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Abstract

ILKNUR KAYNAR KABUL: Patient-specific anatomical illustration via
model-guided texture synthesis.

(Under the direction of Stephen M. Pizer.)

Medical illustrations can make powerful use of textures to attractively, effectively, and effi-

ciently visualize the appearance of the surface or cut surface of anatomic structures. It can do

this by implying the anatomic structure’s physical composition and clarifying its identity and

3-D shape. Current visualization methods are only capable of conveying detailed information

about the orientation, internal structure, and other local properties of the anatomical objects

for a typical individual, not for a particular patient. Although one can derive the shape of

the individual patient‘s object from CT or MRI, it is important to apply these illustrative

techniques to those particular shapes. In this research patient-specific anatomical illustrations

are created by model-guided texture synthesis (MGTS).

Given 2D exemplar textures and model-based guidance information as input, MGTS uses

exemplar-based texture synthesis techniques to create patient-specific surface and solid tex-

tures. It consists of three main components. The first component includes a novel texture

metamorphosis approach for creating interpolated exemplar textures given two exemplar tex-

tures. This component uses an energy optimization scheme derived from optimal control prin-

ciples that utilizes intensity and structure information in obtaining the transformation. The

second component consists of creating the model-based guidance information, such as direc-

tions and layers, for that specific model. This component uses coordinates implied by discrete

medial 3D anatomical models (“m-reps”). The last component accomplishes exemplar-based

texture synthesis by textures whose characteristics are spatially variant on and inside the 3D

models. It considers the exemplar textures from the first component and guidance informa-

tion from the second component in synthesizing high-quality, high-resolution solid and surface

textures.
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Patient-specific illustrations with a variety of textures for different anatomical models, such

as muscles and bones, are shown to be useful for our clinician to comprehend the shape of the

models under radiation dose and to distinguish the models from one another.
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Chapter 1

Introduction

Realistic images of medical data, such as photos of anatomical organs, may be over-

whelming for non-expert viewers because they contain too much information and irrel-

evant detail, making it hard to process and grasp the most salient information in the

scene. Illustrations play an important role in solving this problem. Medical illustrations

use different artistic techniques to depict features in an expressive way, while simulta-

neously providing insight into the underlying data. These illustrations consider objects

carefully in order to convey information and the relation between important features of

interest.

Figure 1.1: Samples from Frank H. Netter’s illustrations (@2011 Elsevier).



Medical illustrations of different anatomical structures in textbooks are commonly

used for many purposes, such as increasing the communication between clinicians and

helping clinicians understand complex medical images. In medical illustrations textures

are used as a means to distinguish structures and regions from one another by appear-

ance, as well as to convey local structural detail, such as orientation, scale and material,

and the object’s 3D shape. Frank H. Netter (Netter (2009)), sometimes referred to

as “Medicine’s Michelangelo”, used textures for identifying anatomical models and the

regions inside them on a typical human (Figure 1.1). This dissertation focuses on ob-

taining this effect for particular patient data. Throughout this dissertation I will refer to

this type of rendering as Netterly rendering. In this dissertation rendering the interior

and exterior regions of patient-specific anatomical models is achieved using material-

specific structural textures that are synthesized for the objects specific to each patient.

This yields patient-specific Netterly renderings, which the user can interact with and

manipulate in a 3D environment.

Many anatomical objects have specific local material properties, such as material

type, scale, and orientation, over the surface of the model and inside the model. Frank

Netter used textures and the variation in them as a means of conveying material prop-

erties in his illustrations. To achieve that goal, he used different texturing techniques

depending on the anatomical organ:

1. Isotropic textures: Some anatomical organs do not have much variation in their

material characteristics on or inside their surfaces. These organs are mostly illus-

trated using the same texture in all regions. For instance, organs like the thyroid

and the parotid are illustrated with blobby textures which represent that these

organs are glands (Figure 1.2).

2. Anisotropic textures: Many anatomical structures are composed of different ma-

terials or the same materials with different orientations and scales. These features

can be illustrated by creating a texture that mimics these variations. Most of these
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Figure 1.2: Anatomical illustrations of the parotid gland (@2011 Elsevier). (Left) The
parotid texture is isotropic both inside and outside the model. (Right) The parotid
illustrated inside the head and neck region with the other organs.

organs are shown with appearances that suggest features arranged along, across

and around the object, and through the interior of the object. Some of these fea-

tures are illustrated on the surface of the object or inside the objects, depending

on that specific organ. For example, surface layers are illustrated using different

tissue-specific textures for the organs in the digestive system. The layered muscle

linings of the duodenum and the stomach have respective directional components

along and around the object. In some of the layers they propagate along the ob-

ject, whereas in the others they propagate around the object. Differently oriented

surface textures are used to illustrate different layers of the model through depth

for these organs (Figure 1.3).

Figure 1.3: (Left and middle) Illustrations of Frank Netter for the duodenum (@2011
Elsevier); (right) anatomical illustration of the stomach.

For anatomical organs such as the sternocleidomastoid muscles (scm), volumetric
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textures are used to depict the appearance of muscle tissues in these organs. These

textures (Figures 1.4, 1.5, and 1.6) are oriented according to the shape of that

specific model.

