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Abstract

The topic of this dissertation is medical image analysis with focus on multi-scale methods and
the task of segmentation. The main theme is how to move from explicitly non-committed
approaches to methods that incorporate prior knowledge and thereby become specialized to the
given task. The presented work explores a path from a non-committed multi-scale segmentation
method towards more committed methods for segmentation and shape modeling.

The multi-scale watershed segmentation method by Fogh Olsen is the starting point for much
of the work in this dissertation. In this non-committed method, the segmentation problem is
addressed with the only assumption that there should be some contrast across the boundaries
of the desired objects.

The first body of work is focused on specializing the multi-scale segmentation method through
the use of non-linear diffusion. We present a Generalized Anisotropic Non-linear diffusion scheme
with methods for optimizing the parameters and evaluating the performance. The results apply
for segmentation of both 2D and 3D objects and show considerable performance improvements
through the use of GAN. Upper limits for this performance gain are empirically established
through experiments on artificial ideal objects. The methodology is evaluated on segmentation
of brain structures in both 2D and 3D and shows significant improvements in segmentation
efficiency.

Non-linear diffusion is then analyzed in more detail via the introduction of the Diffusion Echo
that allows explicit analysis of the local filters in non-linear diffusion schemes. We use this
approach to investigate the connection between linear and non-linear diffusion given by scale
selection.

While non-linear diffusion allows a large degree of incorporation of prior knowledge and thereby
facilitates specialization towards a specific task, the work shows that for the multi-scale seg-
mentation program, the possible performance improvement due to non-linear diffusion is not
unlimited. Specifically, near-automatic segmentation seems unfeasible without further commit-
ment of the method. The most promising way of incorporating additional prior knowledge is
through the use of a shape model.

The final body of work is focused on shape modeling via the medial shape representation known
as the m-rep. We present an essentially automatic method for generating a statistical shape
model from a training collection. We demonstrate the method for constructing a prostate shape
model.

ii



List of Publications

The majority of this dissertation has been published in one of the publications below (the full
references are available in the bibliography). They have all been subject to peer review or are
currently in the review process.

Non-linear Diffusion for Interactive Multi-scale Watershed Segmentation
E. Dam & M. Nielsen.
Medical Image Computing and Computer-Assisted Intervention — MICCAI 2000.

Exploring Non-linear Diffusion: The Diffusion Echo
E. Dam & M. Nielsen.
Scale-Space Theories in Computer Vision, 3rd international conference, 2001.

Approximating Non-linear Diffusion
E. Dam, O.F. Olsen, & M. Nielsen.
Scale-space Methods in Computer Vision, 4th international conference, 2003.

Non-linear Diffusion in 3D for Interactive Segmentation of Brain Tissue
E. Dam & M. Letteboer.
Submitted to MICCAI, 2003.

Prostate Shape Modeling based on Principal Geodesic Analysis Bootstrapping
E. Dam, P.T. Fletcher, S.M. Pizer, G. Tracton, & J. Rosenman.
Submitted to the Variational, Geometric and Level Set Methods workshop of ICCV, 2003.

In addition, the following supporting publications form the basis for some of the presented work
but are not directly included in the dissertation. First, the supporting publications that have
been subject to peer review:

Interactive Multi-Scale Segmentation in Clinical Use
E. Dam, P. Johansen, O.F. Olsen, A. Thomsen, M. Lillholm, T. Darvann, A. Dobrzeniecki,
N. Hermann, N. Kitai, S. Kreiborg, P. Larsen, & M. Nielsen.
European Congress of Radiology, 2000.

Interactive multi-scale watershed segmentation of tumors in MR brain images
M. Letteboer, W. Niessen, P. Willems, E. B. Dam, & M. Viergever.
The Interactive Medical Image Visualization and Analysis workshop of MICCAI, 2001.

Segmentation of Tumors in MR Brain Images using an Interactive Multi-scale Watershed Al-
gorithm
M. Letteboer, O. F. Olsen, E. B. Dam, P. Willems, M. Viergever, & W. Niessen.
Submitted to IEEE Transactions on Medical Imaging, 2003.

iii



Finally, the supporting publications that have been subject to limited or no peer review:

Nabla Vision
A. Thomsen, E. Dam, O.F. Olsen, P. Johansen, M. Nielsen, & M. Lillholm.
Segmentation program developed 1999–2003.
http://www.itu.dk/image/nablavision.

Evaluation of Diffusion Schemes for Watershed Segmentation
E. Dam.
Master’s thesis, University of Copenhagen, 2000.

Method and System for Multi-dimensional Segmentation
O. F. Olsen, E. B. Dam, M. Lillholm, A. Thomsen, P. Johansen, & M. Nielsen.
Danish patent application filed October 2000.

M-Rep Based Classification of Organ Conformations for Radiation Treatment Planning of
Prostate Cancer
E. Dam, S.M. Pizer, J. Rosenman, & G. Tracton.
The 17th Annual UNC Radiology Research Symposium, 2002.

Billedanalyse og Str̊alebehandling
E. Dam.
(in english: “Image Analysis and Radiation Treatment”)
At the science web portal of Danmarks Radio (national danish public service broadcasting
company), 2003.

Deep Structure I & II
E. Dam & B. ter Haar Romeny.
Chapters 13 and 14 in Front End Vision and Multi-Scale Image Analysis, 2003.

Deep Structure III
B. ter Haar Romeny & E. Dam.
Chapter 15 in Front End Vision and Multi-Scale Image Analysis, 2003.

iv



Acknowledgements

A large numbers of persons have been valuable to me during my Ph.D. years. I hope you all
know who you are. I will only mention a few persons that have been particularly helpful in the
work that lies behind this dissertation:

Professor Mads Nielsen (IT University of Copenhagen)
For supervision and inspiration.

Associate Professor Ole Fogh Olsen (IT University of Copenhagen)
For co-supervision, inspiration, and for answering silly questions.

Professor Stephen M. Pizer (University of North Carolina, Chapel Hill)
For inspiration during the last one and a half year.

Martin Lillholm (IT University of Copenhagen)
For answering silly questions and coming up with brand new ones of your own.

Contact Information

The author of this dissertation can currently be contacted at the following address:

Erik Dam
IT University of Copenhagen
Glentevej 67
DK-2400 Copenhagen NV
Denmark
Email: erikdam@itu.dk

v



Contents

1 Introduction 1

1.1 The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Non-Committed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Implicit Commitment via Evaluation . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Explicit Commitment via Shape Modeling . . . . . . . . . . . . . . . . . . 3

1.2 The Contributions in this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Reading this Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Multi-scale Watershed Segmentation 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 MSWS Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 ∇Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Applications of ∇Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Evaluating Non-linear Diffusion in MSWS 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Diffusion Schemes for Multi-scale Watershed Segmentation . . . . . . . . . . . . 14

3.2.1 Regularised Perona-Malik . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Anisotropic Non-linear Diffusion . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Maximally Anisotropic Diffusion . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Generalized Anisotropic Non-linear Diffusion . . . . . . . . . . . . . . . . 16

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Optimal User Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Optimization of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Evaluating Non-linear Diffusion in MSWS in 3D 25

4.1 Non-linear Diffusion in 3D for Interactive Segmentation of Brain Tissue . . . . . 25
4.2 Interactive Segmentation of Brain Tumors . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Non-linear Diffusion in MSWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Revisiting Segmentation of White Matter in 2D Slices . . . . . . . . . . . 28
4.3.2 Non-linear Diffusion in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.3 When does Non-linear Diffusion Improve Performance? . . . . . . . . . . 30

4.4 Evaluating GAN for Segmentation of Brain Tumors . . . . . . . . . . . . . . . . 31
4.4.1 Majority Standard Segmentations . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Evaluating GAN for White Matter Segmentation . . . . . . . . . . . . . . . . . . 32
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



5 Reevaluating Non-linear Diffusion in MSWS in 3D 34

5.1 Improving the Optimization Method . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.1 Naive Descent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Multi-scale Conjugate Gradient Descent Algorithm . . . . . . . . . . . . . 36
5.1.3 Regularization and Illegal Parameter Values . . . . . . . . . . . . . . . . . 36

5.2 Segmentation of Elongated Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Segmentation of Flat Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Reevalution of White Matter Segmentation in 3D . . . . . . . . . . . . . . . . . . 42
5.5 Summary: GAN for MSWS in 2D and 3D . . . . . . . . . . . . . . . . . . . . . . 43

6 Exploring Non-linear Diffusion: The Diffusion Echo 45

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Diffusion Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Generalized Anisotropic Non-linear Diffusion . . . . . . . . . . . . . . . . 46
6.2.2 Corner Enhancing Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.1 The Diffusion Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.2 Diffusion Echo Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Diffusion Echo Application: Grouping . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Diffusion Echo Application: Deep Structure Summary . . . . . . . . . . . . . . . 54
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Approximating Non-linear Diffusion 56

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Approximating Non-linear Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.1 The Diffusion Echo Moments . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.2 Maximum Entropy Approximation Filters . . . . . . . . . . . . . . . . . . 59
7.2.3 Illustrating Diffusion Approximations . . . . . . . . . . . . . . . . . . . . 60

7.3 Information Theoretical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4 Application Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.4.1 Non-linear Diffusion in MSWS . . . . . . . . . . . . . . . . . . . . . . . . 67
7.4.2 Approximating Non-linear Diffusion in MSWS . . . . . . . . . . . . . . . 68
7.4.3 Multi-scale Scale Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Exploring Shape Models 72

8.1 Improving User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2 Adding a Shape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3 Related Shape Representation Methods . . . . . . . . . . . . . . . . . . . . . . . 74
8.4 Generative Representation with Fixed Topology . . . . . . . . . . . . . . . . . . . 74

vii



9 Prostate Shape Modeling based on

Principal Geodesic Analysis Bootstrapping 76

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.2 The UNC Pelvis Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.3 Medial Shape Representation: m-rep . . . . . . . . . . . . . . . . . . . . . . . . . 79

9.3.1 m-rep Geometry Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.2 Segmentation using m-reps . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9.4 Shape Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.4.1 First Attempt: The Potato Model . . . . . . . . . . . . . . . . . . . . . . 82

9.5 Principal Geodesic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.5.1 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.5.2 m-rep Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.5.3 PGA of m-reps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.6 Shape Model Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.6.1 Bootstrapping the Potato using PGA Mean . . . . . . . . . . . . . . . . . 86
9.6.2 Bootstrapping the Generic using PGA Mean . . . . . . . . . . . . . . . . 87
9.6.3 Bootstrapping using PGA Mean and Modes . . . . . . . . . . . . . . . . . 87
9.6.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.6.5 Exclusion of Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.6.6 Resulting Prostate Shape Model . . . . . . . . . . . . . . . . . . . . . . . 89

9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

10 Revisiting Prostate Shape Modeling 93

10.1 Convergence of the Bootstrap PGA Model . . . . . . . . . . . . . . . . . . . . . . 93
10.1.1 Relative vs Absolute Geometric Penalties . . . . . . . . . . . . . . . . . . 93
10.1.2 Constraining the Medial Sheet . . . . . . . . . . . . . . . . . . . . . . . . 95
10.1.3 Bootstrapping using Absolute Geometric Penalties . . . . . . . . . . . . . 96
10.1.4 Proving Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

11 Summary 101

11.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

viii



Chapter 1

Introduction

The topic of this dissertation is medical image analysis with focus on multi-scale methods and the
task of segmentation. However, most of the results are generally applicable to other computer
vision areas and other tasks than segmentation.

The main theme is how to move from explicitly non-committed approaches to methods that
incorporate prior knowledge and thereby become specialized to the given task.

1.1 The Big Picture

A complete understanding of the field of medical image analysis requires perfect models of the
anatomy, the image formation process, and especially the variation within these depending on
inter and intra patient variability, imaging machinery, and choices made by the radiologist.
Explicit modeling of all these factors is not feasible. Even though some of the variations can
be modeled with a sufficient accuracy, others can still only be modeled through simplifying
approaches. This is in particular the case for the modeling of patient variability.

Even so, impressive results have been achieved through models that ignore the underlying cause
for the image or shape formation and simply model the data. One obvious example is the Active
Shape Model [Cootes et al., 1995].

However, these models are still somewhat naive. Admittedly, in many cases the active shape
model provides a model of shape variation that allows generalization from training shapes to
other organs of the same type. However, these models often suffer from a lack of specificity in
the sense that they allow the formation of illegal shapes. Either these shapes are illegal in the
sense that they are not realistic examples for the given object — or alternatively mathematically
illegal (i.e. objects with unsuitable topology or self-intersecting surfaces).

More realistic models are possible through modeling of the actual physical properties of the
anatomical structures. Using this approach, nice results have been achieved, for instance through
the use of Finite Element Models [Crouch et al., 2003]. However, research is needed before these
methods are fully matured.
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Currently a full model that explains the entire data formation process including patient variabil-
ity and image aquisitioning is not realistic. Models that approximate the observed image data
directly and ignore the underlying image formation process do in many cases provide sufficiently
accurate modeling and help solve the task at hand. The work in this dissertation is focused on
this last approach.

1.1.1 Non-Committed Methods

When facing a specific task, a full model would allow incorporation of this understanding of the
patient variability and image aquisition process as prior knowledge in a probabilistic framework.
The lack of a model suggests non-committed methods. Ad hoc methods typically have implicit
assumptions about the data, and therefore commit the methods to specific problem classes. A
non-committed method explicitly enforces a minimal set of assumptions.

Perhaps surprisingly, making a method non-committed is not a trivial task — most methods are
committed in implicit and undesired ways. Scale-space theory [Koenderink, 1984, Witkin, 1983,
Ijima, 1962] provides one viewpoint on how to observe and analyze data in the absence of an
explicit model of the image formation process.

An example of a method that follows this paradigm is the Multi-scale Watershed Segmentation
method [Olsen, 1997] that is the starting point for much of the work is this dissertation. In
this method, the segmentation problem is addressed with the only assumption that there should
be some contrast across the boundaries of the desired objects. Size, shape, texture, and other
features are assumed unknown. Without knowledge of the desired objects, automatic segmen-
tation is obviously impossible. The method uses the approach where the user is presented with
3D building blocks that can then be used to interactively sculpt the desired objects. Even with
this few assumptions on the observed data and the desired objects, the method allows good
performance on complicated tasks such as segmentation of the mandible [Dam et al., 2000] and
brain tumors [Letteboer et al., 2001] (see figure 1.1).

While following an appealing theoretical paradigm, non-committed methods also suffer from this
very principle. They will not perform worse than average for any problem, but unfortunately they
will not offer superior performance on many problems either. Even though the full understanding
of most problems is not feasible, often even a limited modeling of the observed data allows a
certain degree of specialization of a method.

The work in this dissertation investigates the path from non-committed towards more specialized
methods.

1.1.2 Implicit Commitment via Evaluation

Incorporation of prior knowledge allows commitment of a method to the given task. Simple
as this sounds, it is often problematic due to lack of ability to quantitatively model the prior
knowledge. In cases where there is ground truth available, that describes the desired output of
the method, this problem can be overcome. If a method has a number of free parameters to
allow specialization, these can be optimized through evaluation against the ground truth.

2



Figure 1.1: Segmentation of a brain tumor using the ∇Vision segmentation program based on
multi-scale watershed segmentation [Dam et al., 2003a, Olsen, 1997]. Left: The building blocks
that the user can select and deselect to sculpt the desired object. In this case the tumor at the
top of the brain. Right: The segmented tumor. The illustration is from [Letteboer et al., 2003].

We use this approach to design the Generalized Anisotropic Non-linear diffusion schemes for
use in the multi-scale watershed segmentation method. Committing the building blocks through
optimization of the parameters adds prior knowledge of the ground truth objects and thereby
allow construction of building blocks better suited for the given task [Dam & Nielsen, 2000,
Dam & Letteboer, 2003].

The analysis and optimization of non-linear diffusion schemes inspires the development of the
Diffusion Echo [Dam & Nielsen, 2001]. This leads to better understanding of the non-linear
diffusion schemes and in particular to the connection between non-linear and linear diffusion.
The practical outcome of the work could be efficient implementation of simpler approximations
of non-linear schemes [Dam et al., 2003c].

These approaches have little explicit representation of the actual prior knowledge that allows
them to be specialized towards a specific task. The non-linear diffusion schemes have parameters
that are optimized through evaluation. These optimal parameters do reveal some information
about the anatomical objects. For instance, the soft edge threshold in the Edge Enhancing dif-
fusion scheme [Weickert, 1998a] gives an explicit measure for the object boundary contrast, that
the method is specialized towards. The specialization implied by the other optimal parameters
is less obvious. For instance, boundary curvature and overall object elongation are implicitly
adressed, but this specialization is quite intangible.

1.1.3 Explicit Commitment via Shape Modeling

The work on committing the multi-scale watershed segmentation method through the use of
non-linear diffusion schemes shows that the performance can be significantly improved. How-
ever, achieving essentially automatic segmentation is not possible for most tasks. The implicit
specialization does not allow sufficient commitment to the given segmentation task.

3



Specialization through a shape model of the desired anatomical objects is more explicit. In
this approach, the shape model is trained on a database of example organs. For parametric
shape models with probabilisticly defined variations (such as the active shape model or the
m-rep [Pizer et al., 2003a]) this is actually very similar to commitment through optimization of
parameters via evaluation against ground truth data. However, a major difference is the ability
to sample from parametric shape models. This allows visualization of the shape class that the
method is committed to. Thereby the commitment becomes more explicit.

Extending the multi-scale watershed segmentation method with an explicit shape model is a non-
trivial problem. The segmentations are achieved through adding and removing regions at differ-
ent scales. This corresponds to selecting and deselecing nodes in the multi-scale linking struc-
ture. Thereby the shape of the resulting object is implicitly represented as an attributed graph.
For similar but different objects, the size and topology of this graph will differ. Even though
promising preliminary results exist for related shape representations [Shokoufandeh et al., 2002,
Demirci et al., 2003, Siddiqi et al., 1999], no shape model has yet been presented for an implicit
shape representation of this kind. The main problem compared to the cited approaches is that
the multi-scale watershed linking tree represents the entire image and not only the desired object.

Another shape model, that is also based on an underlying graph representation with varying
topology, is the m-rep. A sampled medial axis will in general differ in topology and size for
different objects. The approach chosen in the m-rep is to make it a generative model with fixed
topology and sampling for a given object class. A similar approach could be relevant in the
multi-scale watershed method.

The concluding work presented in this dissertation presents a shape modeling method that
automatically generates an m-rep shape model with corresponding probabilistic variations from
a training collection of shapes. The method is used to create a prostate shape model.

1.2 The Contributions in this Dissertation

The contributions of this dissertation fall in three main categories:

Non-linear Diffusion in Multi-Scale Watershed Segmentation in 2D & 3D

The generalized anistropic non-linear diffusion scheme is introduced and evaluated for the
purpose of feeding prior knowledge of the desired anatomical structures into the interactive
multi-scale watershed segmentation method. This work is concentrated on segmentation
of brain structures in 2D and 3D.

The Diffusion Echo

The diffusion echo is introduced and offers intuitive visualization and analysis of non-linear
diffusion schemes. In particular, the analysis is focused on the feasibility of approximating
non-linear diffusion schemes with simpler, local Gaussian filters.

Shape Modeling via a Medial Representation

A bootstrapping method for automatic construction of a medial shape model from a train-
ing set of anatomical structures is introduced. The method is applied for building a
prostate shape model.

4



1.3 Reading this Dissertation

The following chapters assume basic knowledge of standard medical image analysis methods. The
presentation is kept short and concise. A more elaborate introduction to the specific concepts
required to read this dissertation can be found in [Dam, 2000].

The majority of the following chapters are based on edited versions of the publications listed in
the preface. Each publication is assigned a separate chapter. These chapters have been slightly
re-written in order to present the work coherently. However, the main contents and results are
left untouched. Where later work improves earlier published results, the original results are
therefore included in order to faithfully present the published work. The improved results are
then added in a following chapter.

Chapter 2 introduces the multi-scale watershed segmentation method. The work on the use of
non-linear diffusion in the multi-scale watershed segmentation is presented in chapters 3, 4, and
5. The diffusion echo and its uses are presented in chapter 6 and 7. The work on shape modeling
is presented in chapters 8, 9, and 10. Finally, the concluding summary is in chapter 11.
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Chapter 2

Multi-scale Watershed Segmentation

As announced in the introductory chapter, the multi-scale watershed segmentation (MSWS)
method acts as the starting point for much of the work in this dissertation. In this chapter, the
method and an implementation of it is presented.

2.1 Introduction

In many medical segmentation tasks, the images do not sufficiently clearly outline the relevant
anatomical structures for making simple automated segmentations. The counter-example is
simple thresholding of bone structures in CT images [Lorensen & Cline, 1987]. However, such
techniques do not work for most anatomical structures such as soft tissue in CT (due to varying
and indistinguishable attenuation [Webb, 1988]), most structures in MR (due to the image in-
homogeneities [Webb, 1988]), and most structures in PET/SPECT (due to noise [Webb, 1988]).
Here, the alternatives are either performing a tedious manual outline slice per slice, or creating
specialised algorithms heavily supported by prior information [Cootes et al., 1995].

The interactive 3D multi-scale watershed segmentation tool, ∇Vision, may successfully be
applied in these situations [Dam et al., 2000]. The image scale-space is created by Gaussian
convolution [Ijima, 1962, Witkin, 1983, Koenderink, 1984]. The watersheds of the gradient
magnitude are computed independently at all scales. A linking procedure gives the simpler
large scale watersheds the small scale localization [Olsen, 1996, Lindeberg, 1994, Gauch, 1999,
Lifshitz & Pizer, 1990, Griffin & Colchester, 1995]. The linked watershed regions constitute a
multi-scale partitioning of the images.

Ideally, a given anatomical structure may be outlined by a single region. However in most
situations, the linked watersheds do not directly compare to the anatomical structures. ∇Vision
lets the user arbitrarily change scale and select and deselect regions, and thereby sculpt the
anatomical structure. All interaction is geometrical and thereby intuitive to the clinician. The
speed-up compared to manual segmentation depends on the interactions required to outline the
anatomical structure.
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The Gaussian scale-space is a least committed scale-space. A number of other scale-space qualify
as being least committed since they posess similar axiomatic foundations. Among these are alpha
scale-space [Duits, 2003], total variation minimizing diffusion [Rudin et al., 1992], mean curva-
ture motion [Gage, 1983], and affine morphological scale-space. A certain measure of personal
preference guides our choice of Gaussian scale-space as the elevated least committed scale-space.
Furthermore, the seperability property of Gaussian scale-space allows simple and fast implemen-
tations. Though the use of a least committed scale-space the resulting segmentation method is
considered general with no specific task in mind.

2.2 MSWS Basics

During rain the drops gather in pools. The topology of a landscape defines the regions of support
for each pool — the catchment basins. The boundaries between the catchment basins are termed
watersheds. On large scale, the watersheds of a landscape are a particular kind of ridges and
the catchment basins are the dales. The geographical concept watershed was introduced to
mathematicians in [Maxwell, 1870].

The watersheds allow a simple partitioning of an image. However, for segmentation purposes
the regions border should be defined as the watersheds of a dissimilarity measure instead of the
original image. A simple, non-committed dissimilarity measure is the gradient magnitude.

