate

Training Fits 95.5 95.6 0.8 0.7
Initialization 81.6 91.4 3.4 1.1

Global Independent 92.3 92.5 1.39 1.05
Global Joint 92.7 92.2 1.32 1.07

Local Independent 93.3 92.9 1.19 0.97
Local In/Out Joint 93.5 93.0 1.15 0.99
Local All Joint 93.2 93.1 1.22 0.98

expected projection distances, gas frequencies, and bone frequencies, this leads to 11 estimated

Mahalanobis distances (coefficients) for each paired interior and exterior region. For global

image regions, both the bladder and the prostate are represented by 11 coefficients when

using the independent likelihood function. Joint estimation learned only a single principal

component and its projection distance, which simplifies to 2 coefficients. For local image

regions, the number of components depends on the number of spokes in the m-rep shape

model. The bladder m-rep has 78 spokes and the prostate m-rep has 74 spokes. Also, the

In/Out Joint likelihood learned 3 principal components for each region pair, and All Joint

learned 10 global components. For the independent, In/Out Joint, and All Joint likelihood

functions, the bladder has 858, 312, and 10 coefficients, and the prostate has 814, 296, and 10

coefficients, respectively.

The All Joint likelihood function with local regions achieved its best segmentation results

when it learned 10 principal components. However, 10 components is the maximum that can

be learned across patients. One of the patients has a total of 13 images. This means 12

training images are available for each target image, and computing the mean and the expected

projection distance each require one of these degrees of freedom. Therefore, it is difficult to

adequately estimate the All Joint likelihood function, given the training sets that are available

in this experiment.

I conclude that the In/Out Joint likelihood function estimates appearance at the most
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useful scale for the segmentation of the bladder and prostate in CT images. Compared to the

independent likelihood function, it has a lower expected variance and it has more easily defined

parameters. Compared to the All Joint likelihood function, it is easier to estimate. Also, in

each local portion of the object, all of the appearance measurements are jointly modeled.

This is a natural scale that will model many of the correlations that are possibly useful for

segmentation.

Conclusions

This section focused on the appearance variation of the bladder and prostate within a

patient day-to-day. A series of three experiments were discussed that evaluated different

aspects of the proposed appearance model and likelihood function. First, the estimated mean

and covariance of the appearance model were examined and found to be appropriate. Second,

the local appearance model was shown to be at a novel, useful scale for segmentation. Also,

the success of the local appearance model suggests that the correspondence provided by the

m-rep shape model is useful for describing a patient’s day-to-day anatomic variation in the

pelvic region. Third, the joint estimation of the appearance model parameters was discussed.

The joint estimation of local, paired image regions was shown to be useful for segmentation.

Most of the results presented in this section used an initialization based on two prostate

landmarks. In future work, fully-automatic segmentation using a bone based initialization

should be examined. I believe that modeling the expected appearance changes due to the

shape deformations expected during segmentation will be essential for this task. This is dis-

cussed as future work in Section 5.2.5. Also, the shape model uses a multi-scale approach to

jointly estimate its parameters. A similar approach could be useful for estimating the appear-

ance model. Such an approach would learn several global principal components and several

independent, local residue components. This should allow more correlations in the appearance

measurements to be stably estimated.
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4.3.3 Bladder and Prostate Segmentation Using Pooled Day-to-Day Varia-

tions Across Patients

This section considers the same task as the previous section: the day-to-day segmentation

of the bladder and prostate in CT images. The proposed approach estimates a mean shape and

appearance model from the previous days of the current patient, and it estimates their expected

day-to-day variation from other patients [PBJ+06, BPC+06]. This approach has three main

differences with the experiments presented in the previous section. First, day-to-day variation

is estimated from other patients instead of the current patient. Second, this approach has

more clinical relevance. Each patient’s images are acquired in series day-to-day, which limits

clinically relevant segmentation approaches to use only previously acquired images for training.

This is violated by the leave-one-day-out approach used in Section 4.3.2. Third, this approach

cannot be used to segment the first daily image of a patient. Such a task must estimate the

variation between patients since no previous images of the patient are available. However, the

shape and appearance variation of the bladder and prostate is typically much greater between

patients than within a patient day-to-day; this is depicted for bladder appearance in Figure

4.9 on page 131. This more difficult task is left for future work.

Instead, this section presents an approach for segmenting the other i = 2, . . . , n daily

images of a patient. To segment the day i image of a patient, the mean and covariance of both

the shape model and appearance model must be estimated. The available training images

for this task include the previous daily images of the current patient and all the images from

several other patients.

Because between patient variation tends to be much larger than day-to-day variation, it

is assumed that the previous days of the current patient will provide the best estimate of the

object’s mean shape and appearance, i.e., other patient information is ignored. To formalize

this, let there be npats patients each with np
days daily images. Also let ap

i be the training

appearance model corresponding to image Ip
i , where p = 1, . . . , npats and i = 1, . . . , np

days.

Then, the mean appearance model used in segmenting image Ip
i is µp

i−1 = 1
i−1

∑i−1
j=1 ap

j . The

mean of the shape model is similarly estimated and can be equivalently defined.

The variation of µp
i could also be examined. However, it can be shown that modeling the
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variation of µp
i corresponds to scaling the learned covariance. Since the same scale factor would

also be learned when modeling the variation of expected shape, capturing it would only scale

the objective function, and thus would have no effect on segmentation.

Learning a patient’s day-to-day variation from only previous daily images of that patient is

impractical for earlier days. The training sets are too small to adequately train the shape prior

and image likelihood. Therefore, information from other patients needs to be incorporated

into their training. As is depicted in Figure 4.9 for the bladder, it is unclear if the day-to-day

appearance variation of each patient about his distinctive mean is substantially different. For

example, the amount of fat versus tissue in the bladder exterior region varies from between

patients. Within each patient, however, this mixture appears to vary by a similar amount.

Therefore, in this experiment I assume that the day-to-day variation of each patient about

their mean is identically distributed. This assumption is made for both the appearance model

and the shape model. The usefulness of this assumption will be tested by the quality of the

segmentations based on it.

This assumption allows day-to-day appearance covariance to be estimated via pooling

across patients. Since the mean of each patient is different, across-patient pooling is done on

the residues of the patient’s models after its mean model is subtracted. The expected covariance

used to segment image Ip
i can be estimated from the residues of its own previous days,

⋃i−1
j=1 ap

j−

µp
i−1, pooled with the other patient’s residues,

⋃
k 6=p,k=1,...,npats,i=1,...,nk

days
ak

i −µk
nk

days

. However,

the previous days of the current patient are ignored for computational simplicity. Therefore,

all days of the current patient are segmented using a common covariance Σp estimated from

other patients.