Figure 1.4: Netter illustration shows the head and neck region of a typical patient. The
texture on the sternocleidomastoid muscle (scm) is oriented along the model. (@2011
Elsevier)

3. Material-specific textures: In some organ illustrations different regions in the in-

terior of the models are depicted using tissue-specific textures. For example, the

mandible has many tissue types (Figure 1.5 - right): osseous tissue, marrow, en-

dosteum, and periosteum. Osseous tissue makes up bone, also called bone tissue,

and endosteum and periosteum line the outside and inside surfaces, respectively, of

the bony tissue. All of these layers are illustrated through the object with different

tissue-specific textures in Netter’s illustrations.

Figure 1.5: Illustrations show the change in materials for (left) the muscle, and (right)
the bone. (@2011 Elsevier)
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4. Object-relative textures: For some organ illustrations the material textures look

different depending on the orientation of an anisotropic clipping plane. For ex-

ample, the material texture on the outside of the scm looks like stream of lines,

whereas when you cut the scm, you see circular blobs (Figure 1.6).

Figure 1.6: Netter illustration shows the scm with a clipping plane to visualize the
interior of the organ. (@2011 Elsevier)

5. Structural textures: In some of the organ illustrations the materials are composed

of other structures. These organs are mostly illustrated with textures that have

structural primitives on a uniform background. For instance, the prostate is il-

lustrated with a glandular texture on a uniform red background (Figure 1.7). In

some of the illustrations the models are illustrated with more glandular primitives,

and in some they are illustrated with fewer primitives.

While Netter visualized a typical patient using the approaches mentioned above, in

this dissertation a novel framework called Model Guided Texture Synthesis (MGTS)

is proposed for obtaining illustrative visualizations of patient-specific medical organs

by creating high quality region-specific textures, both on the surface and interior of

the models, using the above approaches. MGTS uses medical illustrations from Net-

ter (2009) as guidance to select the type of texture and texture variation specific to

the anatomical model. It uses regional variations in addition to orientation and scale

changes as guidance in texture generation. It synthesizes textures using 2D exemplar
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Figure 1.7: Anatomical illustration of the prostate with the other organs around it
(@Mayo foundation for medical education and research).

textures using a model-specific volumetric coordinate system. The methods that are de-

veloped in MGTS are intended to make anatomical illustrations useful not as references

to “normal” anatomy but rather to provide understanding of the anatomy of the par-

ticular clinical patient being examined, planned, or operated on. The main advantage

of this approach compared to traditional medical illustration is the interactivity and

real-time manipulation of the acquired, patient-specific data in 3D by distinguishing the

organs, their shapes and the regions inside them.

1.1 Clinical Application Areas

The application of MGTS to actual patient data combines the power of traditional

illustration techniques with computer-based renderings, but now it can be applied to

actual patient data, instead of a canonical medical dataset. These illustrations can be

used to understand the shape and material characteristics of the organs for identification

purposes. To achieve these purposes in different applications, patient-specific textured

organs can be integrated with other data sources by taking advantage of the multi-

modality renderings. For instance, the textured patient-specific anatomical models can

be easily loaded into the Model Guided Rendering (MGR) framework which is presented
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by Merck (2009). The MGR framework has the capability of integrating many data

sources into a single environment. A user (e.g., clinician, physician) can load the acquired

data set (e.g., CT, MRI) and the textured, segmented anatomical organs in a single

environment. This capability makes it possible to understand the position of organs

with respect to each other and with respect to the volume-rendered acquired data. S/he

can interact with the organs in a single 3D environment, can cut the anatomical organs

via clipping planes to see the tissues inside the organs, and can visualize the textures

on the CT slices.

The integration of patient-specific textured models, obtained using MGTS, with

other data sources in a single environment (e.g., the MGR framework) makes possible

its use for many applications:

1. Education and training in medicine: Medical students use anatomy textbooks to

understand anatomical structures. Textured depictions of the organs of a typical

patient in textbooks have been shown to facilitate the learning process. However,

students also need to study a collection of patients, in which the shape of the organs

differs from one patient to another patient. Patient-specific data sets provide

actual case studies in pathology and phenotypical variance. There is a benefit for

the students to understand each patient from the collection, since these data sets

are more relevant to clinical and research applications than typical data sets. Our

patient-specific illustrations can help to solve this problem by creating patient-

specific visualizations. Such a tool can be applied for education and training of

nurses and medical students, as well as surgical residents.

2. Communication in Medicine: Medical illustrations are very important tools for

communicating complex anatomical structures and their relationships (Bruckner

(2006)). Showing the same detailed pictures to all types of people involved in a

treatment process and in the important decisions may not be a good idea since the

understanding of each person from the same picture might change depending on
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their knowledge level. In addition, using only hand-drawn anatomic illustrations

of a typical patient to describe and discuss a patient case might not be the best

way. Thus, patient-specific illustrations can be used to guide subsequent work in

an optimal direction.

(a) Doctor-patient communication: Educating patients about the diagnosis and

treatment plan is very important. However, acquired patient data sets, such

as MRI and CT, are hard for the patients to understand. The data should be

presented to them in an understandable and effective way. Patient-specific

Netterly illustrations can be used to improve the communication between

patients and doctors by helping the patients to recognize the organs and to

visualize the change in the shape of the organs due to a procedure or disease.