The structures that are outlined by this partitioning are defined with respect to the scale at which
the gradient is calculated. Different scales are therefore needed to locate objects of different sizes.
The theory of scale-space suggests looking at the deep structure [Koenderink, 1984, Witkin, 1983,
Sporring et al., 1997] — how the catchment basins develop over scale.

Each catchment basin corresponds to a local minimum for the gradient magnitude. The generic
events for the gradient magnitude minima have been derived with the conclusion that fold
annihilation, fold creation, cusp annihilation, and cusp creation catastrophes are stable and
therefore to be expected for typical images. For the catchment basins, this corresponds to the
annihilation, creation, merge, and split events [Olsen, 1996, Olsen & Nielsen, 1997]. These are
illustrated in figure 2.1.

Linking of the catchment basins across scale combines the simplification at the detection scale
with the fine scale precision at the localization scale (see figure 2.2). The segmentation method
presented in [Olsen, 1996] uses these localized basins as building blocks for the segmentation.
The user can shift the detection scale and thereby select building blocks appropriate for sculpting
the desired objects. As scale increases, regions merge with no movement of the boundaries due
to the linking to localization scale.

Approaches related to the multi-scale watershed segmentation of [Olsen, 1996] are presented in
[Lifshitz & Pizer, 1990], [Gauch & Pizer, 1993], [Jackway, 1996], and [Gauch, 1999]. However,
important contributions of [Olsen, 1996] are the robust linking of regions using maximum overlap
and that an intuitive interface is presented that allows the user to interact directly with the three-
dimensional building blocks. This forms the basis for an implementation that is presented in
the following section.
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No change Annihilation Creation Merge Split

Figure 2.1: Linking of catchment basins as scale increases. The five possible linking types of
watershed regions between two adjacent scale levels [Olsen, 1996]. From low scale to high scale,
each region is linked to the region at high scale with maximum area/volume overlap. This creates
a linking tree (as opposed to a graph) since creations and split are implicitly ignored.

Original example
image

Watersheds at
localization scale

Watersheds at
detection scale

Linked to
localization scale

Figure 2.2: Linking of watershed regions down to localization scale. The catchment basins at
detection scale is linked down to the localization scale and thereby get fine scale precision.

2.3 ∇Vision

The segmentation program does not attempt automatic segmentation — rather the goal is to
provide the expert user with an intuitive interaction that aids the segmentation process and
thereby reduce interaction time and increase reproducability.

The philosophy of the segmentation methods of ∇Vision is to provide effective means for simpli-
fying the segmentation task — in a non-committed fashion that allows the expert user to reach
the desired segmentation.

Segmentation using Building Blocks

The user selects and deselects among the generated building blocks in order to sculpt the desired
anatomical objects. The segmentation process is illustrated in figure 2.3.

The choice of scale is essential for the selection of building blocks. If the scale is too small, many
building blocks must be added in order to reach the desired object. A typical process starts
with the selection of some large building blocks followed by refinement at a smaller scale through
addition and removal of smaller building blocks. It is possible to reach any desired segmentation
since the smallest building blocks are voxel-sized.
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Figure 2.3: The building blocks generated in the preprocessing step are used for segmenting the
kidney. Left: A single building block have been selected. The size of the building blocks is
controlled by the scale/resolution slider (at 21 in the figure). Right: An additional building
block is selected by clicking on the partial kidney where the top is missing. The object is a
segmentation of the kidney.

A key point is that the actions are 3D actions. Even though the building blocks are only
displayed in terms of the boundaries on the planes, an action will add/remove a 3D shape.

Furthermore, actions are done in 3D. A selection on top of an object will add the neighboring
building block — even though the boundaries for this building block are not displayed on any
plane. An example of this effect is illustrated in figure 2.3 where the top half of the kidney is
added without moving the planes to the slices that contain that part.

Preprocessing using Intensity Transformation

The preprocessing step generating the building blocks can be customized using an intensity
transformation. This changes the contrast between the intensities that corresponds to specific
anatomical structures. Since the construction of the building blocks are based on the contrast,
a suitable intensity transformation can ensure that the building blocks are better suited for
segmentation of a given object. This is a simple, interactive commitment of the method to a
specific segmentation task.

Segmentation using Histrogram Thresholding

Some structures are easily distinguishable from their intensity values in a scan. The generic
example is bone structure in CT scans. For easy segmentation ∇Vision has a simple thresholding
segmentation method.

This method is illustrated in figure 2.4. Note that a threshold segmentation will generally not
offer a perfect segmentation due to noise and other artifacts (contrast enhancement agents, for
example). Morphological operations can sometimes effectively be used to clean the small noisy
segments but are less useful for the larger segments due to artifacts. In both cases, deselection
of building blocks offers an effective way of cleaning up the segmentation.
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Figure 2.4: Segmentation using histogram thresholding. Left: An intensity interval has been
specified (from a histogram of the intensities) that selects the higher intensities. As a result the
bone structure is selected. However, a spongy kidney and some blood vessel pieces are selected
as well (their high intensity values are due to a contrast agent) together with small sections
with noisy values. Relatively large building blocks can now be applied to deselect the undesired
structure in approximately 20 mouse clicks. Right: The final segmentation result is achieved.

Segmentation using Flooding

Some anatomical structures appear to be “easy” to segment due to a high degree of contrast.
An example could be a rib from the abdominal CT scan shown previously. However, range
segmentation is not applicable since the entire bone structure will be selected. While it is quite
easy to segment the rib by simply selected all the corresponding building blocks, this is somewhat
tedious. In order to simplify this the program supports “flooding” of the building blocks.

The flooding process helps select the neighboring building blocks that are similar to the first
selected. The process is illustrated in figure 2.5. The procedure is defined by a region merging
process where neighboring building blocks are sorted by difference between mean grey value
from the each building block to the starting block.

2.4 Applications of ∇Vision

The program ∇Vision has been applied for segmentation of the masseter (chewing muscle)
in MR. This is a highly complicated task. The evaluation shows a speed up factor of two
compared to manual segmentation, which is the only available alternative [Dam et al., 2000,
Murakami, 1998].

The program has also been evaluated for segmentation of brain tumors [Letteboer et al., 2001,
Letteboer et al., 2003]. The evaluation compared the segmentation program with manual out-
lining with respect to accuracy and reproducibility (measured as inter- and intra-observer vari-
ability). The results showed that the two segmentation methods are interchangeable in terms of
accuracy. Furthermore, ∇Vision had higher reproducibility than manual segmentation.

Finally, the interaction time for the MSWS program was on average one third of the time
used for manual outlining. The evaluation data set is illustrated in figure 2.6 and an example
segmentation is shown in figure 1.1 (chapter 1, page 3).
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Figure 2.5: Segmentation using flooding. Top left: Flooding is initiated on a building block
at the lower part of the Aorta. This also selects the scale used for the entire flooding process.
Top right: By scrolling the horizontal “wheel” in the Flooding controls window more building
blocks are added until the flooding spills into undesirable segments. Bottom left: Rewinding the
wheel removes the spilled segments. The partially segmented aorta is the result of one flooding
operation (using 25 building blocks). Bottom right: A few selections add the remaining part at
the top. Note that the bumps on the middle of the aorta are where smaller blood vessels branch.

Figure 2.6: The data set consists of 20 scans with brain tumors. These are divided into 7 full-
enhancing tumors (type I), 6 ring-enhancing tumors (type II), and 7 non-enhancing tumors (type
III). Each tumor has been manually segmented twice by three operators by slice-wise outlining.
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Recycling in this Chapter

The introduction and section 2.2 are edited parts of [Dam & Nielsen, 2000] and [Dam, 2000].

The segmentation program ∇Vision was developed by Andreas Thomsen, Erik Dam, and Ole
Fogh Olsen [Johansen et al., 1999, Dam et al., 2003a, Olsen et al., 2000].

The brain segmentation figures in section 2.4 are from [Letteboer et al., 2003].
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Chapter 3

Evaluating Non-linear Diffusion in

MSWS

In this chapter we evaluate a broad class of non-linear diffusion schemes in the setting of the
multi-scale watershed method presented in the previous chapter. Through a new scheme GAN,
we show that diffusion similar to the non-linear Perona-Malik scheme is superior to the other
evaluated diffusion schemes. This specialization of the segmentation method provides a speed
up factor of two for the task of interactively segmenting gray and white matter of the brain.

3.1 Introduction

The Gaussian scale-space is a least committed scale-space. A non-linear scale-space commits
itself to certain intensity variations through the non-linear function and to certain local edge
shapes through the diffusion structure. This is formalised through the connection between energy
minimization methods [Mumford & Shah, 1985] and non-linear diffusion in the biased non-linear
diffusion [Nordstrom, 1990]. In this light, one may argue that the use of the non-linear diffusion
schemes is the first step in commitment towards using prior shape and intensity knowledge as in
the active contour and core-based segmentation methods [Cootes et al., 1995, Pizer et al., 1994,
Cremers et al., 2002b].

In this work, we evaluate a number of non-linear diffusion schemes for the multi-scale watershed
segmentation method in 2D: non-linear isotropic Perona-Malik [Perona & Malik, 1990], Weick-
ert’s non-linear image enhancing anisotropic schemes [Weickert, 1998a], and a generalization of
these. In section 3.2.4, we argue that these schemes in a natural way span a space of diffusion
schemes supporting segmentation.

The flavor of our work is close to the comparison of diffusion schemes for segmentation performed
on the hyper-stack [Vincken, 1995, Koster, 1995, Niessen et al., 1997]. The major differences
are that the hyper-stack is based on isophote linking and that it constitutes an automated
segmentation algorithm.
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Another related work is the evaluation of the use of non-linear diffusion as preprocessing before
watershed segmentation [Weickert, 1998b]. In this work we specifically evaluate how the deep
structure of the various scale-spaces support the segmentation.

In section 3.2 the evaluated diffusion schemes are presented. The evaluation method is outlined
in section 3.3 with results in section 3.4.

3.2 Diffusion Schemes for Multi-scale Watershed Segmentation

The original multi-scale watershed segmentation method relies on the linear Gaussian scale-
space to simplify the image. This simplification determines how the catchment basins group
into gradually larger building blocks corresponding to image structures at a given scale.

The linear scale-space for an image I(~x) is described by the PDE

∂L(~x; t)

∂t
= ∆L(~x; t) = Lii(~x; t)

with the initial condition: L(~x; 0) = I(~x). The Laplace operator ∆ is written using the Einsteins
summation convention: Lii = Lxx + Lyy . . . The Gaussian convolution kernel with standard
deviation σ =

√
2t is the Green’s function for the PDE.

The Linear Gaussian diffusion scheme (here denoted LG) has extremely nice theoretical proper-
ties [Lindeberg, 1994, Weickert, 1998a]. In particular, the causality property, the average gray
level invariance property, and the fact that the image gets uniform intensity for scale tending to
infinity ensures that the linear scale-space is applicable for the multi-scale watershed segmenta-
tion method. However, these properties do not ensure that it is an optimal diffusion scheme for
the method. Specifically the isotropy property will tend to favor roundish objects.

In [Olsen, 1996, Olsen & Nielsen, 1997] the generic events for the gradient magnitude minima
are derived. When the diffusion scheme is replaced by non-linear schemes, the analysis of
the generic events for the watershed regions is no longer applicable. Some of these non-linear
schemes have been analyzed [Damon, 1997]. However, from a practical viewpoint, the linking
of the discrete scale levels can handle nearly any diffusion scheme with suitable simplification
properties due to robust matching of regions [Dam, 2000]. The linking of watershed regions
are done by linking a region a low scale to the region at the next, higher scale level with the
largest area overlap. Thereby, the catastrophes are not detected and no information regarding
the specific catastrophe type is applied in the linking procedure. Furthermore, no extrapolation
and matching of singularity strings in scale-space in necessary.

3.2.1 Regularised Perona-Malik

The classical Perona-Malik diffusion scheme is designed to preserve edges during the diffusion
[Perona & Malik, 1990]. The regularisation due to [Catté et al., 1992] is denoted RPM:

∂L(~x; t)

∂t
= div( p(|∇Lσ|2) ∇L ) where p(|∇Lσ|2) =

1

1 + |∇Lσ|2

λ2

(3.1)
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The parameter λ is a threshold for the gradient magnitude required to make the scheme preserve
an area (an edge). The σ determines the Gaussian regularisation scale at which the gradient
∇Lσ is evaluated. The divergence operator is defined div = ∂

∂x
+ ∂

∂y
+ . . .

3.2.2 Anisotropic Non-linear Diffusion

Weickert [Weickert, 1998a] defines the anisotropic non-linear diffusion equation for a 2D image
I by the PDE:

∂L(~x; t)

∂t
= div( D(Jρ(∇Lσ)) ∇L ) where L(~x; 0) = I(~x) (3.2)

The diffusion tensor D ∈ C∞(R2×2, R2×2) is assumed to be symmetric and uniform positive
definite. The structure tensor Jρ is evaluated at integration scale ρ, and the gradient ∇Lσ at
sampling scale σ.

Throughout this dissertation we will ignore the structure tensor (implicitly setting it to identity)
in the explored diffusion schemes.

The diffusion equation possesses the same simplification properties mentioned for linear Gaussian
diffusion above (obviously not including the isotropy property) [Weickert, 1998a] that ensures
that the diffusion schemes are applicable for the segmentation method.

For the following diffusion schemes, the diffusion tensor is defined in terms of the eigenvectors
v̄1 ‖ ∇Lσ, v̄2 ⊥ ∇Lσ and the corresponding eigenvalues λ1 and λ2. Furthermore, Weickert
presents a diffusivity function wm designed to preserve edges more aggressively than the Perona-
Malik diffusivity function p.

wm(|∇Lσ|2) =











1 |∇Lσ| = 0

1 − exp

(

−Cm
(

|∇Lσ |2

λ

)m

)

|∇Lσ| > 0
(3.3)

Here m determines the aggressiveness of the diffusivity function, and Cm is derived from m such
that the flux magnitude function |∇L| wm(|∇Lσ|2) is increasing for |∇L|2 < λ and decreasing
for |∇L|2 > λ [Weickert, 1998a, Dam, 2000]. In the following the diffusivity function wm is used
to define the eigenvalues λ1 and λ2.

Isotropic Non-linear Diffusion

Weickert [Weickert, 1998a] designs an isotropic non-linear diffusion scheme (here denoted IND)
by the following eigenvalues λ1 = λ2 = wm(|∇Lσ|2). For m = 0.75 this is qualitatively equivalent
to Perona-Malik diffusion (this can be seen by comparing the respective diffusivity functions).
Intuitively, this is an increasingly aggressive version of the Perona-Malik scheme for m > 0.75.
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Edge Enhancing Diffusion

The anisotropic version is termed edge enhanced diffusion and defined by the eigenvalues λ1 =
wm(|∇Lσ|2) and λ2 = 1. The choice m = 4 (which implies Cm = 3.31488) is used with visually
appealing results in [Weickert, 1998a]. Here, we also exploit m = 2 (Cm = 2.33666) and m = 3
(Cm = 2.9183) for the edge enhancing diffusion scheme.

The isotropic non-linear scheme enhances edges so aggressively that noise is preserved around
edges for a long scale interval. The anisotropic schemes (here denoted EE2, EE3, and EE4
depending on the choice of m) remedy this by smoothing along the edges.

3.2.3 Maximally Anisotropic Diffusion

Inspired by Weickert’s anisotropic diffusion equation we define the maximally anisotropic diffu-
sion scheme by defining the eigenvalues λ1 = 0 and λ2 = 1. Thereby the diffusion is completely
restricted across the potential edge while being allowed to flow along the isophotes. The diffusion
is similar in spirit to Mean curvature motion — however the schemes are not identical.

Since one eigenvalue is zero, the diffusion tensor is not positive definite. Therefore we cannot
assume that this scheme will fulfill the properties proven for the anisotropic non-linear diffusion
equation (equation 3.2).

3.2.4 Generalized Anisotropic Non-linear Diffusion

The diffusion schemes previously presented are defined by the diffusivity functions in the gradient
direction and the isophote direction. Figure 3.1 illustrates this “space of diffusion schemes”. This
inspires the new Generalized Anisotropic Non-linear diffusion scheme (denoted GAN) defined
by the following diffusivity functions λ1 and λ2:

λ1 = w(m,λ, |∇Lσ |2)
λ2 = θ + (1 − θ) λ1 (3.4)

The Weickert diffusivity function (equation 3.3) is written w(m,λ, s2) instead of wm(λ, s2) since
m is to be perceived as a regular parameter of the diffusivity function. The parameter θ deter-
mines the degree of anisotropy.

The GAN scheme is named Generalized Anisotropic Non-linear diffusion since it offers a straigth-
forward generalization of the previously presented diffusion schemes. The choice of the param-
eters, in particular the aggressiveness parameter m and the anisotropy parameter θ, allows the
scheme to cover the white area in figure 3.1. The specific schemes are realised by the following:

LG Linear Gaussian diffusion is defined by λ → ∞.
IND Isotropic Non-linear Diffusion is achived for θ = 0.
RPM Regularised Perona-Malik scheme is approximated by

θ = 0 and m = 0.75.
EEx The Edge Enhancing schemes EE2, EE3, and EE4 are

defined by θ = 1 and the corresponding m.
MAD Maximal Anisotropic Diffusion is achieved for θ = 1

and λ → 0.
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Figure 3.1: Space of diffusion schemes.
The gradient direction and isophote direc-
tion diffusivity functions determine the po-
sitions on the horizontal and vertical axes,
respectively. The diffusion schemes with
aggressive diffusivity functions are mapped
closest to the lower, left corner. The gray
area is populated by diffusion schemes that
are not suited for segmentation-like pur-
poses — they diffuse more across edges
than along them. Thereby the catchment
basins merge across possible object borders
before merging inside the regions likely to
correspond to the desired objects.
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3.3 Evaluation

An obvious evaluation is to let clinicians test the segmentation method on real segmentation
tasks with the different diffusion schemes. However, this is not objective and requires extensive
work by the clinicians. The alternative is to measure the quality of the segmentations with
respect to a “correct segmentation” — the ground truth.

The quality measure should be general, objective, and quantitative. For specific segmentation
tasks, the quality measure could be defined in terms of specific features of the desired segmen-
tations (shape, topology, etc.) or even ultimately by the ability to facilitate a correct diagnosis.
However, for a general evaluation method, the measure must be simple and geometric. This al-
lows area or boundary oriented measures such as the area overlap or the mean minimal boundary
distance between the ground truth segmentation and the segmentation being evaluated.

Volume overlap is the simplest measure to compute for segmentations represented by pixels.
However, even the normalized volume overlap is not an optimal measure since the measure
is increasing with the compactness of the objects (the area to boundary ratio). Therefore the
normalized volume overlap does not offer a good objective absolute evaluation of a segmentation.
It does however allow fair relative evaluation of competing segmentations on the same object.
Evaluation on a collection of objects can also impose problems if the compactness vary greatly
across the collection. This would bias the importance of each object in the overall evaluation.
If the objects in the ground truth collection are similar in size and compactness, this is not a
problem. Therefore we choose the simpler quality measure based on normalized area overlap.
The discussion is equivalent for 3D segmentation using volume, surface, and voxels as the basic
representations.

In this chapter, ground truth segmentations of white and gray matter for both real and sim-
ulated MRI brain scans are used (figures 3.2 and 3.3). The real data is from the Inter-
net Brain Segmentation Repository [ibs, 1999]. The simulated data is from the BrainWeb
[Cocosco et al., 1997, Kwan et al., 1996, Collins et al., 1998].
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Figure 3.2: Simulated T1 MR brain scan
with ground truth white and gray mat-
ter. The volume is 181x217x181 with coro-
nal slice thickness 1 mm, intensity non-
uniformity level 20%, noise level 9%. From
http://www.bic.mni.mcgill.ca/brainweb

Figure 3.3: Real T1 MR brain scan of a
55 year old male. The set contains 60
256x256 slices with slice thickness 3.0mm.
The slices are coronal with a flip an-
gle of 40 degrees. From http://neuro-
www.mgh.harvard.edu/cma/ibsr

The quality measure is defined via the relative error (misclassified pixels relative to number of
pixels in ground truth object, where a pixel is uncorrectly segmented if it is included only in the
segmentation or only in the ground truth). From each data source 5 slices are used for training
and another 5 slices are used for evaluation.

The pixel-sized building blocks allow the user to reach an arbitrary segmentation — therefore
any diffusion scheme allows perfect segmentation. The evaluation of the semi-automatic method
measures the user effort required to reach a specific quality threshold. In an evaluation with
clinicians, the user effort could be measured as the time needed. For this evaluation, the effort is
naturally measured as the minimal number of basic user actions required. The canonical actions
are selection and deselection of the building blocks.

In order to use the minimal number of user actions needed as a measure of the user effort, this
minimal count must be established. This is done efficiently by algorithm 1 described in section
3.3.1. Once the user effort is quantifiable, this measure can be used to optimize the parameters
for the non-linear schemes to minimize the user effort. This optimization method is described
in section 3.3.2.

3.3.1 Optimal User Actions

The linking tree determines how the building blocks merge as scale increases. Each node cor-
responds to a single region at the given scale — and corresponds to a set of regions at the
localization scale. The leaves in the tree are the single voxel/pixel building blocks. A simple
heuristic for reaching the optimal segmentation is to start at the largest scale, and then visit
all nodes in the linking tree in a top down order. At each node, the subtree is either marked as
selected or deselected depending on whether the corresponding regions are mostly inside or out-
side the ground truth segmentation. During this traversal, actual user actions are only needed
where the attribute changes for a node (if a region is selected as part of a large scale region, it
need not be selected again at low scale). This simple top-down heuristic yields reasonable user
actions that yield the ground truth segmentation — but it does not offer the optimal actions.
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In algorithm 1 (on page 20) we define the set of possible actions as Select , Deselect , and Ignore in
order to be able to perform an action at each node in the tree. Obviously only Select and Deselect
correspond to user actions. Furthermore, we define the node states In and Out depending on
whether the node is selected or deselected by its predecessors. Finally, we add an artificial root
node that corresponds to the entire image. This node has state Out by definition.

The algorithm is a bottom up traversal of a linking tree. At each node the minimal action count
is determined both if the node is assumed to have state In and Out . This is trivial at the leaf
node, since a single action is needed only if the state and the actual position compared to the
ground truth segmentation differs. Moving up through the linking both minimal actions counts
are determined — assuming the node have In or Out . When the root node is reached the state
is Out by definition, and the overall minimal action count is determined.

Note that we do not have to create the leaves explicitly. For each leaf-parent (corresponding to
the regions at the localization scale level) the In-count and Out -count can simply be calculated
from a count of the number of pixels inside and outside of the ground truth for each region.

Algorithm 1 determines the minimal count of actions it requires to achieve the perfect segmen-
tation according to the ground truth segmentation. This number can obviously be established
by exhaustive search of all combinations of the possible actions Select , Deselect , and Ignore at
each node. However, the computational complexity of this approach is not appealing. It is quite
simple to see that algorithm 1 provides the minimal processing cost by structural induction. At
the leaf nodes the minimal processing is trivially performed. At an inner node, the minimal
processing cost is obtained since the minimal of the two possibilities (corresponding to Ignore
or Select/Deselect) is chosen.