There are three important differences between the learned likelihood function proposed

in this section, based on µp
i and Σp, and the likelihood function trained using the leave-one-

day-out approach presented in the previous section. First, µp
i will be less accurate since it is

estimated from fewer days of patient p. This degrades the quality of the appearance model

optimum, the quality of the shape prior optimum, and the quality of the initialization. Sec-

ond, the assumption that each patient’s day-to-day variation is identically distributed has not

been carefully examined. Therefore, Σp may not accurately describe the day-to-day variation
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of patient p. Third, Σp is estimated using many more samples than the leave-one-day-out

covariance. Assuming that each patient’s day-to-day variation is identically distributed, this

should increase the accuracy of its estimation.

This experiment used global image regions. Day-to-day appearance variation across pa-

tients is not identically distributed for local image regions due to the lack of exterior region

correspondence between patients. Local image regions assume that the geometric correspon-

dence defined by the m-reps is appropriate both interior and exterior to the object. Fortunately,

within a patient it is reasonable to assume that interior and exterior correspondences are iden-

tical since day-to-day variation is physically constrained to be diffeomorphic [JDJG04]. That

is, shearing across the object boundary is not physically possible, which is the source of mis-

matches between interior and exterior correspondences. However, between patients there is

no such constraint and the lack of such shearing is an unreasonable assumption. Therefore,

global image regions are used in this experiment.

The details of the experimental setup are as follows. The 5 patient data sets are used

from the previous section (see page 129). A leave-one-patient-out study is performed, where

Σp for each patient is trained using the other 4 patients. Global image regions are used with

independent QF mixtures, 200 bin QFs, σboundary = 5 mm, αint
g = αint

b = 1, and αext
g =

αext
b = 0.1. Alignment and initialization within a patient day-to-day is done using a similarity

transform computed from two landmarks for the prostate and 6 landmarks for the bladder.

Across-patient alignment of patient mean m-reps is also required to allow the pooling of residues

in the estimation of the day-to-day shape variation. However, since this is only required during

training, a highly accurate alignment is performed based on geodesic distance [Fle04].

Figure 4.10 displays a patient’s global bladder regions and its mean interior QF and mean

exterior QF. About these mean QFs, Figures 4.10.b and 4.10.c compare the principal compo-

nents estimated from the same patient to the components estimated from the other patients.

The first two principal components trained from the same patient estimate 96.7% and 97.4%

of the patient’s interior and exterior variability, respectively. The components trained from

the other patients estimate 95.2% and 90.0%. Therefore, the QF space spanned by the two

sets of interior components is very similar. The two sets of exterior components have more
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(a) All days of a patient.
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(b) Day-to-day variation estimated
from the current patient.
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(c) Day-to-day variation estimated
from other patients.

Figure 4.10: A comparison of day-to-day variation estimates of global bladder regions.
±2σ along the first and second principal components is given.

differences. If it is a valid assumption that day-to-day variation across patients is identically

distributed, these two sets of percentages would be identical. Their similarity suggests this

assumption is roughly correct, especially in the object interior.

Figures 4.11, 4.12, and 4.13 give segmentation results. Figure 4.11 shows an example

of the high quality of the landmark based bladder initialization and the further, successful

refinement performed during segmentation. Figure 4.12 shows an example of the best and

typical segmentation results from both the leave-one-day-out and the leave-one-patient-out

approaches. Figure 4.13 compares the leave-one-patient-out segmentation results to the leave-

one-day-out segmentation results in terms of volume overlap and average surface distance. The

leave-one-day-out segmentation results are consistently but typically slightly more accurate.

As mentioned earlier in this section, leave-one-patient-out training is affected by two factors

compared to leave-one-day-out training. First, its estimated mean is less accurate since it is

estimated from fewer examples. Second, the assumption that day-to-day variation is identically

distributed across patients could be invalid. It appears that one or both of these factors

significantly effects the estimation of the shape prior or the image likelihood, or both.

While the leave-one-patient-out results are less accurate than the leave-one-day-out results,

they use a training approach that can be applied to segment clinical images as they are acquired

day-to-day. The main benefit of the leave-one-patient-out approach is that more samples are
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(a) Landmark based bladder initialization. (b) Bladder segmentation using other patient
training.

Figure 4.11: Example of bladder initialization and segmentation.

(a) Leave-one-day-out (b) Leave-one-patient-out

Figure 4.12: Best (top) and typical (bottom) segmentation results.
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Figure 4.13: Sorted measures comparing segmentation results to manual segmentations
in 75 images. The legends give mean performance in parentheses.

available to estimate day-to-day variation. In this experiment the image likelihood was esti-

mated assuming the independence of the image regions, gas frequencies, and bone frequencies.

However, the larger training sets supplied by the other patients might be particularly useful

for estimating the joint variation of the appearance model. One of the sources of error in the

leave-one-patient-out approach is its assumption that day-to-day variation is independently

distributed across patients. Methods that relax this assumption could be explored.

4.4 Summary and Conclusions

This chapter presented an appearance model and image likelihood function based on the

quantile function methodology discussed in Chapter 2. The appearance model was shown to

adequately describe the appearance of the left-kidney, bladder, and prostate in CT images.

The learned likelihood function was shown to efficiently describe the variation in a population

of such organs.

The presented appearance model estimates object appearance at a novel scale defined
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using local image regions. It describes the distribution of intensities in each region using a QF

mixture. This representation efficiently represents image regions at any scale, and it simplifies

to existing local appearance models at the voxel-scale. The QF mixture representation was

shown to have linear variation across the training populations considered in this chapter. This

allowed an efficient, Bayesian image likelihood function to be defined. Further, the scale of the

appearance model allowed this likelihood function to be stably estimated while still capturing

local correlations in the variation of object appearance.

This chapter reported several specific segmentation results. A variety of additional segmen-

tation experiments have been performed. This appearance model has been used to segment the

rectum in a setting similar to the reported bladder and prostate experiments. Also, the cau-

date has been segmented in MR images [LGL+07]. The applicability of the appearance model

to these additional objects highlights its generalizability. Additional left kidney, bladder, and

prostate segmentation experiments have also been performed using other types of alignment

and initialization. The need for these experiments highlights the sensitivity of the segmen-

tation pipeline to initialization. This sensitivity is largely due to the difficult optimization

task imposed by the likelihood function. Sections 5.2.4 and 5.2.5 discuss possible appearance

models and likelihood functions with less sensitivity to initialization.
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Chapter 5

Discussion and Future Work

This chapter reviews and discusses the contributions of this dissertation. This is followed

by a discussion of future work. Some of these future projects are developed in some detail.

5.1 Summary of Contributions

This section revisits the thesis and claims laid out in Chapter 1 and presented in Chapters

2, 3, and 4. Each contribution is restated along with a discussion of how it was accomplished

in this dissertation.

1. A geometric interpretation of the space of discrete quantile functions has been developed

and described. A key analysis linked the non-parametric representation of the quantile

function to several common parametric distribution families.