(b) Doctor-doctor communication: Geologists and geophycisists take advantage

of interactive, communication-friendly interpretations of seismic data illus-

trations during the analysis and discussion of the acquired data sets (Patel

et al. (2009)). The same principle can be applied in the medical field using

patient-specific illustrative visualization of the acquired data sets. Textured

models inside the MGRview framework (Merck (2009)) can be used by doc-

tors during the analysis and planning of a patient’s treatment.

3. Treatment planning and dose evaluation in 3D: In radiation treatment planning,

visualization of radiation dose on 3D models is very important to convey how the

dose is distributed inside the affected region. Many applications use color to display

dose magnitude, making it necessary to use another channel for identification

purposes. Texture can be used as an option for achieving identification and shape

communication purposes. Even under radiation dose, texturing can help to retain

these properties.
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1.2 Illustrative Visualization

There are many techniques capable of illustrating the anatomical organs in the hu-

man body. These techniques can be categorized depending on the target application,

or depending on the data that they use for illustration. While the illustrations of a

typical person can be enough for teaching the anatomical structures in the body, the

visualization of a specific patient data is necessary for clinical and research applications

(Bruckner (2006)). This dissertation adapts the techniques used in the illustrations of

a typical patient to create illustrations of real patient data sets. Thus, the techniques

that are related with these fields are summarized briefly in this section:

1. Medical textbook illustrations: These visual materials are designed to commu-

nicate medical and biological knowledge. They are used effectively in all major

markets, including advertising, editorial, institutional and instructional. Many

medical illustrations use different stylized rendering techniques, such as silhouettes

and contours, pen and ink, stippling, and hatching to obtain different depictions

to clarify the structural properties (shape, size, appearance, etc.) of the organs

and the spatial relations between them. The main purpose of these techniques is

to emphasize different levels of information (e.g., different levels of information in

the same image) in order to communicate to the viewer. They can be highly real-

istic and anatomically accurate, or abstract and wildly conceptual depending on

the target usage. Frank H. Netter, M.D. illustrated a series of atlases for each or-

gan system, which cover human anatomy, embryology, physiology, pathology, and

pertinent clinical features of the diseases arising in each system (Netter (2009)).

His illustrations capture the essential message of a given anatomical region or

physiological / pathological process and visualize them using life-like coloring and

rendering techniques in a beautiful and compelling way. These illustrations are

widely used to inform and educate both medical students and doctors. Netter
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used different techniques, such as clipping, contours, and textures, as a means of

conveying information about the anatomical models. This thesis applies to the

texturing aspect of his illustrations.

2. Computer-supported medical visualizations: These visualizations create interac-

tive and effective representations of patient-specific data in order to create un-

derstanding of the information present in the given data. Such visualizations are

widely used in many different areas such as clinical research and medical educa-

tion. Current medical visualization techniques typically use untextured volume

rendering and surface rendering approaches (Levoy (1988)). However, these vi-

sualization methods have weaknesses in conveying detailed information about the

orientation, internal structure, and other local properties of the anatomical ob-

jects for a particular patient because imaging modalities such as CT or MRI do

not capture this information. For example, Figure 1.8 shows an illustration of a

head and neck region and a corresponding volume-rendering of the CT data. In

this figure the textures help to visualize details of the organs.

Figure 1.8: A scientific illustration (@2011 Elsevier) (left) shows more general informa-
tion than the corresponding volume-rendered CT data (right).

3. Illustrative visualization: This approach has become very popular in the last

decade for obtaining interactive and expressive visualizations of medical data using

abstraction (Bruckner (2006), Bruckner et al. (2010), Viola et al. (2010), Burns

et al. (2007)). As in traditional illustrations, the main purpose is to convey complex

structures or procedures in an easily understandable way using different degrees of
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abstraction for different purposes. Compared to the realistic images of anatomical

models, these illustrations convey more information in an attractive, efficient, and

understandable way. Different abstraction techniques consider which parts of the

scene are going to be rendered and how they are going to be rendered depending

on the purpose of application. This dissertation focuses on how different objects

can be rendered to differentiate structures and regions in anatomical organs.

1.3 Overview of Approach

MGTS synthesizes progressively changing solid or surface textures for patient-specific

anatomical models by considering the orientation and variation of the textures inside

the model. The input to MGTS consists of a 3D triangular mesh model, a model-based

coordinate system for the model (in our method obtained from a medial model of the

object), and a predetermined set of 2D exemplar textures. The output is a textured

model. MGTS is a post-segmentation process, and it synthesizes model-specific surface

and solid textures for the segmented anatomical models using exemplar-based texture

synthesis techniques.

MGTS consists of three main components. The first two components create the

inputs for the texture synthesis process. The first component includes a novel texture

metamorphosis approach for creating interpolated exemplar textures given two exem-

plar textures. This component uses an energy optimization scheme derived from optimal

control principles that utilizes intensity and structure information in obtaining the trans-

formation. The second component creates model-based guidance information, such as

directions and layers, for that specific model. This component uses coordinates implied

by discrete medial 3D anatomical models (“m-reps”). M-reps nicely provide a 3D along-

object, across-object, and through-object parameterization on and within the model. In

the MGTS framework, two important features in texture synthesis step are considered:
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the guidance vector field and the variation of the textures inside the model. Both of

them are obtained from the model-based coordinate systems.

