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Abstract
Bradley C. Davis: Medical Image Analysis via Fréchet Means of

Diffeomorphisms.
(Under the direction of Sarang C. Joshi.)

The construction of average models of anatomy, as well as regression analysis of anatomical

structures, are key issues in medical research, e.g., in the study of brain development and

disease progression. When the underlying anatomical process can be modeled by parameters

in a Euclidean space, classical statistical techniques are applicable. However, recent work

suggests that attempts to describe anatomical differences using flat Euclidean spaces undermine

our ability to represent natural biological variability. In response, this dissertation contributes

to the development of a particular nonlinear shape analysis methodology.

This dissertation uses a nonlinear deformable model to measure anatomical change and

define geometry-based averaging and regression for anatomical structures represented within

medical images. Geometric differences are modeled by coordinate transformations, i.e., de-

formations, of underlying image coordinates. In order to represent local geometric changes

and accommodate large deformations, these transformations are taken to be the group of

diffeomorphisms with an associated metric.

A mean anatomical image is defined using this deformation-based metric via the Fréchet

mean—the minimizer of the sum of squared distances. Similarly, a new method called manifold

kernel regression is presented for estimating systematic changes—as a function of a predictor

variable, such as age—from data in nonlinear spaces. It is defined by recasting kernel regression

in terms of a kernel-weighted Fréchet mean. This method is applied to determine systematic

geometric changes in the brain from a random design dataset of medical images. Finally,

diffeomorphic image mapping is extended to accommodate extraneous structures—objects that

are present in one image and absent in another and thus change image topology—by deflating

them prior to the estimation of geometric change. The method is applied to quantify the

motion of the prostate in the presence of transient bowel gas.
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Chapter 1

Introduction

1.1 Motivation

During the last 40 years, astonishing breakthroughs in imaging technology have provided

scientists with unprecedented access to anatomical structures through three-dimensional,

in vivo, non-invasive imaging modalities. Magnetic resonance (MR) imaging, computed

tomography, and ultrasound provide structural diagrams of the human body at sub-

millimeter resolution. Diffusion-weighted and diffusion-tensor MR imaging modalities

provide insight into local anatomical structure by measuring the local characteristics

of water diffusion within tissue. Functional imaging modalities such as functional MR,

contrast MR, and arterial spin labeling imaging enable the study of blood volume and

flow within the brain. Tagged MR imaging techniques allow for precise recording of how

tissue, such as the heart wall, moves over time.

The effective utilization of medical image data impacts modern health care by pro-

viding improved therapeutic methods, advances in disease detection and understand-

ing, and quantitative assessment of therapeutic protocols. For example, high-resolution

structural computed tomography (CT) and MR images allow physicians to precisely

define and target cancerous tissue during radiation therapy treatments (Halperin et al.,

2007). Diffusion weighted and diffusion tensor images are used to diagnose vascular



strokes and to study the white matter connectivity in the brain (Warach et al., 1995;

Mori et al., 2005). Contrast enhanced MR images are used to monitor the effect—

and thus judge the efficacy of—drugs and therapies for diseases ranging from cancer to

degenerative arthritis (Beckmann et al., 2004).

Given the abundance of information that medical images provide and their expand-

ing applicability in clinical and research medicine, there is a growing need for the de-

velopment of mathematical and statistical methods for the analysis of medical images

and the anatomical structures that are represented within them. The fields of medical

image analysis and statistical shape analysis aim to address this need through the com-

bination of analytic methods, computer processing, and computer-based robotics and

visualization systems. For example, clinical neurosurgery systems combine preoperative

and intraoperative patient images in order to guide surgical procedures (e.g., Brain-

Lab). Modern radiation therapy treatment methods rely on detailed computer models

of patient anatomy and treatment beam geometry in order to deliver precise radiation

doses to cancerous tumors while sparing neighboring radiosensitive structures (Tewell

and Adams, 2004). Statistical models representing the variability of structures within

the brain are being used to study the progression of diseases such as schizophrenia,

Fragile X, and Alzheimer’s disease (Styner et al., 2005).

However, the diverse and intricate geometrical structures within anatomy, as well

as the nonlinear nature of anatomical shape change, pose a significant challenge for

the accurate representation and analysis of these structures. For example, classical

statistical techniques such as principal components analysis (PCA) and regression rely

on the vector-space structure of observations and are not appropriate for nonlinear

models of anatomical shape or shape change (Grenander and Miller, 1998; Miller, 2004;

Pizer et al., 2003; Fletcher et al., 2004). Therefore, a currently active area of research

seeks to develop shape descriptions and statistical methods that are applicable for non-

Euclidean data.
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There are two common frameworks for image-based analysis of anatomical struc-

tures; both are capable of capturing nonlinear variability among shapes. The first uses

either parametric or non-parametric shape models to explicitly represent the geometry

of anatomical structures observed within images. Examples of these models include col-

lections of point landmarks (Cootes et al., 1995), medial-based representations (Pizer

et al., 2003), and level sets (Malladi et al., 1995). Within this framework, anatomical

differences and motion are represented via manipulation of the underlying shape model.

The statistics of anatomical shape can be studied through the statistical analysis of

these shape models.

The second framework, used in this dissertation, is motivated by the observation that

the comparison of anatomical structures is inherently related to the construction of spa-

tial transformations that map one anatomy to another. For example, large-deformation

mappings of the underlying coordinate system of image volumes are capable of rep-

resenting intricate anatomical changes within the brain (Miller and Younes, 2001).

In Grenander’s pattern theory (Grenander, 1996), and in particular in computational

anatomy (Grenander and Miller, 1998), it is the analysis of these mappings themselves,

rather than the analysis of explicit shape representations, which leads to insight into

geometric change and variability of anatomical structure.

This dissertation is focused on utilizing this image deformation, or image mapping,

framework to measure anatomical motion and apply statistical methods to anatomical

structures represented by medical images. There are three primary contributions. The

first contribution is a method for the quantification of anatomical motion in the presence

of extraneous structures—objects that are present in one image and absent in another.

The second contribution is a novel technique for inferring a mean anatomical configura-

tion from a collection of medical images, as well as a mapping from each image in the

collection to the mean. The third contribution of this thesis is a new technique called

manifold kernel regression for estimating systematic changes from data in nonlinear
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spaces, and its application to medical image data.

1.1.1 Accommodating topological change in large-deformation

diffeomorphic image mapping

Within medical image analysis, it is often necessary to quantify organ motion between

anatomical observations. For example, in order to accurately record the radiation

dose delivered to the prostate during successive radiation treatments, the motion of

the prostate with respect to the planned treatment position must be measured. One

common approach for quantifying organ motion uses spatial mappings to establish a

correspondence between the underlying coordinate systems of successive anatomical im-

ages.

Large-deformation diffeomorphic transformations are often used to capture local, in-

tricate changes while preventing folding or tearing of space. However, by definition, dif-

feomorphic transformations cannot be applied to match structures with different topolo-

gies. For image mapping, this implies that no correspondence will exist for structures

that are present in one image and absent in the next. I present a novel method that ex-

tends large-deformation diffeomorphic image mapping to accommodate such topological

changes by deflating these structures before computing diffeomorphic transformations.

In this way correspondence is determined where it can exist. The method is applied to

quantify the motion of the prostate in the presence of transient bowel gas.

1.1.2 Inferring mean anatomical configurations from medical

imagery

For anatomy represented within medical images, a natural problem is the construction

of a statistical representative anatomical configuration for a population. Such represen-

tatives are important, for example, when investigating clinical hypotheses related to the
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shape of structures indicated in brain development or mental disorders. Another use for

such a representative is to define a common spatial coordinate system so that spatial

information from across a population can be accumulated, statistically analyzed, and

presented in a single frame of reference.

One common method for generating representative anatomical images is to simply

select an individual image from the population. However, unless there is an a priori

reason to choose one individual over the rest, this choice will lead to a bias in the

analysis toward that particular anatomical configuration presented by the individual.

This method is also commonly used to establish spatial correspondence between image

coordinate systems: one image is chosen as a reference and all other images are spatially

aligned with this reference image. Unfortunately, this is biased as well since the image-

to-image correspondences rely on the choice of the reference image.

A sensible approach for generating an anatomical representative image that is not

biased by any particular individual is to generate an anatomical configuration that is

in some sense centrally located—in terms of the configuration of anatomy within an

image—with respect to the population under study. In statistics this notion is captured

by the mean, and the arithmetic mean is easily computed from data that are elements

of a vector space. However, the naive approach of averaging an image voxel-wise clearly

neither produces a realistic anatomical image nor captures the notion of mean anatomical

configuration.

Recently, the notion of Fréchet mean has been used to define mean shapes in non-

linear shape spaces that have a metric space structure (Fletcher et al., 2004; Pennec,

2006). For example, Fletcher et al. (2004) extend concepts such as averaging and prin-

cipal components analysis to manifolds representing anatomical shape variability. This

dissertation presents a novel method for generating a Fréchet mean anatomical image

from a collection of images representing a population. The mean image is defined as the

image that requires least amount of squared deformation energy in order to match each
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Figure 1.1: Fréchet mean and manifold kernel regression illustrations. (a)
Illustration of a Fréchet mean on a curved manifold. The mean µ minimizes the sum
of squared distances, along the manifold, to the input points pi. (b) Diffeomorphic
changes of coordinate allow spatial information to be mapped between the mean and
each input image. (c) Illustration of manifold kernel regression. For any value of a
predictor variable t, such as age, the manifold-valued observations pi are summarized
by the weighted Fréchet mean point m̂h(t).

image in the collection (Figure 1.1 (a)). The resulting image serves a natural average

representation for the anatomy contained within the images and is not biased by the

choice of any particular image or ordering of the population images. The Fréchet mean

image also provides a natural coordinate system for the collection of images. Since the

method uses large deformation diffeomorphic registration to establish correspondence

between the image coordinate systems during the process of forming the mean, spatial

data is easily mapped between images within the collection and is easily accumulated

within the mean coordinate system on the mean image (see Figure 1.1 (b)).

1.1.3 Regression analysis for medical imagery

Another important area of medical image analysis is the development of methods for

automated and computer-assisted determination of systematic anatomical change with

respect to a predictor variable such as time. Shape-change and growth models are used
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to analyze and better understand healthy anatomical structure, function, and change

such as the beating heart or aging brain. Similarly, these methods are used to analyze

the onset and progression of diseases, enabling researchers to better understand disease

processes and uncover disease predictors. Finally, the analysis of systematic anatomical

change provides a method for judging and comparing the efficacy of therapeutic pro-

tocols. For example, the measurement of tumor size and shape over time is critical in

judging severity of cancer and the efficacy of various cancer treatments.

A number of longitudinal growth models have been developed to provide this type

of analysis for time series imagery of a single subject (for example Beg, 2003; Clatz

et al., 2005; Miller, 2004; Thompson et al., 2000). These models infer a description

of the geometrical change in anatomy from the images, which are indexed by a time

measurement such as age, elapsed time, or duration of treatment. While longitudinal

growth models provide detailed information about anatomical change in an individual

case, they cannot be applied directly to a population in order to study systematic, time-

related trends that occur on average within a population.

In order to determine systematic, population-wide trends from anatomical imagery,

it is necessary to incorporate data from a population of individuals. This entails studying

a collection of medical images—an image database—where each image represents the

anatomy of a particular individual and is associated with a particular value of the

predictor variable. There are several classical frameworks for the analysis of population

changes over time within statistics. For these frameworks there is a tradeoff between

the amount of information that can be inferred from the data and the practicality of

obtaining the data.

Longitudinal studies track a specific subset of a population over time. However, their

practical use for investigating long-term trends in anatomical data is limited. Longitu-

dinal image data is costly and impractical to obtain because of the need to coordinate

patients and staff and control the imaging protocol over an extended period of time.
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Also, longitudinal datasets—by definition—may take years or decades to acquire while

studies must often be carried out more quickly.

On the other hand, random design studies, in which individual patients are not

tracked over time, are more practical because data can be collected within a relatively

short amount of time. Furthermore, unlike cross-sectional studies, there are no fixed

and uniform time points at which the observations must be collected. For example,

a database of brain images from a population of healthy adults, with the age of the

individual associated with each image, forms a random design database of images.

Therefore, random design medical image databases provide a rich and practical envi-

ronment for the study of anatomical change. However, in order to determine systematic

trends from random design data, it is necessary to separate two distinct aspects of

anatomical variation: individual variation and systematic effect. For example, a study

of brain atrophy as a function of age, for healthy adults, must factor out individual brain

size.

For data that can be described in terms of vector-valued measurements a variety

of parametric and non-parametric regression techniques can be applied to describe sys-

tematic change over time for a population. However, vector spaces do not adequately

represent the highly variable and nonlinear geometric changes that characterize anatomi-

cal motion and anatomical differences. While linear regression techniques can be applied

to nonlinear shape data by embedding it in vector spaces, the results can be erroneous

and misleading.

This dissertation presents a new technique, called manifold kernel regression for

estimating systematic changes from data in nonlinear spaces. Manifold kernel regression

is a generalization of a standard technique in statistics called kernel regression, which is

a method used to estimate the relationship, on average, between two random variables.

Manifold kernel regression is based on the notion of Fréchet expectation, which can

be used to define averages on manifolds (Figure 1.1 (c)). When applied to anatomical
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images, manifold kernel regression can be used to regress a population representative

image as a function of time from an image database. The analysis of this regressed image

gives insight into the systematic anatomical changes, as a function of age, withing the

population.

The driving anatomical problem for mean and regression work in this dissertation is

the analysis of shape change in the brain, as a function of age, from a database of three-

dimensional MR volumes. While this problem is in the field of medical image analysis,

manifold kernel regression can be applied more generally to any manifold-valued data.

For example, it is applied to rotational pose in Davis et al. (2007).

1.2 Thesis and contributions

Thesis: Manifold kernel regression is a natural generalization of kernel regression that

enables regression analysis for points on a manifold. It extends classical kernel regression

in order to estimate, from a collection of observations, the relationship—on average—

between an independent predictor variable, such as time, and a dependent variable rep-

resented by points on a manifold. In particular, this method is useful for determining

population average anatomical shape change over time from a random design database

of medical images. Because it provides a quantitative link between a predictor variable

and anatomical structure, manifold kernel regression is an effective tool for improving

our understanding of anatomical changes within populations.

The contributions of this dissertation are as follows:

1. I present a novel method, called manifold kernel regression, that enables regression

analysis of manifold-valued data.

2. I apply manifold kernel regression to the study of anatomical change from a random

design database of medical images. In particular, it is defined for images using the

framework of large-deformation diffeomorphic image mapping.
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3. I demonstrate manifold kernel regression by measuring average geometric change

in the aging brain from a random design dataset of 3D MR images. The effect of

regression kernel width on the regressed shape is explored.

4. I present a novel method for computing a Fréchet mean image from a collection

of images.

5. I describe a program for efficiently computing Fréchet mean images and applying

the manifold kernel regression analysis method to 2D and 3D images on shared-

memory, multi-processor machines. Performance measurements are included.

6. I present a novel method for extending diffeomorphic image mapping to accom-

modate certain topological changes. The method is applied to track the changing

position of the prostate relative to the pelvis in the context of transient bowel gas.

The effectiveness of this method is tested in a retrospective study involving 40

3D computed tomography images from 3 patients undergoing adaptive radiation

therapy.

1.3 Overview of chapters

The remainder of this dissertation is organized as follows:

Chapter 2 presents an overview of the mathematical topics that are used within this

dissertation. These topics include metric spaces, differentiable manifolds, and diffeo-

morphisms. The Riemannian metric space structure of diffeomorphisms is reviewed.

Chapter 3 applies large-deformation diffeomorphic image registration to the problem

of automatic segmentation of the prostate for radiation therapy. A novel method for

extending image registration to accommodate topological changes is described. A study

comparing the segmentation results given by this method to manual segmentations is

presented.

10



Chapter 4 presents a variational optimization method for computing a Fréchet mean

image from a collection of input images using the large-deformation diffeomorphic image

registration framework. A summary of recent work in computing Fréchet means in

nonlinear spaces and various methods for computing mean images is included.

Chapter 5 presents manifold kernel regression, which is a method for applying kernel

regression to manifold-valued data. An algorithm is presented for applying manifold

kernel regression to collections of medical images within the large-deformation diffeo-

morphic framework.

Chapter 6 applies the manifold kernel regression algorithm from Chapter 5 to study

changes in brain structure from a random design database of 3D MR brain images of

healthy adult subjects. Regressed population average brain images, as a function of

subject age, are generated for male-only, female-only, and combined cohorts. A large

deformation diffeomorphic growth model for longitudinal data is applied to the regressed

images in order to measure local, population average geometrical changes as a function

of age. An exploration of regression kernel width selection in the diffeomorphic setting

is also presented.

Chapter 7 contains a discussion of the contributions of this thesis and an outline of

future work.

Appendix A reviews the basic mathematical structures used within this dissertation,

including vectors spaces, function spaces, groups, and differential manifolds.

Appendix B reviews the Euler-Lagrange equation for the large-deformations dif-

feomorphic metric mapping (LDDMM) solution to the diffeomorphic image matching

problem.

Appendix C reviews the derivation of the differential operator for “fluid” image

registration.

Appendix D describes a method for numerically inverting this differential operator

within the fluid registration algorithm.
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Chapter 2

Large-deformation diffeomorphic image

matching

2.1 Introduction

The goal of this chapter is to summarize the large-deformation diffeomorphic image

matching framework that is used throughout this dissertation. In this framework, dif-

feomorphic changes of coordinates are used to describe geometric change for objects

represented within images. For medical images, this geometric change may be due to

change over time for an individual, or it may represent geometric differences between

two different individuals. The analysis of these deformations provides insight into shape

changes or geometric differences in the underlying geometric structures.

Using the algebraic and differential geometric structure of diffeomorphisms, it is

possible to define a metric that provides a well-defined notion of “amount of geometric

change.” This metric is used in chapters 4 and 5 to develop methods for computing

mean images and for applying regression to collections of images.

No novel contributions are presented in this chapter. The large-deformation diffeo-

morphic image matching framework has its roots in pattern theory (Grenander, 1996)

and has been the focus of active development by a number of authors. For more details

see, for example, Christensen et al. (1996); Dupuis et al. (1998); Grenander and Miller



(1998); Trouvé (1998); Miller and Younes (2001); Miller et al. (2002); Younes (2005);

Beg et al. (2005); Miller et al. (2006).

Appendix A reviews the mathematical concepts used in this chapter.

2.2 The large-deformation diffeomorphic framework

In this dissertation, geometric structures, such as anatomical tissue and organs, are

represented by 2-dimensional and 3-dimensional images. These images are modeled as

real-valued L2 functions on the domain Ω ⊂ R3.1 The space of images is denoted by

I ≡ L2(Ω). (2.1)

Spatial transformations are used to deform images by deforming the underlying coordi-

nate space of Ω.

These transformations φ ∈ DiffV (Ω) are elements of a subgroup of diffeomorphisms

Diff(Ω), φ : Ω → Ω that are generated by flows of smooth, time-varying velocity fields

with support on Ω for a simulated time parameter t ∈ [0, 1]. The introduction of the ve-

locity fields enables large-deformation transformations to be produced while maintaining

the diffeomorphic property (Dupuis et al., 1998).

These flows vt : [0, 1] → V are generated from velocity fields that are elements a

Hilbert space V with associated inner product < ·, · >V . For u, v ∈ V , this inner

product is defined using a linear differential operator L (with associated adjoint L†)

< u, v >V ≡ < Lu,Lv >L2 = < L†Lu, v >L2 =

∫
Ω

< L†Lu(x), v(x) >E3 dx,

(2.2)

1For the sake of clarity, the notation in this dissertation is restricted to 3-dimensional space. This
is convenient since most medical applications use 3-dimensional images. However, this work is also
applicable to 2-dimensional images.
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where < ·, · >E3 is the Euclidean inner product. This inner product on velocity fields

induces the norm

‖v‖V ≡
√
< v, v >V . (2.3)

The form of the differential operator L is taken from fluid mechanics (Christensen et al.,

1996; Dupuis et al., 1998) to be

L = α∇2 + β(∇·)∇+ γ (2.4)

where α and β govern the viscous properties of the deforming medium and γ ensures

that L is invertible. Appendix C describes this operator in more detail.

The operator L is associated with the compact self-adjoint operator K by

< u, v >L2 = < Ku, v >V (2.5)

which implies that

u = KL†Lu. (2.6)

Practically, one can think of K as a smoothing operator.

The flow vt is related to the diffeomorphism φ via the Lagrangian ODE

d

dt
φt(x) ≡ φ̇t = vt(φt(x)). (2.7)

In particular, φ is generated from vt according to

φt(x) = x+

∫ t

0

vt ◦ φt(x) dt (2.8)
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φ̇t(x)

φt(x)

φ1(x)

φ0(x)

Figure 2.1: Velocity integration. The diffeomorphism φ ∈ DiffV (Ω) evolves in time
as a flow φt. This flow is governed by the time-varying velocity field vt. This process is
demonstrated for a single point x ∈ Ω.

subject to

φ0(x) = x φ(x) = φ1(x) φ̇t(x) = vt ◦ φt(x) for all x ∈ Ω. (2.9)

Figure 2.1 demonstrates this process for a single point x ∈ Ω. Dupuis et al. (1998)

establish sufficient conditions, in the form of smoothness constraints, on < ·, · >V for

these flows to generate diffeomorphisms.

A differentiable manifold structure is defined for DiffV (Ω), where V is the tangent

space at the identity. The combination of group structure and differentiable structure

allow DiffV (Ω) to behave very much like a Lie group. In particular, a right-invariant

Riemannian distance is defined on DiffV (Ω) based on < ·, · >V at the identity by

dDiffV (Ω)(IdDiffV (Ω), φ) = inf
v:φ̇t=vt(φt)

∫ 1

0

√
< vt, vt >V dt = inf

v:φ̇t=vt(φt)

∫ 1

0

‖vt‖V dt (2.10)

(2.11)

subject to

φ(x) = x+

∫ 1

0

vt ◦ φt(x) dt for all x ∈ Ω. (2.12)
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The distance between any two elements of DiffV (Ω) is defined by

dDiffV (Ω)(φ1, φ2) = dDiffV (Ω)(IdDiffV (Ω), φ2 ◦ φ−1
1 ). (2.13)

With this structure the length of curves can be measured along the manifold DiffV (Ω).

This distance provides a metric space structure for DiffV (Ω) (see Appendix A, Propo-

sition A-7.1). When related back to the underlying geometric structures represented in

images, this distance provides a well defined notion of “amount of geometric change.”

2.3 Image matching and an image-to-image distance

using large-deformation diffeomorphisms

In this section the large-deformation diffeomorphism framework described above is ap-

plied to computing transformations that deform one image to match another. The

resulting deformations are used to define an image-to-image metric that takes geomet-

ric change into account. Intuitively, the distance between two images is given by the

“amount of deformation” required for one image to match another.

Consider a diffeomorphism φ ∈ DiffV (Ω). The action of φ on an image I ∈ I is

defined by

Iφ ≡ I ◦ φ−1. (2.14)

Given a fixed and moving (to-be-deformed) image, IF and IM in I, the goal is to

generate a deformation φ that best aligns IM
φ with IF .