The space of quantile functions was discussed in Section 2.1. Its geometric properties

were explored so that the compactness of a population of points in the space could

be examined. Compactness was defined in terms of the linearity of the submanifold

formed by the population and the resulting low number of parameters needed to express

the variability in a population. Compactness in the QF space was studied in general

by considering the submanifolds formed by common parametric distribution families.

Specifically, location-scale families where shown to form linear submanifolds, and the

Weibull distribution was shown to form an exponential submanifold. Other families

were analyzed, and their estimated submanifolds in the QF space were examined. The



result of this analysis was an understanding of what types of distribution variation, or

equivalently, what types of parameters of distribution families, can be compactly modeled

using QFs. Specifically, mean and standard deviation parameters are linearly modeled

in the QF space while mixture parameters are strongly nonlinear. This understanding

was used to construct appropriate task-specific, QF-based distribution representations.

2. A novel framework has been developed for representing the variability of multivariate

and conditional distributions, and distributions consisting of a mixture of multiple un-

derlying distributions. These quantile function based representations are natural in the

sense that their Euclidean distance is an efficient approximation of the Mallows distance.

Their variation is parametrically estimated, which results in the learning of task-specific

distribution families.

Several QF based distribution representations were presented in Section 2.2. These rep-

resentations were carefully constructed to conserve many of the known linear properties

of QFs. Specifically, Section 2.2.1 described a multivariate distribution representation

based on QF estimates of multiple, orthogonal distribution projections. Section 2.2.2

described a conditional distribution representation based on a QF partitioning of the

conditioned variable. Section 2.2.3 described a representation composed of a mixture

of QFs. These more complex distribution representations were needed to represent the

appearance of the objects of interest in Chapters 3 and 4, namely, pictures of materials

and organs in 3D CT images.

Section 2.3 discussed the linear estimation of the variation in a set of these representations

using principal component analysis. The resulting principal components define a learned

parametric distribution family that is ideal for the set.

3. Texture models using the QF based multivariate and conditional distribution representa-

tions have been demonstrated. Both filter bank texture models and Markov random field

texture models have been developed and expressed in a common framework, allowing their

strong similarities and specific differences to be described.

A filter bank texture model was presented in Section 3.2 based on filter response mar-
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ginal distributions represented as QFs. Two Markov random field texture models were

presented in Section 3.3. First, an MRF texture model was described in Section 3.3.1

that uses the QF based conditional distribution representation presented in Section 2.2.2.

This model was shown to be equivalent to second-order Strong-MRF models and gray

level co-occurrence matrices. Second, the PCA-MRF texture model was described in Sec-

tion 3.3.2, which uses the QF based multivariate distribution representation presented in

Section 2.2.1. This texture model uses PCA based projection directions in the joint space

of pixel intensities in a neighborhood. Each projection direction was shown to be equiv-

alent to a linear filter, which makes the PCA-MRF model equivalent to the proposed

filter bank texture model except for the differences in their filters. The PCA-MRF model

learns linear filters that accurately estimate the joint distribution of neighboring pixel

intensities. The filter bank model uses a bank of nonlinear filters that were preselected

based on their discriminative power.

4. A method for the texture based classification of pictures of materials has been developed

and demonstrated. It leverages the demonstrated linearity of the proposed texture models

to viewpoint and lighting variation to produce the best reported classification accuracy to

date on a standard CUReT database classification task. It is also at least an order of

magnitude more compact and computationally efficient than existing methods.

Chapter 3 examined the CUReT database, which contains pictures of materials with

variation due to controlled and well sampled changes in viewing and lighting angles.

This type of variation was shown to be approximately linear for the three proposed QF

based texture models. This finding justified the use of the QDA classifier proposed in

Section 2.3 for classification tasks on CUReT. The QDA classifier was shown to be more

accurate and efficient than SVM and NN when using the proposed texture models.

The accuracies of the three proposed texture models were compared using the QDA clas-

sifier. The PCA-MRF model outperformed the Strong-MRF model, which demonstrated

that the restriction of the Strong-MRF model to pairwise pixel features limits its discrim-

ination power. The PCA-MRF model achieved an accuracy equivalent to the MR8-3M
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filter bank texture model for various training set sizes and QF sizes. This showed that

the hand-tuned MR8-3M features have no benefit over the linear filters learned by the

PCA-MRF model for the evaluated experiment on CUReT. All three proposed texture

models when combined with the QDA classifier outperformed all equivalent existing tex-

ture models that have been applied to the same experiment on the CUReT database.

5. A multi-scale appearance model for objects in images has been developed. It leverages

quantile functions and geometric correspondences supplied by a shape model to generate

region descriptions at scales as coarse as the entire inside or outside of the object, as fine

as individual boundary points, or in between at the novel scale of a local region.

Section 4.2.1 presented an appearance model for objects in 3D CT images that can

model the inhomogeneous intensity patterns expected in these object boundary regions.

It represents the distribution of intensities in object-relative image regions using the QF

mixture representation presented in Section 2.2.3. It was argued that QFs can be used

to efficiently represent the distribution of intensities in image regions at any scale and

that QFs simplify to existing local appearance models at the voxel-scale. However, since

voxel-scale models cannot be stably estimated, two larger scale appearance models were

proposed. First, the global appearance model was described, which models two image

regions: the near boundary object interior and the near boundary exterior. This model

can be stably estimated, but it is unable to express inhomogeneity in the boundary region.

Second, the local appearance model was described, which models many local interior and

exterior image regions. This model is at a scale that can be stably estimated and that

captures local correlations in the variation of the object appearance. This model requires

interior and exterior correspondences near the object boundary. The construction of this

model was described when using the m-rep shape model, and the appropriateness of its

geometric correspondence for day-to-day segmentation tasks was discussed.

6. A likelihood term for the Bayesian segmentation of organs in 3D CT images has been

proposed and tested. It has been shown that between-patient variation and day-to-day

variation of object-relative image regions are efficiently modeled by the quantile function
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mixture representation. State of the art segmentation results have been achieved in left

kidney, bladder, and prostate segmentation experiments.

Section 4.2.2 presented an image likelihood function for use in deformable model seg-

mentation. The likelihood function was used with both appearance models presented

in Section 4.2.1, which were shown to vary linearly in the training sets considered in

Chapter 4. This allowed an efficient, Bayesian image likelihood function to be defined

using the techniques discussed in Section 2.3.

In Chapter 4, the usefulness of the likelihood function was evaluated for three segmenta-

tion tasks. First, in Section 4.3.1, the likelihood function was combined with the global

appearance model to describe the appearance of the left kidney and its variation between

patients. Second, in Section 4.3.2, the day-to-day appearance variation of the bladder

and prostate was examined. The appropriateness of the local appearance model was

demonstrated for this task. Third, in Section 4.3.3, pooling day-to-day variations of the

bladder and prostate across patients was examined. All of these segmentation results

were evaluated based on both clinical acceptability and performance measures. The re-

sults were typically clinically acceptable and they compared favorably to results based

on a voxel-scale appearance model.