The last component accomplishes exemplar-based texture synthesis of progressively

changing textures on and inside the 3D models. It considers the exemplar textures from

the first component and guidance information from the second component in synthesiz-

ing high-quality, high-resolution solid and surface textures. The decision of what kind

of textures is going to be generated, solid or surface, is done based on the illustrations

in the anatomical textbooks. In some case it is useful to understand the texture within

the object, in which texturing on a cutting plane is effective. The appearance of the

cutting plane texture depends on the plane‘s orientation (through or along the object).

Moreover, the number and shape of the structural primitives (textons) are taken into

account in creating solid textures for some of the organs, such as the prostate. Figure

1.9 shows the pipeline of the approach.

Figure 1.9: Pipeline of the model-guided texture synthesis framework. The top row
shows the steps for computing the model-based guidance information (vector field and
material transition fields) from the medial representation. The bottom row shows the
steps for obtaining the exemplar textures.
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1.4 Thesis and Contributions

The texturing objectives described in the first section with the possible applications

described in Section 1.1 can be accomplished by a set of methods with new underlying

concepts, supporting the following thesis:

Thesis Statement: Combining texture synthesis (in 2D and 3D) with volume parame-

terization provides a framework for generating illustration of patient-specific data. Also,

structural and material variations of organs can be illustrated by textures obtained using

a metamorphosis approach that takes intensity and structure into account to generate a

smooth transition from one texture to another.

This thesis is supported by descriptions of the methodologies and the results obtained

using them. The methods generate the inputs of MGTS framework, texture metamor-

phosis and model-based guidance generation, and they create the patient-specific tex-

tures for the specific anatomical organs, surface and solid texture synthesis. The results

obtained using these methods created patient-specific anatomical illustrations which

enable the doctors to distinguish the anatomical structures from one another and to

understand their shapes under radiation dose.

The methods developed, their underlying concepts, and the results form a set of

contributions:

1. A method of computing 3D model-based guidance information, such as an ori-

entation field and a material transition field, for different instances of the same

anatomical organs using a volumetric model-based coordinate system obtained from

a medial representation.

2. A method of generating progressively changing 2D exemplar textures using a new

energy-based metamorphosis approach. This method utilizes appearance informa-

tion along with the structural features in a single framework to create transforma-

tions from a source texture to a target texture.
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3. A method for constraining the synthesis of structural primitives in a solid texture

using medial-based representations of the structural primitives (textons). The solid

textures are synthesized from three 2D exemplar textures. The medial representa-

tions are generated from the 2D exemplar textures, and they are used in forming

the synthesized solid texture.

4. A method for controlling the number of textons in a texture synthesized from ex-

emplars using a texton-based histogram matching technique in texture synthesis.

5. A method of synthesizing progressively-varying, anisotropic, model-based surface

and solid textures for obtaining “Netterly” renderings of patient-specific anatom-

ical organs using a novel framework. This framework uses model-based guidance

information and progressively-changing 2D exemplar textures as input and creates

textured anatomical models as output. Depending on the application, the contribu-

tions in item 3 and 4 are used in texture synthesis.

6. Demonstrating that MGTS supports the illustration of any patient’s segmented

data so as to achieve illustrative visualization of his/her organs. This is useful to

identify and convey the shape of the organs in a complex environment with many

structures.

7. Demonstrating the usage of texture in radiation dose visualization to identify and

convey the shape of organs whose surfaces are washed with dose colors.

Within each section in this dissertation, I describe the validation for each method.

1.5 Overview of Dissertation

The rest of the dissertation is organized as follows:
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Chapter 2 gives background material in illustrative visualization, image morphing,

3D volumetric vector field computation, textures, texture synthesis on surfaces, solid

texture synthesis, and texture synthesis for medical illustrations.

Chapter 3 describes the novel approach for texture metamorphosis which allows one

texture to morph into another.

Chapter 4 explains the model-based coordinate system used in MGTS and how it is

used to compute the guidance information for texture synthesis.

Chapter 5 presents the techniques used in synthesizing anatomical textures on the

surface(s) of anatomical models.

Chapter 6 describes my model-based solid texture synthesis approach in detail.

Chapter 7 presents conclusions, discussions, possible applications of MGTS, and

suggestions for future work.
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Chapter 2

Background

This chapter presents the background material from computer graphics, computer vision,

and image analysis that is related to this dissertation. Section 2.1 gives an overview of

the basic concept of texture. That includes texture definition, texture features, applica-

tions of textures in different fields, and texture mapping techniques with its applications

in computer graphics. Section 2.2 presents the existing work on texture metamorphosis,

which includes morphing one texture into another. Section 2.3.1 explains the basics

of texture synthesis, which lays the background for the remaining parts of section 2.3.