For exact matching, where a deformation is all that is needed to explain the difference

16



between IF and IM , φ is defined by the optimization problem

φ̂ = arginf
v:φ̇t=vt(φt)

∫ 1

0

‖vt‖2V dt such that IF = IM
φ . (2.15)

In this case φ is the element of DiffV (Ω) that deforms IM to match IF with the smallest

squared distance according to dDiffV (Ω). The resulting squared distance value is used to

define a squared image-to-image metric

d2
I,Exact(I

F , IM) = inf
v:φ̇t=vt(φt)

∫ 1

0

‖vt‖2V dt such that IF = IM
φ . (2.16)

For inexact matching, a mechanism for penalizing residual image mismatch is re-

quired. This image dissimilarity metric is determined by the image modalities and

image noise models. In this work the L2 norm is used2

d2
I,Inexact(I

F , IM) = inf
v:φ̇t=vt(φt)

∫ 1

0

‖vt‖2v dt+
1

σ2
‖IM

φ − IF‖2L2 . (2.17)

This equation introduces the free parameter σ that governs the relative weight of the

two terms. Small values of σ increase the importance of the image dissimilarity metric,

forcing the images to match as well as possible; large values of σ produce deformations

that require less “energy” according the metric on DiffV (Ω). Dupuis et al. (1998) show

the existence of a minimizer for this equation.

Although this construction is motivated by the metric on DiffV (Ω), it does not strictly

define a metric on DiffV (Ω) because of the second term in Equation (2.17).

A Bayesian interpretation (although not rigorous) for Equation (2.17) is that the

first term acts like a prior on the distribution possible deformations while the second

term describes how well the deformed moving image matches the fixed image given the

2Of course other metrics are possible; in Lorenzen et al. (2006) the Kullback-Leibler divergence is
used as an image dissimilarity metric to align tissue probability maps.
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current deformation (Dupuis et al., 1998).

2.4 Euler-Lagrange equations for the image match-

ing problem

Beg et al. (2005) show that the Euler-Lagrange equations for the energy functional in

Equation (2.17) are

2vt −K
(

2

σ2
|Dφt,1|∇IM

φ0,t
(IM

φ0,t
− IF

φ1,t
)

)
= 0. (2.18)

where Dφt,1 is the 3 × 3 Jacobian matrix of the transformation φt,1 ≡ φ1 ◦ φ−1
t . This

equation is also derived in Appendix B of this document. Beg calls these solutions

the Large-Deformations Diffeomorphic Metric Mapping (LDDMM) solution for Equa-

tion (2.17). For any particular time point t ∈ [0, 1] the gradient of the energy functional

(Equation (2.17)) is

∇vtEt = 2vt −K
(

2

σ2
|Dφt,1|∇IM

φ0,t
(IM

φ0,t
− IF

φ1,t
)

)
. (2.19)

Greedy solution

Christensen et al. (1996) proposed a greedy solution to Equation (2.17). This solution

separates the time dimension of the problem from the space dimensions. At each iter-

ation, a new velocity is computed that optimizes the functional (2.17) given that the

current deformation is fixed (i.e., the past velocity fields are fixed). Unlike the LDDMM

approach, this optimization does not update velocity fields once they are first estimated

or take future velocity fields into account. Using a step-size ε, these velocity fields are
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integrated to produce the final deformation. In this case the gradient is

vt = K

(
2

σ2
∇IM

φ0,t
(IM

φ0,t
− IF

φ1,t
)

)
. (2.20)
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Chapter 3

Accommodating topological change for

practical large-deformation diffeomorphic

image mapping: Application to the

measurement of prostate motion

3.1 Introduction

As described in the introduction, diffeomorphic image registration is commonly used

to define a spatial correspondence between geometrical structures that are represented

within images. However, these diffeomorphic mappings are not suitable for matching

objects with different topological properties, such as when a new object is present in one

image and absent in another. In this chapter a novel method is presented for extending

large-deformation diffeomorphic image mapping to accommodate this type of topological

change. The method is applied in the context of external beam radiation therapy to

quantify the motion of the prostate in the presence of transient bowel gas.

This work was carried out in conjunction with Drs. Sarang Joshi, Mark Foskey,

Lav Goyal, Julian Rosenman, Edward Chaney, and Sha Chang of the department of

Radiation Oncology at the University of North Carolina at Chapel Hill. Variations of



this work have been published in (Davis et al., 2005) and (Foskey et al., 2005).

3.1.1 The need for automatic segmentation in adaptive radia-

tion therapy of the prostate

External beam radiation therapy (EBRT) is one major treatment method for prostate

cancer. In EBRT, cancerous tissue is destroyed through the delivery of high energy

x-rays in a series of 40 or more daily treatments (DeVita et al., 2004; Halperin et al.,

2007). To be safe and effective, the radiation dose to the cancer-containing prostate

should be as high as possible while the dose to surrounding organs, such as the rectum

and bladder, must be limited. This effect is achieved by using multiple radiation beams

that overlap on the tumor and are shaped to exclude normal tissue as much as possible.

However, internal organ motion and patient setup errors present a serious challenge to

EBRT (see figures 3.1 and 3.2). The prostate, rectum, bladder and other organs move

with respect to the fixed patient position, and even small changes in their position can

result in either tumor under-dosing, normal tissue over-dosing, or both.

In order to meet this challenge, adaptive radiation therapy (ART), which uses peri-

odic intra-treatment CT images for localization of the tumor and radiosensitive normal

structures, is being investigated. In ART a feedback control strategy (Yan et al., 2000)

is used to correct for differences in the planned and delivered dose distributions due to

spatial changes in the treatment volume early in the treatment period.

Although in-treatment-room CT scanners provide the enabling imaging hardware

to implement ART, no software methods or tools for automatic image processing ex-

ist to enable the incorporation of these images in the adaptive treatment of prostate

or other cancer. As a result, manual intervention is required to segment—i.e., define

the location of—the tumor and other structures within each image. However, manual

segmentation places an impractical burden on highly skilled and already overburdened
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Figure 3.1: Prostate motion over the course of radiation therapy treatment.
Visual depiction of prostate motion over the course of treatment for nine patients in our
study. The actual location of the prostate on each treatment day is indicated by the
superimposed white contours. These contours are taken from manual segmentations of
treatment images. The discrepancies between the contours exhibit the effect of setup
error and organ motion on the prostate position. Note that different patients exhibit
different amounts of prostate motion; compare the close contour agreement for patient
3101 with the wide contour variability for patient 3109. For some patients (3102, 3109)
motion is primarily noticeable in the anterior-posterior direction; for other patients
(3106, 3107) motion is primarily noticeable in the lateral direction.
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Figure 3.2: Patient setup error. First column: axial and sagittal slices from the
planning image of patient 3102. Second column: the same slices (with respect to the
planning image coordinate system) taken from a treatment image. Third column: the
voxel-wise absolute difference between the planning and treatment images. Black rep-
resents perfect intensity agreement, which is noticeable in the interior of the bones and
outside the patient. Brighter regions, indicating intensity disagreement, are especially
apparent: (1) in regions where gas is present in one image and absent in the other, (2)
around the bladder, which is large on the treatment day compared to the planning day,
(3) uniformly along boundaries with high intensity gradient, indicating a global setup
error such as a translation.

personnel. Moreover, clinically significant inter- and intra-rater1 variability of manual

segmentations introduces a source of treatment uncertainty that current adaptive radi-

ation therapy techniques do not address (van Herk et al., 1995; Ketting et al., 1997).

1‘Rater’ is used in the following sense: a rater is a person who segments an image. Intra-rater
variability refers to differences in segmentations made by the same rater. Inter-rater variability refers
to differences in segmentations make by two different raters. These differences can be measured for
repeated segmentations of a single image by a single or multiple raters. These differences are caused by
the fact that segmenting complicated structures with ill-defined boundaries in images is a difficult task.
Different raters, or even the same rater over time, will inevitably segment the same structure differently
because they guess at ill-defined object boundaries differently. They also use different segmentation
strategies, display settings, and rules of thumb to segment images.

23



3.1.2 Estimating prostate motion via image mapping

Deformable image registration is one method for automatically quantifying organ mo-

tion over the course of EBRT. The CT image taken at planning time, the planning

image, is used as a reference. A physician manually segments the prostate and nearby

radiosensitive structures in this image. On each treatment day, the patient is positioned

and then, prior to treatment, a new CT image is acquired using an in-treatment-room

CT scanner that shares a table with the linear accelerator (Figure 3.3). Each treatment

image characterizes the patient configuration at that treatment time. After establish-

ing the spatial correspondence between the planning image and each treatment image

using deformable image registration (Figure 3.4), manually segmented structures from

the planning image can be mapped into these treatment images.

In this way, automatic segmentations of the treatment images are provided by the

combination of a manually segmented planning image and automatic, deformable image

registration (Figure 3.5). This registration-based (or atlas-based) segmentation proce-

dure is not automatic in the sense that no manual work is required: a segmentation

of the planning image is essential. However, no additional manual effort is required to

segment treatment images once the planning image segmentation is available. Further-

more, planning image segmentations are always available since they are generated as

part of routine clinical practice.

In CT images of the abdomen, however, the presence of bowel gas complicates the

registration process since no correspondence exists for pockets of gas across different

days. Figure 3.6 shows two rigidly aligned axial images of a patient taken on two

different days. Bowel gas is present in one but absent in the other. Figure 3.7 shows a

failed automatic segmentation of the rectum. Panel (b) shows the result of automatic

segmentation using large-deformation image registration. Manually drawn contours of

the prostate and rectum are mapped, using this correspondence, from the planning image

(a) onto the daily image. Manual contours are drawn in red and mapped contours are
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Figure 3.3: In-treatment-room CT scanner. A CT-on-rails (left) shares a treatment
table with the linear accelerator (top right) that is used for external beam radiation
therapy. This setup allows the patient to be imaged and treated in the same position.

drawn in yellow. The manual and automatically generated contours in the daily image

are misaligned; the presence of bowel gas has caused correspondence errors around the

rectum.

In order to apply large-deformation image registration in this setting, a novel method

was developed that combines image registration with a bowel gas segmentation and

deflation algorithm. Final image-to-image correspondence is defined by the composition

of the deflation and registration transformations. A demonstration of the results of this

algorithm is shown in Figure 3.7 panel (c). Notice the close alignment between the

manual contours and the contours generated by this method. Section 3.3 presents a

study of this method’s accuracy for determining prostate motion during the course of

radiation therapy of the prostate.
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Figure 3.4: Quantifying tissue motion via deformable image registration. Ex-
ample of deformable image registration. The first and last rows show axial and sagittal
slices of the planning and treatment images. The second row shows the treatment image
after deformable image registration, which brings the treatment image into alignment
with the planning image. Note how the changes in size and shape of the bladder and
rectum are accounted for.
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Figure 3.5: Automatic prostate segmentation via deformable image registra-
tion. Example of automatic segmentation using deformable image registration. (a)
Axial slice of a planning image with the prostate labeled by a white contour. (b) The
same axial slice (in terms of planning coordinates) from a treatment image. The planned
prostate position is shown in white, the actual prostate in black (both contours man-
ual). (c) The same treatment image and manual (black) contour. The white contour
is automatically generated by performing deformable image registration and applying
the resulting deformation to the planning segmentation. The close agreement of the
contours indicates that image registration accurately captures the prostate motion.

Figure 3.6: The geometric effect of bowel gas. Axial CT slice of the same patient
acquired on different days, showing the effect of bowel gas.
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Figure 3.7: Improved segmentation via gas deflation. Automatic segmentation of
the prostate and rectum. Manually segmented structures in the planning image (a) are
mapped to the daily image (b) before accounting for bowel gas, and (c) after accounting
for bowel gas with the gas deflation algorithm. Manually drawn contours are shown in
red and mapped contours are shown in yellow.

3.2 Methodology

This section describes a methodology for deformable image registration that accom-

modates the presence of transient bowel gas. First, a general notion of topological

equivalence for images is defined. Next, a deflation algorithm for removing extraneous

structures—such as bowel gas—from images is described. This algorithm can be com-

bined with deformable registration in order to register images with extraneous structures.

Finally, the details of applying this algorithm to CT image registration for automatic

prostate segmentation are presented.

3.2.1 Image mapping and topology

Topology, often described intuitively as rubber sheet geometry, is the study of those

properties of an object that remain unchanged under continuous transformations of the

object. Two geometrical objects2 are topologically equivalent if each can be continuously

deformed to match the other. The archetypical example in topology is that—because

they both have a single hole—a donut is topologically equivalent to a coffee cup.3

2More precisely, topological spaces using the standard Euclidean topology.

3And so, as the joke goes, a mathematician cannot tell one from the other.
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The notion of topological equivalence is fundamentally related to image mapping

because both are concerned with transformations between geometrical objects. On the

one hand, one image can be deformed so that its intensity values exactly match another

image. However, the alignment of image intensities does not imply—it merely suggests—

the proper alignment of structures represented within the images. Instead, a notion of

topological equivalence can be applied in a straightforward manner to images by relying

on topological equivalence of geometrical objects represented within images. Intuitively,

two images are topologically equivalent if each image can be continuously deformed—

without tearing space or gluing distinct objects together—so that the contents of one

image match the contents of the other. In the rest of this section this definition is made

precise.

Let Ω ≡ [0, 1] × [0, 1] × [0, 1] ⊂ Rn be a common ambient space. Images I, J ∈ I

are defined as L2 functions from Ω to the reals. Every geometrical object represented

in an image can be described by a non-empty open subset Uk ⊂ Ω, using the standard

Euclidean topology, that encodes the location of the object labeled k. These subsets

may overlap. All points x ∈ Ω should be labeled as part of at least one object.4 A

family U of such geometrical objects is associated with each image and represents an

interpretation of the contents of that image.

Within this setting, the notion of topological equivalence of images can be built from

the following definitions:

Definition 3.2.1 (Homeomorphism, adapted from Lee (2003), p. 541). Let X and Y

be topological spaces. A continuous bijective map F : X → Y with continuous inverse

is called a homeomorphism. If there exists a homeomorphism from X to Y , we say that

X and Y are homeomorphic. A diffeomorphism G : X → Y is a homeomorphism with

the additional requirement that F an its inverse are smooth (C∞).

Definition 3.2.2 (Identifiability). Two families of geometrical objects UI and UJ are

4Points without a natural label could be labeled as “background,” for example.
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identifiable if there exists a natural bijection between elements of UI and UJ that asso-

ciates the same geometrical objects across the two images. That is, for all object labels,

Uk
I ∈ UI if and only if Uk

J ∈ UJ . Clearly, if an object is present in one image and absent

in another, no such bijection is possible.

Definition 3.2.3 (Homeomorphism of objects over Ω). Two families of geometrical

objects UI and UJ are homeomorphic over Ω if they are identifiable and there exists

a homeomorphism F : Ω → Ω that is also a homeomorphism for every pair of sets

Uk
I ∈ UI , U

k
J ∈ UJ .

Finally, because the terminology of geometrical objects represented within images

is cumbersome, I will abuse notation and give the following definition of topological

equivalence for images.

Definition 3.2.4 (Topological Equivalence of Images). Two images I, J ∈ I are topo-

logically equivalent if their associated geometrical objects, represented by UI and UJ ,

are homeomorphic over Ω.

Figure 3.6 presents an example of images that are not topologically equivalent. It

should be emphasized that this definition is not tied to the intensity values of the images,

but instead relies on some interpretation of the objects represented within the images.

If, for example, objects are interpreted differently within an image, the topology of that

image will change.

3.2.2 Accommodating topological change

For images that are topologically equivalent, in the sense defined above, diffeomorphisms

are suitable for representing geometrical changes. When topological changes are present,

such as the addition of an object into an image, diffeomorphisms cannot, by defini-

tion, describe the underlying change. However, even in the presence of such topological

30



changes, it may be practically meaningful and helpful to use diffeomorphic image map-

ping to estimate correspondence in regions of the image where correspondence does exist,

while working around the topological changes imposed by any extra objects.

Let I and J be a pair of identical images except that J contains exactly one extra

geometrical object that is not represented in I. We call this extra object a extraneous

object and denote it by N ∈ UJ . Suppose that the other objects, which are common

to I and J , have undergone some geometrical change, described by the diffeomorphism

h : Ω→ Ω that we wish to recover.

In the intuitive language of topology the strategy is similar to performing surgery:

cut the extraneous structure out of image J and glue the resulting hole closed before

deforming J to match image I. However, rather that cutting, we shrink N , using a

transformation s : Ω→ Ω, until it is negligible in size compared to the image resolution.5

During this process, the space around N expands smoothly to fill in the space created

by the deflating structure.

More precisely, a diffeomorphic deflation transformation s : Ω → Ω is determined

such that J ◦ s is the image J after a deformation that deflates N . This transformation

is constructed using an algorithm that models the motion of a viscous fluid under the

influence of external forces. This methodology is motivated by the fluid algorithm

used for image registration (Christensen et al., 1996; Dupuis et al., 1998). An iterative

solution for s is summarized in Algorithm 3.1.

The transformation s is defined by integrating velocity fields v(x, t) forward in time:

s(x) = x+

∫ 1

0

v(s(x, t), t) dt. (3.1)

5Practically, this approximates topological equivalence at the resolution that image mapping tech-
niques work.
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These velocity fields are induced by a force function

F (x, t) = ∇(JN ◦ st)(x) (3.2)

that is the gradient of the binary image that labels the structure N within the image

J . The force function and velocity fields are related by the linear operator L (and it’s

adjoint L†)6 that defines the mechanical properties of the deforming continuum:

L†Lv(x, t) = F (x, t). (3.3)

Convergence is achieved when the incremental change in s falls below a predetermined

threshold.7

Algorithm 3.1 Iterative greedy algorithm for extraneous structure deflation
Input: Image J containing extraneous structure N
Output: Deformation s such that N is deflated in J ◦ s
1: s0 ⇐ Id // start with identity mapping
2: i⇐ 1
3: repeat
4: F i ⇐ ∇ (JN ◦ si−1) // induce inward force at boundary of extraneous structure
5: L†Lvi = F i // solve for instantaneous velocity
6: si ⇐ si−1(εvi) // update mapping
7: i⇐ i+ 1
8: until convergence

Figure 3.8 contains snapshots of this deflation algorithm applied to a CT image of the

pelvic region. The large gas pocket present in the image has been deflated, resulting in an

image that can be registered using large-deformation diffeomorphic image registration.

In the more general case multiple extraneous structures may appear, and extraneous

structures may appear in both images. The same methodology can be applied by com-

bining all extraneous structures in each image into a single structure. After shrinking

6See Chapter 2 for more details.

7More precisely, when argmaxx∈Ω ‖si(x)− si−1(x)‖2 falls below a specified threshold.
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Figure 3.8: Gas deflation schematic. (a) Axial slice CT image with large pocket
of bowel gas. (b) Zoomed in on the gas pocket. The gas is segmented using simple
thresholding. Gas is deflated by a flow induced by the gradient of the binary image. (c)
The image after application of the deflation transformation.

transformations sI and sJ have been computed, correspondence hI◦sI ,J◦sJ
is estimated

between the ‘deflated’ images and final correspondence, hI,J , is determined by composing

these transformations:

hI,J = s−1
I ◦ hI◦sI ,J◦sJ

◦ sJ . (3.4)

Algorithm 3.2 summarizes this process.

Algorithm 3.2 Image matching pipeline

Input: Images I and J that each contain extraneous structures
Output: Transformation hI,J that defines a spatial correspondence between I and J in

regions without extraneous structures
1: Segment extraneous structures within I and J
2: Shrink extraneous structures via transformations sI and sJ

3: Estimate mapping hI◦sI ,J◦sJ
between images I ◦ sI and J ◦ sJ

4: Compose transformations to obtain hI,J ≡ sJ ◦ h ◦ s−1
I

Because the I and J are not topologically equivalent images, there is no diffeomor-

phism that can truly define a structural correspondence between them. However, in

the regions that do not contain extraneous structures—e.g., Ω \ N—a diffeomorphic

mapping is achieved. This mapping can be used to analyze the deforming structures

represented within both images.
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3.2.3 Registration pipeline for intra-patient registration

This section describes how extraneous structure deflation is applied in the context of

the intra-patient CT image registration problem for ART. The goal is to estimate a

transformation hP→T that maps points in the planning image, IP , to corresponding

points in a treatment image, IT . The transformation hP→T is estimated using a three step

process the that combines rigid image registration, bowel gas deflation, and deformable

image registration. Each of these stages produces a spatial transformation; hP→T is

defined as the composition of these transformations.

Rigid registration

First, a rigid transformation that aligns the pelvis in the planning and treatment im-

ages is computed. This quantifies the rigid patient setup error. The planning and

treatment images are thresholded so that only bone is visible. The region of interest

is restricted to the pelvis as it remains fixed while the femurs and spine can rotate or

bend. The rigid transformation, r, is estimated using an intensity based gradient descent

algorithm (Joshi et al., 2003).

Accommodating bowel gas

In order to remove bowel gas from IP and IT , the deflation algorithm is applied to

produce deflated images IPd
and ITd

. The following process is applied separately to

both the planning and treatment images. A binary segmentation of the gas is created

using a simple thresholding operation. This is possible because the contrast between

gas and surrounding tissue is high in CT images. This binary segmentation is refined

using a morphological close operation, which eliminates small pockets of gas. Next, a

deflation transformation s is estimated. As described in Section 3.2.2, s is based on a

flow induced by the gradient of the binary image. Points along the gas-tissue border,

where the gradient is non-zero, flow in the direction of the gradient. As a result, gas
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filled regions collapse—deflating like a balloon.

Deformable image registration

Finally, non-rigid motion is quantified using large-deformation diffeomorphic image reg-

istration. A diffeomorphism hdef : ΩPd
→ ΩTd

that defines a voxel-to-voxel correspon-

dence between the two gas-deflated images IPd
and ITd

is generated. The registration is

determined by finding the deformation field hdef that minimizes the mean squared error

between IPd
and the deformed image ITd

◦ hdef ,

D(h) =

∫
x∈Ω

|IPd
(x)− ITd

(hdef(x))|2 dx. (3.5)

The transformation is constrained to be diffeomorphic by enforcing that it satisfy laws

of continuum mechanics derived from visco-elastic fluid modeling (Christensen et al.,

1996; Miller et al., 1999).

Composite transformation

Correspondence between the original images IP and IT is defined by concatenating the

rigid, deflation, and deformable registration transformations, i.e.,

hP→T = r ◦ sT ◦ hdef ◦ s−1
P . (3.6)

That is, the point x in the planning image corresponds to the point hP→T (x) in the

treatment image.
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Mapping segmentations via spatial transformations

Using the deformation hP→T , it is possible to carry manual organ segmentations from

the planning image to a treatment image, deforming them to match the new image.8

This provides an automatic segmentation of the treatment image that is based on the

manual segmentation of the planning image. In practice, the automatic segmentations

must still be reviewed by a physician, but they need not be edited unless errors are

found.

In this work a manual segmentation is represented by a collection of planar contours

that each define the location of an anatomical structure within a particular 2D slice—or

plane—of a 3D image. These contours are generated by a physician who uses a computer

program to draw (using mouse-clicks) these contours, one slice at a time, over a displayed

image. Each contour is defined by a collection of ordered, coplanar vertices vi and the

line segments li that connect them. That is, the line segment li connects vertex vi with

vertex vi+1. The last line segment is a special case that closes the contour; it connects

the last vertex with the first vertex.

The transformation hP→T is used to move the vertices of the contours from their

locations in the planning image to the corresponding points in the treatment image

(Figure 3.5). This process does not result in a set of planar contours since vertices will

typically be moved out of plane to varying degrees. Therefore, the vertices that define

the contours are first converted to a surface model made up of triangles (Figure 3.9) using

the Power Crust algorithm (Amenta et al., 2001). The surface is deformed by replacing

each vertex vi with hP→T (vi). Contours are regenerated by slicing the deformed surface

model with planes parallel to the xy axis.