Finally, the thesis statement presented in Chapter 1 is revisited.

Thesis: Quantile functions a provide general framework for learning compact representations

of probability distributions. This allows accurate and efficient Bayesian methods for texture

classification and image segmentation using distributions of image-based appearance features.

In order to efficiently model a set of probability distributions, their variation must be un-

derstood. Quantile functions compactly represent a set of univariate probability distributions

in many applications. The first claim in the list above supplies a framework to analyze when

QFs will be appropriate. Claim 2 says QFs can be used to represent other types of probability

distributions, which could be useful for representing the more complex distributions of interest

in computer vision. Specifically, claims 3 and 4 show that QF based representations of both
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filter bank and MRF features can be used to efficiently and accurately model textures for clas-

sification. Claims 5 and 6 show that QFs in local, object-relative image regions can be used

to efficiently and accurately model the appearance of organs in CT images for segmentation.

5.2 Future Work

This dissertation studied the variability of probability distributions. Probability distrib-

utions are typically described by a set of constrained functions such as the PDF, CDF, or

QF. The statistical analysis of these functions and their relationships could be considered in

the more general context of functional data analysis. Work in this field might shed additional

light on the trade-offs among these representations, or it might provide additional avenues of

research. Inversely, this dissertation might provide insights into techniques used in that field.

Specifically, inverses of cumulative functions beyond CDFs could be considered.

5.2.1 Object Recognition

I am most excited about applying this work to object recognition. Here, object recognition

is considered to be the supervised classification of a pre-segmented image region. Three factors

combine to make object recognition tasks interesting and applicable to this work. First, it

integrates shape, color, and texture information. Second, since the goal is discrimination,

these features are naturally described by probability distributions. Third, there are available

data sets in which the sets of objects within each class undergo known, controlled variation.

Therefore, analyzing the variation of probability distributions is both of significant interest

and possible using the techniques discussed in this dissertation. One motivating data set for

this work is the ETH-80 database of color, segmented images of fruits and toys taken under

varying viewing and illumination conditions.

The objects in such images can be described by a variety of texture, color and shape

features. Different features need to be examined for the ETH-80 database to see if their

distributions undergo linear variation when represented via QFs. Applicable texture features

were discussed in detail in Chapter 3. One possible description of object color is the distribution
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of its pixels in the RGB or CIE LAB color spaces. This distribution can be represented by

the QF based multivariate distribution representation presented in Section 2.2.1. One possible

description of object shape is the distribution of distances between its boundary points. This

univariate distribution could be represented by a QF. A similar distance based distribution is

discussed in Section 5.2.4. The linear variation of such distributions needs to be examined.

For example, the above distribution describing shape is linear in scale changes of the object.

Two particular shape features of interest are the local and global versions of the shape

context, which estimates p(d, θ): the distribution of distances and angles between all the

object’s contour points and a reference point [MBLS01, BMP02]. The local version estimates

the shape context at every contour point, which would require modeling the distribution of

p(d, θ) estimates across the object. The global version estimates a single shape context at a

reference point such as the object’s center. However, modeling p(d, θ) is not straightforward

since θ is cyclic. Therefore, I propose modeling distributions on cyclic random variables.

For modeling a univariate distribution on a cyclic random variable, I first propose defining

the Mallows distance for such distributions. Between two distributions estimated by n bin

QFs x and y, I define M2(x, y) as the minimum Mallows distance over all possible 2n − 1

alignments, or cuts, between x and y. That is,

M2(x, y) = min
j=1,...,n−1

‖x− y‖,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣x−

 y(j+1):n

y1:j + 2π


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣x−

 y(n−j+1):n − 2π

y1:(n−j)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 ,

where MATLAB notation has been used to specify the reorderings of y. This distance is the

Euclidean distance between properly reordered QFs. Therefore, the mean and covariance of a

set of such QFs can be estimated as follows. First the set’s Frechet mean is estimated given

this distance metric and using an arbitrary cutoff of [0, 2π) for the mean. Given this mean, a

reordering of each QF can be computed so that the defined M2 distance is Euclidean distance.

PCA can then be performed to estimate the set’s covariance.
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5.2.2 Texture Synthesis and Object Inference from Texture

In Chapter 3 texture discrimination was performed on CUReT, a database of materials

imaged under varying viewing and illumination angles. This database is also an excellent

resource for two additional texture analysis tasks: synthesis and object inference. Further, in

Chapter 3 it was shown that the variation of the textures in CUReT is approximately linear

for QFs. Both of these tasks can greatly benefit from such a representation.

One interesting application of texture synthesis is the synthesis of a texture onto an ar-

bitrary, smooth surface. This task requires an estimate of the appearance of the texture at

arbitrary viewing angles, illumination angles, and viewing distances. Ignoring viewing dis-

tance, CUReT supplies the appearance of several textures at a sampling of these parameters.

In Chapter 3 it was shown that QF representations vary linearly with respect to these parame-

ters. Therefore, accurate estimates of the appearance of the texture at arbitrary values of these

parameters can be computed using linear interpolation. Specifically, I propose estimating a

texture at an arbitrary viewing angle and illumination angle using a 3-mode tensor decompo-

sition of the training QFs [MV04]. Then, I will use these models to synthesize a texture onto

any smooth object.

Similarly, object inference tasks benefit from a representation with linear variation. For

example, consider the classification task performed in Chapter 3. This task could be extended

to also estimate the viewing and illumination angles of the target image. In order to estimate

these angles, a piecewise linear 2D manifold could be estimated during training that represents

the variation of each material to these two parameters. Then, a target texture could be pro-

jected to the point on the manifold it is closest to, and its estimated angle could be computed

by linear interpolation.

5.2.3 More Accurate Mixture Distribution Representations

Chapter 4 examined the distribution of intensities in CT images near organ boundaries.

Such distributions can be characterized as being a mixture of 4 underlying unimodal dis-

tributions corresponding to gas, fat, other tissue, and bone. I propose two approaches to

representing such distributions beyond the QF mixture representation used in Section 4.2.1.
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First, I propose an enhancement to the simplified QF mixture representation used in 4.2.1.

In Section 4.2.1, the ideal QF mixture representation [wg, Qg, wf , Qf , wt, Qt, wb, Qb] was sim-

plified to [wg, Qft, wb], which does not separate the underlying fat and tissue distributions.