Existing work in this field is mostly focused on exemplar-based approaches. Specifically,

section 2.3.3 gives an overview of texture synthesis on a surface in 3D, and it describes

the existing methods. In addition, section 2.3.4 presents a survey of solid texture syn-

thesis work. Section 2.4 presents an overview of surface and volumetric representation

techniques, and it describes in detail the medial object representation, which is a de-

formable model-based representation used as a guidance for texture synthesis in this

dissertation.

2.1 Texture

Texture describes the variation of the intensity (or hue, saturation, surface normal,

opacity) of a surface or a volume, quantifying properties such as smoothness, coarseness



and regularity of the intensity pattern. Textures are usually described by qualitative

structural features, such as fineness vs. coarseness, smoothness, granularity, direction-

ality, roughness, regularity vs. randomness. Texture features are used as measurements

to characterize a texture. They are important for many applications such as texture

analysis, texture retrieval, texture classification, and texture synthesis (Materka et al.

(1998), Manian & Vásquez (2003)). In this dissertation the descriptors that are used to

extract important features for texture synthesis are presented in detail.

2.1.1 Texture categories

In most of the texture synthesis applications textures are categorized as structural vs.

stochastic textures, as well as textures with both regular and stochastic aspects, such

as natural textures:

1. Stochastic textures: They look like noise, such as sand and grass texture. Colored

dots are randomly distributed in the image, and they don’t have specific structure

or organization.

2. Structural textures: They have regular patterns, such as the texture of a stone

wall or floor tiles.

The textures in these categories and the transition between them is visualized in

Figure 2.1.

Figure 2.1: Texture spectrum presented in Liu et al. (2004).
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Medical textures have variations in their features depending on the tissues in the

anatomical organs. Realistic medical textures are mostly stochastic and near-stochastic

(Figure 2.2). On the other hand, nonrealistic textures used in the medical illustrations

have more regular patterns to express the important information in the tissues (Figure

2.3).

Figure 2.2: Texture samples from Dosch medical visualization database.

Figure 2.3: Texture samples from medical illustrations.

Textures can also be categorized as stationary or non-stationary depending on the

variation of the texture parameters over space (Rosenberger et al. (2009)):
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1. Stationary textures: They include a single texture.

2. Non-stationary textures: The texture or its parameters vary across the image.

In texture synthesis applications textures are also categorized based on their spatial

dimensionality:

1. 2D color textures: Such textures are represented as 2D images. They have smooth,

locally planar surfaces. Each pixel in the image can contain any number of intensity

values.

2. 3D surface adjusting textures: Such textures are also represented as 2D images.

One possible use of such textures is to create surfaces with varying roughness, in

which the texture is related to local variations in the surface normal (local surface

curvature). Normal maps, reflectance maps, and displacement maps are possible

applications.

3. Solid textures (volumetric textures): Such textures are described in 3D space.

They can be considered as a stack of images. They are used as space-filling textures

for 3D models. It is possible to visualize both the exterior and the interior of models

using them.

2.1.2 Texture features

Textures usually have complex changes in orientation, scale, or other visual appearance

such as brightness and contrast. It is hard to describe all of the distinctive characteristics

of a texture using a single mathematical representation. Due to the variety of textures,

texture features are designed for each specific application area.

In this dissertation the texture features are categorized into four families as in Mirme-

hdi et al. (2008). This categorization is not crisp, and combinations of different categories

can generate new features for different applications:
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1. Statistical features: They measure the spatial distribution of pixel values by com-

puting the statistical distribution of image intensities at specified relative pixel

positions. They are characterized by their order, such as first-order statistics and

second-order statistics. These features are used to analyze characteristics of tex-

ture, such as smoothness and coarseness.

(a) Image histogram: This feature is a collection of first order statistical infor-

mation, describing the frequency of appearance of particular color tuples in a

region of the texture. It is easy to compute. It is invariant under rotation and

translation, and insensitive to the exact spatial distribution of color pixels. In

addition to the histogram of intensity values, a histogram of interesting fea-

tures (e.g., features extracted by a bank of linear filters (texton histograms))

can be used for describing the texture (Dana & Nayar (1998)).

(b) Gray level co-occurrence matrix: This feature represents second-order statis-

tics of gray levels in pairs of pixels in an image (Haralick (1979)). It stores

the frequency of every particular pair of gray levels in the pixel pairs. Vari-

ous statistical properties which serve as textural features, such as energy and

entropy, can be obtained from the co-occurrence matrix.

(c) Local binary patterns: This feature can be considered as a higher order sta-

tistical feature. It represents the texture by a binary image which is created

by labeling the pixels in that texture (Ojala et al. (2002)).

2. Structural features: They characterize texture as being composed of texture prim-

itives which are regularly arranged on a surface according to some rules or guide-

lines. These features can be used in both texture synthesis and texture analysis.

Pixel intensity properties in the primitive and the spatial relationship between

primitives are considered for describing the structural features of a texture. The

computation of structural features requires two main steps:
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(a) Extraction of texture primitives: Texture consists of texture primitives (tex-

ture elements) called textons (Julesz (1981)). A texture primitive can be an

individual pixel, a region with uniform values, or line segments. It usually

has some tonal and/or regional shape properties. The number and size of the

primitives in a texture is also important for describing the textures.