Let p be the number of pixels/voxels and n be the number of inner nodes in the tree. The
algorithm has a complexity of O(p+n). Each inner node is inspected once from its parent. This
is optimal since an algorithm has to visit every node in the tree (or convert the tree into some
other data structure — which would require a visit at each node anyway).

In [Dam, 2000] an extended algorithm is presented that finds the minimal error given a limited
number of user actions.

3.3.2 Optimization of Parameters

The diffusion schemes have a number of parameters that determine the performance for the
given segmentation task in the multi-scale segmentation method. The quantitative measure for
user effort allows automatic optimization of the parameters.

The optimization method is treated in more detail in chapter 5. Here we simply present the
very naive double-scale gradient descent method in algorithm 2.

For additional details on the evaluation method, the algorithms for establishing the optimal
combinations of building blocks, the optimization method, and the optimal parameter sets, see
the technical report [Dam, 2000].
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Algorithm 1 Optimal User Actions

Input : The localization scale watershed regions, the multi-scale watershed linking tree, and the
ground truth segmentation.
Output : The minimal count of user action required to reach the ground truth segmentation.

1. For each leaf:

• Determine whether the leaf pixel is inside or outside the ground truth.

• Determine In-count (cost of reaching optimal segmentation if parent has state In):
If the leaf is outside, it is necessary to Deselect it and the action count is one.
If the leaf is inside, no action is necessary and the action count is zero.

• Determine Out -count (cost of reaching optimal segmentation if parent has state Out):
If the leaf is outside, no action is necessary and the action count is zero.
If the leaf is inside, it is necessary to Select it and the action count is one.

• Keep both of these conditional counts — denoted In-count and Out -count — as
attributes for the leaf.

2. Visit each inner node in the tree in a bottom up order:
Assume the node has m children. Let the In-counts for the children be denoted I1, . . . , Im.
Let the Out -counts be denoted O1, . . . , Om.

• Determine In-count (assuming the parent has state In):
We can either choose to keep the default state In or choose to Deselect the node.
If we keep the state, we can simply add the In-counts of the children in order to get
an In-count II for the node. If we Deselect the node we get an In-count IA by adding
one to the sum of the Out -counts of the children. In order to get the optimal count
In-count I we choose a smallest of these two possible counts:

I = min{II , IA} where II =
m
∑

i=1

Ii and IA = 1 +
m
∑

i=1

Oi

The superscripts in II and IA are short for Ignore and Action.

• Determine Out -count (assuming the parent has state Out):
The Out -count O is achieved in the same manner:

O = min{OI , OA} where OA = 1 +
m
∑

i=1

Ii and OI =
m
∑

i=1

Oi

3. At the root:

• Since the root state is Out by definition, the optimal action count is the Out -count
for the root node.
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Algorithm 2 Optimization of Diffusion Scheme Parameters

Input : The collection of image data with corresponding ground truth segmentations.
Output : The optimal parameters for the given diffusion scheme.

1. Define inital value and suitable step values for each parameter.

2. Evaluate the performance of the initial parameter set as the average for the entire collection
of a quantifiable measure. This could be the minimal number of user action required to
reach the ground truth segmentation or the minimal error given 50 user actions.

3. Repeat until no more improvement is found:

• Inspect each parameter in turn.

• Evaluate the performance of the parameter sets where the current parameter value
is added and subtracted three times the corresponding parameter step (as defined in
step 1).

• If either of the added or subtracted parameter values provide improvement, use this
parameter set as the current.

• Try next parameter.

4. Repeat the previous step where single parameter steps are attempted.

5. The resulting parameters are denoted the optimal parameters.

3.4 Results

The performance is illustrated by the error as a function of the number of actions for each
scheme (with parameters optimized to the specific data set). This is put into perspective by
the performance of a Quad tree linking scheme [Samet, 1984] (here denoted QT). The number
of quad tree blocks required has a close relation to the box-counting dimension of the ground
truth objects — also denoted the Hausdorff dimension [Ott, 1993]. Furthermore, the building
blocks of the quad tree are not adapted to the geometry of the image. Thereby the performance
of the quad tree linking gives a frame of reference for the performances of the diffusion schemes
defined in terms of the complexity of the ground truth objects.

Figures 3.4 and 3.5 display the performance on the simulated and the real data, respectively.
The best of the existing schemes is the regularised Perona-Malik scheme. The new GAN scheme
is slightly better than this. However, the graphs do not give a clear notion of the quantitative
differences in performance. Figure 3.6 delivers the desired relative performance indicator on
average for all data sets. The relative performance is determined both for the training set used
for optimization of the parameters for the diffusion schemes and for an independent data set.
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Figure 3.4: Evaluation on simulated data from figure 3.2. Left: white matter. Right: gray
matter. Slices 60, 80, 100, 120, and 140 from the data set are used.
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Figure 3.5: Evaluation on real data from figure 3.3. Left: white matter. Right: gray matter.
Slices 10, 20, 30, 40, and 50 from the data set are used.
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Scheme Performance
Training Evaluation

QT 3.83 3.34

MAD 1.18 1.19

LG 1.00 1.00

IND 1.20 1.17
EE4 0.66 0.66
EE3 0.59 0.63
EE2 0.58 0.62

RPM 0.51 0.51
GAN 0.46 0.49

Figure 3.6: Average performances with the Gaussian scheme as reference. For a given number of
actions the performance of the LG scheme is noted — for each scheme is measured the actions
required to get equal quality. The incline of a curve determines the number of actions required
to obtain a given segmentation quality relative to the performance of the Gaussian scheme. This
performance indicator is displayed in the table for each diffusion scheme. The new GAN scheme
requires less than half as many actions compared to the Gaussian scheme for both the training
set and an independent data set.
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The results show that Perona-Malik is superior among the existing diffusion schemes — some-
what surprising, the anisotropic schemes show inferior performance. Furthermore, the optimal
parameter sets for the GAN scheme reveal the optimal degrees of anisotropy and edge preser-
vation aggressiveness. The anisotropy parameter θ is close to zero for all data sets (0.06, 0.12,
0.0, and 0.0). The improved performance compared to RPM is due to slightly increased aggres-
siveness in the diffusivity function (the parameter m is 1.4, 1.0, 1.1, and 1.0 compared to the
approximate value of 0.75 for RPM).

In the technical report [Dam, 2000], a number of other results are documented as well:

• With a tolerance area 1 pixel wide around the borders of the ground truth segments, 97%
of the ground truth pixels can be segmented without the use of pixel-sized building blocks.

• The simple top-down heuristic for user actions presented in section 3.3.1 requires around
one third more user actions than the optimal actions used by the evaluation method for
all diffusion schemes.

• The diffusion schemes require up to 30 scale levels for the discrete linking to be sufficiently
closely discretised.

• Similar results are measured for higher number of actions, from simulated data with less
noise and from real data of a schizophrenic brain.

It is worth noting that the improved performance between RPM and GAN is achieved at the
expense of introducing two additional parameters (m and θ). Additional parameters increase
the complexity of the optimization process and thereby require a larger training data set in
order to attain a performance that generalizes to use on an evaluation data set (or eventually
real data). Therefore, in situations with limited training data it can actually be advantageous
to stick with the simpler RPM scheme.

3.5 Conclusion

We present a generalized anisotropic diffusion scheme GAN capturing many known diffusion
schemes. Specializing this for interactive multi-scale watershed segmentation of white/gray
matter in T1-weighted MR slices of the brain shows that diffusion similar to regularised Perona-
Malik is superior to the other diffusion schemes. Furthermore, the aggressiveness in the diffusion
cut-off is more important than the degree of anisotropy.

The best among the tested diffusion schemes yields a decrease in interaction time with more
than a factor two compared to linear Gaussian scale-space. Our expectation is that the gain
is even higher in a 3D implementation — this is explored further in chapters 4 and 5. The
conclusion is linked to the segmentation task of white/gray matter in the brain. For cases like
vessels or abdominal organs, other diffusion schemes may be optimal.
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Chapter 4

Evaluating Non-linear Diffusion in

MSWS in 3D

The previous chapter on segmentation of brain tissue from 2D slices shows that the watershed
building blocks that forms the basis for the interaction method improve significantly through
non-linear diffusion.

Furthermore, the results from [Letteboer et al., 2001, Letteboer et al., 2003] briefly introduced
in section 2.4 show that the ∇Vision implementation of the MSWS method is effective for
segmenting brain tumors in 3D.

These two results inspire the obvious attempt of extending the non-linear scheme GAN to 3D
in order to improve the segmentation of brain tumors.

In addition to the direct implications for segmentation of brain tumors, it is certainly also
theoretically interesting whether the results on specialization through the use of non-linear
diffusion carry over from 2D to 3D.

4.1 Non-linear Diffusion in 3D for Interactive Segmentation of

Brain Tissue

In this chapter we address the task of segmentation for anatomical structures where the use of
statistical shape models is unfeasible due to the large variability in shape and appearance of the
desired objects.

Often pathologies lead to this situation — here we investigate segmentation of brain tumors. For
some types of brain tumors, automatic methods show great potential (one such example combines
tissue statistics with an asymmetry measure to detect the tumors [Lorenzen et al., 2001]).

However, in many cases automatic segmentation is unattainable and interactive methods must
be used. We investigate the interactive segmentation method based on multi-scale watersheds.
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The method has shown good performance on segmentation of the mandible [Dam et al., 2000]
and of brain tumors [Letteboer et al., 2001]. In both cases the quality of the segmentations are
as good as manual outlining while the interaction time is greatly reduced.

In demonstrated in chapter 3, the performance of this method can be improved by using non-
linear diffusion as basis for the multi-scale method [Dam & Nielsen, 2000]. However, this previ-
ous work only address segmentation in 2D.

Here we investigate the use of non-linear diffusion in 3D for the multi-scale watershed method.
Furthermore, we qualitatively categorize the anatomical structures where non-linear diffusion
can be expected to improve the performance of the segmentation method.

The performance is evaluated on three types of brain tumors (non-enhancing, ring-enhancing,
and full-enhancing) and on white matter brain tissue. The results confirm the categories of
anatomical structures that can benefit from the use on non-linear diffusion. Unfortunately, this
implies that the performance is only moderately improved for segmentation of the brain tumors.
Surprisingly, the evaluation shows that a more geometrically complicated anatomical objects
such as white matter brain tissue also only allow moderate improvement.

We briefly re-introduce the multi-scale watershed segmentation method using segmentation of
a brain tumors used for the evaluation as example. Then the use of non-linear diffusion in the
method is described with the definition of the class of the evaluated non-linear diffusion schemes
in 3D. Finally we show results of the evaluation on brain tumors and white matter tissue.

4.2 Interactive Segmentation of Brain Tumors

The multi-scale watershed segmentation method described above has been implemented in the
program ∇Vision [Dam et al., 2003a]. Evaluation of this implementation has shown good per-
formance for segmentation of brain tumors [Letteboer et al., 2001].

The evaluation compared the segmentation program with manual outlining with respect to accu-
racy and reproducibility (measured as inter- and intra-observer variability). The results showed
that the two segmentation methods are interchangeable in terms of accuracy. Furthermore, the
interactive MSWS program had higher reproducibility than manual segmentation.

Finally, the interaction time for the MSWS program was on average one third of the time
used for manual outlining. The evaluation data set is illustrated in figure 4.1 and an example
segmentation in figure 4.2.

In the following, we evaluate whether the use of non-linear diffusion in the MSWS method
improves these results.
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Figure 4.1: The data set consists of 20 scans with brain tumors. These are divided into 7 full-
enhancing tumors (type I), 6 ring-enhancing tumors (type II), and 7 non-enhancing tumors
(type III). Each tumor has been manually segmented twice by three operators by slice-wise out-
lining. The MR scans are aquired with T1-weighted post-contrast acquisition, scanned with a
slice thickness of 2.2 mm and reconstructed at 1.1 mm. The datasets consist of 120 to 150 slices
of 256 x 256 voxels with voxels size is 1.0 x 1.0 x 1.1 mm.

Figure 4.2: Segmentation of a brain tumor using the program ∇Vision [Dam et al., 2003a].
Left: A visualization of the scan. Right: The segmented tumor. Repeated from figure 1.1.
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Figure 4.3: Segmentation of white matter in 2D slice: Linear diffusion makes the building blocks
merge across brain structures before reasonably large segments are formed. The use of non-linear
diffusion allows the building blocks to grow within the tissue boundaries. The implication is that
where 18 action are required to select 70% of the white matter using building block created using
linear diffusion, only 5 are necessary with GAN diffusion. For 80% the action counts are 39 and
11, respectively.

4.3 Non-linear Diffusion in MSWS

The original MSWS method relies on linear Gaussian scale-space to simplify the image. This
simplification determines how the watershed regions group into gradually larger building blocks
corresponding to image structures at a given scale.

4.3.1 Revisiting Segmentation of White Matter in 2D Slices

In chapter 3 (and [Dam & Nielsen, 2000]) the use of non-linear diffusion in MSWS is explored
for the task of segmenting grey and white matter from 2D slices from the BrainWeb collection
[Collins et al., 1998]. Figure 4.3 illustrates how the building blocks resulting from non-linear
diffusion are better suited to the task at hand.

The use of non-linear diffusion is evaluated based on a count of the minimal number of selections
and deselections of building blocks in the segmentation. The parameters for the non-linear
schemes are determined such that this count is minimized. The evaluation results are presented
by normalizing the performance (of the building blocks resulting from a non-linear scheme) with
respect to the performance of linear diffusion. A good descriptor is then the ratio of actions
required compared to linear diffusion.

In chapter 3 the evaluation is based on both real and artificial brain scans and with the task
of segmenting both white and grey matter. Here we include only segmentation of white matter
and only use data from the BrainWeb collection. The evaluation data set is 9 slices evenly
distributed from this artificial brain scan. For RPM and GAN are we use the parameter sets
resulting from the optimization in chapter 3.

The table below shows that for each action used on building blocks resulting from linear diffusion,
it is on average only necessary to use 0.42 or 0.32 when the building blocks resulted from Perona-
Malik or GAN (where the optimal parameters give very little anisotropy, 0.06, and relatively
low aggressiveness at 1.2 — see section 4.3.2 for definition of these terms).
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Diffusion Scheme Ratio Std. Dev.

Linear Gaussian 1.00 0.00
Regularized Perona-Malik 0.42 0.15
Generalized Anisotropic Non-linear 0.32 0.07

These number are relative and does not state whether any of the schemes produce build-
ings blocks that are actually usable for the task at hand. Furthermore, they only compare
the performance of the first 50 actions for each diffusion scheme. So the evaluation from
[Dam & Nielsen, 2000] is only to be considered a feasibility study on the use of non-linear dif-
fusion in the method.

4.3.2 Non-linear Diffusion in 3D

The Generalized Anistropic Non-linear diffusion scheme (GAN) is presented in chapter 3 (and
introduced in [Dam & Nielsen, 2000]) as a generalization of a number of prominent 2D dif-
fusion schemes — among these linear Gaussian diffusion, the classical Perona-Malik scheme
[Perona & Malik, 1990], and Weickert’s edge enhancing diffusion scheme [Weickert, 1998a].

Here we define the extension of GAN to 3D. It is based on the anisotropic diffusion equation
[Weickert, 1998a] in equation 4.1. The diffusion on the image U is defined by the eigenvalues
λ1, λ2, and λ3 for the diffusion tensor D — where the corresponding eigenvectors v̄i are defined
from ∇Uσ (the gradient at scale σ) such that v̄1 ‖ ∇Uσ and v̄2, v̄3 are chosen as two orthogonal
vectors both orthogonal to v1. The diffusivity function w gives the eigenvalues.

∂U(t, ~x)

∂t
= div( D(∇Uσ) ∇U ) where U(0, ~x) = I(~x) (4.1)

λ1 = w(m,λ, |∇Uσ |2) (4.2)

λ2 = θ + (1 − θ) λ1

λ3 = θ + (1 − θ) λ1

w(m,λ, |∇Uσ |2) =











1 |∇Uσ| = 0

1 − exp

(

−Cm
(

|∇Uσ |2

λ

)m

)

|∇Uσ| > 0

The parameter θ determines the degree of anisotropy and m the aggressiveness with which the
edges are preserved (where edges are defined by the soft threshold λ, and Cm is calculated from
m such that w is increasing for |∇Uσ|2 < λ and decreasing for |∇Uσ|2 > λ). Weickert’s edge
enhancing diffusion scheme is a special case (θ = 1 and m = 4), the regularized Perona-Malik
scheme can be approximated (θ = 0 and m = 0.75) [Dam & Nielsen, 2000], and for λ → ∞
GAN becomes linear Gaussian diffusion.
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In equation 4.2, the eigenvalues λ2 and λ3 are defined as being equal. This implies equivalent
local diffusion in all directions perpendicular to the gradient. Another possibility would be to
choose the two corresponding eigenvectors according to the main isophote curvature directions
and then limit diffusion in the direction with large curvature. Preliminary experiments with this
approach show high sensitivity to noise (similar to the behavior for the CED scheme presented
in section 6.2.2 as mentioned in chapter 8).

It should further be noted that this choice does not imply isotropic diffusion perpendicular to
the gradient — just like the Perona-Malik scheme does not offer isotropic diffusion even though
the diffusion tensor has two equal eigenvalues (see section 6.3.2 for an illustration of this).

The diffusion scheme is implemented using a simple explicit numerical discretization scheme.
This imposes severe time step restrictions in order to ensure stability. In the 2D version the
time step is required to be below 0.25 [Weickert, 1998a]. In the 3D version above the time steps
should be below 0.16 (in 2D 1

4 , in 3D 1
6).

4.3.3 When does Non-linear Diffusion Improve Performance?

The potential gain via the use of non-linear diffusion is due to the ability to incorporate task-
specific prior knowledge into the diffusion process — typically by optimizing parameters to the
task at hand. In the multi-scale watershed method this changes the rate of region merging
as scale increases in different area of the data. Thereby regions inside the desired anatomical
structures can be allowed to grow larger before the boundaries are blurred away and the regions
merge with regions outside the object.

We can qualitatively describe the categories of objects that will benefit from the use of non-
linear diffusion in this framework. The categories are cascading such that objects have higher
potential the more requirements they fulfill:

1. The boundaries of the object are quantifiable. This allows prevention of early diffusion
across the boundary.

2. The interior of the object has few places which have the same properties that define the
boundaries. This allows full diffusion inside the object and thereby large building blocks
can be formed.

3. The geometry of the object is non-sphere-like. Linear diffusion favours sphere-like object
— potatoes — due to the isotropy. Non-linear diffusion can allow regions to merge and
form more complicated shapes.
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4.4 Evaluating GAN for Segmentation of Brain Tumors

The three types of tumors (see figure 4.1) fall into two of the categories above:

Ring-enhanced: The boundaries are quantifiable. However, due to ring effect, the object has
the inner edge of the ring inside the object, so this tumor class fall in category 1.

Non-enhanced & Full-enhanced: The boundaries are quantifiable. The inside has no edges,
and the tumor class fall in category 2.

The tumors are generally “potato-shaped” so none of them qualify for category 3. Therefore
we can expect little improvement for ring-enhanced while non- and full-enhanced should allow
some improvement.

The evaluation for the white matter tissue in 2D reviewed above measures the efficiency of the
first 50 actions — normalized with respect to the performance for linear diffusion building blocks.
Here we evaluate both accuracy and efficiency of the optimally selected building blocks compared
to the observers segmentation. The accuracy measure is the error measured by the normalized
volume overlap also used in section 3.3 (so high accuracy is a low number). The efficiency is
the count of actions needed to reach the optimal accuracy. The algorithm for determining the
optimal building block actions is described in section 3.3.1.

The evaluation results are as summarized in the table.

Tumor class Accuracy Efficiency
Linear GAN Linear GAN

Full-enhancing 0.12 ± 0.03 0.12 ± 0.04 45 ± 31 37 ± 26
Non-enhancing 0.16 ± 0.05 0.16 ± 0.05 76 ± 67 62 ± 59
Ring-enhancing 0.14 ± 0.05 0.14 ± 0.04 57 ± 57 61 ± 57

The evaluation number for each class is average and standard deviation of the results for all
tumors and all observers (i.e. full-enhancing covers 6 manual segmentations on each of 7 tu-
mors). The results show that no improvement is gained for ring-enhancing while the reduction
is approximately 18% for non- and full-enhancing.

The problem with the ring-enhancing tumors is the inner edge of the ring boundary profile.
Therefore it could be advantageous to simply segment the outside instead. However, this is
exactly what the optimal actions selected by algorithm 1 will do — if it is actually advantageous.

It should be stressed that the same 20 tumor data sets are used for training and evaluation —
thereby potentially allowing overfitting to the data. Since only 6 or 7 data sets from each class
are avaliable, we decided not to split the data set into a training and an evaluation collection.
The parameters used for linear and GAN diffusion are obtained through the heuristic gradient
descent method described in section 3.3.2. Due to the computation time needed to generate
scale-spaces for each of the tumors in order to evaluate a parameter set, a proper optimization
method requires more computational resources than were available. Thereby the optimization is
fragile with respect to local minima — as seen by the fact that GAN performs worse than linear
diffusion for ring-enhancing tumors even though linear diffusion is a special case for GAN.
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4.4.1 Majority Standard Segmentations

The results above are simply averages of the individual results for evaluation versus each observer
on each tumor. An evaluation method that better captures the variability in the observers
segmentation is by evaluating versus a “majority standard” segmentation.

The majority standard segmentation is obtained by letting the observers “vote” on the result
for each voxel. The voxel is then considered inside or outside depending on the majority. In the
case where the vote is a tie the voxel is allowed to be either. Evaluating against the majority
standard gives:

Tumor class Accuracy Efficiency
Linear GAN Linear GAN

Full-enhancing 0.08 ± 0.03 0.08 ± 0.04 35 ± 24 29 ± 20
Non-enhancing 0.10 ± 0.03 0.10 ± 0.03 64 ± 63 54 ± 60
Ring-enhancing 0.09 ± 0.03 0.09 ± 0.04 48 ± 56 52 ± 56

The errors and the actions needed are reduced for all tumor classes when evaluating against
the majority standard. The overall picture of no improvement for ring-enhancing tumor, and
moderate improvement for the other tumor classes is the same as above.

4.5 Evaluating GAN for White Matter Segmentation

The results above are in line with the categories given in section 4.4: ring-enhancing tumors
allow no improvement while the other allow moderate improvement. In order to confirm category
3, we evaluate the use of non-linear diffusion for segmentation of white matter brain tissue. The
geometry is highly complicated, and thereby the potential for improvement should be larger.