Separating these distributions requires more than the simple thresholding used to separate

the gas and bone intensities. The following general approach is proposed. To estimate the

parameters wf , Qf , wt, and Qt for a distribution given by QF Q, perform an optimization

that minimizes a prior on the parameters while forcing the defined distribution to exactly

match Q. During training, use a non-Gaussianity penalty for the prior on Qf and Qt, such

as the projection distance in the space of QFs of the estimated distribution to the Gaussian

submanifold. Then, use these training mixture QFs to estimate a PCA based prior for use in

estimating the parameters of target distributions.

Second, I propose using a continuous Gaussian mixture model to represent the distribution

of intensities in these object-relative image regions. As described below, this model ideally

represents a finite Gaussian mixture model that additionally has variation due to partial vo-

luming, an effect in images due to pixels being a linear combination of the underlying distribu-

tions. Generalizing a finite Gaussian mixture model is of interest because the four underlying

unimodal distributions mentioned above each roughly follows a Gaussian distribution in the

absence of partial voluming. First, I will consider the case of two underlying Gaussian distri-

butions N1 = N (µ1, σ
2
1) and N2 = N (µ2, σ

2
2). A generalization to four underlying Gaussian

distributions is mentioned at the end of the section.

Let X be a standard Gaussian mixture random variable that models mixtures of N1 and N2

without partial voluming. Then fX(x) = wfN1(x)+(1−w)fN2(x), where w is a scalar mixture

parameter. Equivalently, X ∼ πN1 + (1− π)N2, where π is Bernoulli with probability w, i.e.,

fπ(x) = {w if x = 1, (1− w) if x = 0, 0 otherwise}. In order to generalize this model to allow

for partial voluming, recall that this effect corresponds to samples being generated that are a

linear combination of N1 and N2. A random variable Y that allows partial voluming can be

defined as Y ∼ αN1+(1−α)N2, where α is a [0,1] continuous random variable that defines how

often samples are generated with α percent of their volume from N1. In order to express the

PDF of this distribution, first I rewrite Y as Y ∼ Nα = N (αµ1 +(1−α)µ2, α
2σ2

2 +(1−α)2σ2
2).
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Then, fY (y) =
∫ 1
0 fα(y)fNα(y)dα, a continuous Gaussian mixture.

fY (y) depends on the form that the random variable α takes. I believe α will be able to be

modeled as a beta distribution, i.e., α ∼ β(a, b), for two reasons. First, the beta distribution

converges to the delta distribution as a and b go to 0, which allows the case of no partial

voluming to be modeled. Second, more samples are expected with small amounts of partial

voluming than large amounts, which the beta distribution models when a < 1 and b < 1.

This defines Y as a parametric distribution family with parameters θ = [a, b, µ1, σ1, µ2, σ2].

Alternatively, I believe a more natural parameterization of this distribution would have the

same parameters as a standard Gaussian mixture with the addition of a single parameter

that controls the amount of partial voluming, which defines a specific relationship between

the number of pixels with partial voluming and the degree of mixture in each pixel. Such a

parameterization θ = [w, v, µ1, σ1, µ2, σ2] could be defined as follows, where 0 ≤ w ≤ 1 is the

mixture parameter and 0 ≤ v ≤ 1 is the amount of partial voluming. I define fα(y) as the

linearly skewed symmetric beta distribution fα(y) = {fβ(v,v)(y)((2−4w)x+2w) if 0 ≤ y ≤ 0.5,

fα(1− y) if 0.5 < y ≤ 1, 0 otherwise}.

I believe that the distributions of object appearance modeled in Chapter 4 can be accu-

rately estimated by this parametric family, that its parameters can be stably estimated, and

that its parameters will linear vary across the training populations. For this application I

propose modeling a mixture of four Gaussian distributions with partial voluming allowed only

between adjacent Gaussians. The resulting parametric family will have four mixture parame-

ters and three partial voluming parameters, in addition to the mean and variance parameters

of the Gaussians. These parameters should be constrained so that the weights assigned to the

corresponding continuous Gaussian mixture are continuous.

5.2.4 Additional Appearance Models

I propose four alternative appearance models to the model presented in Section 4.2.1. A

related proposal about the likelihood function is discussed in 5.2.5.
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Multiple Appearance Features

One simple improvement to the existing appearance model is to use image features beyond

intensity. Segmentation in ultrasound images has been shown to benefit from incorporating

texture features. MR images typically have three available features: T1, T2, and proton

density. The methods presented in Section 2.2.1 for modeling multivariate probability distrib-

utions could be used to estimate the appearance of such features in each model-relative image

region.

The Object-Scale Appearance Model

I propose an appearance model that uses object-scale exterior correspondences defined by

other objects being (simultaneously) segmented in the image. The global appearance model

assumes that no correspondences are known between the objects or along the surface of each

object boundary. The local appearance model assumes that both interior and exterior cor-

respondences are implied by the geometric correspondence given by the m-rep shape model.

Here, I propose a third appearance model, called the object appearance model. This model

does not change interior correspondences, so it could use either local or global interior regions.

Exterior to the object, it modifies the global exterior region to be exterior to all of the ob-

jects being segmented. Therefore, the current segmentations of the other objects are taken

into account. For example, the bladder would use an exterior region that would not include

intensities from the interior of the current prostate segmentation. The object appearance

model more accurately separates shape and appearance variations by leveraging more of the

information supplied by the shape model. For example, if the prostate were to slide along the

surface boundary of the bladder, this would cause nonlinear mixture variation in local, external

bladder image regions. If the prostate were to move away from the bladder, this would cause

variation in the global, external bladder image region. However, this variation should only

be modeled by the shape prior. The object appearance model correctly does not model such

variation.

For the bladder and prostate segmentation experiments described in Section 4.3.2, this

model should be more accurate than the global appearance model. However, since not all
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of the objects of interest are modeled and segmented, it may be less accurate than the local

appearance model. Therefore, the biggest benefit of the object appearance model may be

for the segmentation experiment discussed in Section 4.3.3 for which local image regions are

inappropriate. Additionally, in both experiments the pelvic bones and the rectum could also

be segmented, which would increase the benefit of this approach over the global appearance

model.

Pre-Computing an Approximatated Local Appearance Model

I propose an approximation to the local appearance model that has a likelihood function

that could be pre-computed. One drawback of the existing appearance model is its computa-

tional complexity. I believe an approximation based on locally linear image regions (see below)

could dramatically speedup the optimization performed during segmentation.

The local appearance model presented in Section 4.2.1 uses local image regions centered at

every spoke that are defined using the local, curved surface of the object boundary. Instead, I

propose defining each local image region using the tangent plane defined by the spoke. Each

of these more local image regions is only a function of a spoke’s 3 position and 2 orientation

parameters. I believe this 5D space could be adequately sampled and used for segmentation

as follows. First, for each sample point in this space, compute QFs for its paired interior and

exterior regions. Then, for each spoke end, compute and store their Mahalanobis distances to

each sample’s estimated QFs. A straightforward implementation as described above combined

with an m-rep with 75 spoke ends will require too much memory to store. In this case, a

sampling at every pixel with 100 orientations would result in a file 7500 times larger than the

image. However, I believe this could be made manageable using a bounding box in the image

and a multi-scale sampling scheme.