8Segmentations can also be carried from the daily image to the planning image since hP→T is
invertible.
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Figure 3.9: Visualization of organ segmentations. Panel (a) is an anterior view of
a 3D rendering displaying segmentations of the skin, prostate, rectum, bladder, seminal
vesicles, and femoral heads. Panel (b) shows a lateral view of the prostate, rectum, and
bladder of the same patient. The surfaces are constructed by tiling manually drawn
contours.

3.3 Results: Automatic segmentation of the prostate

from in-treatment-room CT scans

Figure 3.10 permits a visual assessment of the accuracy of this method. This figure

is similar to Figure 3.1 except that the white contours indicate the daily treatment

prostate positions deformed into the space of the planning image (rather than the actual

daily prostate positions). Discrepancies between the deformed segmentations measure

not only image registration uncertainty, but also intra-rater variability of the manual,

treatment-day segmentations. In this section the accuracy of this segmentation method

is quantified, with attention to human variability, by measuring segmentation volume

overlap and centroid differences.

The statistical analysis is based on comparing automatically generated segmenta-

tions to manual, hand-drawn segmentations. However, there is appreciable variation in

manual segmentation, making it unreasonable to choose a particular manual segmenta-

tion as definitive. Groups have reported segmentation variation in a number of contexts,

37



Figure 3.10: Automatic prostate segmentation results. The images show man-
ual segmentations of each daily image deformed into the space of the planning image.
The close agreement (compare to Figure 3.1) of the deformed treatment-day segmenta-
tions with the position of the prostate in the planning images provides evidence for the
accuracy of the image registration algorithm along the prostate boundary.
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including brain tumors (Leunens et al., 1993), lung cancer (Valley and Mirimanoff, 1993;

Ketting et al., 1997), and prostate MR (Zou et al., 2004). Rasch et al. (1999) reported

inter-rater variabilities in the segmentation of the prostate in CT and MR images. For

CT images, they found overall observer variation of 3.5mm (1 standard deviation) at

the apex of the prostate and an overall volume variation of up to 5%.

Given this inter-rater variability, the automatically generated segmentations are as-

sessed by comparing them with segmentations from manual raters. The segmentations

from different manual raters are compared in the same way. The accuracy and reliabil-

ity of the automatic segmentations is judged according to the standard of the measured

inter-rater variability.

As of the date of this study (2005), the Department of Radiation Oncology at the

University of North Carolina at Chapel Hill had acquired CT scans for a total of 138

treatment days from nine patients. All of these images were manually segmented by at

least one rater. However, due to the time-consuming nature of manual segmentation,

images from only five of these patients were manually segmented by a second rater. The

65 images from these five patients are used for the analysis in this section.

The experimental setup was as follows. Each daily CT image was collected prior to

treatment using the Siemens Primatom scanner pictured in Figure 3.3, with a resolution

of 0.098× 0.098× 0.3 cm. Each planning image, as well as every treatment image, was

manually segmented twice, once by rater A and once by rater B. For each patient the

transformations hi that deformably align the planning image with the treatment image

for each treatment day i were computed using the method described above. Automatic

segmentations were generated for each treatment image by applying hi to segmentations

in the planning image. The automatic segmentations are labeled as rater C (for “com-

puter”). CA and CB represent treatment image segmentations that were automatically

generated by deforming the manual planning image segmentations drawn by raters A

and B, respectively. Therefore, there are a total of four segmentations for each treat-
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ment image: two manual segmentations (A and B) and two automatic segmentations

(CA and CB).

For each patient and for each treatment day, there are six pairwise comparisons that

can be made from the set of four segmentations. We report data on five of these compar-

isons: AB, comparing manual segmentations by rater A against those by rater B; CAA

and CBB, comparing automatic segmentations with manual segmentations produced by

the same rater; and CAB and CBA, comparing automatic segmentations with manual

segmentations produced by a different rater.

The automatic segmentations are produced by transforming manual planning seg-

mentations produced by either rater A or rater B. Therefore, due to the influence of

inter-rater variability, it is expected that—on average—segmentations generated by the

same rater (e.g., A and CA) will be closer in terms of centroid distance and volume

overlap than segmentations generated by different raters (e.g., A and CB).

3.3.1 Implementation: Beamlock

In order to efficiently apply this methodology to patient images, a program, called

Beamlock, was developed. Beamlock automatically applies the gas shrinking and image

mapping procedure to planning and treatment images. The program is implemented in

C++ and requires approximately one hour of processing time per treatment image on

a dual processor (Intel Xeon CPU 3.06GHz) computer with approximately 4 gigabytes

of RAM.

3.3.2 Centroid analysis

The centroid of the prostate is especially important for radiation treatment planning and

therapy because it is the origin, or isocenter, for the treatment plan. To measure the

accuracy of the automatic segmentations, the centroid of each automatic segmentation

is compared with the centroid of the corresponding manual segmentation.
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Figure 3.11: Segmentation accuracy results: prostate centroid differences. (a)
Centroid differences measured in the lateral (X), anterior-posterior (Y), and superior-
inferior (Z) directions. The horizontal lines on the box plots represent the lower quartile,
median, and upper quartile values. The whiskers indicate the extent of the rest of the
data, except that outliers, which fall more than 1.5 times the interquartile range past
the ends of the box, are denoted with the ‘+’ symbol. (b) Euclidean distance between
segmentation centroids.

First consider the question: Are the centroids of the automatic segmentations sys-

tematically shifted with respect to the manual segmentations? Let Si
A, Si

B, Si
CA

, and

Si
CB

denote the prostate segmentations from raters A, B, CA, and CB, respectively, for

image i. Let C(·) be a function that returns the centroid (in R3) of a segmentation.

The distribution of the centroid differences C(Si
CA

)−C(Si
A), i ∈ 1, 2, . . . N (and similarly

for CB) can be examined in order to determine whether the centroids of the automatic

segmentations are systematically shifted in any particular direction. Likewise, to test

for systematic shifts between manual raters A and B, the distribution C(Si
B) − C(Si

A)

is examined. Figure 3.11 (a) shows box-and-whisker plots of these differences for the

BA, CAA, and CBB comparisons. The differences in the lateral (X), anterior-posterior

(Y), and superior-inferior (Z) directions are measured separately. Summary statistics

are provided in Table 3.1. According to these data there is no significant shift between

centroids of the computer generated segmentations and rater A’s manual segmentations
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Table 3.1: Summary statistics for centroid difference distributions. The mean, standard
deviation, and 95% confidence interval for the mean are reported.

Lateral (X) A-P (Y) Sup-Inf (Z)
BA CAA CBB BA CAA CBB BA CAA CBB

Mean 0.00 -0.01 0.03 -0.01 0.02 0.12 0.07 0.10 -0.07
STD 0.07 0.07 0.06 0.15 0.13 0.18 0.28 0.18 0.28

95% CI
-0.02 -0.03 0.01 -0.05 -0.02 0.07 0.00 0.05 -0.14
0.02 0.00 0.04 0.02 0.05 0.16 0.14 0.14 0.00

in the lateral and A-P directions. There is a significant shift (p < 0.001 for two-tailed

t-test) in the Sup-Inf direction of approximately 0.09 cm, which is less than one third

of the Sup-Inf image resolution (0.3 cm). For the CBB comparisons there are signif-

icant shifts in the lateral and A-P directions of approximately 0.03 cm and 0.12 cm,

respectively, which are at or less than the voxel resolution in these dimensions. The

comparison between manual raters shows that there is a significant shift in the Sup-Inf

direction of approximately 0.07 cm.

In the lateral and Sup-Inf directions, the standard deviation of the manual AB

comparisons is as large or larger than the standard deviation of the CAA and CBB

comparisons. In the A-P direction, the standard deviation of the CBB comparisons is

slightly higher than the manual comparison.

In Figure 3.11 (a) there is a striking difference in the variance of the lateral (X)

distributions and the variance for the A-P (Y) and Sup-Inf (Z) distributions. The large

difference in physical voxel spacing in the (X) and (Z) directions—0.093 cm for (X)

versus 0.3 cm for (Z)—is one important factor. However, the resolution is the same

in the (X) and (Y) directions. One explanation is that the motion of the prostate is

highly influenced by the expansion and contraction of the bladder and rectum. Because

of their relative locations—the bladder is superior to, and the rectum is posterior to the

prostate (see Figure 3.9)—these organs are likely to cause more motion of the prostate
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Table 3.2: Summary statistics for centroid distance distributions.

Euclidean Distance
AB CAA CBB CAB CBA

Mean 0.29 0.21 0.32 0.37 0.35
Median 0.25 0.20 0.32 0.31 0.35
Max 0.72 0.67 1.08 1.08 0.70
STD 0.16 0.13 0.17 0.22 0.15
IQR 0.23 0.21 0.19 0.26 0.24

in the A-P (Y) and Sup-Inf (Z) directions than in the lateral (X) direction.

Next the Euclidean distance measured between segmentation centroids is analyzed.

Figure 3.11 (b) shows box-and-whisker plots of these distances. Summary statistics for

these data are presented in Table 3.2. As the distributions of these distances are not

approximately normal, medians and interquartile ranges are reported along with means

and standard deviations.

All of the mean distances are within image resolution. Paired t-tests were used

to test for equality of the means of these distributions. The CAA mean distance is

significantly less than the AB mean distance (p < 0.001) while there is no significant

difference between the CBB and AB mean distances. As expected, the centroids of

the automatically generated segmentations are consistently closer to same-rater manual

segmentations than cross-rater manual segmentations.

Based on these data, the automatic segmentation method is comparable to human

raters in accuracy for estimating centroids and, as judged by the error bars and standard

deviations, at least as reliable. However, there are outliers, with the maximum centroid

distance being over 1 cm. For this reason, segmentations should be reviewed by a

physician before use in radiation therapy treatment planning.
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Figure 3.12: Segmentation accuracy results: prostate Dice similarity coeffi-
cients. Dice Similarity Coefficient (DSC) and logit DSC.

3.3.3 Volume overlap analysis

While the difference in centroids is an important estimate of segmentation alignment,

it does not take into account shape or pose changes that may cause the segmentation

boundaries to differ. The relative volume overlap of the segmentations is one method

for measuring such differences. To measure the degree of volume overlap between the

automatic and manual segmentations in this study, we use the Dice Similarity Coefficient

(DSC) (Dice, 1945). For two segmentations, S1 and S2, the DSC is defined as the ratio

of the volume of their intersection to their average volume:

DSC(S1, S2) =
Volume(S1 ∩ S2)

1
2
(Volume(S1) + Volume(S2))

(3.7)

The DSC has a value of 1 for perfect agreement and 0 when there is no overlap. The DSC

can be derived from the κ statistic for measuring chance-corrected agreement between

independent raters (Zijdenbos et al., 1994).

Figure 3.12 (a) shows a box-and-whisker plot of the Dice similarity coefficient for

each prostate segmentation comparison. The mean DSCs for the CAA and CBB com-
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parisons are 0.82 (STD=0.08) and 0.84 (STD=0.08), respectively. The mean DSC for

the two manual raters was similar (mean=0.81, STD=0.06). This indicates the overlap

of the automatic segmentations is on par with the overlap for the inter-rater manual

segmentations.

A similar study, described in Zou et al. (2004), assessed the reliability of manual

prostate segmentations in interoprative MR images. They report a mean DSC for man-

ual raters of 0.838. The greater degree of agreement (DSC) with MR images is reasonable

since prostate boundaries are more evident in MR images than in CT images, and thus

manual raters are likely to segment MR images more reliably than CT images.

Better results for automatic segmentation of the prostate in CT images have also been

achieved. A recent study by Pizer et al. (2008) applied principal geodesic analysis to train

m-rep shape models of the prostate for prostate segmentation in CT images. In a leave-

one-out study involving 80 total images from 5 patients, they achieved a median volume

overlap score of 0.94 when m-rep segmentations were compared to manual segmentations.

These superb results can at least partially be explained by the strong shape prior that

is learned from the principal geodesic analysis. This prior informs the segmentation

procedure when boundaries are not evident in image data.

To evaluate the DSC distributions, the logit of the DSC (LDSC) is used

LDSC(S1, S2) = ln

(
DSC(S1, S2)

1−DSC(S1, S2)

)
. (3.8)

Agresti (1990) showed that for large sample sizes (in the case of our prostate segmenta-

tions, the number of voxels is approximately 20, 000), LDSC has a Gaussian distribution.

Figure 3.12 (b) shows a box-and-whisker plot of the LDSC values for each comparison.

A paired t-test on the LDSC values was performed in order to test for significant

differences between the AB and CAA or CBB comparisons. A one-tailed test shows that

the DSCs for the CBB comparisons are significantly (p < 0.001) greater than the DSCs
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Table 3.3: Summary statistics for the DSC measures.

AB CAA CBB CAB CBA
Mean 0.81 0.82 0.84 0.78 0.78

Median 0.82 0.84 0.86 0.80 0.81
STD 0.06 0.08 0.08 0.08 0.08
IQR 0.08 0.12 0.08 0.09 0.10

Table 3.4: Comparison of automatic segmentation to manual segmenter A via the DSC
and LDSC.

DSC(S1, S2) LDSC(S1, S2)
Prostate Bladder Prostate Bladder

n 76 20 76 20
Mean 0.801 0.816 1.466 1.576

Median 0.825 0.826 1.554 1.557
STD 0.081 0.078 0.494 0.539
IQR 0.121 0.133 0.804 0.034

for the AB comparisons. No significant difference between the CAA and AB comparisons

were found (p = 0.12 for a two-tailed test). Therefore, the automatic segmentations

coincide with the manual segmentations at least as well as a second manual rater.

Table 3.4 summarizes the manual-versus-automatic comparison for segmenter A only,

for all patients that have been processed. There are fewer bladder segmentations because

the bladder was typically not segmented after the first five treatment days.

3.4 Conclusions

This chapter describes a method for estimating mappings between images when extra-

neous structures are present. The method identifies extraneous structures within images

and shrinks them out of an image before image mapping is applied. This method was ap-

plied to the clinical problem of estimating prostate motion over the course of treatment

in the presence of transient bowel gas.

In the future, it would be interesting to apply this methodology to new clinical
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problems. For example, this approach can be applied in a straightforward manner to

the registration of brain images in the presence of pathology such as tumors.
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Chapter 4

Variational optimization for

large-deformation diffeomorphic image

averaging

4.1 Introduction

For anatomy represented within medical images, a natural problem is the construction

of a representative anatomical configuration for a population. Such a representative is

important, for example, when investigating clinical hypotheses related to the shape of

structures indicated in brain development or mental disorders. It can also be used to

define a common spatial coordinate system so that spatial information from across a

population can be accumulated, statistically analyzed, and presented in a single frame

of reference.

One common approach for generating representative anatomical images is to simply

select an individual image from the population. However, unless there is an a priori

reason to choose one individual over the rest, this choice will bias the analysis for the

particular anatomical configuration presented by the individual.1 This method is also

commonly used to establish spatial correspondence between image coordinate systems:

1For example, this effect is described in (Rohlfing et al., 2004).



one image is chosen as a reference and all other images are spatially aligned with this

reference image. Unfortunately, this is biased as well, since the image-to-image corre-

spondences rely on the choice of the reference image.

A sensible approach for generating an anatomical representative image that is not

biased by any particular individual is to generate an anatomical configuration that is

in some sense centrally located—in terms of the configuration of anatomy within an

image—with respect to the population under study. The mean in statistics captures

this notion of “central location,” and the arithmetic mean is easily computed from data

that are elements of a vector space. However, the shapes and shape changes evident in

anatomy are not well described by vector spaces and, in particular, the naive approach

of averaging an image voxel-wise clearly neither produces a realistic anatomical image

nor captures the notion of mean geometric configuration.

Recently, the notion of Fréchet mean has been used to define mean shapes in non-

linear shape spaces that have a metric space structure. For example, Fletcher et al.

(2004) extend concepts such as averaging and principal component analysis to mani-

folds representing anatomical shape variability. This chapter presents a novel method

for generating a Fréchet mean anatomical image, using large-deformation diffeomorphic

transformations, from a collection of images representing a population. The resulting

image serves as a natural average representation for the anatomy contained within the

images and is not biased by the choice of any particular image or the ordering of the

population images. The Fréchet mean image also provides a natural coordinate system

for the collection of images. Because the method uses large-deformation diffeomorphic

registration to establish correspondence between the image coordinate systems during

the process of forming the mean, spatial data is easily mapped between images within

the collection and, in particular, easily accumulated within the mean image coordinate

system.

The strategy is to first define a notion of mean that is based on geometric change.
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Next, a method for measuring geometric change between images is defined. These

ideas are combined to define an algorithm for computing a mean image. The mean

image is generated automatically from the input images using an iterative procedure

of continuous joint alignment: the input images iteratively deform toward the evolving

mean.

In the rest of this chapter, these methods are described and examples are presented

for synthetic data. Related work is summarized in Section 4.4.

This work was developed in collaboration with Dr. Sarang Joshi. It has been pub-

lished, with applications to medical image data, in Davis et al. (2004); Joshi et al.

(2004); Xu et al. (2006); Goodlett et al. (2006); Gerig et al. (2006). Drs. Peter Loren-

zen and Sarang Joshi led the effort to extend this methodology to generate an elegant

multi-modal image set registration and averaging framework in Lorenzen et al. (2004a,b,

2006).

4.2 Methods

In this section I describe a method for computing a mean image that takes geometric

change into account. The mean is computed automatically from a cohort of images. Sec-

tion 4.2.1 reviews the definition of the arithmetic mean in Hilbert spaces. Section 4.2.2

describes why this definition is not applicable in the presence of large-scale geometric

change, and it presents a new definition of mean—based on distances—that is applica-

ble. Section 4.2.3 describes an algorithm that combines the diffeomorphisms described

in Chapter 2 with the notion of Fréchet mean to generate mean images. Section 4.2.4

describes several properties of this algorithm. Finally, Section 4.2.5 describes implemen-

tation details.
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4.2.1 Arithmetic mean in Hilbert spaces

A Hilbert space is a vector space H together with an inner product < ·, · > such that H

is complete relative to the metric d(x, y) = ‖x − y‖ =
√
< x− y, x− y > on H. Given

N elements xi of a Hilbert space H, the arithmetic mean is defined as the minimizer of

the sum-of-squared-distances

µ = argmin
x∈H

1

N

N∑
i=1

< x− xi, x− xi > . (4.1)

This definition depends on the vector space structure of H. In particular, it relies on

well defined subtraction operations. In Euclidean space, the solution to Equation (4.1)

is the familiar arithmetic mean

µ =
1

N

N∑
i=1

xi. (4.2)

Consider a collection of N 3D images {I i}ni=1. Each image I ∈ I can be formally

defined as an L2 function from Ω ≡ [0, 1] × [0, 1] × [0, 1] ⊂ R to the reals. In this case

the mean image is defined using the L2 inner product norm

µ = argmin
I∈I

1

N

N∑
i=1

∫
Ω

(I(x)− I i(x))2 dx. (4.3)

In this case the mean image is

µ(x) =
1

N

N∑
i=1

I i(x). (4.4)
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4.2.2 Fréchet mean image

We cannot rely on the frequently used vector space structure2 of images themselves to

generate satisfactory mean images. Although images can be added voxel-wise, the result

is a loss of any identification with the geometric configuration of the image contents.

Also, the L2 norm does not take into account any notion of geometric differences. On

the other hand, this thesis is based on the premise that geometric differences can be

accounted for by transformations of the underlying image coordinates.

In this work, geometric change is represented as the action of the group of diffeomor-

phisms on images. This allows for the representation of the large geometric variability

evident in anatomical images. Let DiffV (Ω) be the group of diffeomorphisms that are

isotopic to the identity (see Chapter 2). Each element φ : Ω → Ω in DiffV (Ω) deforms

an image according to the following rule

φI = Iφ = I ◦ φ−1. (4.5)

In the group of diffeomorphisms, composition is defined, but addition and subtraction

are not. Therefore, Equation (4.1) is not defined for averaging diffeomorphisms. How-

ever, the idea of expected value of real random variables can be generalized to manifold-

valued random variables via Fréchet expectation (Fréchet, 1948; Karcher, 1977).

Let f be a probability density on a Riemannian manifoldM. The Fréchet expecta-

tion is defined as

Ef [p] ≡ argmin
q∈M

∫
M
d(q, p)2f(p) dp (4.6)

where d is the metric on the manifold M. This definition is motivated by a minimum

variance characterization of the mean, where variance is defined in terms of the metric.

2E.g, L2(Ω)
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Fréchet expectation might not be unique (Karcher, 1977). Using this definition, an em-

pirical estimate of the Fréchet mean, given a collection of observations {pi, i = 1 · · ·N}

on a manifoldM, is defined by

µ = argmin
q∈M

1

N

N∑
i

d(q, pi)2. (4.7)

Figure 4.1 (a) illustrates a Fréchet mean on a curved manifold. This equation is similar

to Equation (4.1) except that vector space structure is not required for the Fréchet

mean. Indeed, plugging the Euclidean distance into Equation (4.7) leads directly to the

arithmetic mean (Equation (4.2)).

The sum-of-squared distances in Equation (4.7) can be interpreted as a measure of

variance for the observations with respect to the metric d, that is,

var = min
q∈M

1

N

N∑
i

d(q, pi)2. (4.8)

In order to apply the Fréchet mean to images (see Figure 4.1 (b)), a satisfactory

notion of distance for images must be established; in this dissertation the deformation-

based metric described in Chapter 2 is used. That is,

d2(IF , IM) = argmin
v:φ̇t=vt(φt)

∫ 1

0

‖vt‖2v dt+
1

σ2
‖IM

φ − IF‖2L2 . (4.9)

Recall that the first term defines a metric on the space of diffeomorphisms that are

generated by integrating velocity fields v. These diffeomorphisms are used to deform a

moving image IM to match the a fixed image IF . The second term penalizes residual

image mismatch. The free parameter σ governs the relative weight of these terms. See

Section 2.3 for more details.
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Figure 4.1: Fréchet mean image schematic. (a) Observed points pi are represented
by filled circles on the manifoldM. The Fréchet mean (filled square) is the point µ on
the manifold that minimizes the sum of squared distances to the observations. Distances
are measured along the manifold. (b) Fréchet mean image construction framework for
3D brain images. The mean image minimizes the sum of squared deformation distance
(Equation (4.9)) required to match input images. The algorithm presented in this chap-
ter automatically generates this mean image, as well as the deformations φi that map
the mean image onto each input image I i.
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4.2.3 Computing Fréchet mean images with LDDMM and greedy

solutions

Recall that given N points pi on a Riemannian manifoldM, the Fréchet mean is defined

as

µ = argmin
q∈M

N∑
i=1

d(q, pi)2. (4.10)

Given N images I i ∈ I, the goal is to compute the mean image Î that minimizes

the sum of squared distances to the given images according to the metric defined in the

previous section (Equation (4.9)):

Î = argmin
I∈I

N∑
i=1

d(I, I i)2. (4.11)

Figure 4.1 (b) illustrates this idea.