For the evaluation we have used the same brain scan from BrainWeb [Collins et al., 1998] as seen
in figure 4.3. In order to reduce computation resources required, the evaluation is performed on
half the volume only (split along the center sagittal slice). The results are:

Tissue Accuracy Efficiency
Linear GAN Linear GAN

White matter 0.18 0.17 1510 1118

The action count can be reduced by 26% through the use of non-linear diffusion. The error is
even reduced slightly. This improvement in performance is larger than for the brain tumors but
admittedly not quite as large as expected.
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4.6 Conclusion

We evaluate the use of GAN diffusion in 3D for multi-scale watershed segmentation. The
performance of GAN compared to linear diffusion depends on the appearance of the anatomical
structures to be segmented. We propose a categorisation and evaluate a number of significantly
different anatomical structures in order to investigate each category.

The results confirm the categorisation. The ring-enhancing tumors show no improvement since
the property that defines the boundary of the tumors is also widely present inside the tumors.
The non-enhancing and full-enhancing tumors allow moderate improvement. These objects have
quantifiable boundaries and interiors different from their boundary. The reduction in actions
needed is 18%. White matter brain tissue is an example of the last category with complicated
geometry. The reduction in actions needed is here 26%.

While confirming the categorisation, the results are not nearly as good as expected from the
previous work in 2D. While reducing the need for the time-consuming 3D implementation of
GAN in the preprocessing step this is disappointing.

In the next chapter we address whether there is a fundamental problem with exploring GAN
(or similar schemes) in 3D, whether the brain tumors are simply a special case, or whether the
method is flawed.

As stated in the preface, the reevaluation is kept in a separate chapter in order to keep this
chapter aligned with the publication.

Recycling in this Chapter

This chapter is an edited version of [Dam & Letteboer, 2003].

33



Chapter 5

Reevaluating Non-linear Diffusion in

MSWS in 3D

Chapter 3 shows how the use on non-linear diffusion in 2D multi-scale watershed segmentation
allows a significant reduction of the user interaction needed. This is evaluated for segmentation of
white matter and grey matter from slices of brain scans. In chapter 4 this approach is extended to
3D. However, the results are less encouraging since the reduction in user interactions apparently
is less significant in 3D.

The explanation for this is to be found in or more of the following possible causes:

• The object boundaries are harder to quantify consistently in 3D than in 2D.

• The geometry is more complicated in 3D making it harder for the non-linear schemes to
excel compared to linear diffusion.

• The specific segmentation tasks evaluated simply does not offer more improvement through
the use of non-linear diffusion.

• The optimization process that seeks the optimal parameters for the non-linear scheme
reaches a local minimum.

• There is some unknown error in the implementation.

In the following the optimization method is scrutinized in order to reveal whether it actually
determines the desired optimal parameters. This results in the presentation of a more advanced
optimization method.

With the new optimization method, the basic difference between 2D and 3D in this MSWS
setting is then investigated.
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5.1 Improving the Optimization Method

Any optimization method that seeks the optimal parameters for some objective function will
need to evaluate the function many times. Either directly or indirectly through the evaluation of
the derivatives of this function. With discrete functions the derivatives are approximated using
finite differences — again requiring evaluations of the function.

The non-linear diffusion scheme GAN (equation 4.2, page 29) has 7 parameters: starting scale,
end scale, number of scale levels, regularization scale, soft gradient threshold with corresponding
aggressivenes, and degree of anisotropy.

The evaluation objective functions that need to be optimized are first the Accuracy and then
the Efficiency :

Accuracy:
The best possible segmentation accuracy given a set of multi-scale building blocks. This is
defined to be without the use of the articifical level with single-voxel building blocks. This
is defined as the relative volume overlap between the best segmentation and the ground
truth. Only the lowest scale level (the localization level) has influence on the accuracy.
Therefore the accuracy for a given parameters set can be relatively quickly evaluated.

Efficiency:
The minimal number of actions needed to obtain a segmentation with a given accuracy.
Different requirements for the sufficient accuracy will lead to slightly different optimal
parameter sets. However, the parameters are always optimized to give optimal performance
for obtaining the optimal accuracy. In order to evaluate a given parameter set the entire
scale-space of building blocks needs to be calculated making this quite time-consuming.
This is particularly problematic when the evaluation is based on multiple images and the
performance is given by the average of the individual cases.

In order to obtain optimal accuracy and efficiency simultaneously the optimzation is performed
in two steps. First the parameters are optimized for accuracy. This optimal parameter set is
then fixed for the first level in the gradient magnitude watershed linking scale-space. A new
parameter set is then used for the remaining levels in the watershed scale-space. This new
parameter set is then optimized for efficiency. Thereby the scheme actually has 14 parameters,
but they are optimized independently in groups of 7.

In the following, the two alternative methods for obtaining optimal parameter sets are presented.
Since optimization methods are not a central part of this dissertation the presentation focuses
on the overview.
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5.1.1 Naive Descent Algorithm

The rationale behind the original optimization method used is to avoid too many evaluations of
the efficiency function due to the high cost of generating the multi-scale building blocks.

This lead to the naive descent algorithm. Starting from a suitable inital parameter set each
parameter is tested in turn for values ±3stepi where stepi is some suitable epsilon step for the
i’th parameters. The best among the alternative values for the i’th parameter is then chosen as
the new value. When none of the parameters offer improvement a new round is performed with
test values ±stepi. This simple double-scale descent algorithm is used to generate the optimal
parameter sets in 2D in chapter 3 and in 3D in chapter 4.

5.1.2 Multi-scale Conjugate Gradient Descent Algorithm

Due to the very local nature of the optimization steps in the naive descent algorithm it is likely
to be sensitive to local minima in the objective function.

As an alternative to this naive algorithm a more advanced algorithm is used as well. This
is a multi-scale version of the conjugate gradient descent algorithm (from Numerical Recipies
[Press et al., 1999]). The main difference between the algorithm used and the original is the
addition of an outer multi-scale layer. This applies the algorithm in a coarse to fine approach
where the gradient that defines the search for the minimum are evaluated at large scale first and
then at smaller scales as the optimization ceases to improve1. To be specific, 4 levels are used
where the scale is divided by 4 between each level. This appears to be suitable.

5.1.3 Regularization and Illegal Parameter Values

Figure 5.1 illustrates how the naive optimization algorithm fails to reach optimal parameters
for the GAN scheme for segmenting white matter in 3D in chapter 4. The plots show that the
large scale steps work reasonably well, but the small scale steps are simply a mess.

The parameter plots show exactly the behavior that is problematic for the naive optimization
algorithm, namely the presence of a plethora of local minima.

The more advanced multi-scale conjugate descent algorithm is less sensitive to local minima.
However, the non-smooth objective function potentially causes problems for this algorithm.
Furthermore, the illegal parameter values (i.e. negative scale values or the edge preservation
aggressiveness m in equation 4.2 below 0.5) that are simply implemented as giving a very high
value in the objective function, are also problematic. Gradients that are evaluated using these
artificially high values cause the gradient to push away from the bad values instead of pulling
towards the good.

1The multi-scale extension of the conjugate gradient descent algorithm was developed in cooperation with

Thomas Fletcher at UNC, Chapel Hill. The original purpose was for optimization in the m-rep shape modeling

setting in chapter 9.
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At minimum after large parameter steps:

At new minimum after small parameter steps:

Figure 5.1: Optimization of parameters for GAN using the naive double-scale optimization algo-
rithm. The aim here is to minimize error (maximizing accuracy) when segmenting white matter
tissue in a single half brain scan. A minimal error around 0.1865 is reached. The plots illustrate
the effect on the error of varying the parameters individually from a reached minimum — each
curve is the effect of changing a single paremeter independently of the others. The number of
parameter steps away from the minimum are on the abscissa axis. Top: The situation at the
minimum reached after the large scale steps. From this minimum, the errors values are plotted
for up to ± 17 large scale steps for each parameter. The parameters are respectively scale, regu-
larization scale, soft gradient threshold, gradient threshold aggressiveness, and global anisotropy
(see section 4.3.2). Most curves behave nicely except the regularization scale that reveals that
only a local minima is reached. Only a single data set is used. Bottom: From the large scale
minimum, the optimization is continued using smaller steps (one third the large scale steps).
The plots show the situation at the minimum that the small scale steps reach. All curves for the
individual parameter are littered with local minima.
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The problem with the non-smooth objective function can be handled through regularization
of the function. Evaluating the gradient at high scale offers a simple means of regularization
but does not effectively remove the many local minima. Another simple regularization method
is to average the performance over a number of training data sets. Since this is needed for
robust determination of the optimal parameter set anyway, this is the simplest and most obvious
regularization.

A reparameterization could be used to get rid of the illegal parameter values. For instance the
positive-only scale values could be mapped to cover the entire real axis through an exponential
mapping.

This reparameterization approach is not pursued in this dissertation. In the following, regu-
larization through averaging is investigated. This simple regularization could very well explain
why the work in chapter 3 on segmentation of white matter in 2D slices from brain scan gives
good results whereas the work on 3D scans in chapter 4 shows poor performance. Instead of
being related to dimensionality, the explanation can simply be that the work in 2D is performed
on many slices whereas the work on white matter segmentation in 3D is optimized on a single
brain scan (actually only half a brain split along the center sagittal slice).

5.2 Segmentation of Elongated Objects

In order to investigate this further, an evaluation on artificial shapes with simple geometry is pre-
sented. The non-linear diffusion schemes are expected to offer better performance on elongated
objects. This is evaluated in 2D by optimizing the parameters for performing segmentation of a
very elongated rectangle in 2D and a very elongated box in 3D. Both objects are added random
uniform noise as illustrated in figure 5.2.

The collections of images used is simply produced by repeating the image generation — the
random noise then differs between the example images. For completeness, objects with different
orientation with respect to the coordinate axes are also included.

Three collections are evaluated. The first, denoted Std, has objects with widths 8 and length
480 pixels/voxels and consist of 10 images. The second collection with 5 images, denoted Air,
has equal objects but in a larger image with more space around. The third collection with 5
images, denoted Fat, has objects with double width. All three collections exist in both 2D and
3D versions. It should be noted that the same collections are used for parameter optimization
and for evaluation. This is not proper evaluation methodology, but since this is just a “proof of
concept” evaluation on synthetic objects, this sloppy approach is allowed.

The building blocks that the multi-scale watershed method using linear diffusion produces are
approximately potato-shape due to the isotropy of the diffusion. This means that no main
orientation is expected to be drastically larger than the others. Non-linear diffusion has the
potential for making the building blocks more elongated and thereby more effective for the
segmentation task.
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Figure 5.2: Elongated objects in 2D and 3D. Top: Elongated rectangle in 2D. The ground
truth rectangle is 8 by 480 pixels — only one end is shown. The images are generated by
adding uniform random noise with a maximum intensity equal to the intensity given the ground
truth object. The red lines show boundaries between building blocks generated by the multi-scale
watershed method using linear diffusion. Bottom: Elongated box in 3D measuring 8 by 8 by
480 voxels. A single linear diffusion building block at the end of the box has been selected. The
2D rectangles and 3D boxes with widths 8 and lengths 480 are considered the standard collection
(denoted Std). This collection has 10 2D and 10 3D images where the only difference is the
random noise and the orientation of the object. Alternative 2D and 3D objects with more space
around (collection denoted Air with 5 2D and 5 3D images) and with double width (collection
denoted Fat with 5 2D and 5 3D images) are also tested.
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Std 2D 3D
480 × 8 Accuracy Efficiency Elongation Accuracy Efficiency Elongation

Linear 0.00260 19.9 3.0 0.02070 16.8 3.6
GAN 0.00029 7.9 7.6 0.00095 8.0 7.5

Air 2D 3D
480 × 8 Accuracy Efficiency Elongation Accuracy Efficiency Elongation

Linear 0.00234 9.4 6.4 0.02072 17.2 3.5
GAN 0.00021 3.6 16.7 0.00132 5.6 10.7

Fat 2D 3D
480 × 16 Accuracy Efficiency Elongation Accuracy Efficiency Elongation

lin 0.00102 10.4 2.9 0.00525 8.8 3.4
GAN 0.00005 6.8 4.4 0.00025 3.0 10.0

Figure 5.3: Evaluation on synthetic, elongated objects in 2D and 3D. The non-linear GAN
scheme achieves building blocks that are on average 9.5 times longer than their width. The
elongation of the linear diffusion building blocks is only 3.8 on average. The results are consistent
for both 2D and 3D.

A simple measure of the effectiveness of the building blocks is how elongated they are on average.
In 2D, the ground truth rectangle has width w and length l. In 3D, the ground truth box has
to sides equal to w and one equal to l. When the object can be segmented in a actions (up
to the optimal accuracy), the average elongation of the building blocks is then l

wa
. This is an

alternative efficiency measure, denoted elongation that can be used to compare the performances
of linear and non-linear diffusion for producing elongated building blocks.

The overall conclusions from the tables in figure 5.3 are that the performances in 2D and 3D are
quite similar. For all collections, the accuracy obtained through the GAN scheme is significantly
better compared to linear diffusion — the error is approximately an order of magnitude smaller.

Also the efficiency measured as the elongation of the building blocks shows consistent perfomance
in 2D and 3D. In 2D linear diffusion has an average elongation score of 4.1 versus 9.6 for
GAN. In 3D the average elongation score for linear diffusion is 3.5 versus 9.4 for GAN. These
specific elongation numbers obviously depend on the level of noise in the images, but the relative
performance when comparing linear diffusion and GAN is not expected to be affected by this
(within reasonable limits).

The rule of thumb is that for each action needed using linear diffusion only approximately 0.4
actions are required for GAN diffusion building blocks. This rule of thumb holds for both 2D
and 3D.

This invariance with respect to dimension is exactly the desired and expected behavior. Both
the 2D rectangles and the 3D boxes are essentially thin one-dimensional shapes — therefore the
corresponding results are to be expected.

The nice consequence is that the disappointing performance in chapter 4 is then most likely
due to the naive optimization algorithms and/or the missing regularization — and not due to a
fundamental problem with using non-linear diffusion in 3D.
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5.3 Segmentation of Flat Objects

The behavior on the thin, elongated objects is expected to be similar in 2D and 3D. The
diffusion process that merges the regions into larger building blocks, has in both 2D and 3D
one free direction where the flow is desirable. The building blocks will merge in this direction
and become more elongated until some scale is reached where the diffusion causes the regions to
merge across the boundaries of the object and make the building blocks unsuitable for the task.
The contrast across the boundary survives up to some scale and thereby allows the building
blocks to become elongated. Non-linear diffusion allow this contrast to survive even longer in
the diffusion process and make the building blocks even more elongated.

In 3D there is an extra direction, but for thin, elongated objects, this direction is limited by
an extra object boundary with the same width and contrast. Therefore this extra dimension
allows not extra elongation of the building blocks and no additional advantage due to non-linear
diffusion.

However, in 3D flat objects are also possible. This type of object has two open dimensions
where the diffusion can flow while being limited by the single narrow dimension. Thereby the
non-linear schemes — that excels in allowing extra flow in the open dimensions before running
across the narrow dimension — can possibly be even better compared to linear diffusion. As
demonstrated on the elongated objects, with one open dimension, non-linear diffusion only needs
approximately 0.4 actions for each action needed through linear diffusion. This compares to an
elongation 2.5 times the elongation for linear diffusion building blocks.

With two open dimensions, the non-linear diffusion building blocks can then be expected to be
extended by a factor of 2.5 in each direction — and thereby only needing approximately 0.16
times the actions required through linear diffusion building blocks.

This expectation is evaluated through another simple experiment. Collections of flat object
are constructed in the exact same manner as the elongated objects. One collection (denoted
Pancake) has objects with thickness 8 and side lengths 480. Another collection has smaller
objects with thickness 8 and side lengths 180 (denoted Small). Both collections have 5 images.
Again, the same collections are used for training and evaluation.

For thin, elongated objects, the elongation is a natural descriptor of the building blocks. For
the flat objects we keep the elongation for comparison, but keep in mind that relevant efficiency
measures should be volume oriented (and thereby the elongation squared).

We see the expected qualitative behavior in the results in figure 5.4. The elongation of the
building blocks are comparable to those observed on the elongated objects (slightly worse for
linear, slightly better for GAN). The consequence is that for flat objects, non-linear diffusion
can reduce the building blocks needed by more than a factor of ten.
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Pancake 3D
4802 × 8 Accuracy Efficiency Elongation

Linear 0.00067 436.2 2.9
GAN 0.00002 ≤ 28.4 ≥ 11.3

Small 3D
1802 × 8 Accuracy Efficiency Elongation

Linear 0.00177 52.6 3.1
GAN 0.00009 3.8 11.5

Figure 5.4: Evaluation on synthetic, flat objects in 3D. The elongation numbers are comparable
to those from figure 5.3 on elongated objects (slightly worse for linear, slightly better for GAN).
In the tables, the use of ≤ and ≥ indicates that, unfortunately, the parameter optimization
method has not yet reached the minimum at the time of writing. Possibly the final values will
therefore be even better for GAN. For flat objects in 3D, the use of GAN can reduce the number
of actions needed by more than a factor of ten.

5.4 Reevalution of White Matter Segmentation in 3D

Above, the results on synthetic, elongated and flat objects in 3D demonstrate the qualitative
behavior that is to be expected from the experiments in 2D. So the natural conclusion is that
the disappointing results in chapter 4 are then not due to an inherent problem with the use of
non-linear diffusion in 3D.

An appealing explanation is then the use of the naive optimization algorithm and/or the fact
that the optimization is performed on a single data set. Alternatively, the problem could be
that the boundaries in the brain scan can not be quantified satisfyingly through the parameters
in the GAN diffusion scheme.

In order to investigate this, the experiment is repeated with a collection of BrainWeb data
volumes. The BrainWeb site allows generation of data volumes with varying noise and varying
intensity in-homogeneity. Combining noise levels 20% and 40% with intensity non-uniformity
levels 5%, 7%, 9% gives a collection of six brain scans. Again, we use the same data collection
for training and evaluation.

It is extremely difficult to predict the reduction in actions that the GAN scheme can optimally
provide compared to linear diffusion. The geometry of the white matter tissue is a mixture of
small, thin, flat lobes and larger “potato-shaped” regions. The performance on the synthetic,
flat objects above are definitely not realistic due to the highly curved geometry of the white
matter lobes.

The results shows that now, GAN allows a reduction of at least 44% in the number of building
blocks used compared to linear diffusion — again ≤ means that the optimization process has
not ended at the time of writing. This is a significant improvement compared to the results
from the previous chapter. The informal rule of thumb seems to hold in 3D as well as 2D, that
for segmentation of white matter tissue, the number of actions needed can at least be halved
through the use of GAN diffusion.
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Accuracy Efficiency
Linear GAN Linear GAN Reduction

Naive optimization,
Single volume,
Half brain only,
Chapter 4 0.18 0.17 1510 1118 26%

Advanced optimization,
Six volumes 0.18 0.18 2742 ≤ 1548 ≤ 44%

Figure 5.5: Reevaluation of GAN for white matter segmentation. The repeated evaluation using
the improved optimization algorithm and a larger data collection allows GAN the performs sig-
nificantly better compared to linear diffusion. Since the data collection now includes the entire
brain, the absolute number of building blocks needed is higher than for the half brain used in the
previous experiment in chapter 4. Again, the use of ≤ means that the parameter optimization is
not concluded at the time of writing. Therefore GAN possibly performs even better than shown.

For completeness, the improved parameter optimization method should be used to reevaluate the
results from chapters 3 and 4. This would reveal whether it is the regularization due to larger
data collections, or whether it is the actual optimization algorithm that make the improved
results in 3D possible. Furthermore, it could actually improve the results for segmentation of
brain tumors in chapter 4 significantly — possibly to a degree that would make the use of non-
linear diffusion applicable for this segmentation task. This reevaluation of the previous results
is left for future work.

5.5 Summary: GAN for MSWS in 2D and 3D

This dissertation presents a number of results on the use of non-linear diffusion in the multi-scale
watershed segmentation method. The main results are summarized here.

The objects that will benefit from the use of non-linear diffusion can be categorized with in-
creasing potential as follows (with accumulating categories, such that category 3 assumes the
properties of the previous two):

1. The boundaries of the object are quantifiable.

2. The interior of the object has limited areas that share the properties that define the
boundaries.

3. The geometry of the object is non-sphere-like.
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The possible improvements in performance trough using GAN compared to linear diffusion can
be loosely estimated:

• For thin, elongated objects in 2D and 3D, the efficiency for GAN is up to 2.5 higher than
for linear diffusion.

• For flat objects in 3D, the efficiency for GAN is up to 10 times higher than for linear
diffusion.

• For anatomical objects with more complicated geometry, these upper bounds for efficiency
improvements are un-attainable. For segmentation of white matter tissue in 2D and 3D,
the efficiency for GAN is approximately 2 times the efficiency for linear diffusion.

Recycling in this Chapter

This contents of this chapter are previously unpublished.
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Chapter 6

Exploring Non-linear Diffusion: The

Diffusion Echo

Chapters 3, 4, and 5 show that designing non-linear diffusion schemes to replace linear diffusion
in multi-scale watershed segmentation is no trivial matter. While the desired behavior of the
non-linear schemes can be elegantly expressed in terms of the desired diffusion across and along
boundaries, is it not obvious what a specific diffusion scheme is actually “doing”.

This is a fundamental problem with non-linear diffusion processes. For the linear diffusion
equation, the Gaussian serves as Green’s function and as a source for intuitive understanding
of the linear diffusion process. Non-linear diffusion equations have in general no known closed
form solutions and thereby no equally simple description.

This chapter describes a simple, intuitive description of these processes in terms of the Diffusion
Echo. The focus of the presentation is on the ability of the diffusion echo to offer intuitive visual-
izations for non-linear diffusion processes. The methodology is general for arbitrary dimension,
however for practical purposes we return to 2D.

In the next chapter we investigate further how the diffusion echo can be used to describe and
analyze the diffusion.

6.1 Introduction

Linear scale-space [Koenderink, 1984, Witkin, 1983, Lindeberg, 1994] is a least committed scale-
space with appealing theoretical properties. Among these are the existence of a Green’s function
for the PDE (partial differential equation) in terms of the Gaussian. Besides providing a closed
form solution to the PDE, the Gaussian yields a clear, intuitive understanding of the local
filtering process.
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Non-linear scale-spaces are appropriate for enhancement of desired features and for extraction
of certain deep structure features (in for instance edge detection [Perona & Malik, 1990] and
segmentation). These diffusion schemes can typically be formulated as PDE’s where a diffusion
tensor determines the non-linear nature [Weickert, 1998a]. In general, most PDE’s have no
known closed form solutions (exceptions exist such as the analytic solution to TV diffusion
[Brox et al., 2003]). This necessitates iterative numerical approximation schemes which offer
less intuition.

Section 6.2 contains a presentation of the diffusion schemes used. Some of the equations are
repetitions from previous chapters in order to show the simple extension to the corner enhancing
scheme. The diffusion echo is introduced in section 6.3 with examples of how the diffusion echo
can be used for visualization of the diffusion schemes. Finally, potential applications of the
diffusion echo are presented:

• Grouping of features, for instance used for segmentation (section 6.4).

• As a deep structure summary that can serve as an alternative to multi-scale linking or
flooding techniques (section 6.5).

6.2 Diffusion Schemes

A number of diffusion schemes are explored. The notation follows the use in chapter 3. All
schemes use a PDE to define a scale-space L(~x; t), where ~x are spatial coordinates and t the
scale parameter. The PDE’s have an image I as initial condition: L(~x; 0) = I(~x).