An Appearance Model based on Distance Distributions

I propose an appearance model based on distributions on distance variables instead of

distributions on intensity variables. This proposed appearance model computes the spatial

relationship of many boundary points to gas, fat, tissue, and bone. It is natural to combine
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this model with the shape prior since they both model spatial relationships. The shape prior

estimates the probability of explicitly modeled objects while this appearance model estimates

the probability of objects implied by image intensities.

Local image regions can be viewed as defining p(d, i), the joint distribution of distance and

intensity with respect to each spoke end. The local appearance model computes two weighted

marginal distributions pint(i) and pext(i) from p(d, i) using signed distance to compute the con-

tribution of each sample to pint(i) and pext(i). Here, I instead propose modeling pα(d|i), the

distribution of unsigned distances of the closest α samples at fixed intensities corresponding

to gas, fat, tissue, and bone. Specifically, I propose defining 4 intensities {ig, if , it, ib} corre-

sponding to gas, fat, tissue, and bone. The appearance model will consist of 4 QF-represented

distance distributions for each spoke end, pα(d|ig)pα(d|if )pα(d|it)pα(d|ib). To compute each

distribution, I propose using a piecewise linear weighting scheme that assumes that all inten-

sity variation from {ig, if , it, ib} is caused by partial voluming. Additional image normalization

may be required to insure the image intensities correctly correspond to {ig, if , it, ib}.

This model has 4 desirable properties. First, it can describe object boundaries that are

described by any stable spatial relationship of fat, tissue, and bone. Therefore, it is not

constrained to object boundaries at transitions between them, like gradient based methods.

Second, it is not constrained to predefined local image regions. This model examines the

image as far from the boundary as required in order to find the amount of gas, fat, tissue,

and bone specified by α, i.e., it does not have a limited capture range. Third, it can be

pre-computed. When each spoke end is considered independently, it has a 3 parameter input

space that could be sampled at every pixel position. A straightforward implementation with

an m-rep model with 75 spoke ends will have storage requirements of 75 times the input image,

which can easily be made manageable. Fourth, I believe it will be fairly invariant to day-to-

day variation of correct segmentations while varying linearly with increased deformation from

correct segmentations. Roughly, local movement of gas, fat, tissue, and bone relative to a

spoke end should be linear while local changes in the amount of each one is nonlinear. For

the segmentation of the bladder and prostate I believe day-to-day variation of fat, tissue, and

bone can be locally characterized as movement. Therefore this variation should be linear in
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distance. Gas, however, needs special handling because its position is highly variable day-to-

day and its amount changes day-to-day. For the bladder and the prostate, this can be resolved

by pooling fat and gas intensities together. Since they are both always exterior to the bladder

and prostate, this will decrease their variability while not effecting accuracy.

An early version of this idea has been implemented for distances to bone by Joshua Stough

at UNC Chapel Hill. Limited experiments showed no advantages in segmentation accuracy

of the prostate over the QF mixture approach described in Section 4.2 based on thresholding

bone intensities and estimating their frequency.

5.2.5 Incorporation of Segmentation Variability: The Ideal Image Likeli-

hood Function

In Chapter 4, a likelihood function was designed for use in deformable model based image

segmentation. Fenster & Kender [FK01] made two key observations about the requirements

of such likelihood functions:

1. For optimization to succeed, the function must be optimal for the correct segmentation.

Contrary to intuition, the distribution of a function’s values for correct segmentations

gives no information about its goodness for segmentation. Incorrect segmentations must

have different values, i.e., the function must be specific.

2. If a gradient-descent type optimization is performed, the function must meet the more

stringent condition that it become closer to optimal as a shape gets closer to correct.

Many likelihood functions do not meet this second requirement, so they suffer from local

minima or capture range issues. Additionally, many likelihood functions are only evaluated by

the quality of their segmentation results. However, the cause of a poor segmentation result is

difficult to determine. It could be due to one of the issues above or to other portions of the

segmentation pipeline such as the shape model, initialization, shape prior, or optimization.

Fenster & Kender recognize the inadequacy of relying on segmentation results to evaluate the

likelihood function, so they introduce a different evaluation metric based on the likelihood

function’s behavior as a segmentation gets further from correct [FK01].
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In this section I expand upon this idea. First, a more principled evaluation metric is

proposed when a shape prior is available. This metric is based on a definition of the ideal

likelihood function for a given shape prior. Second, a training strategy is proposed to learn

likelihood functions that are closer to ideal. Current learned likelihood functions are trained

only on correct segmentations, which was argued in Section 4.2.2 to be inadequate.

Evaluating the Quality of a Likelihood Function

Whereas Section 4.2 argued for equally penalized expected variations of correct segmenta-

tions, I believe that the ideal objective function used for segmentation will have a shape prior

and image likelihood that equally penalize expected deviations from correct segmentations, as

well. Also, to meet the two requirements above, both components must define a smooth func-

tion such as a multivariate Gaussian distribution in the space of expected deviations. Here I

focus on defining a likelihood function given a fixed shape prior.

The quality of a likelihood function can be defined for a given training image and fit

shape model as follows. The shape prior is typically defined to be a multivariate Gaussian

distribution on the parameters of the shape model. Further, since the prior is used to deform

the object during segmentation, this prior centered on the correct segmentation defines the

expected deviations. The ideal likelihood function would define the same Gaussian distribution

in the shape space as this recentered shape prior. Equivalently, in the parameter space of the

shape prior, the ideal likelihood function would be a centered, unit multivariate Gaussian.

To evaluate how close a likelihood function is to this ideal for the given image and fit shape

model, the expected deviations from the correct segmentation can be simulated by sampling

the recentered shape prior. Then, the likelihood function can be computed for each shape

sample. To evaluate the quality of the likelihood function, a dissimilarity measure must be

defined that measures how close these sampled likelihood function values are to the centered,

unit multivariate Gaussian. For each sampled value the ideal value is known. Therefore, I

propose using the sum of squared differences as the penalty measure.

This approach is similar to that taken by Fenster & Kender, who defined the correlation

between the sampled values and a 1D variable that described the degree of deformation. The
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proposed approach simply leverages the shape prior to do a more principled sampling and to

define a more accurate penalty.

An additional idea to explore is the notion of the scale of the expected deformations. As

segmentation proceeds, the current segmentation should get closer to the correct segmenta-

tion. A multi-scale shape prior somewhat captures this notion; the likelihood function could

be estimated at each of these fixed scales. Alternatively, a scale parameter 0 ≤ α ≤ 1 could be

defined that scales the expected deformations generated by the prior. The likelihood function

could be evaluated at different values of α. An α of 0 corresponds to only expecting segmenta-

tion deformations that are on the scale of the fitting error of the shape model during training,

an idea discussed in Section 4.2.2.