(b) Modeling and generalization of the spatial placement rule: This can be done

by learning the statistical properties of the distribution of the primitives in

space or finding the geometrical relationship between them (Lu & Fu (1979)).

3. Signal-processing-based features: Such features are extracted by applying filter

banks to the image and computing the energy of the filter responses (Grigorescu

et al. (2002), Bovik et al. (1990)). Based on the domain (spatial or frequency

domain) they are applied in, they can be categorized into two types:

(a) Spatial domain operators, such as Sobel, Robert, or Laplacian, are used to

filter the images to extract features like edges, lines, or isolated dots.

(b) Frequency domain filters like Ring and Wedge are used to extract texture

features when the associated kernel is difficult to obtain in the spatial domain.

4. Model-based features: Stochastic, generative models are used to represent images

in which the model parameters capture the essential texture features.

(a) Fractal models: Such models are mostly used for representing natural textures

which have a statistical quality of roughness and self-similarity (Chaudhuri

& Sarkar (1995)).

(b) Random field models: Such models consider local information in order to

achieve a good global image representation. Markov Random Fields (MRF)

are one example (Cross & Jain (1983)). The Markov random field is a con-

ditional probability model allowing one to model local spatial interactions
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among entities, such as pixels. It is used in many applications, including

texture synthesis and texture classification. This model assumes that the

intensity at each pixel in the image depends on the intensities of only the

neighboring pixels. It measures the distribution of intensities in pixel neigh-

borhoods.

2.1.3 Sources of texture

Textures can be obtained through various imaging devices such as cameras, microscopes,

and computed tomography (CT) and magnetic resonance (MR) imagers. There exist

many texture databases that researchers use to test their methods, such as the Bro-

datz collection (http://www.ux.uis.no/ tranden/brodatz.html), and the Curet database

(http://www.cs.columbia.edu/CAVE/software/curet). The Dosch medical visualization

database (Design (2001)) contains textures for the depiction of organs, ligaments, bones

— everything that needs to be visualized for medical applications (Figure 2.2). These

images can be used for medical animations, educational material, presentations of re-

search results, and the creation of informative illustrations. The database contains 140

high resolution, seamlessly tileable textures.

In addition, hand drawn illustrations and drawings mostly composed of textures can

be used for constructing a texture database. In this dissertation input textures are

mostly obtained from medical illustrations in (Netter (2009)) though other sources can

be used depending on the purpose of the application:

• Manual art: Different painting techniques can be used for designing textures. The

advantage of this method is that it is flexible and easy to control. On the other

hand, it needs expertise in painting techniques.

• Procedural methods: Mathematical functions can be used for creating textures.

This method is efficient and flexible. However, it is not general, and it requires ex-
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pertise in mathematics. Finding a function and tuning its parameters for creating

a specific texture is a challenging task.

• Photographs: Taking pictures of real world environments and cropping the regions

in them using imaging tools is another way of obtaining textures. This method

makes it possible to obtain many realistic textures. However, controlling the fea-

tures in the acquired textures is not possible in this method.

• Texture synthesis: Bigger texture patches can be synthesized from smaller texture

samples using texture synthesis methods. The details of texture synthesis are

explained in Section 2.3.

2.1.4 Applications of textures

Textures have been used in many applications for different purposes:

1. Texture in visualization: Texture is important for visualization in many ways.

It helps us to understand the orientation, shape, and spatial layout of a surface.

In addition, it can be used to code information. In many visualization applica-

tions different channels of textures are used to visualize different features of data.

For instance, Gabor functions can be used to produce distinct textures for the

underlying data using orientation, scale, and contrast dimensions of texture for

encoding information (Ware (2004)). Moreover, textures can be used to visual-

ize the material characteristics of different objects. For instance, textures can be

used to visualize the underlying features in the seismic data (Patel et al. (2009)).

Besides these, texture has various applications in visualization, such as flow field

visualization, multidimensional data visualization, and illustrative visualization.

2. Texture in computer graphics: In computer graphics, a texture can be a

bitmap image or a procedural function. It refers to the digital representation of
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the surface of an object. In addition to 2D qualities, such as color and brightness,

textures can store 3D properties, such as in displacement mapping. In a virtual

environment once a texture has been defined, it can be used for rendering a 3D

model by mapping it onto a surface geometry to enhance realism in the scene. This

process is called texture mapping. Different texture mapping techniques exist for

applying 2D or 3D textures to a 3D model.

2.1.5 Texture mapping

Texture mapping is the mapping of an image onto a surface or within a volume in 3D. In

computer graphics, texture mapping is used to enhance visual richness in scenes, such as

making objects look like natural materials (e.g., marble, wood) by applying a pattern of

color onto the object, or adding 3D detail to the surface by altering the surface details

of an object so that it appears rough.

Texture mapping has two important components. One deals with how to warp a

texture onto a surface or within a volume, and the other deals with how the discrete

pixelization of the texture should be handled in order to avoid aliasing. In this disser-

tation I will cover the first component in detail.

In computer graphics, textures can be represented as rectangular 2D or 3D arrays

of data. Each entity in this array can store color data, luminance data, or color and

alpha (opacity) data. The difficulty in texture mapping comes from having to map a

rectangular texture to a nonrectangular object (region), because the texture might get

distorted. For each point on an object, which point in the texture it corresponds to

must be found (Figure 2.4).