Linear diffusion [Koenderink, 1984, Witkin, 1983] can be defined by: Lt(~x; t) = ∆L(~x; t), the
heat diffusion equation. The Gaussian with standard deviation σ =

√
2t is Green’s function for

the PDE.

The non-linear Perona-Malik scheme [Perona & Malik, 1990] attempts to preserve edges during

the diffusion: Lt(~x; t) = div( p(|∇Lσ|2) ∇L ) where p(|∇Lσ|2) = 1/(1 + |∇Lσ|2

λ2 ). The regularisa-
tion parameter σ is due to [Catté et al., 1992]. The notation ∇Lσ means the gradient evaluated
at scale σ. The parameter λ is a soft threshold for the gradient magnitude required to locally
slow the diffusion and preserve an edge. Following the terminology of Weickert [Weickert, 1998a],
the scheme is termed “isotropic” since the diffusivity function p is scalar-valued.

6.2.1 Generalized Anisotropic Non-linear Diffusion

Weickert [Weickert, 1998a] defines the anisotropic non-linear diffusion equation:

Lt(~x; t) = div( D(Jρ(∇Lσ)) ∇L ) (6.1)

The diffusion tensor D ∈ C∞(R2×2, R2×2) is assumed to be symmetric and uniform positive
definite. The structure tensor Jρ is evaluated at integration scale ρ, and the gradient ∇Lσ at
sampling scale σ. As stated previously we set the structure tensor to identity.
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Diffusion schemes can be defined in terms of the eigenvalues λ1 and λ2 for the corresponding
eigenvectors v̄1 ‖ ∇Lσ, v̄2 ⊥ ∇Lσ for the diffusion tensor D.

A large class of diffusion schemes (including the previous) are generalized by the Generalized
Anisotropic Non-linear scheme (GAN) [Dam, 2000, Dam & Nielsen, 2000], where the diffusion
tensor eigenvalues are defined:

w(m,λ, s) =











1 |∇Lσ| = 0

1 − exp

(

−Cm
(

s2

λ

)m

)

|∇Lσ| > 0
(6.2)

λ1 = w(m,λ, |∇Lσ |)
λ2 = θ + (1 − θ) λ1 (6.3)

The scheme is anisotropic when the eigenvalues are not equal (then D can not simply be re-
placed by a scalar-valued function). The global parameter θ determines the degree of anisotropy
(0 is isotropic diffusion and 1 is full anisotropic), λ is the soft edge threshold, and m is the
“aggressiveness” that the edges are preserved with.

The GAN scheme has the following schemes as special cases:

• Linear Gaussian diffusion is defined by λ → ∞.

• The regularised Perona-Malik scheme is approximated by θ = 0 and m = 0.75 (which
implies Cm = 0.762689 [Dam, 2000]).

• Weickert’s Edge Enhancing diffusion (EED) is defined by θ = 1 and m = 4 (which implies
Cm = 3.31488 [Weickert, 1998a]).

6.2.2 Corner Enhancing Diffusion

Near “edges” the Perona-Malik scheme slows diffusion in all directions. For image enhancement,
EED is appropriate since diffusion is full along edges.

However, the EED scheme tends to round corners due to the full diffusion along the edge.
Therefore, while full anisotropic diffusion is desirable at edge-like structures, a diffusion scheme
with a milder degree of anisotropy is desired at corners. A local steering of the degree of
anisotropy therefore seems sensible.

The following Corner Enhancing Diffusion scheme (CED) is similar to GAN but steers the
anisotropy locally using a corner measure: the isophote curvature κ times the gradient to a
power k.

λ1 = w(mg, λg, |∇Lσ|)
θ = w(mi, λi, |κσ | |∇Lσ|k)

λ2 = θ + (1 − θ) λ1 (6.4)

The Corner Enhancing scheme is similar to the CID scheme from [Dam, 2000].

The use of the curvature in the definition of the eigenvalue function makes the equation for
corner enhancing diffusion a third-order PDE. Thereby previous results on well-posedness and
scale-space properties are no longer valid.
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6.3 Visualizations

It takes a strong mathematician to get intuition about the differences between the diffusion
schemes above. A standard way of illustrating the schemes is to visualize the local diffusion at
key points in an image like in the following.

The non-linear diffusion processes are implemented using iterative numerical approximation
schemes. For each iteration a diffusion tensor is determined for each point in the scale-space
image. This diffusion tensor can be visualized by an ellipse where the orientation and the size
are determined by the eigenvectors and corresponding eigenvalues.

In figure 6.1 EED is illustated like this. Isolated, the third image seems to offer an understanding
of the intensions of the diffusion scheme. However, the illustrated diffusion tensors are deceiving
since they evolve during the diffusion. Furthermore, they fail to capture the interaction with
the surrounding area.

Figure 6.1: Visualizations of diffusion tensors for EED scheme. Left: test image (64x64 pixels,
intensities 0-255, SN ratio 2.5). Right three images: the local diffusion tensors illustrated as
ellipses at five points for three different iterations (t = 0.4, 20, 100). An explicit approximation
scheme with a nonnegativity discretisation is used [Weickert, 1998a].

6.3.1 The Diffusion Echo

The diffusion echo is inspired by the Gaussian that defines the local filtering in linear diffusion.
The equivalent is obtained for non-linear schemes in two steps:

Diffusion Echo: Source

For a fiducial point p, construct an auxiliary image with the value 1 at the point p and zero
otherwise: the discrete impulse function.

For each iteration in a diffusion process for an image I, the values are computed by assigning
each pixel a weighted average of a neighborhood of pixels.

The auxiliary image is treated with the same weighting as the image I. The result is a distri-
bution that records the flux that propagates from the source pixel p. This is the diffusion echo
source distribution and is denoted Sp(·).
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Diffusion Echo: Drain

The diffusion echo drain distribution is the opposite of the source. For a point q, the value for
the drain distribution at a given point p is defined in terms of the source at p. Specifically, the
drain distribution Dq(·) is Dq(p) ≡ Sp(q). Note that the drain for a point requires the sources
for the entire image.

The diffusion echo drain distribution is the local filter kernel for the diffusion process equivalent
to the Gaussian filter for the linear diffusion process.

The algorithm for computing the diffusion echo distributions is included as algorithm 3 — just
to show how simple it is. The algorithm applies to any diffusion scheme that can be defined in
terms of the anisotropic non-linear diffusion equation (equation 6.1) — and most other diffusion
schemes with few modifications. Note that during the diffusion, only step 4e is added to the basic
iterative diffusion algorithm. For more detail on calculating the local weights corresponding to
a diffusion tensor, see [Weickert, 1998a].

Algorithm 3 Diffusion Echo Distributions

Input : Original image I, diffusion scheme parameters.
Output : Diffusion echo source Sp(·) and drain distributions Dp(·) for all image points p.

1. Initialize diffused image to I0 = I.

2. Initialize echo source to zeros for all image points p, q: S0
p(q) = 0.

In 2D this is a 4D matrix, in 3D a 6D matrix.

3. Set S0
p(p) = 1 for all image points p. Each distribution is then a discrete impulse function.

4. For i = 1 to desired diffusion iterations T do:

For each image point p do:

(a) Calculate local image geometry as needed using Gaussian derivatives at desired reg-
ularization scale.

(b) Calculate diffusion tensor eigenvectors and eigenvalues as defined by the diffusion
scheme..

(c) Calculate local weights w(n) for points n in the neighborhood N of p.

(d) Diffuse image: I i(p) =
∑

n∈N w(n) I i−1(n)

(e) Calculate echo source distribution for each image point e:
Si

e(p) =
∑

n∈N w(n) Si−1
e (n)

5. Diffused image is now IT (·).

6. Diffusion echo source distribution is ST
p (·) for all image points p.

7. Assign echo drain distributions for each combination of image points p, q: Dp(q) = ST
q (p).
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Diffusion Echo Properties

For linear diffusion the source and the drain distributions are identical Gaussian distributions.
However, in general the distributions are not equal.

The diffusion echo drain distribution is the local convolution filter kernel for the diffusion process:
L(~x; t) =

∫

L(q; 0) D~x(q) dq =
∫

I(q) D~x(q) dq

The distributions can be interpreted as affinity measures. However, note that in general both
Sp(q) 6= Sq(p) and Dq(p) 6= Dp(q).

Since both source and drain are unity distributions they can also be interpreted as probabilis-
tic distributions. The source distribution Sp(q) (or the drain distribution Dq(p)) states the
probability for an “atom” originating at point p to end at point q as a result of the diffusion.

The maximum for both source and drain distributions remain at the origin for the distribution
for most diffusion schemes. Mean and higher order moments are in general not located at the
origin and can be used to characterise the distributions. The definitions are applicable for images
of arbitrary dimensions.

6.3.2 Diffusion Echo Visualizations

The diffusion echo is a summary of the diffusion process up to a certain time/scale. In the
following we show that illustrations using this principle offer significantly more information
than the illustrations in the previous section.

Basic Comparison

In figure 6.2 we illustrate this for the four diffusion schemes presented in section 6.2. The figure
displays the diffusion echo drain distributions for the five selected points from figure 6.1. These
are equivalent to the local convolution filter kernels that would yield the diffusion directly.

The ellipses in figure 6.2 highlight the properties of the diffusion schemes. Linear diffusion uses
the same diffusion tensor at all points. The non-linear Perona-Malik reduces the diffusion grad-
ually determined by the gradient magnitude compared to a soft threshold value. The anisotropic
EED scheme reduces diffusion across edges quite agressively but maintains full diffusion along
the edges.

Finally, the CED scheme reduces diffusion perpendicular to the gradient as well at corner-like
structures. However, the diffusion echo distributions reveal that differences between the schemes
are not quite as characteristic. Apparently, there is more like a smooth transitition between the
schemes — like the existence of the GAN scheme implies. Even though the Perona-Malik
scheme is termed isotropic it has a preferred diffusion direction along the edge. This is much
more pronounced for the anisotropic EED scheme but not qualitatively different.
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Figure 6.2: Diffusion Echo drain distributions. Top row: Ellipse-illustrations for the four dif-
fusion schemes (linear, Perona-Malik, EED, and CED). Center row: The corresponding drain
distributions. Note that the distribution is computed separately at each point — the illustrations
are mosaics of these separate illustrations. By definition, each distribution has the same total
energy (they are unity filters), but they are scaled individually for better visual appearance. Bot-

tom row: Close-ups of the distributions for the point right below the center of the triangle.
An explicit approximation scheme with a nonnegativity discretisation was used with t = 20
[Weickert, 1998a]. The edge threshold parameter is set to 220 for all schemes. This corresponds
to characterising the contour around the triangle as edge and the contour around the rectangle
as non-edge. The regularisation scale is 1.2.

Effects of Discretisation Scheme

Apart from the relative differences between the schemes, it appears that the Edge Enhanc-
ing scheme is not quite able to enhance the straight edges as well as in previous publications
[Weickert, 1998a]. This is simply because of the numerical approximation scheme. For the pre-
vious illustrations we use the implementation that ensures non-negative weights in the local
diffusion stencil ([Weickert, 1998a] page 95). This restricts the spectral condition number of the
diffusion tensor to be below 5.8284 — meaning that the local degree of anisotropy is limited.
The eigenvectors are correspondingly limited such that λ1 < 5.8284 λ2. For the edge enhancing
scheme where λ1 ≡ 1 this sets a lower limit on λ2 and thereby some diffusion across the edges
is allowed.

In figure 6.3 the same diffusion processes are repeated using the non-restricted, standard approx-
imation scheme [Weickert, 1998a, Scharr & Weickert, 2000]. It is apparent that a more effective
preservation of the edges is possible. The shapes of the distributions are especially interesting
at the corners. The different abilities of the schemes with respect to supporting diffusion along
the edge through the corner is evident.
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The illustration clearly reveals that the change of discretisation scheme has a major effect on
the diffusion for some of the schemes.

Figure 6.3: Diffusion Echo drain distributions for the four diffusion schemes (linear, Perona-
Malik, Edge Enhancing, and Corner Enhancing) where the nonnegativity approximation scheme
used in figure 6.2 is replaced with the simpler standard approximation scheme. The standard
scheme allows more pronounced anisotropy. Bottom row: Close-ups for the point inside the
left corner of the triangle.

An obvious discretization scheme is to use the larger nonnegativity stencil — but not enforce the
upper limit on the condition number. This would offer a better numerical approximation than
the simpler standard discretization scheme while still allowing arbitray local anistropy. This is
not investigated in this work.

The Visualization Ability

The previous illustrations show that the diffusion echo is able to visualize properties of the
diffusion schemes that are not otherwise apparent. Extended experiments with the diffusion
schemes allows similar intuition but the diffusion echo illustrations offer this understanding
directly.

In the following sections we offer a few appetisers indicating that the diffusion echo can be used
for more than just illustrations.
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6.4 Diffusion Echo Application: Grouping

The diffusion echo expresses affinity between points in an image. This affinity measure can be
used for grouping of pixels into regions or grouping of feature points in general.

Since the affinity measure is defined in terms of the underlying diffusion, the diffusion scheme
needs to be appropriate for the specific grouping task.

Edge detectors often produce edge pieces with small gaps in-between. The diffusion echo for
the Edge Enhancing diffusion scheme would be a very appropriate measure for determining the
connectivity of the edge pieces.

Attributes of the diffusion echo can be used for determining grouping as well. An example could
be using the shape of the distribution to guide grouping of pixels into regions. This is illustrated
by the distributions in figure 6.4.

The differences in diffusivity from the low diffusivity near-edge areas to the high diffusivity areas
away from the edges causes a flux away from the edges. Thereby the means of the distributions
move away from their origins in a direction away from the edges (if any edges are within “striking
distance” depending on diffusion parameters, especially regularisation and diffusion time). This
can be used to create a drift field that can be used to group the pixels. The field will create a
sink in each region that the pixels drift towards.

Figure 6.4: Diffusion Echo grouping drift fields. For the five points a vector from the point to the
mean for the drain distribution gives a drift field that can be used for grouping. For visualization
purposes, the vectors have been scaled to 10 times their actual lengths. The vectors from the
points just inside the corners aim towards the center of the triangle. The vector for the point
just below the triangle (it is a single pixel outside) aims away from the triangle. The remaining
vectors are practically zero-vectors since the parameters for the Edge Enhancing scheme dictate
that there are no edges near them — their distributions are approximately Gaussian with means
at their origins.
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6.5 Diffusion Echo Application: Deep Structure Summary

Instead of grouping the pixels individually, the diffusion echo can also be used for grouping image
regions. This could be an alternative to existing multi-scale linking schemes. An example of
this is shown in figure 6.5 where grouping based on the diffusion echo is compared to multi-scale
watershed segmentation.

The diffusion echo grouping uses a simple threshold to determine whether two neighboring
regions are merged into one region. This threshold is compared to the average affinity measure
between pairs of pixels in the two regions using the affinity measure directly from the diffusion
echo source distribution. The result is a simple flooding-like algorithm.

Even though both examples are quite simple, they illustrate that the diffusion echo distributions
capture what can be considered a deep structure summary to such an extent that even simple
attributes offer powerful grouping abilities.

Figure 6.5: Segmentation by grouping of watershed regions using the Diffusion Echo.
Top row: A simple example where the segmentation task is to capture the rectangle. First the
test image followed by a watershed segmentation at low scale. Third image shows the multi-scale
linking of the regions where the underlying diffusion is 30 levels of the edge enhancing scheme
from t = 1 to t = 600 [Dam, 2000]. The rightmost image is the result of flooding with the
threshold 0.0025 using the average diffusion echo source affinity between neighboring regions.
Bottom row: Equivalent where the segmentation task is to capture the ventricles from a data
set from the Internet Brain Segmentation Repository [ibs, 1999]. Here, the linking uses 10 levels
from t = 0.6 to t = 80 in 10 levels. The flooding threshold is 0.0059.
The diffusion echo flooding method groups the desired regions for both images.
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6.6 Conclusion

We introduce the diffusion echo: the distributions that equip non-linear diffusion schemes with
what corresponds to the Gaussian for linear diffusion.

The diffusion echo offers illustrations of non-linear diffusion schemes that reveal the true local
diffusion in an intuitive manner.

Furthermore, we argue that the affinity nature of the distributions can be used for grouping.
This is demonstrated through two examples. First, the diffusion echo distributions are used to
generate a drift field, where each pixel is equipped with a vector stating the preferred direction
of grouping. Secondly, we group regions by the average affinity between pixels in the regions.
This proves to be a simple but effective region grouping scheme.

Computation time and memory requirement for the computation of the diffusion echoes are
quadratic in the number of image pixels — this obviously is problematic for larger images.
However, actual applications will not use the basic definition directly. Where only linear at-
tributes of the diffusion echo distributions are needed, these can be computed directly during
the diffusion iterations (in linear time and memory) as shown in the following chapter.

Diffusion echo based methods imply a shift from the diffusion scheme being an underlying
information-simplifying step to being the central information-collecting process. The basic prin-
ciple behind Diffusion Echo based methods is the diffusion knows. Future work will reveal the
application tasks where the proper non-linear diffusion scheme really is omnipotent.

Recycling in this Chapter

This chapter is an edited version of [Dam & Nielsen, 2001].
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Chapter 7

Approximating Non-linear Diffusion

Chapters 3, 4, and 5 demonstrate how non-linear diffusion offers superior performance compared
to linear diffusion as a simplifying proces that retains the relevant information during diffusion.
This is due to the ability to specialize non-linear diffusion.

However, as illustrated in sections 5.2 and 6.5 the isotropic linear diffusion actually allows
clearly elongated building blocks in the multi-scale setting and thereby exhibits some anisotropic
behavior. This suggests that linear and non-linear diffusion might not be fundamentally different
in multi-scale methods.

The results in this chapter are general for any use of the non-linear schemes, but as the evaluation
method reveals we have the multi-scale watershed segmentation method in mind.

We assess the feasibility of approximating non-linear diffusion processes with simple local Gaus-
sian filters. Thereby the approach has a certain flavor of replacing non-linear diffusion with
scale-selection in linear scale-space. The purpose of doing this is twofold. Firstly, the theoretical
implications are by themselves interesting. Secondly, a successful method would reduce the need
for computationally expensive implementations of non-linear diffusion schemes.

We evaluate using isotropic and affine Gaussian filters for the task of approximating the local
diffusion for a number of non-linear diffusion schemes. The approximations are first explored
using an information theoretical approach and secondly evaluated based on their performance
in the multi-scale watershed segmentation method.

The results show that while the approximations do not perform quite as well as the original non-
linear schemes, the decrease in performance is acceptable for the evaluated task. Furthermore,
the affine approximations perform significantly better than the isotropic, as expected.
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7.1 Introduction

Non-linear diffusion have proven extremely useful in numerous applications: noise-reduction, en-
hancement, restoration, and multi-scale segmentation [ter Haar Romeny, 1994, Weickert, 1998a,
Sapiro, 2001, Dam & Nielsen, 2000]. This success is due to the ability to incorporate prior task-
specific knowledge into the diffusion process — typically by tuning parameters to the task at
hand.

However, non-linear diffusion does also introduce a couple of basic problems. Firstly, the pa-
rameters for the non-linear schemes have to be determined in some more or less well-founded
manner. This is in itself not a trivial matter as explored in chapter 5. We do not address this
issue in this chapter. Secondly, the non-linear schemes are expensive in terms of computational
complexity. For applications that use non-linear diffusion for noise-reduction in a pre-processing
step, this is not problematic due to relatively short diffusion times. For more demanding ap-
plications the use of non-linear diffusion is often un-feasible — e.g. high resolution medical 3D
scans will often impose severe computational time problems.

One way to attack this problem of computational complexity is to introduce sophisticated
numerical implementations. One such example is the AOS scheme for anisotropic diffusion
[Weickert, 1998a].

The work in this chapter aims at an alternative solution where the non-linear diffusion schemes
such as anisotropic diffusion schemes are replaced by simpler schemes based on local Gaussian
filters. Since the goal is to determine the “best” local Gaussian filter this has a certain scale-
selection flavour and could be inspired by the methods that do this by maximization of scale-
invariant expressions [Lindeberg, 1994] or MDL minimization [Gomez et al., 2000]. However, we
aim at replacing a given non-linear diffusion scheme and therefore the scale-selection mechanism
must have the desired diffusion time as a parameter.

We do not present such a scale-selection method — this is a fundamental feasibility study. How-
ever, we illustrate how such a method can optimally perform. But the main focus is on the eval-
uation of the performance of local Gaussian filters that approximate a given non-linear diffusion
scheme optimally. So we answer the question: If we design the perfect scale-selection method for
approximating non-linear diffusion, how good will it be? An actual scale-selection method could
be inspired by related work on the subject [Nitzberg & Shiota, 1992, Fischl & Schwartz, 1997].

The approximation method relies heavily on the use of the diffusion echo presented in the
previous chapter. The local filter kernels extracted in this manner is then approximated by
isotropic and affine Gaussian filters satisfying maximal entropy constraints. As a secondary
result, these approximations allow us to quantify how non-linear the schemes are (i.e. how
different from linear Gaussian diffusion they are).

Having defined the approximating filter kernels we turn to the evaluation that we perform in two
steps. First we explore the performance of the approximating schemes by evaluating them on ran-
dom points in natural images from the Van Hateren collection [van Hateren & van der Schaaf, 1998].

Secondly we evaluate the approximating filter kernels in the multi-scale segmentation setting
where non-linear diffusion schemes have been shown to offer superior performance compared to
linear diffusion.
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7.2 Approximating Non-linear Diffusion

In order to approximate the non-linear diffusion schemes we first perform the desired non-linear
scheme implemented through a simple explicit iterative scheme. This is done with an augmented
implementation that records the actual local filter kernels that are implicitly used in the diffusion
as explained in the previous chapter.

These recorded local non-parametric filter kernels are approximated with simple, parametric
Gaussian filters based on information-theoretic criteria.

7.2.1 The Diffusion Echo Moments

Most non-linear diffusion schemes have no explicit expression for (or representation of) the local
filter kernel that determines the diffusion in each point (i.e. pixel or voxel, the following works
for arbitrary spatial dimension).

However, a simple method exists for obtaining these local filter kernels. For each pixel an
auxiliary image is created with the value 1 in this pixel and zero elsewhere. This is the discrete
equivalent of the impulse function. The diffusion that is performed on the actual image is then
performed in parallel on each auxiliary image. Thereby the impulse responses for the diffusion
process are acquired. They determine where the “mass” in a pixel flows to during diffusion. The
local diffusion filter kernel for a pixel is then collected by picking the flow from each impulse
response that flows to the specific pixel. The recorded impulse responses and local filter kernels
are called the Diffusion Echo [Dam & Nielsen, 2001].

The downside of this simple method is the computational complexity and the memory require-
ments. Independent of the efficiency of the underlying implementation of the diffusion scheme,
the augmented method becomes at least O(P 2) (where P is the number of pixels in the image,
assuming a fixed diffusion time) in the straightforward implementation. This can be lowered to
O(P × F ) (where F is an upper limit of the number of pixels in a local filter kernel not being
zero) if the extent of the impulse response can be limited. Nevertheless, this is still a quite
restrictive complexity.