This optimization problem (4.11) depends on deformations that deform the mean

image Î to match each input image. Equivalently, it depends on deformations φi that

deform each input image I i to match the mean image Î.3 Plugging in the metric from

Equation (4.9) results in

Î , φ̂i = argmin
I,φi∈I×DiffV (Ω)N

N∑
i=1

[∫ 1

0

‖vi
t‖2V dt+

1

σ2
‖I − I i

φi‖2L2

]
(4.12)

subject to

φi
0 = Id φi

1 = φi φ̇i
t = vi

t ◦ φi
t φi(x) = x+

∫ 1

0

vi
t(φ

i
t(x)) dt. (4.13)

These equations express the following intuitive idea: a population of images can be

3Recall that dDiffV (Ω)(IdDiffV (Ω), φ) = dDiffV (Ω)(IdDiffV (Ω), φ
−1).
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represented by the image that is centrally located, according to the metric d, among the

observations. Since d is based on a metric for deformations, this implies that Î is the

image that requires the “least amount of deformation” required to map onto the input

images.

Equation (4.12) can be simplified by noticing that for fixed transformations the

optimal mean image is

Î =
1

N

N∑
i=1

I i
φi . (4.14)

That is, Î is the voxel-wise arithmetic mean of the deformed images I i
φi . Note that

this method for computing Î is determined by the L2 image dissimilarity metric (recall

Section 4.2.1). Other metrics would imply different methods for computing Î.

Combining equations (4.12) and (4.14) results in an optimization problem over the

deformations φi alone:

φ̂i = argmin
φi∈DiffV (Ω)N

N∑
i=1

[∫ 1

0

‖vi
t‖2V dt+

1

σ2
‖ 1

N

N∑
j=1

Ij
φj − I i

φi‖2L2

]
(4.15)

subject to

φi
0 = Id φi

1 = φi φ̇i
t = vi

t ◦ φi
t φi(x) = x+

∫ 1

0

vi
t(φ

i
t(x)) dt. (4.16)

For a fixed mean image Î, this equation can be written as N independent optimiza-

tion problems

φ̂i = argmin
φ∈DiffV (Ω)

∫ 1

0

‖vi
t‖2V dt+

1

σ2
‖Î − I i

φi‖2L2 (4.17)

56



subject to

φi
0 = Id φi

1 = φi φ̇i
t = vi

t ◦ φi
t φi(x) = x+

∫ 1

0

vi
t(φ

i
t(x)) dt. (4.18)

Equation (4.15) can be solved iteratively. First, the deformations are initialized to

the identity transformation. Then the following two steps are iterated until convergence:

(1) the deformations are fixed and the mean image is updated according to (4.14); (2)

the mean image is fixed and the N deformations are updated by taking incremental

steps along the gradient of the energy functionals in Equation (4.17). These gradients

are given by

∇vi
t
Et = 2vi

t −K
(

2

σ2
|Dφi

t,1|∇I i
φi

0,t
(I i

φi
0,t
− Îφi

1,t
)

)
. (4.19)

This equation follows immediately from the derivation of the gradient of the image-to-

image registration functional (Equation (2.19)) in Beg et al. (2005), which is derived

in Appendix B of this document; the difference is that in this case the image I i flows

toward the evolving mean image and not toward an observed image. Convergence is

achieved when incremental changes in the energy functional (Equation (4.15)) become

negligible.4 This procedure is summarized in Algorithm 4.1.

Greedy solution

For the greedy solution, Equation (4.15) is solved using a similar iterative algorithm.

First, the deformations are initialized to the identity transformation. Then the following

two steps are iterated until convergence: (1) the deformations are fixed and the mean

image is updated according to (4.14); (2) the mean image is fixed and theN deformations

are updated by taking incremental steps according to the velocities vi. Each vi gives

the locally optimal (greedy) solution given that the current estimate of the deformation

4Of course, a maximum number of iterations could also be used.
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Algorithm 4.1 Intrinsic mean image: LDDMM solution

Input: A collection of N images: {I i}Ni=1

Output: A Fréchet mean image Î and a collection of diffeomorphic transformations
{φi}Ni=1 such that φi maps I i onto Î

1: // Initialize deformations with identity
2: for i = 1 : N do
3: φi ← IdDiffV (Ω)

4: end for
5: // Perform gradient descent optimization
6: repeat
7: Î = 1

N

∑N
i=1 I

i
φi // Update mean image

8: for i = 1 : N do
9: // Compute gradient of functional at each discritized timepoint s

10: for j = 1 : T do
11: s← j−1

T

12: ∇vi
t
Et ← 2vi

t −K
(

2
σ2
|Dφi

s,1|∇I i
φi

0,s
(I i

φi
0,s
− Îφi

1,s
)
)

13: end for
14: vi ← vi − ε∇viE // Step along gradient
15: end for
16: until convergence

is fixed

vi = K

(
2

σ2
∇I i

φi
0,1

(I i
φi

0,1
− Î).

)
(4.20)

Note that in contrast to the LDDMM case the velocity is only computed at time t = 1.

The convergence criterion are identical to the LDDMM solution. This procedure is

summarized in Algorithm 4.2.

4.2.4 Fréchet mean image algorithm properties

Groupwise registration

Groupwise registration is the process of mapping a collection of images into a common

coordinate system. When transformations are invertible, they can be composed to map

every input image onto every other input image. The algorithm described in this chapter
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Algorithm 4.2 Intrinsic mean image: Greedy solution

Input: A collection of N images: {I i}Ni=1

Output: A Fréchet mean image Î and a collection of diffeomorphic transformations
{φi}Ni=1 such that φi maps I i onto Î

1: // Initialize deformations with identity
2: for i = 1 : number of images do
3: φi ← IdDiffV (Ω)

4: end for
5: repeat
6: Î = 1

M

∑M
i=1 I

i
φi // Update mean image

7: for i = 1 : number of images do

8: vinc ← K
(

2
σ2∇I i

φi
0,1

(I i
φi

0,1
− Î)

)
// Compute locally optimal velocity

9: φi ← Expφi(εvinc) // Step in direction of incremental velocity
10: end for
11: until convergence

produces a groupwise registration method that is inherently unbiased in the sense that

the results do not depend on the ordering of the input images or the arbitrary selection

of a reference coordinate system.

In the solution to Equation (4.15), the transformations φi align the input images I i

in the common space Ω of the mean image. The solution to this minimization problem

is independent of the ordering of the N images. Since each φi is a diffeomorphism, its

inverse exists and can be calculated. Transformations mapping one image to another

are defined by the composition rule

φi,j : Ωi → Ωj ≡ (φj)−1 ◦ φi. (4.21)

Inverse consistent registration

When this Fréchet mean image framework is applied to two images, the result is an

inherently inverse consistent image registration algorithm—no correction term or penalty

for consistency is required.

A registration framework is inverse consistent if image ordering does not affect the

registration result. Many image registration algorithms are not inverse consistent be-
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cause their image dissimilarity metrics are computed in the coordinate system of a single

input image; the choice of such a reference image biases the result of the registration.

Inverse consistent registration is desired when there is no a priori reason to choose

one image over another as a reference image. Previous work (e.g., He and Christensen

(2003); Christensen and Johnson (2001); Johnson and Christensen (2002)) has intro-

duced methods for computing approximate inverse consistent registrations by applying

inverse consistency constraints on intermediate incremental transformations.

The framework presented in this chapter leads to an inherently inverse consistent

image registration algorithm. For two images I1 and I2, Equation (4.15) becomes

{φ̂1, φ̂2} = argmin
φ1,φ2∈DiffV (Ω)2

1

2
|I1

φ1 − I2
φ2|2L2

+

∫ 1

0

‖v1
t ‖2V dt+

∫ 1

0

‖v2
t ‖2V dt.

(4.22)

The transformations φ̂1 and φ̂2 map I1 and I2 onto the mean image. Composition

is used to create the image-to-image mappings φ̂1,2 = (φ̂2)−1 ◦ φ̂1 and φ̂2,1 = (φ̂1)
−1 ◦ φ̂2.

This method is inverse consistent since φ̂1,2 ◦ φ̂2,1 = φ̂2,1 ◦ φ̂1,2 = IdDiffV (Ω).

4.2.5 Implementation notes

A multi-resolution approach is used to compute a Fréchet mean image at progressively

higher resolutions. At each level the deformation is initialized by the results at the next

coarsest scale level. This strategy has the dual benefits of (a) addressing the large scale

shape changes first and (b) speeding algorithm convergence.

In this work, two differential operators are used in the Riemannian metric to measure

squared distance on the space of diffeomorphisms. The first is motivated by the Navier-

Stokes equations for a compressible viscous fluid with a very low Reynolds number

L = −µ∇2 − (µ+ λ)∇(∇·) + γ, (4.23)
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where µ and λ are viscosity coefficients and γ ensures that L is invertible. This type

of operator was first used for large-deformation image registration by Christensen et al.

(1996). The second operator used is

L = −µ∇2 + γ, (4.24)

which is used by Beg et al. (2005).

In order to solve Equation (4.19), the Green’s function of L must be applied. As

in Christensen et al. (1996) and Beg et al. (2005), it is applied in a computationally

efficient manner by inverting the operator L in the Fourier domain. Details are provided

in Appendix D.

The dominating computation at each iteration is a Fast Fourier Transform. The

order of the algorithm is MNTn log n where M is the number of iterations, N is the

number of images, T is the number of discritized time steps, and n is the number of

voxels along the largest dimension of the image. Therefore, the complexity grows linearly

with the number of observations, making this algorithm suitable for application to large

data sets. The greedy algorithm is more efficient than the LDDMM algorithm since it

only updates one velocity field per iteration (that is, T = 1 for the greedy algorithm as

opposed to T on the order of 20 for the LDDMM solution).

4.3 Algorithm demonstration with synthetic data

This section demonstrates the Fréchet mean image algorithm for 2D synthetic data. For

each experiment a cohort of 256 × 256 images is generated from a known, underlying

geometric model. Two mean images are generated for each cohort: a voxel-wise mean

image and a Fréchet mean image (using the LDDMM solution Algorithm 4.1).
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4.3.1 Ovals

In this experiment the cohorts consist of ovals in the image foreground that are either

rotated (Figure 4.2 (a)) or deformed by bending (Figure 4.2 (b)). In the voxel-wise

mean images (panels (c) and (d)) the geometric variation of these cohorts is evidenced

by blurry edges: the average shape is not captured. In contrast, the Fréchet mean

images (panels (e) and (f)) contain crisp shapes that match at least one notion of a

“mean shape”.

For the “rotated ovals” experiment, the result is a disk—the long axis of each input

oval has been deformed toward the center while the short axis is deformed slightly

out. On the one hand, it can be argued that the mean shape should be something

different, such as an ellipse with an average rotational pose. However, the diffeomorphic

transformations used here are not intended to account for global pose. Instead, they

are intended to account for residual deformations that occur after accounting for pose.

Therefore, if the collection of input images is considered as a disk template that is

deformed (elongated) to create each image then this result—the mean image is the

initial disk template—is reasonable.

For the “deformed ovals” experiment, the results have a similar interpretation. The

corners of the deformed ovals are midway between the corners of the fully deformed and

the undeformed ovals. When the Fréchet mean image is considered as an initial template

that is deformed to generate the input images, this result is reasonable. However, as

in the previous case, there are other reasonable interpretations of mean shape for this

example. The mean shape might be an oval (long axis horizontal) with no deformation

whatsoever; it has been shown that Fréchet mean m-reps give this result when applied

to this example (Merck et al., 2008).
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Figure 4.2: Synthetic data experiment: Fréchet mean ellipse images. (a)-(b)
Oval image samples of size 16. Each panel shows a tiled sample of individual 256× 256
images (scaled down for display). Each image contains an ellipse that is rotated (a) or
deformed (b). (c)-(d) Pixel-wise means for each sample. (e)-(f) Fréchet mean images
computed from each sample.
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4.3.2 Bullseyes

The bullseye experiments are shown in Figure 4.3. Three cohorts of images are shown:

containing 4, 16, and 32 images, respectively. Each input image contains three disks—

inner, middle, and outer—with radii determined by the functions rinner, rmiddle, and

router. These functions allow a wide variation in bullseye sizes and a random, nonlinear

relationship between the disk radii while explicitly providing the constraint rinner <

rmiddle < router. They are

router = rmin + εouter(rmax − rmin)

rmiddle = router
3

5
+ εmiddlerouter

1

5

rinner = router
1

5
+ εinnerrouter

1

5

(4.25)

where each ε is a uniform distribution on [0, 1]. The outer radius is bounded by rmin =

1
7
th and rmax = 1

3
rd of the total image width. Once the disk geometries are fixed,

independent, identically distributed Gaussian noise is added to the image intensities.

For each cohort, two means are computed: an extrinsic, pixel-wise mean (middle row

of figure) and an intrinsic, Fréchet mean (bottom row) using the algorithm presented

in this chapter (Algorithm 4.1). It is clear that the pixel-wise mean image does not

maintain the bullseye geometric configuration. The large variation in sizes of the input

bullseyes leads to a number of extra, blurry bands. The Fréchet mean images, on the

other hand, do maintain the bullseye geometry. The red curves ovelayed on each of

these images represent the geometric mean of the known radii from the input images for

each corresponding cohort. The close agreement of these curves with the mean images

suggests that an intuitive, geometric notion of mean is captured by this algorithm.
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Figure 4.3: Synthetic data experiment: Fréchet means of bullseye images. (a)-
(c) Image samples of size 4, 16, and 32. Each panel shows a tiled sample of individual
256 × 256 bullseye images (scaled down for display). Outer band radii vary randomly
between images; inner band radii vary randomly within each image. (d)-(f) Pixel-wise
means for each sample. These images do not capture a geometric notion of a mean
bullseye—the three-band structure for the bullseyes is not maintained. (g)-(i) Fréchet
mean images computed from each sample. The banded structure is maintained; each
band is approximately aligned with the geometric mean radii for each sample (identified
by red overlays).
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4.4 Related work

For low dimensional transformation groups, the Procrustes method (Goodall, 1991) has

been used to align shapes. In the small deformation, high-dimensional setting, Miller

et al. (1997) show how to construct average images by averaging transformation maps.

Fletcher et al. (2004) describe a method of applying principal component analysis

(PCA) in curved Riemannian metric spaces in order to study anatomical shape variabil-

ity. This work is applied to shape analysis for populations of m-reps (Fletcher et al.,

2004; Pizer et al., 2003), which form a symmetric space, and diffusion tensors (Fletcher

and Joshi, 2007), which form the group of symmetric positive definite matrices. Much

of the developments in this chapter are built upon and continue this work.

Ramsay and Li (1998) define a method for the alignment of curves through re-

parameterization of the curves (i.e., deformation of the “x” axis). They minimize the sum

of squared distances from the deforming curves to a to-be-determined mean curve while

penalizing deformations with high curvature. This method is the same as the algorithm

presented in this chapter except that they use a different class of transformations, their

deformation metrics differ, and their work is limited to a single dimension.

An information-theoretic approach to the large-deformation groupwise image regis-

tration problem is used in Twining et al. (2005); Cootes et al. (2004) and Davies et al.

(2002). In this work, b-splines are used to align images into a common coordinate sys-

tem. The b-spline parameters are selected in order to minimize the total description

length for the collection of images. This description length is determined by the b-spline

parameters themselves as well as the residual image differences after the mean image is

deformed to each individual image.

Recently Rohlfing and Maurer (2007) presented a method for shape-based averaging

of images that uses distance maps. An important difference between this method and

groupwise registration methods is that no transformation is used to align images. Each

voxel of the average image is the label (or intensity value) that is nearest to the voxels

66



spatial position (according to the distance maps) in all of the input images.

Craene et al. (2004) present a method for the joint alignment of label-maps. Their

algorithm iteratively (1) updates the atlas labels based on the estimates of the current

transformations and (2) updates the transformations in order to align each individual

segmentation with the current mean segmentation. They use rigid, scaling, and non-rigid

transformations based on finite element modeling.

Rueckert et al. (2003) present a method they call statistical deformation models that

applies linear statistical methods to compute average anatomical images and modes of

anatomical variation. They perform PCA on the b-spline control points of free-form

deformations on images. For a collection of images, this method is used to compute a

mean image and describe eigenmodes of variation by perturbing the control points using

the eigenvectors of the PCA covariance matrix.

Charpiat et al. (2005) describe a method for computing a mean image based on

continuously deforming each image toward an evolving mean image. They argue that

the use of the mean image leads the image to be trapped in local optima. Instead they

factor it out of the optimization: each image is incrementally deformed so that it best

matches all of the other deformed images. At the end of this iterative process, the mean

image can be recovered.

Learned-Miller (2006) describes a “congealing” method for continuous joint align-

ment of 2D images using affine transformations. Input images are incrementally aligned

in a common coordinate space so that the integrated pixel-wise entropy of the aligned

images is minimized. This idea was applied for the groupwise registration of 3D medical

images in Zöllei et al. (2005).

A number of authors have proposed methods that specifically use diffeomorphic

transformations; these methods are summarized below.

Lorenzen et al. (2006) extended the methodology presented in this chapter to gener-

ate an multi-modal image set registration and averaging framework. This allows com-
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plementary information from different modalities (e.g., T1 and T2 MR images) to in-

form the averaging process. Spatial tissue probability maps are generated from each

multi-modal image set. These probability maps are aligned using the Kullback-Leibler

divergence as an image dissimilarity metric.

Avants and Gee (2004) use a tangent-space (velocity field) averaging approach in

the large-deformation diffeomorphic setting. In their work an initial reference image

flows toward the (unknown) mean in an iterative algorithm. The flow is induced by the

velocity fields that are the average of the velocity fields used to deform the current mean

to each image observation.

Vaillant et al. (2004) demonstrate principal component analysis (PCA) for sets of

landmarks in the large-deformation diffeomorphic setting. This work is based on con-

servation of momentum in the tangent space.

Glaunès et al. (2004) describe a method for computing the average of unlabeled

point sets in the large-deformation diffeomorphic setting. Their framework builds upon

the work in this chapter (published in (Joshi et al., 2004)): the difference is that instead

of an image match criterion, a metric on currents is used to measure the quality of the

point-set match.

4.5 Conclusion

This chapter presents a new concept for unbiased construction of average anatomical

images that is based on the Fréchet mean in metric spaces. This approach results in

an algorithm where population images simultaneously deformation into a new average

image that evolves iteratively. This technique avoids the systematic bias introduced

by selecting a template but also the combinatorial problem of deformation of a large

number of datasets into each new subject. Additionally, the new technique produces a

population average image.
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The method was demonstrated by computing Fréchet mean images from several

collections of synthetic 2D images. In the next chapter, this method is extended in

order to define a regression methodology for images.
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Chapter 5

Manifold kernel regression

5.1 Introduction

An important area of medical image analysis is the development of methods for auto-

mated and computer-assisted assessment of anatomical change over time. For example,

the analysis of structural brain change over time is important for understanding healthy

aging. These methods also provide markers for understanding disease progression.

A number of longitudinal growth models have been developed to provide this type of

analysis to time-series imagery of a single subject (e.g., Beg (2003); Clatz et al. (2005);

Miller (2004); Thompson et al. (2000); Xu et al. (2008)). While these methods provide

important results, their use is limited by their reliance on longitudinal data, which can

be impractical to obtain for many medical studies. Also, while these methods allow for

the study of an individual’s anatomy over time, they do not apply when the average

growth for a population is of interest.

Random design data sets, which contain anatomical data from many different indi-

viduals, provide a rich environment for addressing these problems. However, in order

to detect time-related trends in such data, two distinct aspects of anatomical variation

must be separated: individual variation and time effect. For measurements that nat-

urally form Euclidean vector spaces, this separation can be achieved by regressing a



representative value over time from the data.

For example, in Figure 5.1 kernel regression is applied to measurements reported in

a study by Mortamet et al. (2005) on the effect of aging on gray matter and ventri-

cle volume in the brain. The regression curves demonstrate the average volume, as a

function of subject age, of these structures. These trends—on average there is a loss of

gray matter and expansion of the ventricles—have been widely reported in the medical

literature on aging (Guttmann et al., 1998; Matsumae et al., 1996; Mortamet et al.,

2005). While volume-based regression analysis is important, it does not provide any

information about the detailed shape changes that occur in the brain, on average, as a

function of age. This has motivated us to study regression of shapes.

Recent work has suggested that representing the geometry of shapes in flat Euclidean

vector spaces limits our ability to represent natural variability in populations (Fletcher

et al., 2004; Grenander and Miller, 1998; Miller, 2004). For example, Figure 5.2 demon-

strates the amazing nonlinear variability in brain shape among a population of healthy

adults. The analysis of transformation groups that describe shape change are essen-

tial to understanding this shape variability. These groups vary in dimensionality from

simple rigid rotations to the infinite-dimensional group of diffeomorphisms (Miller and

Younes, 2001). These groups are not generally vector spaces and are instead naturally

represented as manifolds.

Hutton et al. (2003) apply kernel regression to estimate average growth trajectories

within a linear PCA shape space. They apply this method to generate average face

shapes as a function of age from a database of triangulated surface models of faces.

A number of authors have contributed to the field of statistical analysis on manifolds

(see Pennec (2006) for a detailed history). Early work on manifold statistics includes

directional statistics (Bingham, 1974; Jupp and Mardia, 1989) and statistics of point-

set shape spaces (Kendall, 1984; Le and Kendall, 1993). The large sample properties

of sample means on manifolds are developed in Bhattacharya and Patrangenaru (2002,
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Figure 5.1: Illustration of univariate kernel regression: the effect of aging on gray
matter (a) and ventricle volume (b) in the brain. Circles represent volume measurements
relative to total brain volume. Kernel regression is used to estimate the relationship
between subject age and structure volume (filled lines).

2003). Jupp and Kent (1987) describe a method of regression of spherical data that

‘unwraps’ the data onto a tangent plane, where standard curve fitting methods can

be applied. Chung et al. (2005) and Spira et al. (2007) apply smoothing to scalar

data that is defined on a manifold. Nilsson et al. (2007) apply regression to scalar

functions on manifolds. In Fletcher et al. (2004); Joshi et al. (2004); Pennec (2006),

statistical concepts such as averaging and principal components analysis were extended

to manifolds representing anatomical shape variability. Many of the ideas are based on

the method of averaging in metric spaces proposed by Fréchet (1948).

In this chapter the notion of Fréchet expectation is used to generalize regression to

manifold-valued data. In particular, this methodology is applied to study geometric

change, as a function of a predictor variable t such as time, in a random design database

of images. This method generalizes Nadaraya-Watson kernel regression, using a weighted

Fréchet mean for images, in order to compute representative images of this population for

any value of t. To determine the local geometric change in the population with respect

to t, we extend a dynamic growth model (Miller, 2004) to this population-representative

image. The methodology is demonstrated on a database of synthetic images.
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Figure 5.2: Brain image database. To demonstrate the extent of natural brain shape
variability, a mid-axial image slice is presented for a sample of healthy subjects. The
images are arranged in order of increasing subject age from 30 (top left) to 60 (bottom
right). Because of the complexity of the shapes and the high level of natural shape
variability, it is extremely difficult to visually discern any patterns within these data.

This represents joint work with Drs. Sarang Joshi, Tom Fletcher, and Elizabeth

Bullitt. Versions of this chapter were published in (Davis et al., 2007) and (Davis et al.,

2008).