A straightforward use of this evaluation framework is for parameter selection. The pa-

rameters of the appearance model and the likelihood function could be tuned to make the

likelihood function closest to ideal. Such a principled approach to parameter tuning makes

reasonable the introduction of appearance models with many more parameters. For example,

a multi-scale appearance model could be defined, where for each scale of the shape prior an

appearance model is found that is closest to ideal. Such a multi-scale appearance model could

explore parameters such as the degree of Gaussian smoothing of the image and region size.

Learning a Closer to Ideal Likelihood Function

The notion of expected segmentation variability can also be incorporated into the train-

ing of the likelihood function. Since the likelihood function is evaluated by its performance

on such deformations, it makes sense to train on them. The current likelihood function esti-

mates pcorr(acorr), the likelihood of a correct segmentation. I propose additionally modeling

pdef,α(∆adef ), the changes in the appearance model due to expected segmentation deforma-

tions at scale α. This formulation assumes ∆adef is i.i.d. for different acorr, which allows pdef,α

to be trained by pooling estimates across the training images. During segmentation, the like-

lihood of a segmentation with appearance a is now p(a) = minacorr pcorr(acorr)pdef,α(∆adef )

subject to a = acorr + ∆adef . I additionally assume that pdef,α is Gaussian distributed in the

space of the appearance parameters. This assumption combined with the i.i.d. assumption
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above allows a simple closed form solution to this equation. Let pcorr ∼ N (µcorr,Σcorr) and

pdef,α ∼ N (0,Σdef,α). If Σcorr and Σdef,α are estimated using the same principal directions, p

can be simply expressed as p ∼ N (µcorr,Σcorr + Σdef,α).

One possible issue with this formulation that needs to be examined is the appropriateness

of the QF based representations in this context. The variation measured by pdef,α should pri-

marily be mixture changes in the amount of each tissue in the object-relative region. Therefore,

one of the appearance models proposed in Sections 5.2.3 or 5.2.4 may be more appropriate in

this context.

This likelihood function more accurately estimates the spatial accuracy of a given segmen-

tation. This could be useful to automatically signal failures by defining a likelihood function

at the scale of acceptable segmentations [LBR+07]. Another possible use of this likelihood

function is that it could be used to guide the optimizer, using an approach similar to [CET98].

Jingdan Zhang (a Ph.D. student at UNC) has explored an idea similar to the ones presented

here to learn an ideal likelihood function in a kernel framework directly from the images.
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Appendix A

Users Guide

This appendix presents a guide to the basic algorithms developed in this dissertation for

the computation and display of quantile functions, for converting between QFs and PDFs, and

for representing conditional distributions using QFs. The guide concludes with an example

that uses some of these functions to generate Figure 2.4(c) on page 19. All code is given in

MATLAB.

A.1 QF Computation

This section provides three functions for computing the discrete quantile function repre-

sentation from samples. These algorithms were mentioned in Section 2.1.2 on page 14. The

first function is used to quickly compute a quantile function from samples when many samples

are available. This algorithm was used in Chapter 3 by both the MR8 and PCA-MRF texture

models. The second function is slower, more accurate, and also allows weighted samples. The

third function assumes the samples are from a discrete distribution that takes on only integer

values. This is leveraged to avoid sorting by instead computing a fine histogram. This third

function was used in the appearance model described in Section 4.2.

function qfs = getQFs(features, numBins);
% Input
% features: a numFeatures by numSamples matrix
% numBins: the number of QF bins to use per feature
% Output
% qfs: a numFeatures by numBins matrix that is
% a discrete QF for each feature
% Approach
% 1. Compute an integer number of samples per QF bin
% by randomly discarding some of the samples
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% 2. Sort the samples for each feature
% 3. Average adjacent samples to compute each bin value

[numFeatures, numSamples] = size(features);
ind = randperm(numSamples);
numSamplesPerBin = floor(numSamples/numBins);
numSamples = numSamplesPerBin * numBins;

qfs = reshape(mean(reshape(sort(features(:,ind(1:numSamples))’), ...
[numSamplesPerBin numBins numFeatures]...

)), [numBins, numFeatures])’;
end

function qfs = getQFsFromWeightedSamples(features, weights, numBins);
% Input
% features: a numFeatures by numSamples matrix of samples
% weights: a 1 by numSamples vector that gives the weight, or
% contribution, of each sample to the distribution
% numBins: the number of QF bins to use per feature
% Output
% qfs: a numFeatures by numBins matrix that is
% a discrete QF for each feature
% Approach
% 1. For each feature sort the samples
% 2. Linearly go through the samples to find the QF bin
% boundaries, which generally split a sample into two.
% 3. Sum the samples in each bin as you go through the
% samples so that their average can be computed

[numFeatures, numSamples] = size(features);
qfs = zeros(numFeatures, numBins);

for f = 1:numFeatures,
[orderedFeatures indices] = sort(features(f,:));
orderedWeights = weights(indices);
totalWeight = sum(orderedWeights);
wpb = totalWeight / numBins; %weight per bin
qf = zeros(1, numBins);
currentBinWeight = 0;
currentBin = 1;
i = 1;
while(i <= numSamples)

if(orderedWeights(i)+currentBinWeight <= wpb)
%all of sample is in bin
currentBinWeight = currentBinWeight + orderedWeights(i);
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qf(currentBin) = qf(currentBin) + orderedWeights(i)...
* orderedFeatures(i);

i = i + 1;
else

%part of sample is in bin
partial = wpb - currentBinWeight;
qf(currentBin) = qf(currentBin) + partial * orderedFeatures(i);
orderedWeights(i) = orderedWeights(i) - partial;
currentBinWeight = 0;
currentBin = currentBin + 1;
if(currentBin == numBins + 1)
break;

end
end

end
qf = qf / wpb;
qfs(f, :) = qf;

end
end

function qfs = getQFsFromDiscreteDiscribution(features, weights, numBins)
% Input
% features: a numFeatures by numSamples matrix of samples from
% a distribution with integer values
% weights: a 1 by numSamples vector that gives the weight, or
% contribution, of each sample to the distribution
% numBins: the number of QF bins to use per feature
% Output
% qfs: a numFeatures by numBins matrix that is
% a discrete QF for each feature
% Approach
% 1. For each feature compute a histogram with a bin for
% every possible discrete value
% 2. Use the bin locations and frequencies as weighted
% samples for input into getQFsFromWeightedSamples()
[numFeatures, numSamples] = size(features);
qfs = zeros(numFeatures, numBins);
for f = 1:numFeatures,

samples = features(f,:);
%Compute histogram
binCenters = min(samples):max(samples);
frequencies = zeros(1, size(binCenters, 2));
for i = 1:numSamples,

index = samples(i)-binCenters(1)+1;
frequencies(index) = frequencies(index) + weights(i);
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end
%Compute QF
qfs(f,:) = getQFsFromWeightedSamples(binCenters, frequencies, numBins);

end
end

A.2 Displaying an Estimated Smooth PDF From a QF

Throughout Chapters 2, 3 and 4 smoothed histograms are estimated from discrete quantile

functions. This section gives two functions for converting between discrete QFs and PDFs.