However, for some purposes only the moments of the filter kernels are necessary and not the
actual filters. Many implementations of non-linear diffusion schemes are based on iterative
schemes where a local stencil is used to form a weighted average of some neighborhood for each
pixel/voxel. The specific scheme defines the local stencil.

In this case it is simple to record the moments (specifically mean and variance) of the local filter
kernel directly without recording the local impulse response. This is done by using the local
stencil to average the moments from the previous iteration for each iteration step. This process
adds no computational complexity to the diffusion method (in the O(·) sense).
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7.2.2 Maximum Entropy Approximation Filters

As described above we summarize the diffusion process with a local diffusion filter kernel in
each point of the domain. The convolution with the filter kernel and the original image in that
specific point will give exactly the same result as the diffusion process in the point. The filter
values depend on the chosen diffusion scheme (including choice of parameters — e.g. iterations)
and the original image.

We want to approximate this filter kernel. A straightforward approach is to approximate the
first few moments, say the mean and the variance. In order to select among the filters with
the same mean and the variance we choose the filter with maximum entropy when the filter is
viewed as a distribution.

A maximum entropy solution is a least committed appoach in the sense that it treats all locations
as equally as possible under the given restrictions (here a specified mean and variance). In the
case of no restrictions, a maximum entropy solution results in a uniform distribution. In this
way we avoid to introduce a bias towards a specific (unknown) purpose in our approximation.
For a distribution P (x) on the domain D, the entropy H(P ) is defined:

H(P ) =

∫

x∈D

−P (x) log P (x) dx

The maximum entropy solution given a specific mean and variance is in the continuous case
a Gaussian distribution. To stay in the continuous domain we calculate the variance of the
diffusion echo filter kernel by modelling it as a piecewise constant function on a continuous
domain. When we apply the resulting approximating filter kernel we also model the image as a
piecewise constant function on a continuous domain.

Another possible measure for defining the best approximating filter kernel is to limit the Kullback-
Leibler divergence (or the relative entropy, [Kullback & Leibler, 1951]). For a distribution P (x)
and an approximating distribution A(x) on the domain D, the Kullback-Leibler divergence d is
defined:

d(P,A) =

∫

x∈D

P (x) log
P (x)

A(x)
dx

By following Jaynes’ maximum entropy principle [Jaynes, 2003] we limit the possible approxi-
mating filter kernel to be Gaussian. It is fairly easy to show that a Gaussian G(µ, σ) with the
same mean µ and variance σ2 as the original filter kernel P also minimizes the Kullback-Leibler
divergence d between the Gaussian and the filter kernel (done in 1D for simplicity):

arg min
µ,σ

d(P,G) = arg min
µ,σ

∫ inf

−∞
P log

P

G
dx = arg min

µ,σ

∫ inf

−∞
−P log G dx

= arg min
µ,σ

∫ inf

−∞
P log

√
2πσ2 dx +

∫ inf

−∞
P

(x − µ)2

2σ2
dx

= arg min
µ,σ

log
√

2πσ2 +
1

2σ2

∫ inf

−∞
P (x − µ)2 dx
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The last integral minimizes to the variance of P for µ equal to the mean of P . Then, the
remaining expression is easily shown to minimize for σ2 equal to the variance of P .

Thus, by following Jaynes’ maximum entropy principle we minimize the Kullback-Leibler diver-
gence between the diffusion echo filter kernel and the approximating filter.

Using an information theoretic approach is relevant since the filters can be naturally perceived
as probability distributions. Specifically they measure the probability of flow between two points
in the image (the two directions of the flow being in source and drain echo respectively).

7.2.3 Illustrating Diffusion Approximations

The non-linear diffusion schemes used in the evaluation are presented in previous chapters.
We investigate the use of linear diffusion, Perona-Malik diffusion, Weickert’s edge enhancing
diffusion, and finally generalized anisotropic non-linear diffusion. These schemes are described
in the previous chapter (section 6.2).

The approximation method is illustrated by comparing the result with the use of the original
non-linear schemes.

For the illustrations we use the simple image in figure 7.1 where the point of interest is the
center point. From a diffusion approximation point of view, this is a relatively challenging point
since it is located just inside a corner.

Figures 7.1 and 7.2 show that the approximating filters do a reasonably good job for this example
point — the quantitative differences are obvious, but the qualitative appearance of the diffused
images are quite similar.

7.3 Information Theoretical Evaluation

The diffusion echo filter kernels from the diffusion processes are approximated by a Gaussian
filter. We evaluate both the use of isotropic and affine Gaussian filters for the approximations.
The expectation is that in some cases the affine can give a better approximation than the
isotropic. More advanced filters could be chosen, but that would defeat the purpose of making
simple, approximating schemes.

The diffusion echo depends on the diffusion process as well as the original image. The influence of
the original image is addressed by 10,000 repetitions of randomly selecting a point in a randomly
selected image from the Van Hateren database of natural images (actually approximately half of
the Van Hateren images are discarded due to poor image quality [Griffin et al., 2003]). Around
each selected point, a neigborhood of N × N pixels is selected and the diffusion is done on this
subimage. The neighborhood size N is defined such that a linear Gaussian filter at the center has
three standard deviations inside the subimage. The diffusion time t gives the standard deviation
by 2t = σ2 — we use 100 iterations with time step 0.2 so N = 39.
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Image Dimensions: 15x15
Intensities (min/mean/max): 0.0 / 132.5 / 255.0
Iterations: 15, Time step: 0.2
Echo Approximation Criterium: MaxEntropy
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Figure 7.1: Comparison of the actual diffusion echo filter kernels with the approximated filters.
Left column: The original image and the result of applying linear Gaussian, Perona-Malik,
and edge enhancing diffusion. The red dot is the center point where the filters are approximated.
Second column: The diffusion echo filter kernels for each diffusion scheme. Third and

fourth columns: Affine and isotropic approximating filters, respectively. The overlaid contours
in warm colors are iso-curves. The entropy and KL measures show that EED is clearly more
non-Gaussian than RPM, and that there is a surprisingly small difference between the isotropic
and affine approximations.
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Figure 7.2: The effect of applying the diffusion echo filter kernel compared to the result of applying
the approximating filters. The rows are linear Gaussian, Perona-Malik, and edge enhancing
diffusion. First column is the diffused images, second and third columns are the approximated
diffused images. Even though the quantitative differences between applying the non-linear filter
kernels and the approximated filters are evident, the qualitative appearence of the resulting images
are quite similar.
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In order to assess the correspondence between the diffusion echo filter kernel and the approxi-
mating filter we compare both the filters themselves and their effect on the image. The filters
can be perceived as distributions that govern the flow of mass in the image. Thereby a natural
measure of difference is the Kullback-Leibler divergence. When measuring the difference in the
effect of the diffusion on the images we measure the resulting intensity difference. The local
intensity difference is the difference between intensities in the point of interest of the diffused
image and the intensity resulting from convolving the original image with the approximating
filter in the center of the subimage.

An alternative measure of the effect of approximating the filter kernels could be the shift of the
isophotes in the resulting images. In some cases this will be a more informative measure — for
instance indicating the expected feature detection imprecision resulting from the approximation.

The figures 7.3 and 7.4 display the Kullback-Leibler divergence and the local intensity difference
respectively with histograms over the 10,000 samples. Each subfigure consists of the histogram
and a smaller figure with the same data but different scaling and bin distribution.

All the large plots in the subfigures have the same scaling and the y-axis (the counts) has been
scaled logarithmic. The smaller inserted are scaled according to the range of the data for that
specific histogram and with linear y-axis.

In Figure 7.3 the histograms show mean Kullback-Leibler divergences between the approximation
and the diffusion process. Pairs of mean KL divergence for (affine, isotropic) approximations for
linear, RPM, and EED are respectively (0.0006, 0.0006), (0.0542, 0.0663), and (0.2898, 0.3566).

First, we see that linear and Perona-Malik diffusion can be approximated quite well. In the linear
case that is trivial. If the linear diffusion process was a perfect approximation to convolving
with a Gaussian the difference would be zero but due to the numeric limitation in discretisation
that is not the case. The KL divergence of 0.0006 can been interpreted as the level of precision.
In the case of edge enhancing diffusion the difference is quite high but as can be seen from the
histogram a lot of cases can be approximated well but some approximations are very poor which
on average gives a large difference.

Secondly, the numbers offer an ordering of the diffusion processes with EED as having behavior
furthest away from linear. As expected, the aggressive anisotropic EED scheme is more non-
Gaussian than Perona-Malik. Finally the affine approximations are evidently significantly better
than the isotropic.

In order to put the measured Kullback-Leibler divergences into perspective, they can be com-
pared to a simple example. Assume that we want to approximate a Gaussian distribution with
another Gaussian distribution. Then the KL divergence is a function of the shift in mean and
the change in standard deviation in the approximating distribution. For fixed, equal standard

deviations σ, the KL divergence d as a function of the shift of the mean ∆µ is d = ∆µ2

2σ2 (this

is fairly easy to derive). For a given KL divergence d, the mean shift is then
√

2d σ. The KL
divergences around 0.05 and 0.3, as measured for the approximations for RPM and EED above,
then correspond to a mean shifts of respectively

√
0.1 σ and

√
0.6 σ. Obviously the measured

KL divergences are due to differences in shape not in shift of the mean (by definition this shift
is zero). Even so, the implication is that KL divergences in this range are definitely measuring
significant differences between the original and approximating distributions.
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Figure 7.3: Measuring Kullback-Leibler divergence between diffusion echo filter kernels and ap-
proximations. The columns show the affine and isotropic approximations respectively. The rows
show Linear, RPM and EED. The small plots show same data — with different axis, bins and
scaling. Note that the large plots are scaled logarithmically.
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In figure 7.4 the local intensity differences are presented, hence this plot assesses the actual
outcome of applying the approximations compared to the original diffusion. The local inten-
sity differences should be compared to the range of the image (which is zero to one due to
normalization).

Due to the symmetry in the formulation a mean of zero is expected and confirmed within the
precision.

Pairs of standard deviations for (affine, isotropic) approximations for linear, RPM, and EED
are respectively (0.0002, 0.0002), (0.0067, 0.0096), and (0.0087, 0.0141) This supports the trend
established in figure 7.3 which again indicates that the good approximations in the information
theoretical sense actually gives good approximations of the diffusion processes. The standard
deviations again support that the affine approximations give significantly better results than the
isotropic as expected.

It should be noted that the evaluation above is specific to the chosen diffusion schemes and the
choice of parameters for these. Especially the choice of diffusion time could influence the results
since non-linear diffusion can become “arbitrarily non-linear” with increasing diffusion times.
However, the following application evaluation adresses this issue indirectly since the multi-scale
method requires both short and long diffusion times.

7.4 Application Evaluation

The evaluation on natural images above show that the approximations perform quite well —
especially for the less non-Gaussian Perona-Malik scheme. However, the lack of a specific task
makes the interpretation of the results slightly vague. As a counter-part to that we evaluate
the performance of the approximated non-linear diffusion schemes in the interactive multi-scale
watershed segmentation method used in the previous chapters.

The chosen task is segmentation of white matter tissue from brain scans. This task is chosen
since the geometry of white matter tissue is quite complicated and therefore challenging for a
non-committed segmentation method that uses no prior knowledge on the intensity distributions
of brain matter.

The scans and corresponding ground truth segmentations are obtained from the BrainWeb site
[Collins et al., 1998] (we use 9 slices with 10 slices between each from a simulated T1 MR brain
scan, intensity non-uniformity level 20%, noise level 9%).
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Figure 7.4: Comparing local intensity difference between the diffusion process and the approx-
imated diffusion process. Like figure 7.3 the columns are isotropic and affine approximations
and the rows are Linear, RPM and EED. The intensities in the images are zero to one due to
normalization.
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Figure 7.5: Linear diffusion makes the building blocks merge across brain structures before rea-
sonably large segments are formed. Therefore smaller building blocks must be selected in order
to segment the white matter tissue. The use of non-linear diffusion allows the building blocks to
grow within the tissue boundaries. The practical implication is that where 18 action are required
to select 70% of the white matter using building block created using linear diffusion, only 5 are
necessary with GAN diffusion. For 80% the action counts are 39 and 11, respectively.

7.4.1 Non-linear Diffusion in MSWS

The original MSWS (multi-scale watershed segmentation) method relies on linear Gaussian
scale-space to simplify the image. This simplification determines how the watershed segments
group into gradually larger building blocks corresponding to image structures at a given scale.
In [Dam & Nielsen, 2000] the use of non-linear diffusion in MSWS is explored and evaluated
(see chapter 3 for details). Figure 7.5 illustrates how the building blocks are better suited to
the application at hand.

The evaluation is based on a count of the minimal number of selections and deselections of
building blocks in the segmentation. The parameters for the non-linear schemes are determined
such that this count is minimized.

A simple way to present the evaluation results is to normalize the performance (of the building
blocks resulting from a non-linear scheme) with respect to the performance of linear diffusion.
The descriptor is then the ratio of actions required compared to linear diffusion. Table 7.1 shows
that for each action used on building blocks resulting from linear diffusion, it is on average only
necessary to use 0.42 or 0.32 when the building blocks are from Perona-Malik or GAN.

We have chosen to disregard the edge enhancing diffusion scheme EED for this evaluation since it
does not perform well (chapter 3 and [Dam & Nielsen, 2000]), and therefore is less interesting to
approximate. The parameters for GAN given above produce a diffusion scheme that intuitively
is in-between RPM and EED with a qualitative behavior closer to RPM.

67



0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Gauss         1.00
RPM           0.43
RPM Isotropic 0.55
RPM Affine    0.55
GAN           0.28
GAN Isotropic 0.55
GAN Affine    0.51

Figure 7.6: The diffusion schemes are evaluated on the image in figure 7.5 on the number of
actions needed to reach a given segmentation quality where the performance of linear diffusion
building blocks is used as normalization. The graph shows the actions needed to reach the quality
reached by a given number of actions using linear diffusion.

7.4.2 Approximating Non-linear Diffusion in MSWS

In section 7.2.1 we present how to approximate the non-linear diffusion scheme using local
isotropic and affine Gaussian filters. The approximation method can be used directly to gener-
ate filters approximating the non-linear diffusion in the segmentation method. For each scale we
approximate the diffusion using the mean and variances recorded for each pixel. The approx-
imating Gaussian filters are then applied and the gradient magnitude calculated. From there
the MSWS method is exactly as described above.

The performance of the approximating filters can then be evaluated in the same manner as
the non-linear schemes are evaluated in chapter 3 [Dam & Nielsen, 2000]. Figure 7.6 shows the
performance of the approximating filters on the image in figure 7.5.

Table 7.1 shows how the filters perform on average on the entire test set consisting of 9 brain
scan slices. As stated above, for each action used on building blocks resulting from linear
diffusion, it is on average only necessary to use 0.42 or 0.32 when the building blocks resulted
from Perona-Malik or GAN.

The approximating schemes perform significantly worse than the original non-linear schemes
(they use between 27% and 73% more actions) but still maintain the main part of the advantage
compared to linear diffusion (the ratios are between 0.50 and 0.65). As expected, the affine
approximations perform significantly better than the isotropic. As a rule of thumb, it can be
stated that for each 6 actions necessary to reach a given quality using linear diffusion, then only
2 actions are required with GAN diffusion, and 3 actions with the approximations of GAN.
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Scheme Ratio Std. Dev. Ratio compared
to approx. scheme

Linear Gaussian 1.00 0.00
Regularized Perona-Malik 0.42 0.15
RPM approximated Isotropic 0.65 0.14 1.55
RPM approximated Affine 0.53 0.13 1.27
Generalized Anisotropic Non-linear 0.32 0.07
GAN approximated Isotropic 0.56 0.08 1.73
GAN approximated Affine 0.50 0.10 1.55

Table 7.1: The performance of the approximated non-linear diffusion scheme evaluated by the
usability of the resulting multi-scale watershed segmentation building blocks. First column:
All schemes are compared using the performance of linear diffusion building blocks as yardstick.
Last column: The approximating schemes are compared to the schemes they are approximating
— so the approximating schemes use between 27% and 73% more actions than ideally.

Slice from
BrainWeb scan

Diffused with
GAN to t = 11.4

Local scale of
isotropic filter

Figure 7.7: The local scale as determined by the approximating isotropic filter. In areas far
from a edge (as defined by the parameters for GAN) full diffusion is allowed. Around edges the
diffusion is restricted, thus giving a lower local scale for the diffusion.

7.4.3 Multi-scale Scale Selection

In the following we investigate the use of approximating filters in multi-scale watershed segmen-
tation a bit further. Due to the simpler parameterisation of isotropic Gaussian filters we restrict
ourselves to those for the analysis.

Implicit Scale Selection

At a given scale, in a given pixel the isotropic approximation filter implicitly determines a local
scale. This local scale is illustrated in figure 7.7. It should be noted that we will implicitly treat
the isotropic local Gaussian filters as if they only have a single parameter in each pixel. This
is a simplification since the mean of the filter kernel is generally not centered at the given pixel
and therefore needs to be represented as well.
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Figure 7.8: The local scale selected on a line across the ventricles in the image in figure 7.5 for 6
scale levels. The crossings of the ventricles are evident: at low scale levels we see drops in local
scale at each boundary — at high scale levels there is a single nose-dive across the entire ridge.

Implicit Multi-scale Scale Selection

In a standard multi-scale setting based on linear diffusion, each scale level is a hyper-plane in
scale-space with a constant scale value. For the approximating isotropic filters, the local scale
is selected at each point — thereby the scale levels become hyper-surfaces. These surfaces are
bounded upwards in scale by the maximal scale the non-linear diffusion can reach with the given
diffusion time (e. g. GAN diffusion becomes linear diffusion when used on a constant starting
image — it then reaches this maximal scale in all points). At points where the diffusion is
restricted (e.g. due to edges in the image) the hyper-surface will drop down to lower scales.

This local scale selection is illustrated in the multi-scale setting in figure 7.8. Again, the il-
lustration is a simplification since the local isotropic Gaussian filters can not be parameterized
by a single parameter only. It is this behavior that a scale selection method would have to
approximate in order to implement the approximating diffusion schemes directly. Note that the
scale level surfaces do not intersect. The local scale is monotonically increasing as a function of
the diffusion time — provided the diffusion scheme meets a suitable causality principle.
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7.5 Conclusion

We evaluate the feasibility of approximating non-linear diffusion schemes with isotropic and affine
Gaussian filters. The basis are the local diffusion filter kernels from the non-linear schemes that
are extracted from the diffusion echo. These filter kernels are compared to the approximating
Gaussian filters.

The approximating filters are evaluated on natural images. Both the measures that compare the
filters directly (Kullback-Leibler divergence) and the measure that compare the resulting diffused
images (intensity difference) show that especially Perona-Malik diffusion can be approximated
quite well. Furthermore, the affine approximation shows significantly better performance than
the simpler isotropic Gaussian filters.

Secondly, the approximating filters are evaluated on their performance in the multi-scale seg-
mentation method for the task of segmenting white matter brain tissue. This evaluation offers
more concrete results due to the specific task. The results show that for each 6 actions necessary
to reach a given segmentation quality using linear diffusion, then only 2 actions are required
with GAN diffusion, and 3 actions when the approximations of GAN are used. While the ap-
proximations perform significantly worse than the original non-linear scheme, the major part
of the advantage compared to linear diffusion is retained. Again, this evaluation show that the
affine filters approximate the non-linear schemes significantly better.

It should be noted that the approximating processes have not been optimized for solving the
task but optimized to mimic the diffusion. Hence it is possible that another choice from the
same class of filters would give a better performance in the segmentation task.

So, do we need the original non-linear diffusion schemes? The somewhat predictable answer is:
If optimal performance is needed then yes — but if a relatively small decrease in performance
is acceptable then no.

The obvious and necessary direction for future work is to establish methods for determining the
parameters for the approximating filters directly from the desired diffusion process parameters
and the local image structure.

Furthermore, if the approximating filters are to be used as fast approximations compared to
running the original non-linear schemes, much work is needed in comparing efficient implemen-
tations of both.

Recycling in this Chapter

This chapter is an edited version of [Dam et al., 2003c].
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Chapter 8

Exploring Shape Models

As stated in the introduction (chapter 1), the interactive multi-scale watershed segmentation
method has provided inspiration for a large part of the work in this dissertation.

The segmentation program ∇Vision shows good performance already in the original formulation
based on linear diffusion (see chapter 2). Furthermore, the work in chapters 3 and 5 shows that
this performance can be significantly improved through the use of non-linear diffusion. The
use of generalized anistropic non-linear diffusion improves the performance by specializing the
building blocks towards a specific segmentation task.

The work on the diffusion echo started as an attempt to visualize and understand non-linear
diffusion schemes better (chapter 6) — with the implied purpose of designing non-linear schemes
for improving these building blocks even further. This inspired the corner enhancing diffusion
scheme (presented in chapter 6). However, experiments show that there is an implicit limit for
how much the diffusion schemes can be specialized towards a specific segmentation task. Larger
specialization implies more terms and parameters that determines where the local diffusion is
lowered in order to preserve local structures. This introduces two fundamental constraints. The
introduction of more terms that lower the diffusion locally makes the schemes more sensitive to
noise. And the introduction of more parameters complicates the optimization of the scheme for
the specific segmentation task.

The conclusion is therefore that we cannot expect to improve the building blocks in the seg-
mentation method drastically further through better use of non-linear diffusion along the lines
projected in the previous chapters.

In particular, it will not be possible to reach near-automatic segmentation for most segmentation
tasks. Experience shows that the level of automation is a critical parameter when considering
using the method for actual clinical applications. Therefore higher specialization, committing
the method even further to the given task, is desirable.

Now is a good time to put on our thinking caps.
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8.1 Improving User Interaction

One possible path for improving the segmentation program is to optimize the interaction. It is
not a problem that 50 building blocks are needed to sculpt the aorta if these can be selected in a
single interaction. A simple example of this approach is illustrated in section 2.3 (see illustration
page 11). This approach is not explored in this dissertation.

8.2 Adding a Shape Model

The use of non-linear diffusion in the multi-scale watershed approach described in the previous
chapters is based on a local definition of object homogeneity. This allows specification of pre-
ferred local boundary behavior (such as a soft gradient threshold and curvature information).
Global features of the objects are only indirectly addressed through the multi-scale approach.

A way to achieve a higher level of automation of the segmentation process would be to incorpo-
rate this higher level information. The natural type of information to add to the object model
is shape information that incorporates prior information on the expected shape of the objects
of the given segmentation task.

A simple analogy is the step from a Snake (or Active Contour Model [Kass & Terzopoulos, 1988])
to an Active Shape Model [Cootes et al., 1995]. The snake allows specification of expected local
boundary behavior in terms of image gradients and boundary curvature — the ASM approach
adds terms specifying the likelihood of the global shape and the preferred deformations in the
optimization process.

The shape information could be incorporated in the non-linear diffusion process, as done in the
Diffusion-Snake [Cremers et al., 2002b, Cremers et al., 2002a]. This approach is not pursued
here. Alternatively, the shape information can be extracted from the watershed linking tree.