5.2 Methods

5.2.1 Review of univariate kernel regression

Univariate kernel regression is a non-parametric method used to estimate the relation-

ship, on average, between an independent random variable T and a dependent random

variable Y (Hardle, 1990; Wand and Jones, 1995). The estimation is based on a set of

observations {ti, yi}Ni=1 drawn from the joint distribution of T and Y . This relationship

between T and Y can be modeled as yi = m(ti) + εi, where εi describes the random

error of the model for the ith observation and m is the unknown function that is to be

estimated.
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In this setting, m(t) is defined by the conditional expectation

m(t) ≡ E(Y |T = t) =

∫
y
f(t, y)

fT (t)
dy (5.1)

where fT (t) is the marginal density of T and f(t, y) is the joint density function of T

and Y . For random design data, both f(t, y) and fT (t) are unknown and so m has no

closed-form solution. A number of estimators for m have been proposed in the kernel

regression literature.

One such estimator—the Nadaraya-Watson kernel regression estimator (Nadaraya,

1964; Watson, 1964)—can be derived from Equation (5.1) by replacing the unknown

densities with their kernel density estimates

f̂h
T (t) ≡ 1

N

N∑
i=1

Kh(t− ti) and f̂h,g(t, y) ≡ 1

N

N∑
i=1

Kh(t− ti)Kg(y − yi). (5.2)

In these equations, K is a function that satisfies
∫

RK(t) dt = 1. Kh(t) ≡ 1
h
K( t

h
) and

Kg(t) ≡ 1
g
K( t

g
) are kernel functions with bandwidths h and g respectively.

Plugging these density estimates into Equation (5.1) gives

m̂h,g(t) =

∫
y

1
N

∑N
i=1Kh(t− ti)Kg(y − yi)
1
N

∑N
i=1Kh(t− ti)

dy. (5.3)

Finally, assuming that K is symmetric about the origin, integration of the numerator

leads to

m̂h(t) =

∑N
i=1Kh(t− ti)yi∑N
i=1Kh(t− ti)

. (5.4)

Intuitively, the Nadaraya-Watson estimator returns the weighted average of the ob-

servations yi, with the weighting determined by the kernel. Note that f̂h,g(t, y) is factored

out of the estimator—the weights only depend on the values ti.
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In Figure 5.1 we illustrate univariate kernel regression by applying it to demonstrate

the effect of aging on ventricle volume and gray matter volume in the brain. This

illustration is based on data collected by Mortamet et al. (2005). Each point repre-

sents a volume measurement, relative to total brain volume, for a particular subject.

These measurements were derived from 3D MR images of 50 healthy adults ranging

in age from 20 to 72 using an expectation-maximization based automatic segmentation

method (Leemput et al., 1999). We used kernel regression to estimate the relationship,

on average, between volume and subject age (filled lines). A Nadaraya-Watson kernel

estimator with a Gaussian kernel of width σ = 6 years was used.

5.2.2 Kernel regression on Riemannian manifolds

In this section, the regression problem is defined in the more general setting of manifold-

valued observations. Let {ti, pi}Ni=1 be a collection of observations where the ti are drawn

from a univariate random variable T , but where pi are points on a Riemannian manifold

M. The classical kernel regression methods presented in Section 5.2.1 are not applicable

in this setting because they rely on the vector space structure of the observations. In

particular, the addition operator in Equation (5.4) is not well defined.

The goal is to determine the relationship, on average, between the independent

variable T and the distribution of the points {pi} on the manifold. This relationship

can be modeled by

pi = Expm(ti)
(εi) (5.5)

where m : R → M defines a curve on M. The error term εi ∈ Tm(ti)M is a tangent

vector that is interpreted as the displacement along the manifold of each observation pi

from the curve m(t). The exponential mapping, Exp, returns the point on M at time

one along the geodesic flow beginning at m(ti) with initial velocity εi.
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Following the univariate case, the regression function m(t) can be defined in terms

of expectation. However, in this case the idea of expectation of real random variables

is generalized to manifold-valued random variables via Fréchet expectation, which is

described in the previous Chapter 4. Recall (see Equation (4.7)) that the empirical

estimate of the Fréchet mean, given a collection of observations {pi, i = 1 · · ·N} on a

manifoldM, is defined by

µ = argmin
q∈M

1

N

N∑
i

d(q, pi)
2. (5.6)

Motivated by the definition of the Nadaraya-Watson estimator as a weighted av-

eraging, we define a manifold kernel regression estimator using the weighted Fréchet

empirical mean estimator as

m̂h(t) = argmin
q∈M

(∑N
i=1Kh(t− ti)d(q, pi)

2∑N
i=1Kh(t− ti)

)
. (5.7)

This estimator is illustrated in Figure 5.3. Notice that when the manifold under study

is a Euclidean vector space, equipped with the standard Euclidean norm, the above

minimization results in the Nadaraya-Watson estimator.

5.2.3 Bandwidth selection

Within the kernel regression literature, it is well known that kernel width plays a crucial

role in determining regression results (Wand and Jones, 1995). It is important to select

a bandwidth that captures relevant population-wide changes without either oversmooth-

ing and missing relevant changes or undersmoothing and biasing the results based on

individual noisy data points. The ‘Goldilocks’ method of tuning the bandwidth until

the results are most pleasing is a common subjective method for bandwidth selection.

However, non-subjective methods may be required, for example, when kernel regression

is part of a larger statistical study. A number of automatic kernel bandwidth selection
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Figure 5.3: Manifold kernel regression schematic. (a) For any value of the predictor
variable t, the manifold-valued observations pi are summarized by the weighted Fréchet
mean point m̂h(t). (b) As in the univariate case, the weights are determined by the
predictor values ti and the kernel Kh.

techniques have been proposed for this purpose (for example Wand and Jones, 1995;

Jones et al., 1996; Loader, 1999).

One classic method for automatic bandwidth selection is based on least squares

cross-validation. This method is easily extended to the manifold regression setting in

the following way. For observations {ti, pi}Ni=1, with ti ∈ R and pi ∈M, the least squares

cross-validation estimate for the optimal bandwidth h is defined as

ĥLSCV ≡ argmin
h∈R+

1

N

N∑
i=1

d(m̂i−
h (ti), pi)

2 (5.8)

where

m̂i−
h (t) ≡ argmin

q∈M

(∑N
j=1,j 6=iKh(t− tj)d(q, pj)

2∑N
j=1,j 6=iKh(t− tj)

)
(5.9)

is the manifold kernel regression estimator with the i-th observation left out.

It is important to note that Equation (5.8) may achieve multiple local minima; this
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is true even in Euclidean space (Hall and Marron, 1991).

5.2.4 Kernel regression for populations of anatomical images

In this section the manifold-regression methodology is applied to study random design

anatomical image data. The database contains observations of the form {ti, Ii}Ni=1 where

ti is the age of subject i and Ii is a three-dimensional image that is identified with the

anatomical configuration of subject i. We seek the unknown function m that associates

a representative anatomical configuration, and its associated image Î, with each age.

Let Ω ⊂ R3 be the underlying coordinate system of the observed images Ii. Each

image I ∈ I can be formally defined as an L2 function from Ω to the reals. As in previous

chapters, anatomical differences are represented by diffeomorphic transformations of the

underlying image coordinates. Let H be the group of diffeomorphisms that are isotopic

to the identity. Each element φ : Ω → Ω in H deforms an image according to the

following rule

Iφ(x) = I(φ−1(x)). (5.10)

Using the metric on H defined in Chapter 2, a distance between images is defined

by1

dI (I1, I2)
2 ≡ min

v:φ̇s=vs(φs)

[∫ 1

0

‖vs‖2V ds+
1

σ2
‖I1(φ−1)− I2‖2L2

]
(5.11)

where the second term accounts for the noise model of the image. While this construction

is motivated by the metric on H, it does not strictly define a Riemannian metric on the

space of anatomical images (because of the second term). In the future we plan to define

distance in terms of the elegant construction described in Trouvé and Younes (2005).

1See Chapter 4 for more details

78



Having defined a metric on the space of images that accommodates anatomical vari-

ability, we can apply that metric to regress a representative anatomical configuration,

with associated image, from our observations {ti, Ii}

Îh(t) = argmin
I∈I

(∑N
i=1Kh(t− ti)dI(I, Ii)2∑N

i=1Kh(t− ti)

)
. (5.12)

Equation (5.12) expresses the following intuitive idea: For any age t, the population

can be represented by the anatomical configuration that is centrally located, according

to dI , among the observations that occur near in time to t. As in the univariate case,

the weights are determined by the kernel K.

5.2.5 Diffeomorphic population growth model

Given a population-representative anatomical image, as a function of age, we consider

the local shape changes evident—for the population—as a function of age. In this section

the manifold kernel regression estimator is used to extend a single-subject longitudinal

growth model in order to study population-average geometric change. In particular, an

algorithm is presented for estimating the age-indexed diffeomorphism that quantifies the

fine scale anatomical shape change of the population representative Î.

Single-subject growth model

The dynamic growth model described in Miller (2004) associates a single subject with

a collection of image observations Jt ∈ I, which are acquired over a period of time

t ∈ [0, 1]. The goal is to determine the diffeomorphic flow gt that deforms an exemplar

image Jα through time in such a way that it matches these image observations. In

practice J0 is used as the exemplar image. This methodology has been applied, for

example, to measure growth or atrophy of structures within the brain.

The formalization of the growth problem is similar to the definition of the image
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Figure 5.4: Population growth model schematic. (a) The diffeomorphism gt

quantifies the geometric change of Î throughout the growth period. (b) The velocity
field that is identified with the tangent vector vt = ġt is overlaid on the underlying
anatomical image Î(t). The arrows indicate instantaneous shape change at age t. (c)
This colormap identifies regions of local expansion and contraction of the underlying
anatomy at time t. Red indicates expansion; blue indicates contraction. See text for
details.

metric dI (see Equation (5.11)) in that it is defined as a minimization problem that

seeks to find a solution gt that requires the least amount of deformation according to

the metric dH on the space of diffeomorphisms:

argmin
v:ġt=vt(gt)

[∫ 1

0

‖vt ‖2V dt+
1

σ2

∫ 1

0

‖Jα(g−1
t )− Jt‖2L2

dt

]
. (5.13)

A primary difference between this equation and Equation (5.11) is that in the case of the

growth model the second term is integrated over time. This enforces the requirement

that the deforming exemplar image Jα(g−1
t ) match the observed imagery Jt throughout

the growth period.

It has been shown using the calculus of variations (Miller et al., 2002) that the

solution to Equation (5.13) satisfies

L†Lvt = − 1

2σ2
∇
(
Jα ◦ g−1

t

) ∫ 1

t

(
Ju(gu ◦ g−1

t )− Jα(g−1
t )
)
|D
(
gu ◦ g−1

t

)
| du (5.14)
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where ∇(Jα ◦g−1
t ) is the gradient of the deformed exemplar image and D(gu ◦g−1

t ) is the

Jacobian of the diffeomorphic transformation that maps the anatomical configuration

at time t to the configuration at time u. The discrete version of this equation is used

to construct an iterative solution for vt. Initially, gt is set to the identity map for all t.

At each iteration vt, t ∈ [0, 1] is updated according to the observed images Jt and the

current estimate of gt, t ∈ [0, 1].

Population growth model

In order to extend this growth model to apply to a population of subjects, the subject-

specific collection of observed imagery Jt is replaced with the expected observed imagery,

as a function of time, for the population (cf. Figure 5.4). This is achieved by combin-

ing the manifold kernel regression estimator (Equation (5.12)) with the growth model

(Equation (5.13)):

argmin
v:ġt=vt(gt)

∫ 1

0

‖vt ‖2V dt+

1

σ2

∫ 1

0

‖Iα(g−1
t )− argmin

I∈I

(∑N
i=1Kh(t− ti)dI(I, Ii)2∑N

i=1Kh(t− ti)

)
‖2L2

dt. (5.15)

In this way the population-representative images serve as a collection of population

average time-sequence imagery.

In order to solve Equation (5.15) the solution for the interior minimization problem is

first solved for a discrete collection of time points. This is legitimate since this problem

does not depend on the growth deformation gt. Once these population-representative

images are computed, the time-indexed deformation gt is computed using the iterative

method based on Equation (5.14). The population exemplar image is taken to be Iα ≡

Î(0). In order to speed convergence, the algorithm is applied within a three-level multi-

resolution framework where initial solutions at coarser scale levels are used to initialize

the optimization procedure at finer scale levels.
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Once gt is computed, it can be analyzed to determine local, age-indexed geometric

change for the population. For example, instantaneous local growth and atrophy can be

measured via the log-determinant of the Jacobian of the velocity field defined by

log
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. (5.16)

Values of the log-Jacobian greater than zero indicate local expansion; values less than

zero indicate local contraction.

5.3 Synthetic data experiment

This section demonstrates the manifold kernel regression methodology with a proof of

concept experiment based on synthetic data. The manifold regression method is applied

to a database of synthetic 2D images that were generated from a known, underlying

geometric process. The goal is to recover, from the imagery alone, the underlying

geometric change.

The database consists of two cohorts that each contain 100 256 × 256 2D bullseye

images. The cohorts, B1 and B2, differ by the amount of random geometric variation

present. Each image is associated with a particular value of the synthetic predictor

variable t ∈ [0, 1]; the values of t for the database were drawn from a uniform random

distribution on [0, 1]. For the ith image there are three disks that independently change

in radii according to

r1(ti) = f1(ti) + εi + εi,1

r2(ti) = f2(ti) + εi + εi,2

r3(ti) = f3(ti) + εi + εi,3

(5.17)
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Figure 5.5: Synthetic bullseye data set construction. The bullseye database
contains 200 total 2D images; each image is associated with a value of t drawn from a
uniform distribution on [0, 1]. (a) Images are generated from three independent, noisy
radius values: r1, r2, and r3. (b) Cohort B1: each observed radius value (markers) is a
function of t and is determined by adding random noise to the ground truth functions
f1, f2, and f3, which are depicted by the solid curves. (c) The second cohort, B2, was
generated using a higher level of random geometric variation.

subject to

r1(t) < r2(t) < r3(t) for all t ∈ [0, 1]. (5.18)

The functions f1, f2, and f3 are known; they define the noise-free, ground-truth geo-

metric change as a function of t. Noise is added to these radius functions via the zero

mean Gaussian random variables εi, εi,1, εi,2 and εi,3. For cohort B1, εi ∼ N(µ = 0, σ2 =

4 pixels) and εi,1, εi,2, εi,3 ∼ N(µ = 0, σ2 = 1 pixels). For cohort B2, εi ∼ N(µ = 0, σ2 =

16 pixels) and εi,1, εi,2, εi,3 ∼ N(µ = 0, σ2 = 4 pixels). Once the image geometries are

fixed independent identically-distributed Gaussian noise is added to the image intensi-

ties. Figure 5.5 contains a schematic of the image generation process. Figure 5.6 displays

a sample of the images from this database.

For each cohort, the manifold kernel regression algorithm was applied in order to

regress a population-representative bullseye image for eight equally spaced values of
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Figure 5.6: Random design database of 2D bullseye images. These images are
taken from cohort B2. Associated time measurements increase from left to right and
from top to bottom. Inner, middle, and outer disk radii are generated by adding noise
to the underlying curves depicted in Figure 5.5 (b) and (c).

t. A kernel bandwidth of σ = 0.045 was used. For this experiment, the solutions

to Equation (5.11) were computed using MATLAB codes based Algorithm 4.1 from

Chapter 4.

Figure 5.7 contains the results of this experiment. The regressed images are shown

in the background. The ground truth radii values, f1, f2, and f3, are depicted as colored

overlays. The close agreement with the regressed images and the overlays indicates that

the underlying geometric process was recovered from the image database—that is, the

underlying time effect was separated from the random geometric variation. Comparing

the results for the two cohorts, the regression of the geometries is rather robust with

regard to the level of geometrical noise. Only a slight degradation in accuracy of the

estimate is seen with a four-fold increase in the variance of the radii.
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Figure 5.7: Regression results for synthetic bullseye database. These images
show the regression results for the bullseye database at eight equally spaced time points
for cohorts B1 and B2. Colored overlays denote the ground-truth radii as determined
by the underlying curves in Figure 5.6 (b) and (c).
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5.4 Conclusion

This chapter introduces a method for manifold kernel regression that enables novel

analysis of population shape and growth from random design data when the underlying

shape model is non-Euclidean. While this method is quite general (for example, it is

applied to rotational pose in Davis et al. (2007)), this chapter focuses on shape changes

from populations of images. A population-representative image, indexed by an indepen-

dent variable t, is regressed from a database of images. Finally, a longitudinal growth

model is used to study the detailed local shape change that occurs, on average, as a

function of t.

The definition of the manifold kernel regression estimator raises a number of impor-

tant theoretical questions. Many of these questions have direct parallels in the Euclidean

kernel regression setting: How much data do we need in order to achieve a stable regres-

sion estimate? How can we validate our results? How can we deal with edge effects?

Can we apply robust regression in order to minimize the effects of outliers? How do

we choose the best bandwidth? Should we use kernel regression or instead apply a

parametric model? After applying regression, can we reliably solve the inverse problem

(determine the predictor value from a new image)? Several questions are specific to

the manifold regression setting: What are the properties of the Fréchet mean for the

manifold under study? What are the convergence properties?

These questions serve as road map for future work on this project. Another important

direction is the application of the manifold kernel regression methodology to other shape

descriptions that are naturally elements of a shape manifold. Examples include m-

reps (Pizer et al., 2003; Fletcher et al., 2004), which form a symmetric space; point-sets,

curves, and surfaces within the diffeomorphic matching framework described in Glaunès

et al. (2004); Glaunès and Joshi (2006); and diffusion tensor data, which is described

by the space of 3× 3 symmetric positive-definite matrices (Pennec et al., 2006; Fletcher

and Joshi, 2007).
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In the next chapter, manifold kernel regression is applied to study effect of aging on

the brain by applying this methodology to a random design database of 3-dimensional

MR brain images from healthy subjects.
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Chapter 6

The aging brain: Measuring change using

regression

6.1 Introduction

In this chapter the manifold kernel regression methodology is applied to study the aging

brain. The observations are a collection of 3D magnetic resonance (MR) brain images

of healthy subjects, with associated age measurements. In Section 6.2 this database is

described in detail. In Section 6.3 results are presented for the regression of a represen-

tative image, as a function of age, from this database. Section 6.4 contains results for

the measurement of local, age-indexed expansion and contraction in the brain. Finally,

Section 6.5 describes how the kernel bandwidth was determined for these results.

6.2 Brain image database

The image database that was used in these experiments was collected by Dr. Elizabeth

Bullitt at the University of North Carolina, Chapel Hill (Lorenzen et al., 2006). The

database contains MRA, T1-FLASH, T1-MPRAGE, and T2-weighted images for over

97 healthy adults ranging in age from 20 to 79. For this study, only the T1-FLASH

images were used; these images were acquired at a spatial resolution of 1 mm × 1 mm ×



1 mm using a 3 Tesla head-only scanner. The tissue exterior to the brain was removed

using a mask generated by a brain segmentation tool described in Prastawa et al. (2004).

This tool was also used for bias correction. In the final preprocessing step, all of the

images were spatially aligned to an atlas using rigid registration.

Manifold kernel regression was applied for male-only, female-only, and combined

cohorts. The final size of the male cohort is 38 subjects ranging in age from 22 to 72;

the final size of the female cohort is 46 subjects ranging in age from 20 to 66. The

final size of the combined cohort is 84 subjects ranging in age from 20 to 72. Midaxial

slices of all subjects are shown in Figure 6.1. Figure 6.2 illustrates the spacing in time

of the image data and the shape of several representative kernels used to compute the

representative images.

6.3 Manifold kernel regression for MR brain images

The manifold kernel regression estimator was applied to compute representative anatom-

ical images for each cohort. Images were computed for ages 30 to 60 at increments of one

year using a Gaussian kernel with σ = 6 years which was truncated at 3 standard de-

viations. This bandwidth was subjectively determined.1 High-resolution 2D slices from

these representative images are shown in figures 6.3 through 6.5. Noticeable expansion

of the lateral ventricles is clearly captured in this image data.

Figures 6.6 through 6.14 contain slices from these representative images for each

cohort. These are not images from any particular patient—they are computed using the

regression method proposed in Chapter 5.

1See Section 6.5 for details.
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Figure 6.1: Healthy subject MRI brain image database. To demonstrate the
extent of natural brain shape variability within a population of healthy subjects, a mid-
axial slice is presented for each image used in this study. The images are arranged, by
row, in order of increasing patient age from 20 (top left) to 72 (bottom right). Because
of the complexity of the shapes and the high level of natural shape variability, it is
extremely difficult to visually discern any patterns within these data.
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Figure 6.2: Subject age distribution and kernel weights. Illustration of kernel
weights for regression of anatomical imagery. The crosses indicate time points where
image data are available (the random vertical placement of these markers is used only
for the purpose of visual differentiation). Atlases were created at one year time intervals
starting at age 30 and continuing to age 60. The dashed lines graph the kernel weights
that were used to compute each atlas (see Equation (5.7)).
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Figure 6.3: Regressed anatomical images: female cohort. Representative anatom-
ical images for the female cohort at ages 30 (left) and 60 (right). These images were
generated from the random design 3D MR database using the shape regression method
described in Chapter 5.
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Figure 6.4: Regressed anatomical images: male cohort. Representative anatom-
ical images for the male cohort at ages 30 (left) and 60 (right). These images were
generated from the random design 3D MR database using the shape regression method
described in Chapter 5.
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Figure 6.5: Regressed anatomical images: combined cohort. Representative
anatomical images for the combined cohort at ages 30 (left) and 60 (right). These images
were generated from the random design 3D MR database using the shape regression
method described in Chapter 5.
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Figure 6.6: Average, aging brain: female cohort, axial view.
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Figure 6.7: Average, aging brain: female cohort, sagittal view.

Figure 6.8: Average, aging brain: female cohort, coronal view.

96



Figure 6.9: Average, aging brain: male cohort, axial view.
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Figure 6.10: Average, aging brain: male cohort, sagittal view.

Figure 6.11: Average, aging brain: male cohort, coronal view.
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Figure 6.12: Average, aging brain: combined cohort, axial view.
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Figure 6.13: Average, aging brain: combined cohort, sagittal view.

Figure 6.14: Average, aging brain: combined cohort, coronal view.
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6.4 Local, instantaneous volumetric change

The diffeomorphic growth estimation algorithm described in Chapter 5 was applied

to determine the anatomical shape change over time for each cohort. Figures 6.15

through 6.17 illustrate the instantaneous change in the deformation every other year from

age 30 to age 60 for each cohort. More precisely, the figures show the log-determinant

of the Jacobian of the time-derivative of the deformation (see Equation (5.16) from

Chapter 5). That is, in these images, bright pixels indicate expansion of the underlying

tissue, at the given age, while dark pixels indicate contraction. According to these

determinant maps, expansion of the ventricles is evident for each age group. However,

the expansion is accelerated for ages 45 to 53. Note that this finding agrees well with

volume-based regression analysis in Chapter 5 (Figure 5.1).

6.5 Investigation of kernel widths

As described in the previous chapter, one of the most important considerations in kernel

regression is the choice of a kernel width that is appropriate for the data. In this case, it

is important to select a bandwidth that captures relevant population-wide changes in the

brain without biasing the results towards individual anatomy. The simplest exploratory

strategy of choosing the bandwidth that is visually most pleasing was used for this study

(see Figure 6.18). There are a number of automatic bandwidth selection techniques that

could be applied; these techniques will be an important direction for future research.