Understanding coordinate systems is important for understanding how the mapping

is achieved (Wolfe (1997)):

1. Texture coordinates: These coordinates are used to specify the points in the im-

age to be mapped to points on the object. Texture space is labeled with (u, v)
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Figure 2.4: 2D texture mapping. (Figure is taken from Wolfe (1997).)

coordinates. Every vertex in a 3D model must be given a texture coordinate. This

is used to find the texture location associated with that vertex.

2. Object and world coordinates: A world coordinate system covers the simulated

world (the scene to be rendered). It is the base reference system for all the models

inside a scene. On the other hand, object coordinates cover the object itself.

When an object is created in a scene, a point should be picked as the origin of

that particular object, and the orientation of the object to a set of model axes

should be determined as the model-based axes. World and object coordinates are

related with where and how the mapping takes place. This mapping is categorized

based on whether the object is fixed with respect to the texture, or the texture is

fixed with respect to the object (Figure 2.5).

(a) World coordinates: The origin and coordinate axes of the texture remain

fixed in the world coordinates. This coordinate system is not used so widely

since the texture is mapped onto a surface in world space. This causes pattern

shifts on the objects when the object moves through the space.

(b) Object coordinates: The origin and coordinate axes remain fixed relative to

an object independent of object’s position and orientation. Most mapping
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Figure 2.5: Texture mapping is done in (left) object coordinates, (right) world coordi-
nates for teapot models in different positions. (Figure is taken from Wolfe (1997).)

techniques use this coordinate system in which the source image (texture) is

mapped onto a surface in 3D object space. This means if the handle of a cup

is painted red, it will remain red even when the orientation and position of

cup change.

There are various ways to map a 2D or 3D texture onto a surface. These approaches

can be divided into 2D and 3D techniques, which both deal with how the color of each

pixel (in 2D) or voxel in (3D) is going to be found in the texture:

1. 2D texture mapping techniques: These techniques refer to placing a 2D image

onto an object using methods similar to pasting wallpaper onto a bumpy wall.

The texture is defined in 2D, and it is mapped onto a 2D or 3D object. One

would like to avoid distortion of the mapped textures, and seams between textured

regions when using these techniques. There are many approaches proposed for 2D

mapping:

(a) Project the texture: This method, presented in (Bourke (1996)), consists of a

map shape which is used to convert the (x, y, z) value from the object to the

coordinates of map shape. The map shape can be planar, cylindrical, spheri-
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cal, or box. For instance, spherical mapping converts the (x, y, z) coordinates

to spherical coordinates (θ, φ). After these coordinates are obtained, they

are transformed into rectangular texture coordinates, which are mapped over

the surface of the sphere (Figure 2.6).

Figure 2.6: The objects have a map shape of a sphere, and the poles of the sphere are
parallel to the y-axis (Wolfe (1997).)

(b) Unfold the surface: This method consists of unfolding the 3D mesh at the

seams and automatically laying out the triangles on a flat page. This process

can be done by 3D modelers or using automatic techniques.

(c) Tile the textures: This method consists of representing a large texture as a

small set of tiles and combining these tiles into a large texture. In this method

it is important to know which tile is used for each region of the texture (Wei

(2004)).

(d) Make an atlas: A texture atlas is an efficient color representation, which

consists of many smaller sub-images (Levy et al. (2002)). Each sub-image is

a texture for some part of the 3D model.

2. 3D texture mapping techniques: These techniques refer to placing a 3D image

onto an object using methods similar to either carving marble to create an object
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or warping the marble to fit into an object. The texture is defined in 3D, and

it is mapped onto a 3D object. For each point on the object, we must find the

corresponding point in the 3D texture. There are two approaches for 3D texture

mapping:

(a) World-based mapping: This technique is analogous to carving the object

from a block of 3D texture. Texture is considered as a block which objects fit

into. Each renderable point (x, y, z) in world coordinates inside the 3D model

determines its color without the use of any intermediate transformation. This

technique is straightforward and works mostly for isotropic textures. It is

possible to avoid distortions and seams in this technique.

Figure 2.7: World-based texture mapping for 3D textures. (Figure is taken from Wolfe
(1997).)

(b) Model-based mapping: This technique is analogous to warping a block of 3D

texture to fit into an object. 3D textures can be clipped and transformed

based on some guidance information. This can be a user-defined volumetric

tensor field as in (Takayama et al. (2007)) or a model-based coordinate system

as proposed in (Merck (2009)). In Takayama et al. (2008b), texture mapping
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is achieved by cropping and warping cubic solid textures based on the user

input. In that method, first the triangular mesh is converted to a tetrahedral

mesh model and a 3D texture coordinate is assigned to the vertices of each

triangle in each tetreahedra. Then these coordinates are used for mapping

the textures inside the model (Figure 2.8).

Figure 2.8: Model-based texture mapping for 3D textures. (Figure is taken from
Takayama et al. (2008b).)

There are many difficulties in texture mapping:

1. Aliasing: This problem is usually apparent with regular textures. It can occur any

time we resample a texture, for instance when we scale it, rotate it, or map it onto

a 3D model. Mipmapping, bilinear filtering, trilinear filtering, and anisotropic

filtering are some of the solutions to aliasing.