First, a function is given that directly estimates the adaptive bin histogram with equal fre-

quency bins implied by the QF. Second, a function is given that smooths this histogram using

a Gaussian kernel.

function [frequencies, binEdges, binWidths] = QFtoPDF(qf)
% Input
% qf: a matrix where each column represents a discrete quantile function
% from a CONTINUOUS probability distribution. This code does not
% enforce a minimum bin width as required for discrete distributions
% Output
% frequencies: the height of each histogram bin
% binEdges: the estimated edges between the bins (same # as bins)
% binWidths: the width of the histogram bins
% Approach
% 1. Pad the QF to facilitate the vectorized math
% 2. Compute bin widths defined as half the distance to
% the quantiles on either side

numBins = size(qf, 1);
paddedQF = [2 * qf(1, :) - qf(2, :); qf; 2 * qf(end, :) - qf(end-1,:)];
binWidths = 0.5 * (paddedQF(3:end, :) - paddedQF(1:end-2, :));
frequencies = 1.0 / numBins ./ binWidths;
binEdges = 0.5 * (paddedQF(2:end, :) + paddedQF(1:end-1, :));

end

function frequencies = QFtoSmoothPDF(qfs, commonBins);
% Input
% qfs: a matrix where each row represents a discrete quantile function

165



% from a CONTINUOUS probability distribution. This code does not
% enforce a minimum bin width as required for discrete distributions
% commonBins: row vector of common bins for the histograms
% Output
% frequencies: the height of each histogram bin
% Approach
% Use QFtoPDF() to estimate the width of each adaptive histogram bin.
% Assume each quantile is a Gaussian with location given by the
% quantile and sigma given by the half width of its bin multiplied
% by a smoothing factor.

smoothingFactor = 5;
numQFs = size(qfs, 1);
numBins = size(commonBins, 2);

[dummy1, dummy2, binWidths] = QFtoPDF(qfs’);
frequencies = zeros(numQFs, numBins);

for i = 1:numQFs,
means = qfs(i, :);
sigmas = smoothingFactor * binWidths(:, i)’ / 2;
for ii = 1:numBins,

% Gaussian weights without 1/2pi constant that is normalized out
frequencies(i, ii) = sum(exp(-0.5 * (commonBins(ii) - means) .^ 2 ...

./ (sigmas .^ 2)) ./ sigmas);
end

frequencies(i, :) = frequencies(i, :) / sum(frequencies(i, :));
end

end

A.3 Computation of the QF Based Conditional Distribution

Representation

This section gives a function for computing the QF based representation of conditional

distributions presented in Section 2.2.2 on page 45. This function was used to compute the

features of the Strong-MRF texture model presented in Section 3.3.1.

function qfs = getConditionalQFs(features, numCondBins, numProbBins);
% Input
% features: a numFeatures by numSamples matrix of samples
% The first feature is assumed to be the conditioning variable
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% numCondBins: number of partitions the conditioning var. is split into
% numProbBins: number of QF bins for each partition
% Output
% qfs: a matrix that for row i is p(feature i | feature 1) represented
% as numCondBins numProbBins-bin QFs, where
% p(f1 | f1) is just the QF of f1 with numCondBins*numProbBins bins

% Make integer number of points per bin
[numFeatures, numSamples] = size(features);
ind = randperm(numSamples);
numCondSamplesPerBin = floor(numSamples/numCondBins/numProbBins)...

* numProbBins;
numProbSamplesPerBin = numCondSamplesPerBin / numProbBins;
numSamples = numCondSamplesPerBin * numCondBins;
features = features(:, ind(1:numSamples));

% Sort based on the first feature then average adjacent values in each bin
qfs = zeros(numFeatures, numCondBins * numProbBins);
[dummy, ordering] = sort(features(1, :));
for f = 1:numFeatures,

qfs(f, :) = reshape(mean(reshape(sort(reshape(features(f, ordering), ...
numCondSamplesPerBin, numCondBins)), ...

[numProbSamplesPerBin, numProbBins, numCondBins])),...
1, numProbBins * numCondBins);

end
end

A.4 Example: Displaying Figure 2.4(c)

This section supplies a function that puts together several of the functions given in this

guide, demonstrating their use. The below function generates Figure 2.4(c) on page 19. This

figure interpolates the QFs corresponding to two Gaussian distributions and displays the in-

terpolated results as QFs and smoothed histograms. A similar pipeline was followed when

producing many of the other figures in the dissertation, particularly Figures 2.13 (page 46),

3.4 (page 75), 4.4 (page 114), 4.5 (page 124), and 4.10 (page 141). These figures were key in

understanding the QF subspaces estimated using PCA.

function figureExample()
% Interpolate Gaussians N(0,1) and N(10, 3) in QF space
% Display as QFs and smoothed histograms

167



numSamples = 400000;
numBins = 100;
I = 5; % I-1 is the number of Interpolated distributions

% Get Gaussian Samples
a = randn(1, numSamples);
b = randn(1, numSamples) * 3 + 10;

% Get common bins for histograms using full domain of samples
[dummy commonBins] = hist([a b], numBins);

a = getQFs(a, numBins);
b = getQFs(b, numBins);

% This is how you could create QFs if the samples were weighted
%a = getQFsFromWeightedSamples(a, ones(1, numSamples), numBins);
%b = getQFsFromWeightedSamples(b, ones(1, numSamples), numBins);

% Interpolate Gaussians in QF space and their colors
for i = 0:I

interpQFs(i+1,:) = (I-i)/I * a + i/I * b;
colors(i+1,:) = (I-i)/I * [1 0 0] + i/I * [0 0 1];

end

% Display QFs
figure; subplot(1, 2, 1); hold on;
xlabel(’p(X < x)’);
ylabel(’Value’);
set(gca,’ColorOrder’, colors);
quantile = ((1:numBins)- 0.5)/numBins; % Domain of the QFs
plot(quantile, interpQFs);

% Compute and display smoothed histogram
subplot(1, 2, 2); hold on;
xlabel(’Value’);
ylabel(’Density’);
set(gca,’ColorOrder’, colors);
frequencies = QFtoSmoothPDF(interpQFs, commonBins);
plot(commonBins, frequencies);
% This is how to display the unsmoothed histograms
%frequencies = QFtoPDF(interpQFs’);
%plot(interpQFs’, frequencies);

end
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