Augmenting the multi-scale watershed segmentation method with a shape model is no simple
task. The multi-scale linking graph models the entire image with the desired object being
represented by selected nodes in this graph. The way we handle creations of singularities ensures
that the graph is actually a tree. The object is then implicitly represented through the selected
and deselected nodes in the tree.

Unfortunately the object is in general not a single sub-tree — this would mean that it could be
segmented using a single action in the interactive method. But is also makes the representation
of the object more complicated. Specifically it means that the representation is a combined
representation of both the object and the background.

Another complicating factor is that the topology of the tree will vary for different, but very
similar objects. This makes the concept of correspondence difficult to define.

In the following, a few related shape matching methods are briefly introduced.
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8.3 Related Shape Representation Methods

The most mature graph-based matching schemes are the methods developed for matching of
shock graphs [Siddiqi et al., 1999]. The shock graph is generated by shrinking the boundary of
the shape recording the collapses where opposing boundary points meet. A categorization of
these points allows the process to be represented as a graph. This method has been used for
shape matching and indexing with promising results.

Another promising approach is more related to classical scale-space methods using scale-space
hierarchies of features [Demirci et al., 2003]. Here classical scale-space features such as blobs
and ridges are linking and grouped into shape representations for hands.

Worth mentioning is also the curvature scale-space [Abbasi et al., 1999] that is similar to the
shock graph but generates the graph representation by following zero-crossing for the boundary
curvature as the curve evolves.

Also, promising research on using shape representations based on scale-space structures is cur-
rently underway (such as matching of top-points [Kanters et al., 2003] for face recognition).

Common for these shape matching methods is that they have severe limitations that restrict
them from being the ideal choice for inspiring a shape model in the multi-scale watershed
segmentation method. First, they define a representation of a shape — not an image (except
for the representation based on top points in scale-space). Furthermore, the matching schemes
do not provide a measure of probability for the query shape (this problem could be solved).
Furthermore, the methods have no obvious way of providing a shape mean and corresponding
deformations that can steer a segmentation process. Finally, the lack of an explicit statistical
interpretation means that it is problematic to generate and sample new shapes.

The last two requirements, being able to model shape variations and being able to statistically
sample new shapes, are extremely useful properties for a shape model.

Some preliminary work exists on achieving this for shape representations based on trees. This
statistic method aims at providing the analogy of principal components analysis for trees, and is
termed functional data analysis [Wang, 2003]. However, this approach imposes severe rescrip-
tions since the trees are required to be binary and have correspondence based on the level-order
position in the tree.

8.4 Generative Representation with Fixed Topology

A central problem in basing a shape representation on the multi-scale watershed linking tree is
that varying topology for similar images of the same object class.

A way to attack this problem is to move from a shape representation derived from the image
to a generative model that is deformed to fit the image data as well as possible. Using this
approach, the topology is determined by the generative model and not the image.
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This approach has been used successfully for a representation that is similar to the watershed
linking tree. This medial representation is based on the Blum medial axis [Blum & Nagel, 1978].
The medial axis also offers highly varying topology for similar shapes [Pizer et al., 2003b], but in
the m-rep setting the generative approach is used and the topology is fixed [Pizer et al., 2003a].

The topology can be fixed to the appropriate mean topology using a somewhat complicated
method, where each shape in converted into spherical harmonics and then Voronoi skeletons
representations [Styner & Gerig, 2001]. However, empirical experiments show that in many
cases a very simple topology is adequate.

The desire to reach a shape modeling method for the multi-scale watershed method inspires the
work on automatic generation of a medial shape model that is presented in the next chapter.

Recycling in this Chapter

This contents of this chapter are previously unpublished.
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Chapter 9

Prostate Shape Modeling based on

Principal Geodesic Analysis

Bootstrapping

The use of statistical shape models in medical image analysis is growing due to the ability to
incorporate robustly prior organ shape knowledge for tasks such as segmentation, registration,
and classification.

Shape models are constructed from collections of segmented organs. Though interaction can
ensure correspondence, it also introduces bias and ruins reproducibility — so a high degree of
automation is desirable in the training process.

We present a novel shape model construction method via a medial shape representation. The
essentially automatic iterative bootstrap method is based on an iterative bootstrap method that
alternates between shape representation optimization and analysis of shape mean and variations.

The method is used to create a model from 46 segmented prostates with quantitatively and
intutitively good results.

9.1 Introduction

Methods based on analysis of shape variation are becoming widespread in medical imaging.
These methods allow incorporation of statistical prior shape knowledge in tasks where the image
information alone often is not strong enough to solve the task automatically. The obvious
example is the use of deformable models in segmentation, in which the preferred deformations
are determined by a statistical shape model. Another important task is shape analysis and
classification, in which a statistical shape model offers information for diagnostic methods.
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Most statistical shape models consists of a mean shape with deformations. The mean and
the corresponding deformations are constructed through statistical analysis of shapes from a
collection of training data. Each shape in the training set is represented partially by the chosen
shape representation, and analysis of the parameters for the representation gives the mean and
variations [Cootes et al., 1995, Cremers et al., 2002a].

The best known model from this class is the Active Shape Model (ASM) [Cootes et al., 1995].
Here, the shapes are represented by a point distribution model (PDM) with given point-wise
correspondence. The mean model is achieved through Procrustes alignment of the shapes fol-
lowed by mean computation of each point in the model. Principal component analysis (PCA)
is used to provide the variations.

This work pursues the medial shape representation known as the m-rep [Pizer et al., 1996]. The
m-rep offers an intuitive representation of the shape by means of the sheet of sampled me-
dial atoms. Compared to PDMs this representation is less simple since the parameter space is
not Euclidean but consists of a combination of position, scaling, and orientation parameters.
Standard PCA is therefore not applicable. However, the analogue of PCA has been developed
for a more applicable space of shape representations. This is the Principal Geodesic Analy-
sis (PGA) that applies to shape representations that form Lie groups [Fletcher et al., 2003a,
Fletcher et al., 2003b].

A key element in constructing shape models is the representation of the shapes in the training
collection. This should be done in a manner that defines/preserves correspondence across the
population. For PDMs the simplest method is manual selection of the boundary points by
an expert of the specific anatomical structure. In 2D this is a time-consuming and tedious
process — in 3D it is even worse. However, this process can be automated. The approach by
Davies [Davies et al., 2002] starts by generating boundary points from a spherical harmonics
shape representation. This set of boundary points and their correspondences are then optimized
through a Minimum Description Length (MDL) approach.

This work presents an essentially automatic shape modeling method. The core is a fully auto-
matic bootstrap process that iteratively optimizes the shape model on a training collection and
then derives the PGA mean and modes of deformation. Through the bootstrap iterations, the
PGA mean and variations are optimized to allow automatic fitting of all shapes in the training
collection.

The flavor of this work resembles the MDL method in [Davies et al., 2002]. The main differ-
ence is that the MDL approach starts the optimization process from representations with good
training shape fit and poor correspondence. The MDL process then keeps the shape fits while
optimizing the correspondence. The PGA bootstrap starts from a generative model with explicit
correspondence but with poor fit to the individual training shapes. The bootstrap process then
keeps the correspondence while optimizing the fit to the training shapes.

There exists another method for generating an m-rep mean model from a set of training shapes
[Styner & Gerig, 2001] that uses a spherical harmonics representation followed by generation of
the mean medial sheet from pruned Voronoi skeletons. Our approach is intuitively cleaner since
m-rep is the only shape representation in play. Furthermore, our approach provides modes of
variation as well as the shape mean.
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We evaluate the presented PGA bootstrap method for the task of constructing a shape model
for a population of prostates. The training collection consists of 46 cases where the prostates
were segmented in the course of prostate cancer external-beam radiation treatment. Especially
in CT scans with slice thickness 2mm or larger, the boundaries of the prostate have low contrast
— therefore, prior knowledge in a statistical shape model is essential to making automatic
segmentation possible. This prostate shape model is a key step towards a pelvis multi-object
shape model that hopefully will achieve this goal.

Furthermore, current research aims at using the shape model to analyze the prostates in order
to make a shape classification used for the radiation treatment planning. This is concentrated
on the problematic saddle-back cases where the prostate reaches around the rectum — that
complicates giving radiation to the prostate without hitting the rectum.

The contributions of this work are twofold: a) The presented PGA bootstrap method that allows
essentially automatic generation of a shape model with mean and corresponding main modes of
variation. b) The resulting prostate model that will be central in segmentation and analysis of
prostates and eventually allow better radiation treatment planning.

9.2 The UNC Pelvis Collection

In radiation treatment, accurate segmentation of the prostate and surrounding organs is vital.
Low image contrast across the prostate boundary makes this a difficult task.

The segmentation programs, MASK [Tracton et al., 1994] and anastruct editor, from the PLan-
UNC suite of radiotherapy treatment tools developed at UNC-CH Radiation Oncology, have
slice-based contour drawing tools and visualization of reconstructed sagittal and coronal views.
Both programs have interactive 12-bit intensity-windowing, which is required to find and draw
both the prostate boundaries across from the bladder and the prostate’s apex (the superior
tip). The contours are scan-converted to labelled images, which introduces less than one pixel
of error not significant to this shape study. Prostatic fat is included in the prostate’s shape, as
is seen in clinical practise, both because of the difficulty of finding the border between these and
the prostate and the chance that these will contain significant counts of cancer cells. Seminal
vesicles are excluded from the prostate.

Clinical contours are used but adjusted when obvious errors were found, such as missing contours,
overlapping contours (eg. between the rectum and prostate), or just sloppy contouring – all of
these shortcuts are due to clinical time constraints and are not perceived to affect clinical care
but can affect shape studies.

The ungated CT scans are acquired from non-immobilized supine patients at UNC Healthcare
(Chapel Hill, NC, USA) and Western Wake Radiology (Cary, NC, USA) on Siemens Somotom
4+ scanners without administering contrast agents. Note that while the prostate is quite hard,
the multi-object statistics eventually produced will be sensitive to prostate shifts based on the
patient’s position and the CT couch shape (flat vs. rounded) because of the surrounding tissues’
malleability. These effects should not affect this shift-invariant prostate shape analysis.
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Figure 9.1: Sagittal slices of the manual segmentations of rectum, prostate, and bladder from
two cases in the UNC pelvis collection.

Retrospective patient images are selected from the patient archives based on technical criteria,
such as adequate image quality and anatomical coverage (the entire bladder down through the
prostate apex), as well as shape and anatomical considerations such as very large bladders,
prosthetic hips, or surgical procedures proximal to the prostate, yielding “normal cancerous”
prostates.

The collection has 46 sets with manual segmentations for prostate, bladder, and rectum. All
cases are diagnosed with prostate cancer so the resulting shape model will not necessarily model
prostates in general. For instance, an increase of the size of the prostate is common for prostate
cancer patients. However, since the shape model is to be used for segmentation and analysis of
patients diagnosed with prostate cancer, this bias towards cancerous prostates is desirable.

The volumes of the prostates varies from 12cm3 to 144cm3. Figure 9.1 illustrates the large
variation in shape.

9.3 Medial Shape Representation: m-rep

We use a medial representation, m-rep, to model shape. Here, we briefly review the geometry
of m-reps and the deformable m-rep framework for image segmentation [Pizer et al., 2003a,
Joshi et al., 2002].

9.3.1 m-rep Geometry Overview

The shape representation we use is based on the medial axis of Blum [Blum & Nagel, 1978]. In
this framework, a 3D geometric object is represented as a set of connected continuous medial
sheets, which are formed by the centers of all spheres that are interior to the object and tangent
to the object’s boundary at two or more points. Here we focus on 3D objects that can be
represented by a single medial figure.
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Figure 9.2: Medial atom with a cross-section of the boundary surface it implies.

We sample the medial sheet M over a spatially regular lattice. Each sample point also includes
first derivative information of the medial position and radius. The elements of this lattice
are called medial atoms. A medial atom (figure 9.2) is defined as a 4-tuple m = {x, r,F, θ},
consisting of: x ∈ R

3, the center of the inscribed sphere, r ∈ R
+, the local width defined as

the radius of the sphere, F ∈ SO(3) an orthonormal local frame parameterized by (b,b⊥,n),
where n is the normal to the medial sheet, b is the direction in the tangent plane of the fastest
narrowing of the implied boundary sections, and θ ∈ [0, π) the object angle determining the
angulation of the implied sections of boundary relative to b. The medial atom implies two
opposing boundary points, y0,y1, with respective boundary normals, n0,n1, which are given by

n0 = cos(θ)b− sin(θ)n, n1 = cos(θ)b + sin(θ)n,

y0 = x + rn0, y1 = x + rn1.

Given an m-rep figure, we fit a smooth boundary surface to the model. We use a subdivision
surface method [Thall, 2002] that interpolates the boundary positions and normals implied by
each atom.

9.3.2 Segmentation using m-reps

Following the deformable models paradigm, an m-rep model M is deformed into an image I by
optimizing an objective function, which we define as

F (M, I) = L(M, I) + αG(M).

The function L, the image match, measures how well the model matches the image information,
while G, the geometric typicality, gives a prior on the possible variation of the geometry of the
model. The relative importance of the two terms is weighted by α ≥ 0.
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This objective function is optimized in a multiscale fashion. That is, it is optimized over a
sequence of transformations that are successively finer in scale. Here we will only be concerned
with two levels of scale: the figural level, and the medial atom level. At the figural level the
transformation we use is a similarity transformation plus an elongation of the entire figure. At
the atom level each medial atom is independently transformed by a similarity plus a rotation of
the object angle.

m-rep models are fit to binary segmentation images of the prostates. These binary images are
blurred slightly to smooth the objective function, which is optimized with a conjugate gradient
method. The image match term of the objective function is computed as a correlation with a
Gaussian derivative kernel in the normal direction to the object boundary:

L(M, I) =

∫

B(M)

∫ ε

−ε

∂tG(t) I (s + (t/r)n) dt ds,

where s is a parameterization of the boundary B(M), ∂tG is the Gaussian derivative kernel, r
is the radius function, and n is the boundary normal.

The geometric typicality term is defined as

G(M) = (1 − β)P (M) + β N(M), (9.1)

where β ∈ [0, 1] is a weighting term. The function P measures the change in the boundary from
the previous level of scale:

P (M) = −
∫

B(M)

||s − s0||2
r2

ds,

where s0 is the initial position of the boundary at this scale level. The function N seeks to keep
medial atoms in the same relationship with their neighboring atoms. It is defined as

N(M) = −
∫

B(M)

||s − s′||2
r2

ds,

where now s′ is the boundary surface of the model in which the current medial atom is in the
position predicted by its neighbors. The neighbor term is only used at the atom scale level, i.e.,
β = 0 during the figural level. The role of the neigbor penalty term is to keep the shape nice
locally — comparable to the curvature term in active contour models.

9.4 Shape Modeling

The goal is to arrive at a shape model that describes the shape variation within the population
of prostates. A shape model is a parametric shape representation with predefined rules for
deformation that allow the model to represent the class of shapes encountered. In medical
image analysis the shape classes are typically defined by shapes of organs or other anatomical
structures. This introduces some basic modeling trade-offs:
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Compactness vs Accuracy
The model should be a more compact representation than the basic representation of the
organ (typically a binary image). This introduces a trade-off between compactness and
precision in the representation. The desire for compactness suggests coarse sampling of
the basic elements of both the underlying shape representation (boundary points, medial
points, control points in splines, spherical harmonic coefficients etc.), and the possible de-
formations (similarity transformation, PCA modes etc.). The desire for accuracy suggests
finer sampling.

Generality vs Specificity
The deformations should be flexible enough to allow the shape model to fit the organs up
to the precision possible with a specific compactness/sampling. This ensures the generality
of the model. The opposing property is specificity, that states that the model should not
deform into shapes not encountered in the organs. This trade-off inspires a statistical
approach that allows a soft transition between likely and un-likely shapes.

Correspondence vs Accuracy
Another key property of shape models is the ability to give an explicit or implicit coordinate
system on the shapes that offers correspondence of locations among the shapes. This
introduces yet another requirement on the allowed deformations of the shape model. Being
able to fit the individual organs shape is not sufficient — the model must also ensure
that anatomically corresponding locations on the organs are equipped with corresponding
locations given by the coordinate system of the shape model. This suggest that the shape
model should restrict large deformations that violate correspondence — and thereby the
attainable accuracy is limited.

9.4.1 First Attempt: The Potato Model

The segmentation program Pablo provides a user interface that allows construction of m-rep
models and optimization of the parameters such that the constructed model is fitted to a specific
training case [Pizer et al., 2003a].

The Potato in figure 9.3 is such a handcrafted m-rep model based on inspection of a subset of
the prostate collection and some experimentation. If we can automatically deform this model
into all the prostates in the training collection, we actually have the desired shape model.

Batch Optimization of m-reps

For this shape modeling we developed a batch non-interactive back-end to Pablo. It is of
little theoretical interest, but without this automatic fitting program, our results would not be
realistically possible.

The fitting program reads m-rep optimization constraints from an options file and performs the
corresponding m-rep optimization steps. The process is completely free from interaction. The
initial hand placement of the model is performed automatically by translating to the center of
gravity and scaling to the volume of the relevant training case (represented as a binary image).

To fit the Potato in all the training prostates, the batch optimizer is run with α = 0.1 and
β = 0.75 — high confidence in the segmentations, and low importance of geometric typicality.
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Figure 9.3: The Potato m-rep model. Left: The medial grid with the implied boundary as
wireframe. Right: The model as a solid surface. The viewpoint is from above, behind the
prostate.

Rating the Potato

In order to determine whether the Potato can be deformed satisfactorily into the training
prostates we look at the image match values for the 46 cases. Recall that the match value
is a normalized correlation measure in the range -1 to 1 with approximately 0.95 as the practical
maximal value. Furthermore, heuristic experience from other organs show that values above
0.80 are quite good.

The Potato match values for the 46 cases are in the range 0.60 – 0.84 with a mean of 0.75. This
is not acceptable for our task. Figure 9.4 illustrates the worst and best case.

The geometric penalty prevents the model from deforming enough to fit the worst cases satisfac-
torily. Therefore the model certainly is not general enough, and the Potato cannot be considered
a good prostate prototype.

However, even though the batch optimization of the Potato does not give satisfying shape
representations of all the prostates in the training collection, it does ensure a rough fit in most
cases. In the following we present the theory that allows us to use these rough fits to improve
the Potato.
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Figure 9.4: Axial slices from the worst (left, image match 0.60, volume 27 cm3) and best (right,
image match 0.84, volume 127 cm3) fitting cases for the deformed Potato model.

9.5 Principal Geodesic Analysis

Principal geodesic analysis (PGA), introduced in [Fletcher et al., 2003b], is a generalization of
principal component analysis (PCA) to curved manifolds. It is shown in [Fletcher et al., 2003a,
Fletcher et al., 2003b] that m-rep models form a Lie group, and the necessary algorithms for
computing the mean and PGA of a collection of m-rep models are given. We review these results
briefly here.

9.5.1 Lie Groups

First we present a brief overview of Lie groups (see [Duistermaat & Kolk, 2000] for a detailed
treatment). A Lie group G is a differentiable manifold that also forms an algebraic group, where
the two group operations,

µ : (x, y) 7→ xy : G × G → G Multiplication,

ι : x 7→ x−1 : G → G Inverse,

are differentiable mappings.

Let e denote the identity element of a Lie group G. The tangent space at e, TeG, forms a Lie
algebra, which we will denote by g. The exponential map, exp : g → G, provides a method for
mapping vectors in the tangent space TeG into G. Given a vector v ∈ g, the point exp(v) ∈ G
is obtained by flowing to time 1 along the unique one-parameter subgroup emanating from e
with initial velocity vector v. When the Lie group is given a compatible Riemannian metric,
this one-parameter subgroup is the unique geodesic at e with velocity v.
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The exponential map is a diffeomorphism on a neighborhood of 0 in g to a neighborhood of e
in G. The inverse of the exponential map is called the log map. The geodesic distance between
two points g, h ∈ G is given by || log(g−1h)||.

As shown in [Fletcher et al., 2003b], the set of all medial atoms forms a Lie group M = R
3 ×

R
+ × SO(3) × SO(2), which we call the medial group. Likewise, the set of all m-rep models

containing n medial atoms forms a Lie group M n, i.e., the direct product of n copies of M .

9.5.2 m-rep Means

The Riemannian distance between m-rep models M1,M2 ∈ Mn is given by

d(M1,M2) = || log(M−1
1 M2)|| (9.2)

Thus the intrinsic mean of a collection of m-rep models M1, . . . ,MN is the minimizer of the
sum-of-squared geodesic distances:

µ = arg min
M∈Mn

n
∑

i=1

|| log(M−1
i M)||2

As shown in [Fletcher et al., 2003b], the mean model may be computed by the following iterative
gradient descent algorithm (algorithm 4).

Algorithm 4 m-rep Mean

Input: M1, . . . ,Mn ∈ Mn, m-rep models
Output: µ ∈ Mn, the intrinsic mean

µ = M1

Do
∆Mi = µ−1Mi

∆µ = exp( 1
n

∑n
i=1 log(∆Mi))

µ = µ∆µ
While || log(∆µ)|| > ε.

9.5.3 PGA of m-reps

Principal components of Gaussian data in R
n are defined as the projection onto the linear

subspace through the mean spanned by the eigenvectors of the covariance matrix. If we consider
a general manifold, the counterpart of a line is a geodesic curve, that is, a curve with minimal
length between two points. In the Lie group M n geodesics can be computed via the exponential
map. Given a tangent vector v in the Lie algebra m

n, the geodesic starting at the identity
with initial velocity v is given by γ : R → M n, where γ(t) = exp(tv). Similarly, the curve
x · γ(t) = x · exp(tv) is a geodesic starting at the point x ∈ M n.
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Algorithm 5 Algorithm: m-rep PGA

Input: m-rep models, M1, . . . ,MN ∈ Mn

Output: Principal directions, u(k) ∈ m
n

Variances, λk ∈ R

µ = mean of {Mi}
xi = log(µ−1Mi)
S = 1

N

∑N
i=1 xix

T
i

{u(k), λk} = eigenvectors/eigenvalues of S.

As shown in [Fletcher et al., 2003a], the covariance structure of a Gaussian distribution on
Mn may be approximated by a covariance matrix Σ in the Lie algebra m

n. The eigenvec-
tors of this covariance matrix correspond via the exponential map to geodesics on M n, called
principal geodesics. The principal geodesic analysis (PGA) on a population of m-rep figures,
Mi, . . . ,MN ∈ Mn, is thus computed by algorithm 5.

Analogous to linear PCA models, we may choose a subset of the principal directions u(k) ∈ m
n

that is sufficient to describe the variability of the m-rep shape space. New m-rep models may
be generated within this subspace of typical objects. Given a set of coefficients {α1, . . . , αl}, we
generate a new m-rep model by

M = µ exp
(

l
∑

k=1

αku
(k)
)

,

where αk is chosen to be within [−3
√

λk, 3
√

λk].