The manifold kernel regression scheme was applied to each of the female, male, and

combined cohorts using a wide range of kernel bandwidths: σ = 1, 2, 4, 6, 8, 16, and 32

years. Results for the female cohort are presented in Figure 6.19. For smaller band-

widths, rapid geometrical changes—with respect to age—are evident. These changes

are the result of a bias to individual anatomy and do not represent population-wide

change. For larger bandwidths, no changes are evident; especially for σ = 32 the kernel
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Figure 6.15: Aging brain shape change: female cohort. Local brain shape change
as a function of age for the female cohort. Bright pixels indicate instantaneous volumetric
expansion; dark pixels indicate contraction.
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Figure 6.16: Aging brain shape change: male cohort. Local brain shape change as
a function of age for the male cohort. Bright pixels indicate instantaneous volumetric
expansion; dark pixels indicate contraction.
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Figure 6.17: Aging brain shape change: combined cohort. Local brain shape
change as a function of age for the combined cohort. Bright pixels indicate instantaneous
volumetric expansion; dark pixels indicate contraction.
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Figure 6.18: Bandwidth selection example. This figure demonstrates the bandwidth
selection problem for kernel regression. A sinusoidal function, with noise added, is
used to produce the underlying observations. Kernel regression, using three different
bandwidths, is then used to recover the underlying function. The blue curve uses the
narrowest kernel and seems to follow the noise in the data. The red curve uses the
broadest kernel and clearly over-smooths the data. Visually, the green curve appears to
follow the data while smoothing out small scale variation that is due to noise. In this
sense, it is the ‘most pleasing’ bandwidth.
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weights are nearly the same regardless of age. Qualitatively, it was determined that the

bandwidth of six years provides the best balance between these extremes.

6.6 Computational details

For this study solutions for Equation (5.12) were approximated using an iterative greedy

algorithm that is similar to Algorithm 4.2 from Chapter 4. Results were computed using

a multi-threaded C++ implementation on an eight-processor (16-core) 2.4GHz system

with approximately 64 gigabytes of RAM. Processing time averaged 116 minutes per

256× 256× 256 regressed image volume.2

Figure 6.20 contains experimental runtime measurements for several problem sizes.

All results are computed with 256× 256× 256 floating-point (4 bytes per voxel) images.

The threaded implementation uses a fixed number (τ) of threads to solve Equa-

tion (4.19)—each thread is assigned to process a particular subset of input images.

These threads are also utilized to compute the mean image at each iteration. In this

case the mean image is partitioned into τ distinct geometrical regions and each thread

is assigned to compute the mean values for a single region. Figure 6.21 shows a graph

of the iteration speed as a function of processors for the input data size and system

described above.

When computing each representative image Î(x), a multi-resolution approach is ap-

plied which generates images at progressively higher resolutions, where each level is

initialized by the results at the next coarsest scale. This strategy has the dual ben-

efits of (a) addressing the large scale shape changes first and (b) speeding algorithm

convergence.

The dominating computation at each iteration is a Fast Fourier Transform. The order

of the algorithm is MNn log n where M is the number of iterations, N is the number

2Individual times measured 5 to 80 minutes and varied linearly according to the sampling (in age)
density.
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Figure 6.19: Varying kernel width. This figure demonstrates the result of modifying
the kernel width within the image regression framework. Each row shows the regressed
image as a function of age for a particular kernel width: σ = 1, 2, 4, 6, 8, 16, 32 years.
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Figure 6.20: Fréchet mean image experimental timing and memory results. (a)
Iteration time as a function of cohort size. (b) Memory usage as a function of cohort
size. (c) Speedup as a function of processor count.
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Figure 6.21: Fréchet mean image experimental threading results. Relative itera-
tion speed as a function of processor count. The two curves denote two different solution
strategies. For the green curve the mean image is updated once per iteration: after all
the images have been deformed. For the blue curve, the mean image is update a every
sub-iteration: every time an individual image is deformed. The second update strategy
is much slower since the threads must wait while the mean is regenerated.
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of images, and n is the number of voxels along the largest dimension of the images.

Therefore, the complexity grows linearly with the number of observations, making this

algorithm suitable for application to large data sets.

6.7 Conclusion

In this chapter the manifold kernel regression methodology was demonstrated for the

study of the aging brain. It should be emphasized that, while these results are promis-

ing, more validation of this methodology must take place before these results should

inform clinical decisions. In the future, I plan to apply this methodology on a structure-

by-structure basis for substructures in the brain including the ventricles, caudate, hip-

pocampus, and thalamus. Aside from generating regressed images of these structures,

it will be informative to compare the results from the full image regression and the

structure-by-structure regression.
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Chapter 7

Discussion

7.1 Summary of contributions and thesis

This section revisits the thesis statement and claims that are presented in Chapter 1.

Following each claim is a brief statement that summarizes how that claim is addressed

in this dissertation.

The contributions of this dissertation are as follows:

(1) I present a novel method, called manifold kernel regression, that enables regression

analysis of manifold-valued data.

Manifold kernel regression is presented in Chapter 5. The manifold kernel regression

estimator is defined as a generalization of univariate kernel regression; it enables the

study of systematic, population-wide trends from collections of manifold-valued obser-

vations. Manifold kernel regression is based on Fréchet expectation, which can be used

to define averages on manifolds. A method for kernel bandwidth selection—a critical

aspect of kernel regression—is presented in Section 5.2.3. Extensions and future direc-

tions for manifold kernel regression are presented at the end of Chapter 5 and later in

this chapter.

(2) I apply manifold kernel regression to the study of anatomical change from a ran-

dom design database of medical images. In particular, it is defined for images using the



framework of large-deformation diffeomorphic image mapping.

In this dissertation the general concept of manifold kernel regression is applied to

the study of anatomy via diffeomorphisms of medical images. The large-deformation

diffeomorphic image matching framework is reviewed in Chapter 2. Chapter 4 describes

how Fréchet mean anatomical configurations are computed using distances measured

on the diffeomorphic transformations. Chapter 5 defines a manifold kernel regression

estimator using this Fréchet mean. Algorithms for computing the Fréchet mean images

are presented in Chapter 4. The application of manifold kernel regression to 2D synthetic

bullseye images is demonstrated in Section 5.3. Extensions and future directions for

manifold kernel regression of images are presented at the end of Chapter 5 and later in

this chapter.

(3) I demonstrate manifold kernel regression by measuring average geometric change in

the aging brain from a random design dataset of 3D MR images. The effect of regression

kernel width on the regressed shape is explored.

In Chapter 6 manifold kernel regression is used to study the aging brain. A manifold

kernel regression estimator is applied to measure changes in the brain as a function of

age from a random design database of 89 MR images taken from healthy adults ranging

in age from 22 to 79 years. This data was collected by Dr. Elizabeth Bullitt at the

University of North Carolina at Chapel Hill. A representative brain shape, as a function

of age, is regressed from this population. The regression method is also applied to the

male and female subpopulations separately.

Sections 5.2.5 and 6.4 develop a population growth model that is used to quantify

local, instantaneous shape change for the population using the regression model. The

growth model is applied to determine patterns of expansion and contraction for the

average aging brain.

A preliminary, subjective study of the effect of kernel bandwidth on the regression

of these images is presented in Section 6.5. In this study regressed images are produced
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using a broad range of kernel bandwidths.

(4) I present a novel method for computing a Fréchet mean image from a collection of

images.

Chapter 4 defines a Fréchet mean image using the large-deformation diffeomorphic

framework, which is reviewed in Chapter 2. The Fréchet mean image is the solution

to an optimization problem; it is the minimizer of the sum of squared distances to the

input images. Squared distance is defined by the combination of a squared metric on the

space of diffeomorphisms and a term that penalizes residual image mismatch. The mean

image is generated automatically from the input images using an iterative procedure of

continuous joint alignment: the input images iteratively deform toward the evolving

mean.

The mean image defines a natural, unbiased average anatomical configuration and

coordinate system from the collection of medical images. The mean is natural in the

sense that it is based on intrinsic distances in the space of the diffeomorphic transforms

that encode shape change. It is unbiased in the sense that (1) it does not depend on a

choice of a final or initial geometrical coordinate system, and (2) it does not depend on

the ordering of the input data. These properties are further described in Section 4.2.4.

Algorithms for computing Frécht mean images are presented in Section 4.2.3. Sec-

tion 4.3 demonstrates the Fréchet mean image methodology for collections of synthetic

2D images.

As described in Chapter 5, the Fréchet mean plays an central role in the definition

of the manifold kernel regression estimator.

(5) I describe a program for efficiently computing Fréchet mean images and applying

the manifold kernel regression analysis method to 2D and 3D images on shared-memory,

multi-processor machines. Performance measurements are included.

Algorithms for computing a Fréchet mean image are described in Section 4.2.3. Sec-
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tion 6.6 describes implementation details for a threaded, multiresolution, C++ imple-

mentation. This section includes a theoretical analysis of the algorithmic order and

empirical measurements of the runtime and memory requirements for a modern shared-

memory multi-processor computer.

(6) I present a novel method for extending diffeomorphic image mapping to accommo-

date certain topological changes. The method is applied to track the changing position of

the prostate relative to the pelvis in the context of transient bowel gas. The effectiveness

of this method is tested in a retrospective study involving 40 3D computed tomography

images from 3 patients undergoing adaptive radiation therapy.

A method for accommodating extraneous structures in diffeomorphic image regis-

tration is presented in Chapter 3. Section 3.1 describes how registration is used to

measure organ motion in adaptive radiation therapy of the prostate; this section also

describes how transient gas in the rectum is not adequately handled using diffeomorphic

image mapping. Section 3.2 provides a precise definition of topological equivalence for

images and extraneous structures. This section also describes an algorithm for applying

diffeomorphic image registration in the presence of extraneous structures by deflating

the extraneous structures before applying registration. Diffeomorphic correspondence

is determined for regions that do not contain extraneous structures by composing the

deflation and registration transformations.

The application of this method to compute of Fréchet mean images is briefly dis-

cussed later in this chapter.

Thesis: Manifold kernel regression is a natural generalization of kernel regression that

enables regression analysis for points on a manifold. It extends classical kernel regression

in order to estimate, from a collection of observations, the relationship—on average—

between an independent predictor variable, such as time, and a dependent variable rep-

resented by points on a manifold. In particular, this method is useful for determining
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population average anatomical shape change over time from a random design database

of medical images. Because it provides a quantitative link between a predictor variable

and anatomical structure, manifold kernel regression is an effective tool for improving

our understanding of anatomical changes within populations.

In Chapter 5, manifold kernel regression is described as a generalization of Nadaraya-

Watson kernel regression. This generalization is natural in the sense that both Nadaraya-

Watson and manifold kernel regression are expressed as weighted means of the re-

sponse data. In both cases the weights are determined by the associated predictor

data. Whereas the Nadaraya-Watson regression estimator is defined for vector space

response data, the manifold kernel regression estimator is defined in terms of intrinsic

operations on a manifold. In particular, it is based on the Fréchet mean—the minimizer

of the sum of squared distances.

The manifold kernel regression estimator can be used for regression analysis—just

like any classical regression estimator—to estimate the unknown relationship between

two random variables: a predictor and response. The key feature of the manifold kernel

regression estimator is that it relies only on intrinsic properties such as distance along

the manifold. Therefore, it can be applied when the responses are elements of a curved

manifold.

Chapter 4 describes algorithms for computing a Fréchet mean image within the large-

deformation diffeomorphic image registration framework. Chapter 6 demonstrates the

use of manifold kernel regression for the study of local shape changes in the average aging

brain. This application demonstrates manifold kernel regression as a methodological

tool for the study of anatomical change of populations. Patterns of expansion and

contraction are produced using a population-based growth algorithm that is based on

manifold kernel regression.
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7.2 Benefits and limitations of diffeomorphisms for

the study of shape

Diffeomorphic image matching is a powerful tool for aligning anatomical images and

studying anatomical shape. In particular, it provides a rigorous mathematical frame-

work with a composition operator, smoothness guarantees, and the ability to measure

complex patterns of local geometric deformations. Furthermore, a metric can be de-

fined on the space of these deformations, and this metric is useful for the analysis of

shapes; it allows for the formulation of statistical methods like the Fréchet mean and

manifold kernel regression estimator. The elastic and viscous fluid mechanical models

used to generate diffeomorphisms provide an intuitive relationship between forces and

tissue motion. Finally, a wide variety of geometric representations including multiple

image channels, point sets, landmarks, curves, and surfaces can be used to generate

diffeomorphisms.

There are also drawbacks to this diffeomorphic framework. First, deformation frame-

works should only be applied after an initial, rigid alignment of structures. In practice

this is usually handled by a cascading set of transformations starting with a rigid align-

ment and ending with a full deformation. Second, diffeomorphic transformations are not

representative of all anatomical motion—for example, diffeomorphisms cannot model

two structures sliding past each other. Third, it is clear from the study of anatomy that

building diffeomorphic transformations between different individuals is not possible at

all scales. For example, a particular sulcal fold in the brain may exist for one person

and be absent for another. An investigation into this problem would be interesting;

while multiresolution techniques are often used to compute transformations between in-

dividuals, they have not been used (to my knowledge) to determine scales at which a

diffeomorphic match is possible for anatomical images. Similarly, one could investigate,

for a fixed scale, which structures are likely to correspond diffeomorphically and which
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do not.

Finally, diffeomorphic transformations are very high dimensional; theoretically, they

are infinite dimensional. In practice, they are approximated by a displacement field

that contains a vector for every pixel in the image. This leads to problems with high

dimension and low sample size (HDLSS) for the study of anatomical variability. For ex-

ample, Muller et al. (2008) have shown that the computation of shape spaces based on

PCA on covariance is unstable in HDLSS settings. A number of methods are available to

reduce the dimensionality of these transformations including smoothness constraints, pa-

rameterizations (such as b-splines), tangent space representations, and multi-resolution

strategies. The computation of variance using these transformations will be more sta-

ble if one can aggressively reduce the number of parameters, use a more restrictive1,

lower dimensional nonlinear shape model, such as m-reps (Pizer et al., 2003), or use a

combination of these strategies.

7.3 Hypothesis testing with manifold kernel regres-

sion

This section describes methods for using regression to answer the following questions:

(1) are a predictor variable and a response variable independent, and (2) given two sets

of observations, do their associated regression curves agree?

The first question is important because, while regression can be applied to any pair

of predictor and response variables, the result is not useful—and might be misleading—if

these variables are in fact independent; it is important to know if this is the case. The

second question gives us the ability to compare, for example, regression curves for a

healthy and diseased population in order to determine if they are significantly different.

The answer to these questions is simplified for univariate data; one can look at

1in the sense that not all diffeomorphic transformations are admissible
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a regression curve to subjectively determine if it captures the underlying relationship

between the predictor and response in a reasonable way. Similarly, one can tell if the

regression estimator only follows noise in the data. For higher dimensional data, such as

the diffeomorphisms used in this dissertation, a visual assessment is difficult since the

regressed data can change in complicated ways that are difficult to interpret. Therefore,

purely analytic methods are needed. Also, in order to be applicable in the manifold

setting, these methods must be based on operations that are valid for manifold-valued

data.

The next two sections sketch methods that I have been developing to answer the

questions posed above. These methods are based on Monte Carlo permutation testing

(also called Fisher’s method of randomization, see (Bradley, 1968)) and are motivated

by Pitman’s test for correlation, which uses randomization to determine if two variables

are correlated (Bradley, 1968) given a collection of observations.

7.3.1 Hypothesis testing for independence of predictor and re-

sponse

This section describes a method for testing the null hypothesis, H0, that a predictor vari-

able and response variable are independent. The strategy is to define a permutation test

that uses residual-sum-of-squares (RSS) as a test statistic. Under the null hypothesis,

any observed predictor value xi is equally likely to be assigned to any observed response

value yi. Therefore, a null distribution of RSS values can be determined empirically by

randomly permuting the xi observations, as is common for permutation tests.

Let r denote a random permutation of the N observation indices 1, 2, . . . , N . Let ri

denote the ith index in r, i.e., ri ∈ {1, 2, . . . , N}. The residual-sum-of-squares is defined
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for each permutation using the regression estimator m̂h by

RSS =
N∑

i=1

(yi − m̂h(xri
))2. (7.1)

Therefore, a null distribution can be constructed by repeating the following process: (1)

permute the xi observations, (2) apply regression using m̂h, (3) compute the resulting

RSS value, and (4) store the RSS value in a histogram.

This method makes use of the kernel regression estimator m̂h, which is dependent

on the scale (i.e., kernel bandwidth) parameter h. Therefore, separate null distributions

can be constructed for a different bandwidths, and the question of the independence of

the predictor and response can be analyzed across a broad range of scales (regression

bandwidths).

On average, RSS should not change with randomization if x and y are independent.

Therefore, H0 can be rejected if the RSS of the observed data is in the lowest α percent

of the distribution of RSS values. Using the null distribution, a significance level (p-

value) may be assigned to the rejection of the H0, and we can say: “We reject the null

hypothesis of the independence of x and y, at the scale h, at the α significance level.”

This method of hypothesis testing is applicable to manifold-valued data because it

is based solely on intrinsic RSS (i.e., distance) measurements. Given a collection of

manifold-valued response data, pi ∈ M, with associated predictors ti ∈ R, a manifold

kernel regression estimator m̂h can be used to regress a continuous manifold-valued

response as a function of t at scale h. A null distribution of residual-sum-of-squares can

be created by repeatedly permuting the predictor values ti, applying m̂h, and measuring

the RSS value. This null distribution provides a confidence value for rejecting the null

hypothesis that the observed predictor and manifold-valued response are independent

at the scale h.

119



7.3.2 Hypothesis testing to determine if population trends co-

incide

A permutation test can also be used to test whether regression results from two popula-

tions are similar. This is important, for example, in determining if healthy and diseased

populations differ.

Consider observations from populations A and B, given by predictor and response

variables {xA
i , y

A
i } and {xB

i , y
B
i }. Let the null hypothesis be that the observations are

drawn from identical joint distributions. Under the null hypothesis, it should make no

difference if observations from population A are randomly exchanged with observations

from population B. Thus we can define a hypothesis test based on randomly assigning

observations to the different populations.

For this test, the data are repeatedly randomized (observations are exchanged be-

tween A and B), regression is applied for each population, and RSS values are measured

and tabulated in a histogram. Once the null distribution is determined in this way,

it can be used to assign a significance level for rejecting the null hypothesis that the

observed populations A and B were produced from identical joint distributions.

7.4 Future work

There are a number of questions and directions for future research related to this dis-

sertation; many of these are mentioned in the conclusions of chapters 3, 4, 5, and 6. In

this section a collection of these topics is briefly reviewed.
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7.4.1 Properties of means and kernel regression estimators on

manifolds

There are a number of unanswered questions regarding the application of the Fréchet

mean and kernel regression in curved spaces. Many of these questions have direct par-

allels in the Euclidean kernel regression setting: How much data do we need in order to

achieve a stable mean? How can we validate our results? How can we deal with edge

effects? Can we apply robust regression in order to minimize the effects of outliers? How

do we choose the best bandwidth? Should we use kernel regression or instead apply a

parametric model? After applying regression, can we reliably solve the inverse problem

(determine the predictor value from a new image)? Several questions are specific to

the manifold regression setting: What are the properties of the Fréchet mean for the

manifold under study? What are the convergence properties? These questions serve as

a road map for future work on this project.

7.4.2 Parametric regression

This dissertation extends kernel regression to manifold valued data. Parametric re-

gression is another common regression strategy, and there are theoretical and practical

tradeoffs between these methods. Kernel regression is easier to apply and allows for

an unbiased (by a parametric model) view of the data at varying scales. Parametric

regression is useful when a model of the underlying process (and thus regression curve)

is known; it also requires the estimation of fewer parameters.

It would be interesting to investigate parametric regression in the curved mani-

fold setting where the parametric model corresponds to the initial momentum (tangent

space representation) of the regression curve along the manifold. In the diffeomor-

phisms case, recent work on geodesic shooting and tangent space representatives of

diffeomorphic flows (Miller et al., 2006; Vaillant et al., 2004; Beg and Khan, 2006), Ja-
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cobi fields (Younes, 2007), and stationary velocity fields (Hernandez et al., 2007) provide

the technical pieces that one could use to define a parametric manifold regression frame-

work. Using geodesic shooting, for example, the initial momentum would parameterize

the regression curve, i.e., the flow of diffeomorphisms.

7.4.3 Application to other shape representations and metrics

This dissertation has been focused on applying manifold kernel regression in the context

of diffeomorphisms of medical images. However, manifold kernel regression can also

be applied to a number of other shape descriptions and data representations that are

popular within medical image analysis.

For example, m-reps, which are elements of a curved manifold with an associated Rie-

mannian metric, have been used extensively for the statistical analysis of shapes (Pizer

et al., 2003). Manifold kernel regression could be applied to m-reps using the techniques

for computing Fréchet mean m-reps described in Fletcher et al. (2004).

Within the diffeomorphic framework, a number of anatomical object representations—

e.g., unlabeled point sets, labeled landmarks, curves, and surfaces—have been used

to drive diffeomorphic registration of anatomical data (Miller et al., 1997; Joshi and

Miller, 2000; Miller et al., 2002; Glaunès et al., 2004; Vaillant and Glaunés, 2005). It is

straightforward to compute Fréchet means from these data representations by replacing

the image-matching term with a more general geometry-matching term. For example,

Glaunès and Joshi (2006) demonstrate how to compute Fréchet means from unlabeled

point sets. Combinations of these representations can be used in order to combine their

various strengths. For example, landmarks can be manually added to an image-based

registration problem in order drive the registration where the intensity information is

vague or insufficient. Within the viscous fluid algorithm, the contributions of these dif-

ferent representations can be pooled by computing a body force from each representation

separately and then summing the forces.
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Another interesting possibility for applying regression to shapes is the combination

of the diffeomorphisms of images with parametric shape descriptions, such as m-reps.

Such combinations could combine the flexibility of deformable registration with the

the statistical strengths2 of parametric shape models. The models can be combined

sequentially by using one model to initialize another, e.g., to use deformable registration

to capture small-scale, residual geometric change not captured by an m-rep model. These

models could also be combined into a single framework by noticing that incremental

geometric changes in one model can be mapped to incremental geometric changes in

the other. Therefore, for example, the diffeomorphic registration procedure could be

constrained by m-rep based shape statistics.

7.4.4 The inverse problem

The inverse problem is an important and useful extension to any regression methodology

and a principal direction of future work for this dissertation. It allows for analysis of new

response data that are collected without associated predictor values. The idea is to turn

the regression problem on its head and ask: what predictor value best corresponds to a

given response value? The inverse problem is important for regression of medical data

because it is a method for gaining information about a new patient that can be used

for classification, diagnosis, and evaluation. Within the context of Chapter 6, where the

predictors are ages and the responses are brain shapes, the inverse problem is this: given

a brain image from a new patient, what is the age (or more interestingly, the biological

age) of the patient?

Any method for solving the inverse problem for manifold regression must take into

account the curved structure of the manifold. In the rest of this section I sketch a naive

solution to this problem. It remains to be seen if this solution is effective.

Given a collection of N observations (predictor and response pairs) {xi, yi}, manifold

2Such as the ability to stably compute variation.
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kernel regression can be applied using the manifold kernel regression estimator m̂h(x).

Given a new predictor variable y′, the distance between y′ and the regression curve is

given by the function

f(x) = d(y′, m̂h(x)). (7.2)

The analysis of the function f leads to insight into how close y′ is to any part of the

regression curve. One way to look at f is that 1
f

(after normalization) is a probability

distribution on x where small distances between y′ and m̂h(x
′) imply that x′ is a likely

candidate for being the predictor that is associated with y′.