9.6 Shape Model Bootstrapping

The shape model bootstrapping method is now quite simple. The batch fitting process is used
to give rough representations of each shape. The PGA is used to generate the mean model from
the 46 fitted models. This mean model is then used as the starting model in the next iteration
to fit the shapes using the batch fitting process, and the bootstrapping method is iterated.

The underlying assumption is that the mean of the roughly fitting models will be a better
prototype than the initial Potato. As the bootstrap iterations progress the generated mean
models will hopefully converge to a good prototype.

9.6.1 Bootstrapping the Potato using PGA Mean

The graph in figure 9.5 shows the development of the image matches during bootstrapping.
The image matches become excellent as the bootstrap progresses — even the worst match is
good. The resulting mean model can be deformed automatically into the shapes in the training
collection, so we now have a prostate shape model as desired. Since the allowed deformations
are exactly the same as in the initial attempt in section 9.4.1, the improved performance is
exclusively due to the resulting mean shape being a better prostate prototype — as expected.
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Figure 9.5: The evolution of the worst, best, and mean image match for the 46 cases during
bootstrap starting from the Potato.

However, the method started from a reasonably good initial model being the manually con-
structed Potato. For the prostate, this is not a problem. However, it is not desirable if we need
to divine a new suitable vegetable from which to start the bootstrapping for each new organ to
be modeled.

9.6.2 Bootstrapping the Generic using PGA Mean

In order to see how dependent the bootstrap method is on the initial model, alternative m-rep
models with the same 4x4 atom grid were used. The Generic is the default 4x4 slab model that
Pablo generates as a starting model for building handcrafted models. Figure 9.6 shows how the
bootstrap is virtually independent of the choice of starting model — except for the number of
atoms that reflects the compactness vs accuracy issue.

9.6.3 Bootstrapping using PGA Mean and Modes

The principal geodesic analysis provides the shape mean and well as the principal modes of
variation. Above, we only use the mean in the bootstrap. However, the batch fitting process
can also use the PGA modes in the figural level transformation in place of the elongation.

The expectation is that these trained, global deformations steer the model to the desired image
match in fewer bootstrap iterations. Figure 9.7 shows exactly that expected behavior where the
10 top PGA modes are used.
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Figure 9.6: The Generic initial model and the resulting bootstrap image match evolution.

Figure 9.7: The bootstrap evolution starting from the Generic using global PGA modes in the
figural level optimization.
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9.6.4 Convergence

In this work, we address the question of convergence superficially. The image match values above
appear to be converging. Convergence of the PGA mean and modes is considered future work.
Furthermore, we may want to constrain the evolution of the model such that the converging
model has specific correspondence properties. Our expectation is that eventually the method
will converge to the same resulting mean model independent of the choice of starting model and
optimization options — using different paths through model parameter space.

Here we use the heuristic approach of running the bootstrap until the image match values cease
to improve significantly. We therefore use the resulting model from 10 bootstrap iterations
starting from the Generic using PGA deformations in the optimization (see figure 9.7).

9.6.5 Exclusion of Outliers

In particular during the early bootstrap iterations, the optimization process reaches poor image
match values for some training cases. This is simply due to too much difference between the
initial model and these training prostate shapes. As a result, the optimized model then does
not correspond to a prostate shape within a reasonable precision.

Therefore, it can be argued that these non-prostate shapes should be excluded from the cal-
culations of the PGA mean and modes. Much like outliers are often identified and excluded
during statistical methods in general. This identification could simply be done by defining an
image match threshold based on e.g. the variance of these values. In this work we experimented
superficially with outlier exclusion and concluded that the PGA bootstrap method performs
robustly without this extra step.

9.6.6 Resulting Prostate Shape Model

The resulting Prostate shape model then consists of the mean shape and the deformations
illustrated in figure 9.8. The 10 modes of variation include 95% of the variation in the training
collection. This ensures little need for atom optimization in the segmentation process. The
automatic fitting achieves image matches in the range 0.81–0.93 with mean 0.87. That this is
significantly better than the original attempt with the Potato model can be seen in figure 9.9.

The shape model is trained on binary images — therefore the resulting model is only evaluated
for segmenting binary images. However, in the full m-rep segmentation framework, the shape
model is combined with profile models for the local boundary instead of the just using the
Gaussian derivative profile (as done in [Rao, 2003] for instance).

Apart from being directly applicable for segmentation, the shape model — and especially the
condensed PGA parameterization — is also directly applicable for shape classification.

Furthermore, the hierarchical m-rep optimization framework also allow easy generalization of
the model building method. The work presented here is limited to single-figure m-rep models.
The shape model method could easily be extended to multi-object multi-object ensembles due
to the modular optimization method where each individual step could be modeled using the
PGA bootstrap approach introduced here.
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Mode 1: Sagittal view (from the side) possibly showing effects of varying pressure from bladder
(is top right).

Mode 2: Coronal view: Laurel/Hardy deformation.

Mode 3: Sagittal: again possibly results of bladder pressure.

Mode 4: Axial view: Saddle-back where the prostate curves around the rectum — a known
problematic behavior that complicates radiation treatment.

Figure 9.8: The four primary modes of deformation in the Prostate model. Each mode is
illustrated by ± 1.5 standard deviation images.
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Figure 9.9: The Prostate model on the cases from figure 9.4 with image matches 0.85 and 0.91
(was 0.60 and 0.84). Since left is a worst case this is highly satisfying.

9.7 Conclusion

We present a novel shape model construction method using a medial shape representation. The
method is essentially automatic based on an iterative bootstrap method that alternates between
shape representation optimization and principal geodesic analysis of shape mean and variations.
The method constructs an m-rep shape model consisting of a mean and corresponding main
modes of variation.

The non-automatic step is the choice of sampling in the medial sheet. We have chosen a 4x4
atom grid that appears to be a suitable compromise between compactness and accuracy.

The method is evaluated through construction of a prostate shape model from a training col-
lection of 46 manually segmented prostates. The resulting model has good quantitative perfor-
mance. In addition, the modes of variation show deformations that corresponds intuitively well
with known prostate behavior. We are especially pleased with the presence of the saddle-back
variation in the fourth mode.

Future work is centered on ensuring desirable convergence of the shape model in the bootstrap
iterations. Furthermore, we plan to evaluate the method against the method that uses the MDL
approach to generate an ASM [Davies et al., 2002]. Central points to evaluate are compactness,
correspondence, and legality (how likely are illegal models).

Finally, we look forward to applying the method on other anatomical organs (among others
kidneys, hearts and various brain structures).
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Chapter 10

Revisiting Prostate Shape Modeling

The previous chapter left the question of convergence for the iterative bootstrap PGA modeling
method as an open problem. Even though the method showed great promise, convergence is
obviously highly desirable for such a method.

10.1 Convergence of the Bootstrap PGA Model

In section 9.6, we conclude that the match values appear to be converging during the bootstrap
iterations. This does not imply that the underlying mean model is converging (or the variations
for that matter) — figure 10.1 illustrates that this is actually not the case. The observed behavior
is highly undesirable not only due to the lack of model convergence. The medial sheet of the
mean model does not stay inside the prostate, so the model is actually no longer medial. As a
consequence, shape analysis (eg. measurements of width or bending) is not possible.

10.1.1 Relative vs Absolute Geometric Penalties

The force that drives the evolution of the mean model in the bootstrap is minimization of the
objective function in the optimization step. This objective function is composed of the image
match and the geometric typicality (see section 9.3 for details). The image match is maximized
until the geometric penalty prevents further deformation of the model. It is important to note
that this geometric restriction is relative to the current mean model in every bootstrap iteration.
This means that the geometric penalties are only relative — they limit the change of the mean
model in each bootstrap iterations, but does not limit the total deformation. In principle, the
absence of absolute geometric penalties allows the model to deform arbitrarily given enough
bootstrap iterations.

Therefore, during the bootstrap iterations, the actual driving force is the image match exclu-
sively. The behavior displayed in figure 10.1 is then probably simply due to the fact that the
image match to prostate shapes is improving when the end atoms are further away from the
boundary.
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Figure 10.1: The lack of convergence for the mean model during the bootstrap iterations. Above,
the mean resulting from starting the bootstrap from the Generic model using full PGA is displayed
after 1, 4, 10, 20, 30 40, and 50 iterations. The end atoms appear to be moving away from the
boundary and thereby pass across the center of the model. This implosion leaves the implied
boundary nicely optimized for representing the prostates but the medial sheet is not suitable for
shape analysis — and not medial!
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End atoms further away from the boundary allow smaller curvature of the implied boundary,
and since the prostates are not flat, the curvature at the crest (the part of the implied boundary
that corresponds to the transition between top and bottom of the medial sheet) is quite low1.

The geometry of the medial axis has been studied closely. There exists a number of theorems
that describe conditions for ensuring legal geometry [Damon, 2003] for a medial axis and the
implied boundary. A relevant example is a theorem that limits the local curvature of the medial
axis given the local radius. However, these theorems are not enforced in the m-rep optimization.

10.1.2 Constraining the Medial Sheet

In the following the approach using absolute geometric penalties is investigated through a simple
example. Instead of implementing the theorems that ensure nice properties for the medial axis
and the implied geometry, a more ad hoc approach is used. The purpose is not to present a
theoretically solid method, but rather to sketch a simple approach that implements absolute
geometric penalties in a simple and intuitively reasonable manner.

The medial sheet in intended to be a sampled medial axis. This implies that the atoms are
supposed to be approximately evenly spaced on the sheet. Furthermore, the beforementioned
theorems on medial geometry implies that the curvature of the medial sheet is limited. A simple
way to interpret curvature in terms of medial atoms is to look at the angles of the grid vectors
across the atoms.

This results in two simple geometric penalties:

Distance:
The atoms are to be kept approximately evenly spaced. An indirect way of doing this is
to penalize the atoms from moving too close to each other. A simple measure at an atom
is the minimal distance to a neighbor atom.

Angle:
The curvature is to be limited. A qualitative way of enforcing this curvature constraint is
to penalize large angles at the medial grid across the atoms. A simple measure at an atom
is the maximal angle between vectors to two opposing neighbor atoms. End atoms must
be treated as a special case — even though no angle can be measured across the boundary
of the sheet, they indirectly cause an angle at the neighboring internal atom. This internal
angle is used as the measure that penalizes large angles at the end atoms.

These simple penalties resemble the regularising penalties used for enforcing regular sampling
and smoothness for point distribution boundary models.

The specific geometric penalties used are inversely proportional to the minimal distance squared
and proportional to the maximal angle squared. These penalties are added to the equation for
the geometric typicality (equation 9.1) in the optimization of the m-rep models.

1For those with an eye for the finer details and detailed m-rep knowledge: since the end atom elongation is

kept above 1, low curvature can not be obtained by minimizing the end atom angle.
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The absolute geometric penalty for large angles and for small inter-atom distances are each
equipped with a propertionality factor in the equation for the geometric penalty. With Ang
defined as the maximal angle across an atom (as described above) and Dist defined as the
minimal distance to a neighboring atom, the full equation for the geometric penalty becomes:

G(M) = (1 − β)P (M) + β N(M) + γ Ang2 + δ Dist−2 (10.1)

10.1.3 Bootstrapping using Absolute Geometric Penalties

In the following, some preliminary experiments on the use of absolute geometric penalies are
presented. In order to speed up experimentation, a smaller training collection with only six
prostates is used. Figure 10.2 shows how the mean evolves when the bootstrapping method
is applied without absolute geometric penalties on this smaller training set. The undesirable
implosion effect is evident.

The expectation is that the added geometric penalties will constrain the model and thereby limit
the undesirable implosion effect. However, too high absolute geometric penalties will constrain
the model too much and prevent it from deforming into the given shape. Informal experiments
show that the factors γ = 0.02 and δ = 0.000005 seem reasonable.

Figure 10.3 illustrates how these absolute penalties manage to prevent the implosion effect in
the evolution of the model. However, the model still appears to continue wiggling slightly.
Convergence is possibly not attained.

This wiggling is believed to be due to an implementation issue in Pablo [Fletcher et al., 2002].
Each medial atom implies two boundary points with corresponding surface normals. However,
in order to ensure a smooth boundary, the actual normals of the surface are only required to
be within a certain angle compared to the normals given by the medial atoms. This means
that infinitely many atom positions can yield the same boundary. Therefore the question of
convergence is not only related to the medial model and the model bootstrapping method —
but also to the specific implementation of the m-reps. This is a reasonable explanation for the
small drift in the model in figures 10.3. Future research will investigate this further.

Even though the absolute geometric penalties alone possibly do not ensure correspondence, the
basic principle do appear to solve the main part of the problem. However, this comes with a
price. The added geometric penalties constrain the m-rep model. Therefore the image match
values are expected to suffer as a results of these extra constraints. Figure 10.4 illustrates this
effect.

The experiments here demonstate that while absolute geometric penalties succeed in ensuring
a nice medial sheet, they alone do possibly not provide convergence of the mean model in the
bootstrapping method. Furthermore, the approach introduces ad hoc choices of penalty weights
that seemingly keep the model nice while not lowering the image match values too much. These
ad hoc penalty weights should be disposed of — and the absolute geometric penalties should be
replaced by expressions based on geometry. As an example, any angle above zero is penalized
above — instead only angles that implies illegal geometry (as determined by the local radius
[Damon, 2003]) should be prevented.
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Figure 10.2: Evolution on training subset without absolute geometric penalties. The mean models
are visualized after every 9 bootstrap iterations starting from iteration 1 and ending at 100. The
implosion is present and the process is obviously not converging to an acceptable mean model.
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Figure 10.3: Evolution on the training subset with absolute geometric penalties. The mean models
are visualized after every 9 bootstrap iterations starting from iteration 1 and ending at 100. The
process is not apparently convergent, but obviously more in control than in figure 10.2.
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Figure 10.4: With absolute geometric penalties the model is constrained from achieving optimal
image match. Top: Evolution of image match values without absolute geometric penalties.
Bottom: Evolution with absolute geometric penalties constrains the model and results in worse
image match values.
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10.1.4 Proving Convergence

Above, convergence is treated informally with little mathematical foundation. A proper deriva-
tion of the requirements for convergence is obviously desirable.

However, proving convergence is not trivial. The fact that there is a many-to-one mapping
between m-reps and implied boundaries complicates matters. This can mean that even though
the implied model boundary is converging towards an optimal shape, the underlying mean model
is not necessarily doing the same. As explained above, there are also implementation issues that
need to be considered.

Finally, the unknown training collection also complicates proving convergence.

Therefore a formal proof will probably need to make some assumptions. For instance formulated
like the following: If the optimization of the current mean model to each training shape is
converging, then the mean model will converge to the optimal mean model.

The derivation of a formal proof is left for future work.

10.2 Conclusion

The work in this chapter offers preliminary results on ensuring convergence in the principal
geodesic analysis bootstrapping method introduced in chapter 9. The approach is somewhat ad
hoc, but the introduction of absolute geometric penalties appears to ensure controlled behavior
of the mean model during the bootstrap evolution.

The formulation of proper absolute geometric constraints based in geometry is left for future
work.

Another approach on investigating convergence indicates that if no atom deformations are al-
lowed during the optimization process in the bootstrap iterations, the mean model is actually
converging. The global deformations defined by the PGA modes during the figure stage are then
the only shape deformations that allow the mean model to improve. This preliminary result is
due to Tom Fletcher.

Also, research shows that although convergence is not yet attained, the method works for kidney
modeling. An ad hoc approach for stopping the bootstrap when the image match seems to
be converging. Thereby automatic segmentation is achieved [Rao, 2003]— this is not possible
without the mean shape obtained through the PGA bootstrap modeling method.

Recycling in this Chapter

This contents of this chapter are previously unpublished.

100



Chapter 11

Summary

The work in this dissertation explores a path from a non-committed multi-scale segmentation
method towards more committed methods for segmentation and shape modeling.

The first body of work is focused on specializing the multi-scale segmentation method through
the use of non-linear diffusion. We present a Generalized Anisotropic Non-linear diffusion scheme
with methods for optimizing the parameters and evaluating the performance. The results apply
for segmentation of both 2D and 3D objects and show considerable performance improvements
through the use of GAN. Upper limits for this performance gain are empirically established
through experiments on artificial ideal objects. The methodology is evaluated on segmentation
of brain structures in both 2D and 3D and shows significant improvements in segmentation
efficiency.

Non-linear diffusion is then analyzed in more detail via the introduction of the Diffusion Echo
that allows explicit analysis of the local filters in non-linear diffusion schemes. We use this
approach to investigate the connection between linear and non-linear diffusion given by scale
selection.

While non-linear diffusion allows a large degree of incorporation of prior knowledge and thereby
facilitates specialization towards a specific task, the work shows that for the multi-segmentation
program, the possible performance improvement due to non-linear diffusion is not unlimited.
Specifically, near-automatic segmentation seems unfeasible without further commitment of the
method. The most promising way of incorporating additional prior knowledge is through the
use of a shape model.

The final body of work is focused on shape modeling via the medial shape representation known
as the m-rep. We present an essentially automatic method for generating a statistical shape
model from a training collection. We demonstrate the method for constructing a prostate shape
model.
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11.1 Future Work

As is often the case in research, this dissertation leaves more open ends than closed chapters.

Each of the three main bodies of work provides promising future work as outlined in the chapter
conclusions throughout the dissertation. Here, only future directions that combine the bodies
of work are mentioned.

The analysis of non-linear diffusion made possible by the diffusion echo has obvious potential
in the multi-scale watershed segmentation framework. A simple, very pragmatic, direction is to
investigate the use of downsampling in non-linear diffusion. Downsampling is essential in order
to reduce the computation time needed for preprocessing of the building blocks. The diffusion
echo directly offers a way to measures the change in the diffusion due to downsampling.

Another more fundamental path that combines the diffusion echo with multi-scale watershed
segmentation is to pursue the design of the scale-selection mechanism outlined in chapter 7.
Apart from the theoretical implications, this would also allow a combination of the best of both
worlds in the multi-scale watershed segmentation method. The design of a scale-selection mech-
anism that allows multi-scale approximation of non-linear diffusion schemes offers computational
efficiency in the preprocessing step while providing the interaction efficiency of building blocks
constructed through the use of non-linear diffusion.

The best of both worlds is also available through augmentation of the multi-scale watershed
segmentation method with a shape model. Thereby near-automatic segmentation combined
with the intuitive direct interaction with the data through building blocks is possible. A typical
problem with near-automatic methods (such as segmentation methods based on the active shape
model or the m-rep) is how to handle the, say, 5% problematic cases where the automatic scheme
fails — or alternatively how to interactively refine an almost correct segmentation. Selection
and deselection of low scale building blocks would allow the user to handle this with little effort.

The incorporation of a shape model could either be independent of the multi-scale watershed
framework — or an integrated component. A simple integration would be a shape model that
uses the number of building block actions necessary to reach the current shape instead of the
image match term in the optimization. This approach is possibly somewhat naive, but it is
nicely in alignment with the multi-scale watershed framework.

A more ambitious and fully integrated shape model would be based on the watershed linking
tree. A major problem with scale-space tree models is the heavy influence of the background on
the tree representation. Non-linear diffusion could here be used to provide a better separation
of object and background in the tree and thereby make the approach more robust.
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Multiscale Medial Loci and Their Properties. IJCV, 2003. To appear, see
http://midag.cs.unc.edu/pubs/papers/IJCV01-Pizer-medloci.pdf.

[Press et al., 1999] Press, Teukolsky, Vetterling, & Flannery. Numerical Recipies in C. Cam-
bridge University Press, 1999.

[Rao, 2003] Manjari Rao. Analysis of a Locally Varying Intensity Template for Segmentation of
Kidneys in CT images. Master’s thesis, University of North Carolina, Chapel Hill, 2003.

[Rudin et al., 1992] L. I. Rudin, S. Osher, & E Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, pages 259–268, 1992.

[Samet, 1984] H. Samet. The Quadtree and Related Hierarchical Data Structures. Surveys,
16(2):187–260, June 1984.

[Sapiro, 2001] Guillermo Sapiro. Geometric Partial Differential Equations and Image Analysis.
Cambridge, 2001.

[Scharr & Weickert, 2000] Hanno Scharr & Joachim Weickert. An Anisotropic Diffusion Algo-
rithm with Optimized Rotation Invariance. In Mustererkennung 2000, Proceedings from
22. DAGM-symposium, pages 460–467. Springer, 2000.

[Shokoufandeh et al., 2002] Ali Shokoufandeh, Sven Dickinson, Clas Jonsson, Lars Bretzner, &
Tony Lindeberg. On the Representation and Matching of Qualitative Shape at Multiple
Scales. In Proceedings, European Conference on Computer Vision, LNCS, 2002.

[Siddiqi et al., 1999] K. Siddiqi, A. Shokoufandeh, S. Dickinson, & S. Zucker. Shock Graphs and
Shape Matching. International Journal of Computer Vision, 30, 1999.

[Sporring et al., 1997] Jon Sporring, Mads Nielsen, Luc Florack, & Peter Johansen. Gaussian
Scale-Space Theory. Kluwer Academic Publishers, Dordrecht, 1997.

[Styner & Gerig, 2001] Martin Styner & Guido Gerig. Medial Models Incorporating Object Vari-
ability for 3D Shape Analysis. In Proc. of Information Processing in Medical Imaging,
2001.

[ter Haar Romeny, 1994] Bart M. ter Haar Romeny, editor. Geometry-Driven Diffusion in Com-
puter Vision. Kluwer Academic Publishers, 1994.

[Thall, 2002] A. Thall. Fast C2 interpolating subdivision surfaces using iterative inversion of
stationary subdivision rules. Technical report, University of North Carolina Department
of Computer Science, 2002. http://midag.cs.unc.edu/pub/papers/Thall TR02-001.pdf.

108



[Tracton et al., 1994] G. Tracton, E. Chaney, J. Rosenman, & S. Pizer. MASK: combining 2D
and 3D segmentation methods to enhance functionality. In Proceedings of Mathematical
Methods in Medical Imaging III, volume SPIE Vol 2299, 1994.

[van Hateren & van der Schaaf, 1998] van Hateren & van der Schaaf. Independent component
filters of natural images compared with simple cells in primary visual cortex. Proceedings
of the Royal Society of London Series B - Biological Sciences, 265 (1394):359–366, 1998.

[Vincken, 1995] Koen Vincken. Probabilistic Multi-scale Image Segmentation by the Hyperstack.
PhD thesis, University of Utrecht, 1995.

[Wang, 2003] Haonan Wang. Functional Data Analysis of Populations of Tree-structured Ob-
jects. PhD thesis, University of North Carolina, Chapel Hill, 2003.

[Webb, 1988] Steve Webb. The Physics of Medical Imaging. Institute of Physics Publishing,
London, 1988.

[Weickert, 1998a] Joachim Weickert. Anisotropic Diffusion in Image Processing. B. G. Teubner,
1998.

[Weickert, 1998b] Joachim Weickert. Efficient Image Segmentation Using Partial Differential
Equations and Morphology. Technical Report 98-10, Department of Computer Science,
University of Copenhagen, 1998.

[Witkin, 1983] Andrew P. Witkin. Scale-Space Filtering. In Proceedings of International Joint
Conference on Artificial Intelligence, pages 1019–1022, Karlsruhe, Germany, 1983.

109