On the one hand, one can solve the inverse problem by choosing the value of x that

maximizes 1
f(x)

. However, it seems unlikely that this procedure will be stable for high

dimensional data. On the other hand, it is possible to graph 1
f

and— optimistically—

analyze its modes. Is there a clear mode that indicates a unique solution to the inverse

problem? Are there a few modes? Are there many modes? Smoothing will undoubtedly

help when analyzing this graph.

7.4.5 Managing outliers and topological change

Outliers and robust regression

Outliers cause a problem for the Fréchet mean by pulling the it toward outliers and

away from the true, underlying mean. Therefore it would be useful to study methods

for computing a robust manifold-valued means. One approach is to apply classical robust

definitions of mean such as the trimmed mean and winzorized mean, which eliminate

outliers based on orderings of the data. A similar approach is taken by Fletcher et al.

(2008), who use the geometric median for computing means on manifolds rather than

the Fréchet mean. The geometric median is defined as the minimizer of the sum of

distances (rather than squared distances) and so it is less sensitive to the influence of
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outliers.

Since manifold kernel regression is based on the computing means on a manifold,

any method for computing a robust mean would translate to a mechanism for robust

manifold kernel regression.

Topological changes

In the diffeomorphisms of image framework used in this dissertation, some outliers may

occur because of topological changes (for example, organs sliding past each other or

transient gas in the rectum) that lead to a high cost of deformation in order to match

an image to the mean. In some sense, the fact that these images are outliers at all can

be regarded as a failing of the diffeomorphic framework to faithfully describe anatomical

motion and variability.

However, the effect of these “false” outliers on mean and regression results could be

minimized using a method similar to the registration procedure described in Chapter 3.

For example, a deflation transformation could be used to remove extraneous structures

from input images—thus making them less like an outlier—before applying the Fréchet

mean algorithm.

Longitudinal Data

Neither manifold kernel regression, as defined in this dissertation, nor individual-based

diffeomorphic growth models (e.g., (Miller, 2004)) are well suited to the study of longi-

tudinal data from multiple individuals.3 In this dissertation, manifold kernel regression

is applied to random design data, where observations are assumed to be independent.

In order to apply manifold kernel regression to longitudinal data, one could ignore this

assumption by discarding information about repeated measures and treating all of the

data as independent. However, in this case information is lost, and the underlying in-

3This is equally true for vector-space data.
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dependence assumptions of the kernel regression method are ignored. A better strategy

is to redefine manifold kernel regression in such a way that the longitudinal information

is used. Some work along these lines is described in (Wand and Jones, 1995). Further

investigation into the use of kernel regression for manifold-valued longitudinal data is

an interesting direction for future work.

7.5 Other application areas

The Fréchet mean is not a new idea—it is a familiar mathematical concept that has

received recent attention in the medical image analysis community, particularly for shape

analysis. However, to my knowledge, a formulation of regression via the Fréchet mean

where the response variable is an element of a general curved space is a novel concept.

Therefore, it seems reasonable that manifold kernel regression, as a general approach

(and not related to diffeomorphisms of images), will be a useful tool for scientists who

deal with observed data that are elements of curved spaces. Examples of manifold-

valued data can be found in many scientific fields such as physics, engineering, robotics,

computer graphics, and scientific visualization. For example, curved configuration spaces

are of interest in kinetic and kinematic problems. Also, the analysis of matrix valued

data representing stress tensors, rotations, diffusion, etc., is very common throughout

the sciences, and matrix groups often form curved manifolds.
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Appendix A: Mathematical Preliminaries

A-1 Introduction

This appendix contains a brief review of the mathematical concepts used throughout this

dissertation. Sections A-2 through A-7 review the elementary mathematical background

of topological spaces, metric spaces, vector spaces, L2 function spaces, groups, and

differentiable geometry. Many of the definitions and propositions in these review sections

are adapted from (Lee, 2003), (Boothby, 2003), and (Conway, 1990).

A-2 Topological spaces

Definition A-2.1 (Topological space (Lee p. 540)). A topology on a setX is a collection

τ of subsets of X, called open sets, satisfying

• X and ∅ (the null set) are open

• the union of any family of open sets is open

• the intersection of any finite family of open sets is open.

A pair (τ,X) consisting of a set X together with a topology τ on X is called a topological

space.

A-3 Metric spaces

A metric allows one to measure distances between points in a space.

Definition A-3.1 (Metric Space). A metric space is a set X along with a distance

function (or metric) d : X → X that satisfies, for all x, y, z ∈ X,
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• d(x, y) ≥ 0

• d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x)

• d(x, y) + d(y, z) ≥ d(x, z).

The usual distance function in Euclidean space is an example: d(x, y) =
√

(x− y)2.

However, metrics exist for many more complicated spaces, such as Hilbert spaces and

curved manifolds, which are defined below.

A-4 Vector spaces

Definition A-4.1 (Vector Space (Lee p. 558, Wikipidia)). A real vector space is a set

endowed with two operations: vector addition V ×V → V , denoted by x+y for x, y ∈ V ,

and scalar multiplication R × V → V , denoted by αx for α ∈ R. These operations are

required to satisfy (for all x, y, z ∈ V and a, b ∈ R)

• Vector addition is associative: x+ (y + z) = (x+ y) + z

• Vector addition is commutative: x+ y = y + x

• Vector addition has an identity element: IdV + x = x

• Vector addition has an inverse element: there exists x−1 ∈ V such that x+ x−1 =

IdV

• Scalar multiplication satisfies a(bx) = (ab)x

• Scalar multiplication has an identity element: 1x = x where 1 denotes the multi-

plicative identity
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• Scalar multiplication and vector addition are related by the following distributive

laws:

(a+ b)x = ax+ bx a(x+ y) = ax+ ay

The terminology “vector space” will be used to denote a real vector space unless

otherwise indicated.

A-4.1 Hilbert space

Definition A-4.2 (Hilbert space (Conway p. 4)). A Hilbert space is a vector space H

with an inner product < ·, · > such that relative to the metric induced by the inner

product, d(x, y) = ‖x − y‖ =
√
< x− y, x− y >, H is a complete metric space. That

is, every Cauchy sequence of points in H has a limit that is also in H.

A-4.2 Images as L2 functions

In this dissertation, images are modeled as functions that have a Hilbert space structure.

Given a domain Ω ≡ [0, 1] × [0, 1] × [0, 1] ⊂ R3, the functions L2(Ω) : Ω → R are the

square integrable functions on Ω. That is, for f ∈ L2(Ω),

∫
Ω

|f |2 dµ <∞. (A-1)

There are no further constraints on L2 functions such as continuity or smoothness. L2(Ω)

forms a Hilbert space with the inner product given by

< f, g >L2(Ω)≡
∫

Ω

fḡ dx. (A-2)

An image is formally defined as an element of I ≡ L2(Ω).

129



A-5 Properties of mappings

Let f : U → V be a function that maps points in the topological space U to points in

the topological space V . The function f is a bijection if it is one-to-one and onto. The

function f is a homeomorphism if (1) f is a bijection, (2) f is continuous4, and (3) f−1

exists and is continuous. The function f is a Cr-diffeomorphism if it is a homeomorphism

and both f and f−1 are r-times differentiable.

A-6 Group theory

The notion of a group is central to this dissertation: group theory provides the abstract

mathematical language used to describe collections of spatial transformations that can be

used to deform anatomical structures. In this section the basic definitions are reviewed.

See any introductory algebra text for more details (e.g., (Clark, 1984)).

Definition A-6.1 (Group). A group (G, ·) is a nonempty set G together with a binary

operation · : G×G→ G satisfying for all a, b, and c in G:

Associativity : (a · b) · c = a · (b · c),

Identity Element : There exists e ∈ G such that e · a = a · e = a, and

Inverse Element : There exists a−1 ∈ G such that a · a−1 = a−1 · a = e.

The group operation is often abbreviated by concatenation, i.e., ab ≡ a · b.

The group operation is not generally commutative; a group G where ab = ba for all

a and b in G is called Abelian. The following basic theorems follow from these axioms

• a group has exactly one identity element,

• every group element has a unique inverse,

4That is, for every open set A ⊂ V , B = f−1(A) is open in U .
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• (a−1)−1 = a,

• (ab)−1 = b−1a−1,

• For all a, b ∈ G, there exists a unique x ∈ G such that ax = b,

• ax = ay ⇒ x = y and xa = ya⇒ x = y.

Definition A-6.2 (Subgroup). A subset H of G is called a subgroup of (G, ·), written

H ⊆ G, if H satisfies the axioms of a group, using ·, restricted to the subset H. A proper

subgroup of G is a subgroup which is not identical to G. A subgroup is non-trivial if it

contains elements other than the identity element.

The following theorems relate to subgroups:

• the identity in H is identical to the identity in G,

• the inverse of h in H is identical to the inverse of h in G,

• a non-empty subset S of G is a subgroup iff a · b−1 ∈ S for all a, b ∈ S,

• the intersection of two or more subgroups is again a subgroup.

A-7 Differential geometry

In mathematics a manifold is a space that is locally Euclidean (i.e., locally flat). In this

section the basic definitions and properties of a smooth manifold are reviewed. Manifolds

are important for this dissertation since many transformation groups, such as the group

of diffeomorphisms, form manifolds.

An n-dimensional manifold M is a topological space along with a collection of co-

ordinate charts U = {Uα, φα} that map open subsets of M (the Uα) into Rn via the

homeomorphic functions φα : Uα → Rn. This dissertation deals exclusively with mani-

folds for which any change of coordinates for overlapping charts must be smooth (e.g.,

for φα ◦ φ−1
β ). Detailed definitions of these concepts follow.
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Definition A-7.1 (Manifold of dimension n (Boothby p. 6)). A manifold M of dimen-

sion n is a topological space with the following properties:

• every point p ∈ M has a neighborhood U which is homeomorphic to an open

subset U ′ of Rn

• M is Hausdorff

• M has a countable basis of open sets.

The first property gives a precise meaning to the intuitive idea of a locally flat

space. It is important to emphasize that there is no requirement that M be globally

homeomorphic to any flat space. The second and third properties are not explicitly

relevant to this discussion; they serve to exclude poorly behaved topological spaces that

are not considered in this dissertation.

Suppose that U is an open subset of M and φ is a homeomorphism from U to an

open subset of Rn. The pair U, φ is called a coordinate chart. For two overlapping charts

U, φ and V, ψ there exist the homeomorphic change of coordinates

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) and ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ). (A-3)

When these change-of-coordinate functions satisfy additional smoothness constrains,M

is known as a smooth manifold. The following definitions make this idea precise.

Definition A-7.2 (C∞-compatible Charts (Boothby p. 52)). Two charts U, φ and V, ψ

are C∞-compatible if U ∩ V nonempty implies that φ ◦ ψ−1 and ψ ◦ φ−1 are diffeomor-

phisms of the open subsets φ(U ∩ V ) and ψ(U ∩ V ) of Rn.

Definition A-7.3 (Smooth structure (Boothby p. 53)). A smooth structure on a topo-

logical manifoldM is a family U = {Uα, φα} of coordinate charts such that

• the Uα coverM
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• Uα, φα and Uβ, φβ are C∞-compatible for any α, β

• any coordinate neighborhood V, ψ compatible with every Uα, φα ∈ U is itself in U .

Definition A-7.4 (Smooth Manifold (Boothby p. 53)). A smooth manifold is a topo-

logical manifold together with a smooth differentiable structure.

A tangent space can be attached to every point p on a smooth manifold. The

tangent space is a vector space that contains the possible “directions” in which one

can pass while traveling on a path along M through p. In Rn tangent vectors have a

simple geometric interpretation through their natural identification with elements of Rn.

On general manifolds tangent vectors are defined as directional derivative operators on

smooth functions.

Definition A-7.5 (Tangent Space (Boothby p. 104)). Let C∞(p) be the algebra of

C∞ functions whose domain of definition includes some open neighborhood of p, with

functions identified if they agree on any neighborhood of p. A tangent space Tp(M)

to M at p is the set of all mappings Xp : C∞(p) → R such that for all α, β ∈ R and

f, g ∈ C∞(p) the mappings Xp are linear and Leibniz. That is,

• Xp(αf + βg) = α(Xpf) + β(Xpg)

• Xp(fg) = (Xpf)g(p) + f(p)(Xpg).

A tangent vector to M at p is any Xp ∈ Tp(M).

For a manifold of dimension n, elements of Tp(M) can be identified with elements of

a vector space V n. The particular identification depends on the choice of coordinates.

A-7.1 Measuring distances on manifolds

Metrics can be defined on curved spaces such as differentiable manifolds. Instead of

measuring along straight lines, these distance functions measure distance along paths

on a manifold. This construction requires additional structure for the manifoldM.

133



Definition A-7.6 (Riemannian manifold). A Riemannian manifold is a smooth mani-

foldM along with a smoothly varying inner product Jp defined at every point p ∈ M.

The length, LR, of a path γ : [0, 1]→M is defined by the integral equation

LR(γ) =

∫ 1

0

√
< γ̇(τ), γ̇(τ) >Jp dτ (A-4)

where γ̇(τ) ∈ Tγ(τ)(M) is interpreted as the velocity of the path γ at the point p = γ(τ).

The Riemannian distance, dR(·, ·), between any two points p and q onM is defined

as the infimum of this integral over all piecewise smooth curves γ that connect p and q.

That is, for any points p, q on a Riemannian manifold M, the Riemannian distance is

defined by

dR(p, q) = inf
γ:[0,1]→M,γ(0)=p,γ(1)=q

∫ 1

0

√
< γ̇(τ), γ̇(τ) >Jp dτ. (A-5)

Note that the minimizing curves may not be unique.5

Proposition A-7.1 (Adapted from Lee proposition 11.20). A connected Riemannian

manifold, endowed with its Riemannian metric, is a metric space.

Proof. The proof is sketched here. See (Lee, 2003) Proposition 11.20 for more details.

It must be shown that the Riemannian distance function dR satisfies the properties

of a metric (see section A-3).

• That dR(p, q) ≥ 0 for all p, q ∈M is immediate from the definition of Riemannian

distance.

• dR(p, p) = 0 because any constant curve segment has length zero.

• Symmetry: Because any curve from p to q can be reparameterized to go from q to

p, it follows that dR(p, q) = dR(q, p).

5Consider the curves connecting the north and south pole of a sphere.
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• Triangle inequality: Suppose γ1 and γ2 are piecewise smooth curves segments from

p to q and from q to r, respectively. Let γ be a piecewise smooth curve segment

that first follows γ1 and then follows γ2. In this case

dR(p, r) ≤ L(γ) = L(γ1) + L(γ2). (A-6)

Since the distance is taken as the infimum over all such γ1 and γ2, it follows that

dR(p, r) ≤ dR(p, q) + dR(q, r).

• Positivity: the last property to check is dR(p, q) > 0 if p 6= q. A nonzero lower

bound for dR(p, q) can be defined using a coordinate chart containing an open

neighborhood U of p. Let p2 be a point on the curve γ such that p2 is also inside

U and the Euclidean distance (in coordinates) between p and p2 is ε. According

to Lemma 11.19 of Lee, dR(p, q) ≥ cε where c is a positive, nonzero constant.

Therefore, (p, q) is strictly positive.
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Appendix B: Euler-Lagrange equation for

LDDMM image mapping

This appendix derives the Euler-Lagrange equation that is used to construct a gradient

descent algorithm for the large-deformations diffeomorphic metric mapping problem.

See Chapter 2 for appropriate context and notation. This derivation was published

in (Beg, 2003) and (Beg et al., 2005).

Theorem B-0.3 provides a detailed derivation of the Euler-Lagrange equation. This

theorem depends on the following lemma, which describes the effect of a perturbation

of a velocity field on a deformation.

Let the deformation φs,t be defined by the composition of φt and φ−1
s , i.e.,

φs,t ≡ φt ◦ φ−1
s . (B-1)

Lemma B-0.2 (Beg (2003); Beg et al. (2005)). The variation of the mapping φv
s,t when

v ∈ L2([0, 1], V ) is perturbed along h ∈ L2([0, 1], V ) is given by

∂hφ
v
s,t = lim

ε→0

φv+εh
s,t − φv

s,t

ε
(B-2)

= Dφv
s,t

∫ t

s

(Dφv
s,u)

−1hu ◦ φv
s,u du, (B-3)

where Dφv
s,t is the Jacobian of the mapping φv

s,t, i.e.,

(
Dφv

s,t

)
i,j

=
∂(φv

s,t)i

∂xj

. (B-4)

Proof. In Beg (2003), this lemma is proved by solving for d
dt

(
∂hφ

v
s,t

)
and integrating it

over time. The derivation of d
dt

(
∂hφ

v
s,t

)
starts with the computation of d

dt

(
φv+εh

s,t

)
and
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depends on the definition of flow and Taylor series expansions of φv+εh
s,t , vt, and ht.

The intuition behind Equation (B-3) is the following: perturbations hu ◦ φv
s,u act on

a particle traveling through time and space at times u ∈ [s, t]. These perturbations are

accumulated by pulling them back to time s (via the inverse Jacobian matrix (Dφv
s,u)

−1).

Finally, the accumulated perturbations are pushed forward to time t using the Jacobian

matrix Dφv
s,t.

Theorem B-0.3 (Beg (2003)). Given a continuously differentiable idealized template

image I0 and a noisy observation of anatomy I1, then v̂ ∈ L2([0, 1], V ) for inexact

matching of I0 and I1 is given by

v̂ = arginf
v∈L2([0,1],V )

E(v) ≡
∫ 1

0

‖vt‖2V dt+
1

σ2
‖I0 ◦ φ1,0 − I1‖2L2 . (B-5)

Equation (B-5) satisfies the Euler-Lagrange equation given by

2v̂ −K
(

2

σ2

∣∣Dφv
t,1

∣∣ (J0
t − J1

t

)
∇J0

t

)
= 0 (B-6)

where J0
t ≡ I0 ◦ φv

t,0 and J1
t ≡ I1 ◦ φv

t,1.

Proof. The derivation is based on the computation of the Gateaux variation for each

term in equation (B-5) for an arbitrary perturbation h ∈ L2([0, 1], V ). Since the variation

is linear, these terms can be computed separately and later combined.

The Gateaux variation of the first term

E1(v) =

∫ 1

0

‖vt‖2V dt (B-7)
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is given by

∂hE1(v) = lim
ε→0

E1(v + εh)− E1(v)

ε
(B-8)

= lim
ε→0

∫ 1

0
‖vt + εht‖2V dt−

∫ 1

0
‖vt‖2V dt

ε
(B-9)

= lim
ε→0

∫ 1

0
< vt + εht, vt + εht >V dt−

∫ 1

0
< vt, vt >V dt

ε
(B-10)

= lim
ε→0

ε2
∫ 1

0
‖ht‖2V dt+ 2ε

∫ 1

0
< vt, ht >V dt

ε
(B-11)

= 2

∫ 1

0

< vt, ht >V dt. (B-12)

The Gateaux variation of the second term

E2(v) =
1

σ2
‖I0 ◦ φ1,0 − I1‖2L2 (B-13)

is given by

lim
ε→0

E2(v+εh)−E2(v)

ε
(B-14)

=
1

σ2
lim
ε→0

‖I0◦φv+εh
1,0 −I1‖2L2−‖I0◦φv

1,0−I1‖2L2

ε
(B-15)

=
1

σ2
lim
ε→0

〈
I0◦φ

v+εh
1,0 −I1, I0◦φ

v+εh
1,0 −I1

〉
L2 −

〈
I0◦φ

v
1,0−I1, I0◦φ

v
1,0−I1

〉
L2

ε
(B-16)

=
1

σ2
lim
ε→0

〈
I0◦φ

v
1,0+DI0◦φ

v
1,0ε∂hφ

v
1,0−I1, I0◦φ

v
1,0+DI0◦φ

v
1,0ε∂hφ

v
1,0−I1

〉
L2

ε

−
〈
I0◦φ

v
1,0−I1, I0◦φ

v
1,0−I1

〉
L2

ε

(B-17)

=
1

σ2
lim
ε→0

ε2
〈
DI0◦φ

v
1,0∂hφ

v
1,0, DI0◦φ

v
1,0∂hφ

v
1,0

〉
L2 +2ε

〈
I0◦φ

v
1,0, DI0◦φ

v
1,0∂hφ

v
1,0

〉
L2

ε

−
2ε
〈
I1, DI0◦φ

v
1,0∂hφ

v
1,0

〉
L2

ε

(B-18)

=
2

σ2

〈
I0◦φ

v
1,0−I1, DI0◦φ

v
1,0∂hφ

v
1,0

〉
L2 (B-19)
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where (B-17) follows from the first order expansion I0◦φ
v+εh
1,0 = I0◦φ

v
1,0+DI0◦φ

v
1,0ε∂hφ

v
1,0.

Next, applying Lemma B-0.2 we get

=
2

σ2

〈
I0◦φ

v
1,0−I1, DI0◦φ

v
1,0

(
Dφv

1,0

∫ 0

1

(Dφv
1,t)

−1ht◦φ
v
1,t dt

)〉
L2

(B-20)

=
−2

σ2

〈
I0◦φ

v
1,0−I1, DI0◦φ

v
1,0

(
Dφv

1,0

∫ 1

0

(Dφv
1,t)

−1ht◦φ
v
1,t dt

)〉
L2

(B-21)

=
−2

σ2

∫ 1

0

〈
I0◦φ

v
1,0−I1, D

(
I0◦φ

v
1,0

) (
Dφv

1,t)
−1ht◦φ

v
1,t

)〉
L2 dt (B-22)

=
−2

σ2

∫ 1

0

〈
|Dφv

t,1|I0◦φv
t,0−I1φ

v
t,1, D

(
I0◦φ

v
t,0

)
ht

〉
L2 dt (B-23)

=
−2

σ2

∫ 1

0

〈
|Dφv

t,1|
(
I0◦φ

v
t,0−I1φ

v
t,1

)
D
(
I0◦φ

v
t,0

)
, ht

〉
L2 dt (B-24)

= −

∫ 1

0

〈
K

(
2

σ2

∣∣Dφv
t,1

∣∣ (I0◦φv
t,0−I1φ

v
t,1

)
D
(
I0◦φ

v
t,0

))
, ht

〉
V

dt (B-25)

= −

∫ 1

0

〈
K

(
2

σ2

∣∣Dφv
t,1

∣∣ (J0
t −J

1
t

)
∇J0

t

)
, ht

〉
V

dt (B-26)

where (B-22) follows from the identity D(I0◦φv
1,0) = DI0◦φ1,0Dφ1,0; (B-23) follows from

a change of variable for L2 inner product y = φv
t,1(x); (B-25) follows from the definition of

the inner product on V (see Chapter 2); and (B-26) follows from a relabeling J0
t ≡ I0◦φv

t,0

and J t
t ≡ It ◦ φv

t,1.

Since the variation is linear, these terms can be combined. Thus, the optimizing

velocity field satisfies

∂hE(v̂) =

∫ 1

0

〈
2v̂ −K

(
2

σ2

∣∣Dφv
t,1

∣∣ (J0
t − J1

t

)
∇J0

t

)
, ht

〉
dt = 0. (B-27)

Since h is arbitrary in L2([0, 1], V ), by the fundamental lemma of calculus of variations

(see, for example, Luenberger (1969)), we get Equation (B-6).
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Appendix C: Derivation of the differential

operator for “fluid” image registration

C-1 Introduction

This appendix summarizes the relationship between the physics of fluid flow and differ-

ential operator

L = −α4− β∇(∇·) + γI (C-1)

that is used in “fluid” image registration. This operator relates a known body force term

b, which is generated from image intensity and gradient information, with a velocity term

v, which describes the instantaneous motion of the deforming continuum, according to

L†L~v = ~b. (C-2)

This type of fluid registration was introduced by Christensen et al. (1994, 1996). This

and other operators used for continuum-mechanics based operators in image registration

are review in Holden (2008). This appendix summarizes the explanations from both of

these sources.

C-2 The derivation of L

First, the conservation of momentum with a mass source, defining the relationship be-

tween body force and the resulting material deformation is

ρ
d~v

dt
+ ~vη −∇ · T −~b = 0 (C-3)
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where ρ is the density of the material, v is the velocity of the material, η measures mass

insertion per unit volume, T is the Cauchy stress tensor, and b is the body force. Now

we must specify the constitutive behavior of the material by specifying the form of the

stress tensor T .

The rate of deformation tensor is D = 1
2
(∇~v + (∇~v)T ). For a Navier-Poisson New-

tonian fluid, the Cauchy stress tensor is related to D by

T = (λ(trD)− p)I + 2µD (C-4)

where µ and λ are viscosity constants and p is pressure.

Now, substitute equation C-4 into ∇ · T from equation C-3 to get (note that diver-

gence applies row-wise to a matrix):

∇ · T = ∇ · [(λ(trD)− p)I + 2µD]

= ∇ ·


(
λ

[
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z

]
− p
)
I + µ


2∂v1

∂x
∂v1

∂y
+ ∂v2

∂x
∂v1

∂z
+ ∂v3

∂x

∂v2

∂x
+ ∂v1

∂y
2∂v2

∂y
∂v2

∂z
+ ∂v3

∂y

∂v3

∂x
+ ∂v1

∂z
∂v3

∂y
+ ∂v2

∂z
2∂v3

∂z




= λ∇ (∇ · ~v)−∇p+ µ


2∂2v1

∂x2 + ∂2v1

∂y2 + ∂2v2

∂xy
+ ∂2v1

∂z2 + ∂2v3

∂xz

∂2v2

∂x2 + ∂2v1

∂yx
+ 2∂2v2

∂y2 + ∂2v2

∂z2 + ∂2v3

∂yz

∂2v3

∂x2 + ∂2v1

∂zx
+ ∂2v3

∂y2 + ∂2v2

∂zy
+ 2∂2v3

∂z2



= (λ+ µ)∇ (∇ · ~v)−∇p+ µ


∂2v1

∂x2 + ∂2v1

∂y2 + ∂2v1

∂z2

∂2v2

∂x2 + ∂2v2

∂y2 + ∂2v2

∂z2

∂2v3

∂x2 + ∂2v3

∂y2 + ∂2v3

∂z2


= (λ+ µ)∇ (∇ · ~v)−∇p+ µ4~v

Substituting this result into equation C-3 gives

µ4~v + (λ+ µ)∇ (∇ · ~v) +~b = ∇p+ ρ
d~v

dt
+ ~vη. (C-5)
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Finally, we simplify the model by assuming a very low Reynold’s number (where

viscous forces dominate) where the pressure gradient ∇p and the inertial terms ρd~v
dt

and

~vη are neglected, so that we get

µ4~v + (λ+ µ)∇ (∇ · ~v) +~b = 0. (C-6)

After substituting α ≡ µ and β = µ+λ, our operator is then L = −µ4− (λ+µ)∇ (∇·).

Finally, the term γI is added so that the operator L is guaranteed to be invertible.

This is important since the differential equation (C-2) is solved in the Fourier domain

by inverting L. See Appendix D for more details.

142



Appendix D: Numerical solution for

velocity fields in fluid registration

D-1 Introduction

All of the image registration methods used in this dissertation are based on fluid reg-

istration. This appendix shows how to numerically solve for the velocity fields at each

time step in the fluid image registration algorithm. The objective is to solve the equation

L†Lv = b (D-1)

where L is a differential operator (with adjoint L†), v is a velocity field, and b is a body

force used to drive the registration.

D-2 Operators

Two differential operators are used in this dissertation. The first is motivated by the

Navier-Stokes equation for compressible fluids with a very low Reynolds number

L = −α4− β∇(∇·) + γI. (D-2)

In this equation ∇ =
[

∂
∂x

∂
∂y

∂
∂z

]T
is the gradient operator and 4 = ∇·∇ = ∂2

∂x2 + ∂2

∂y2 +

∂2

∂z2 is the Laplacian operator (applied component-wise). The viscosity of the fluid is

determined by α and β. The γ term, which can be thought of as a “body friction” term,

ensures that the operator is positive definite, and hence invertible (Joshi and Miller,

2000). This operator was introduced for fluid image registration in Christensen et al.
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(1996). However, Christensen did not use the γ term. The second operator is similar

except that the β term is neglected

LB = −α4+ γI. (D-3)

This operator is used in Beg et al. (2005). Holden (2008) provides a good review of

these operators.

In expanded notation, these operators are

Lv = (−α4− β∇(∇·) + γI) v (D-4)

= −α4


v1

v2

v3

− β∇
∇ ·


v1

v2

v3


+ γ


v1

v2

v3

 (D-5)

= −α


∂2v1

∂x2 + ∂2v1

∂y2 + ∂2v1

∂z2

∂2v2

∂x2 + ∂2v2

∂y2 + ∂2v2

∂z2

∂2v3

∂x2 + ∂2v3

∂y2 + ∂2v3

∂z2

− β∇
(
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z

)
+ γ


v1

v2

v3

 (D-6)

= −α


∂2v1

∂x2 + ∂2v1

∂y2 + ∂2v1

∂z2

∂2v2

∂x2 + ∂2v2

∂y2 + ∂2v2

∂z2

∂2v3

∂x2 + ∂2v3

∂y2 + ∂2v3

∂z2

− β


∂2v1

∂x2 + ∂2v2

∂yx
+ ∂2v3

∂zx

∂2v1

∂xy
+ ∂2v2

∂y2 + ∂2v3

∂zy

∂2v1

∂xz
+ ∂2v2

∂yz
+ ∂2v3

∂z2

+ γ


v1

v2

v3

 = (D-7)


−(α+β) ∂2

∂x2−α
∂2

∂y2−α
∂2

∂z2 +γ −β
∂2

∂xy
−β

∂2

∂xz

−β
∂2

∂xy
−α

∂2

∂x2−(α+β) ∂2

∂y2−α
∂2

∂z2 +γ −β
∂2

∂yz

−β
∂2

∂xz
−β

∂2

∂yz
−α

∂2

∂x2−α
∂2

∂y2−(α+β) ∂2

∂z2 +γ




v1

v2

v3


(D-8)
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and

LBv = (−α4+ γI) v (D-9)

= −α4


v1

v2

v3

+ γ


v1

v2

v3

 (D-10)

= −α


∂2v1

∂x2 + ∂2v1

∂y2 + ∂2v1

∂z2

∂2v2

∂x2 + ∂2v2

∂y2 + ∂2v2

∂z2

∂2v3

∂x2 + ∂2v3

∂y2 + ∂2v3

∂z2

+ γ


v1

v2

v3

 = (D-11)


−α( ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 )+γ 0 0

0 −α( ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 )+γ 0

0 0 −α( ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 )+γ



v1

v2

v3

 .
(D-12)

The equations for two dimensions are similar

Lv =

 −(α+ β) ∂2

∂x2 − α ∂2

∂y2 + γ −β ∂2

∂xy

−β ∂2

∂xy
−α ∂2

∂x2 − (α+ β) ∂2

∂y2 + γ


 v1

v2

 (D-13)

and

LBv =

 −α( ∂2

∂x2 + ∂2

∂y2 ) + γ 0

0 −α( ∂2

∂x2 + ∂2

∂y2 ) + γ


 v1

v2

 . (D-14)
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D-3 Finite difference approximations

In this section, the finite difference approximations of the operators L and LB are de-

rived. Second order approximations are used; for some function u : R3 → R they are

∂2u

∂x2 x,y,z
≈ ux+1,y,z − 2ux,y,z + ux−1,y,z (D-15)

∂2u

∂y2
x,y,z

≈ ux,y+1,z − 2ux,y,z + ux,y−1,z (D-16)

∂2u

∂z2 x,y,z
≈ ux,y,z+1 − 2ux,y,z + ux,y,z−1 (D-17)

∂2u

∂xy x,y,z

=
∂2u

∂yxx,y,z

≈ 1

4
[ux−1,y−1,z + ux+1,y+1,z − ux+1,y−1,z − ux−1,y+1,z] (D-18)

∂2u

∂xz x,y,z
=
∂2u

∂zxx,y,z
≈ 1

4
[ux−1,y,z−1 + ux+1,y,z+1 − ux+1,y,z−1 − ux−1,y,z+1] (D-19)

∂2u

∂yz x,y,z

=
∂2u

∂zy x,y,z

≈ 1

4
[ux,y−1,z−1 + ux,y+1,z+1 − ux,y+1,z−1 − ux,y−1,z+1] . (D-20)

These approximations are applied element-wise to

L ≡


l11,1 l11,2 l11,3

l12,1 l12,2 l12,3

l13,1 l13,2 l13,3

 and LB ≡


l21,1 l21,2 l21,3

l22,1 l22,2 l22,3

l23,1 l23,2 l23,3

 . (D-21)
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The resulting approximations for the differential operators are

l̂11,1 =− (α+ β) (ux+1,y,z − 2ux,y,z + ux−1,y,z)− α (ux,y+1,z − 2ux,y,z + ux,y−1,z)

− α (ux,y,z+1 − 2ux,y,z + ux,y,z−1) + γux,y,z

(D-22)

l̂12,2 =− α (ux+1,y,z − 2ux,y,z + ux−1,y,z)− (α+ β) (ux,y+1,z − 2ux,y,z + ux,y−1,z)

− α (ux,y,z+1 − 2ux,y,z + ux,y,z−1) + γux,y,z

(D-23)

l̂13,3 =− α (ux+1,y,z − 2ux,y,z + ux−1,y,z)− α (ux,y+1,z − 2ux,y,z + ux,y−1,z)

− (α+ β) (ux,y,z+1 − 2ux,y,z + ux,y,z−1) + γux,y,z

(D-24)

l̂11,2 = l̂12,1 = −β
4

(ux+1,y+1,z + ux−1,y−1,z − ux−1,y+1,z − ux+1,y−1,z) (D-25)

l̂11,3 = l̂13,1 = −β
4

(ux+1,y,z+1 + ux−1,y,z−1 − ux−1,y,z+1 − ux+1,y,z−1) (D-26)

l̂12,3 = l̂13,2 = −β
4

(ux,y+1,z+1 + ux,y−1,z−1 − ux,y−1,z+1 − ux,y+1,z−1) (D-27)

and

l̂2i,i = −α (ux+1,y,z + ux−1,y,z + ux,y+1,z + ux,y−1,z + ux,y,z+1 + ux,y,z−1 − 6ux,y,z) + γux,y,z

(D-28)

l̂2i,j = 0 for i 6= j. (D-29)
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Applied component-wise to a particular spatial location (x, y, z), these operators expand

to

(Lvx,y,z)
1 ≈(6α+ 2β + γ)v1

x,y,z − (α+ β)v1
x+1,y,z − (α+ β)v1

x−1,y,z

− αv1
x1,y−1,z − αv1

x1,y+1,z − αv1
x1,y,z−1 − αv1

x1,y,z+1

− β

4
v2

x+1,y+1,z −
β

4
v2

x−1,y−1,z +
β

4
v2

x−1,y+1,z +
β

4
v2

x+1,y−1,z

− β

4
v3

x+1,y,z+1 −
β

4
v3

x−1,y,z−1 +
β

4
v3

x−1,y,z+1 +
β

4
v3

x+1,y,z−1

(D-30)

(Lvx,y,z)
2 ≈− β

4
v1

x+1,y+1,z −
β

4
v1

x−1,y−1,z +
β

4
v1

x−1,y+1,z +
β

4
v1

x+1,y−1,z

+ (6α+ 2β + γ)v2
x,y,z − (α+ β)v2

x+1,y,z − (α+ β)v2
x−1,y,z

− αv2
x1,y−1,z − αv2

x1,y+1,z − αv2
x1,y,z−1 − αv2

x1,y,z+1

− β

4
v3

x,y+1,z+1 −
β

4
v3

x,y−1,z−1 +
β

4
v3

x,y−1,z+1 +
β

4
v3

x,y+1,z−1

(D-31)

(Lvx,y,z)
3 ≈− β

4
v1

x+1,y,z+1 −
β

4
v1

x−1,y,z−1 +
β

4
v1

x−1,y,z+1 +
β

4
v1

x+1,y,z−1

− β

4
v2

x,y+1,z+1 −
β

4
v2

x,y−1,z−1 +
β

4
v2

x,y−1,z+1 +
β

4
v2

x,y+1,z−1

+ (6α+ 2β + γ)v3
x,y,z − (α+ β)v3

x+1,y,z − (α+ β)v3
x−1,y,z

− αv3
x1,y−1,z − αv3

x1,y+1,z − αv3
x1,y,z−1 − αv3

x1,y,z+1

(D-32)

and

(LBvx,y,z)
1 ≈− α

(
v1

x+1,y,z+v1
x−1,y,z+v1

x,y+1,z+v1
x,y−1,z+v1

x,y,z+1+v1
x,y,z−1−6v1

x,y,z

)
+ γv1

x,y,z

(D-33)

(LBvx,y,z)
2 ≈− α

(
v2

x+1,y,z+v2
x−1,y,z+v2

x,y+1,z+v2
x,y−1,z+v2

x,y,z+1+v2
x,y,z−1−6v2

x,y,z

)
+ γv2

x,y,z

(D-34)

(LBvx,y,z)
3 ≈− α

(
v3

x+1,y,z+v3
x−1,y,z+v3

x,y+1,z+v3
x,y−1,z+v3

x,y,z+1+v3
x,y,z−1−6v3

x,y,z

)
+ γv3

x,y,z.

(D-35)

L is strictly diagonally dominate if γ > 2β. LB is strictly diagonally dominate if
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α > 0 and γ > 0.

D-4 Fourier domain solution for L

As in the work of Beg et al. (2005) and Christensen et al. (1996), the numerical solution

to Av = b is determined using a Fourier transform. The strategy is to apply the Fast

Fourier Transform (FFT) to the body force b, apply the inverse of the (discritized)

differential operator A, and apply the inverse FFT to get the resulting velocity v.

Suppose that the body force is periodic and as a discritized vector field it has di-

mensions N ×M × L. We can write v, Âv, and b in terms of their Fourier coefficients:

v(x, y, z) =
L−1∑
w=0

M−1∑
v=0

N−1∑
u=0

V (u, v, w)e2jπ(ux
N

+ vy
M

+wz
L ) (D-36)

Âv(x, y, z) =
L−1∑
w=0

M−1∑
v=0

N−1∑
u=0

L̂V (u, v, w)e2jπ(ux
N

+ vy
M

+wz
L ) (D-37)

b(x, y, z) =
L−1∑
w=0

M−1∑
v=0

N−1∑
u=0

B(u, v, w)e2jπ(ux
N

+ vy
M

+wz
L ). (D-38)

To solve Av = b for v, the invertible matrix6 Λ must be found such that

ΛV (u, v, w) = B(u, v, w). (D-39)

The solution for v can then be written as

v(x, y, z) =
L−1∑
w=0

M−1∑
v=0

N−1∑
u=0

Λ−1B(u, v, w)e2jπ(ux
N

+ vy
M

+wz
L ). (D-40)

The strategy to solve for Λ is to find the intermediate matrix Ψ such that

ÂV e2jπ(ux
N

+ vy
M

+wz
L ) = ΨV (D-41)

6Not differential operator, a 3× 3 matrix valued function of u, v, and w.
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and then factor out e2jπ(ux
N

+ vy
M

+wz
L ) from Ψ. In other words,

ÂV e2jπ(ux
N

+ vy
M

+wz
L ) = ΨV = ΛV e2jπ(ux

N
+ vy

M
+wz

L ). (D-42)

Ψ is simply the matrix Âe2jπ(ux
N

+ vy
M

+wz
L ) since V is constant with respect to the spatial

domain variables x, y, and z. Â is symmetric, so Ψ and Λ will also be symmetric.

The elements of Λ are derived below. Recall that e±iθ = cos θ ± i sin θ implies that

2 cos θ = eiθ + e−iθ and 2 sin θ = eiθ − e−iθ. Also, cos (a+ b) = cos a cos b− sin a sin b.

ψ1,1 =− (α+ β)
(
e2jπ(u(x+1)

N
+ vy

M
+wz

L ) − 2e2jπ(ux)
N

+ vy
M

+wz
L ) + e2jπ(u(x−1)

N
+ vy

M
+wz

L )
)

− α
(
e2jπ(ux

N
+

v(y+1)
M

+wz
L ) − 2e2jπ(ux)

N
+ vy

M
+wz

L ) + e2jπ(ux
N

+
v(y−1)

M
+wz

L )
)

− α
(
e2jπ(ux

N
+ vy

M
+

w(z+1)
L ) − 2e2jπ(ux)

N
+ vy

M
+wz

L ) + e2jπ(ux
N

+ vy
M

+
w(z−1)

L )
)

+ γe2jπ(ux
N

+ vy
M

+wz
L )

(D-43)

which implies that

λ1, 1 =−(α+β)
(
e2jπ u

N −2+e−2jπ u
N

)
−α
(
e2jπ v

M −2+e−2jπ v
M

)
−α
(
e2jπ w

L−2+e−2jπ w
L

)
+γe2jπ(ux

N
+ vy

M
+wz

L )
(D-44)

=−(α+β)
(
2 cos

[
2π

u

N

]
−2
)
−α
(
2 cos

[
2π

v

M

]
−2
)
−α
(
2 cos

[
2π
w

L

]
−2
)

+γ (D-45)

=−2(α+β) cos
[
2π

u

N

]
−2α cos

[
2π

v

M

]
−2α cos

[
2π
w

L

]
+6α+2β+γ. (D-46)

Similarly,

λ2, 2 =− 2α cos
[
2π

u

N

]
− 2(α+ β) cos

[
2π

v

M

]
− 2α cos

[
2π
w

L

]
+ 6α+ 2β + γ (D-47)

λ3, 3 =− 2α cos
[
2π

u

N

]
− 2α cos

[
2π

v

M

]
− 2(α+ β) cos

[
2π
w

L

]
+ 6α+ 2β + γ.

(D-48)
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For the cross terms,

ψ1,2 =

−
β

4

(
e2jπ(u(x+1)

N
+

v(y+1)
M

+wz
L )

+e2jπ(u(x−1)
N

+
v(y−1)

M
+wz

L )−e2jπ(u(x−1)
N

+
v(y+1)

M
+wz

L )−e2jπ(u(x+1)
N

+
v(y−1)

M
+wz

L )
)

(D-49)

which implies that

λ1,2 =− β

4

(
e2jπ( u

N
+ v

M ) + e2jπ(− u
N
− v

M ) − e2jπ(− u
N

+ v
M ) − e2jπ( u

N
− v

M )
)

(D-50)

=− β

4

(
2 cos

[
2π
( u
N

+
v

M

)]
− 2 cos

[
2π
( u
N
− v

M

)])
(D-51)

=β sin
[
2π

u

N

]
sin
[
2π

v

M

]
. (D-52)

Similarly,

λ1, 3 =β sin
[
2π

u

N

]
sin
[
2π
w

L

]
(D-53)

λ2, 3 =β sin
[
2π

v

M

]
sin
[
2π
w

L

]
. (D-54)

The solution to ΛV = B is based on the Cholesky decomposition of Λ since Λ is

symmetric and positive definite. First, the upper triangular matrix U is computed such

that UUT = Λ. This process is detailed in Algorithm 7.1. Then, forward and back

substitution are used to solve for V .

Algorithm 7.1 Cholesky Decomposition for 3-by3 matrix Λ

Input: Λ is a 3-by3 symmetric positive definite matrix
Output: U is an upper triangular matrix such that UUT = Λ
1: U1,1 =

√
Λ1,1

2: U1,2 = Λ1,2/U1,1

3: U1,3 = Λ1,3/U1,1

4: U2,2 =
√

Λ2,2 − U2
1,2

5: U2,3 = (Λ2,3 − U1,2U1,3)/U2,2

6: U3,3 =
√

Λ3,3 − U2
1,3 − U2

2,3.
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D-5 Fourier domain solution for LB

The solution for LB follows the same strategy as the solution for L. In this case, the

off-diagonal elements of Ψ and Λ are zero. The diagonal elements are

ψi,i =− α
(
e2jπ(u(x+1)

L
+ vy

M
+wz

N ) − 2e2jπ(ux
N

+ vy
M

+wz
L ) + e2jπ(u(x−1)

L
+ vy

M
+wz

N )
)

− α
(
e2jπ(ux

L
+

v(y+1)
M

+wz
N ) − 2e2jπ(ux

L
+ vy

M
+wz

N ) + e2jπ(ux
L

+
v(y−1)

M
+wz

N )
)

− α
(
e2jπ(ux

L
+ vy

M
+

w(z+1)
N ) − 2e2jπ(ux

L
+ vy

M
+wz

N ) + e2jπ(ux
L

+ vy
M

+
w(z−1)

N )
)

+ γe2jπ(ux
L

+ vy
M

+wz
N )

(D-55)

which implies that

λi, i =−α
(
e2jπ u

L−2+e−2jπ u
L

)
−α
(
e2jπ v

M −2+e−2jπ v
M

)
−α
(
e2jπ w

N −2+e−2jπ w
N

)
+γ (D-56)

=− α
(
e2jπ u

L + e−2jπ u
L + e2jπ v

M + e−2jπ v
M + e2jπ w

N + e−2jπ w
N

)
+ 6α+ γ (D-57)

=− 2α
(
cos
[
2π
u

L

]
+ cos

[
2π

v

M

]
+ cos

[
2π
w

N

])
+ 6α+ γ. (D-58)

Since Λ is diagonal the solution to ΛV = B is trivial.

D-5.1 Note on interpretation of α and γ

For the Fourier transform, application of −α4 in the spatial domain is equivalent to

multiplication by α((2πf1)
2 + (2πf2)

2 + (2πf3)
2) in the frequency domain. The rela-

tionship between this solution and the discrete solution is apparent since cos θ ≈ 1− θ2

2

when θ is near zero. That is,

− 2α
(
cos
[
2π
u

L

]
+ cos

[
2π

v

M

]
+ cos

[
2π
w

N

])
+ 6α (D-59)

≈− 2α

(
3−

(
2π u

L

)2
2

−
(
2π v

M

)2
2

−
(
2π w

N

)2
2

)
+ 6α (D-60)

= α

((
2π
u

L

)2

+
(
2π

v

M

)2

+
(
2π
w

N

)2
)
. (D-61)
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Thus, you can reason about the parameters by thinking about multiplying in the

frequency domain by 1
αf2+γ

. Increasing α decreases the width of the kernel in the

Fourier domain, resulting in more smoothing of the body force. Decreasing α allows

more high frequency components to remain. Increasing γ decreases the height of the

kernel in the Fourier domain, resulting in smaller magnitudes for velocity relative to the

body force (recall that the FFT is just a linear transformation). A value of γ = 1 will

result in a kernel with height 1 in the Fourier domain. Thus α = 0 and γ = 1 results in

the identity operator.
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