2. Singularities: Objects of spherical topology have at least one singular point on

the surface mesh. For instance, the meridians on the earth have two singularities:

one at the North Pole and one at the South Pole. It is impossible to define the

second texture coordinate at these points. These points should be anticipated and

handled as special cases in texture mapping.

3. Distortions: Since mapping a 2D image onto an arbitrary 3D model requires trans-

formation of the texture, there will be regions in which the texture looks distorted.
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4. Seams between texture patches: When multiple textures are mapped on the surface

of a mesh, the transition between the tile boundary regions should be smooth.

2.1.6 Texture layering

Layering and blending of multiple textures are often applied in computer graphics to

create realistic looking models (e.g., in terrain rendering). Multiple textures can be

combined onto the same surface through a variety of combination rules. For instance,

we can combine different textures on a mesh to visualize the transition between regions.

The triangles in these regions would have 2 sets of texture coordinates, and they have

to be interpolated. This interpolation can be achieved using multi-pass rendering or

programmable GPU architectures.

Figure 2.9: (Top row) Texture blending using alpha maps; (bottom row) terrain texture
blending (http://www.jenkz.org/articles/terraintexture.htm).

Texture layering is widely used for terrain rendering to create the illusion of a rich

landscape. This is achieved by overlaying different textures on top of each other by

considering the height of the terrain mesh at each point. Alpha blending is widely

used for layering these textures (Figure 2.9). While in terrain rendering alpha maps are

computed based on the heights of the terrain mesh, they can be computed based on

30

http://www.jenkz.org/articles/terraintexture.htm


other constraints depending on the application.

2.2 Texture Metamorphosis

Texture metamorphosis refers to the process of smoothly interpolating between two

textures, T0 and T1 (Figure 2.10). Transformation of the intensity values along with the

structural features (e.g., patterns, textons) in the texture is an important contraint that

should be taken into account in texture metamorphosis. This is important in order to

achieve smooth transformation of patterns along with the intensity values and makes

texture metamorphosis problem different from image metamorphosis problem. Several

approaches have been proposed in the literature to find the transformation from one

texture to another. Most of these techniques are based on blending structural features

of two input textures (e.g., feature images such as edges, thresholded binary images,

signed distance fields) and synthesizing output textures using this blended feature as

a constraint. The technique proposed in this dissertation differs from these techniques

by considering the change in structural features and intensities in a single framework

without any need for texture synthesis.

Figure 2.10: (Left) Source texture T0 (input texture); (middle two) interpolated textures
(output texture); (right) target texture T1 (input texture).

The first approach for morphing structural textures was presented in (Liu et al.
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(2002)) using a pattern-based approach in which the user specifies landmarks and their

correspondences for two textures. The landmarks are used to create a warp field, and

cross-dissolving accommodates texture appearance changes. This approach assumes that

texture images are composed of similar texture patterns. In addition, it requires a large

amount of user interaction. Later, in (Wei (2003)) an algorithm for creating morphed

textures between two input textures using texture synthesis methods is proposed. In this

method, mixed textures are synthesized using the given input textures by constraining

the texture synthesis via user-defined weighting images.

Zhang et al. (2003) synthesized progressively variant textures using a texton mask

as the feature image for input textures. In their method first a mixed feature mask is

generated by blending and binary-thresholding the textons in the feature images. Then

this mixed feature mask is used as a constraint in texture synthesis in order to generate

the mixed output texture. The main disadvantage of this approach is that it does not

guarantee a smooth transformation from one image to another. In addition, an arbitrary

number of images between two input images cannot be generated.

Liu et al. (2004) proposed a system to design novel textures by analyzing and ma-

nipulating textures. Their method allows the user to warp texture features which can

be used for alignment in morphing. User-defined feature maps are also used in (Ma-

tusik et al. (2005)) to produce warps between textures. They also proposed a histogram

matching technique to avoid blurring of features. However, the approach of Matusik

et al. (2005) is only applicable to textures that are similar to each other.

A level set advection method for morphing between texture features was proposed in

(Ray et al. (2009)). This method first finds a warp that takes texture features from one

image to the corresponding features in the other texture. Then a constrained texture

synthesis approach is applied to generate a texture with a given feature image. Recently

a new patch-based approach was proposed in (Ruiters et al. (2010)). In this approach

individual neighborhoods of the input textures are locally warped and blended, and then
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they are used to create new textures by an optimization algorithm. The disadvantage

of this patch-based approach is that it cannot handle materials with large differences in

feature scales. In addition, since the warping is done using only feature information, it

cannot handle textures that do not have clear, meaningful features.

The metamorphosis formulation that the approach proposed in this dissertation

builds on has been studied for example in (Trouve & Younes (2005); Holm (2009)). It

also builds on numerical solution methods that have been proposed in (Miller & Younes

(2001) and (Garcin & Younes (2005)). That line of work has mostly been concerned

with morphing gray-valued or color images and has so far not dealt with the problem of

texture morphing.

2.3 Texture Synthesis

Texture synthesis is the process of generating a large texture either from a small exem-

plar texture using its stochastic and structural features or using functions to generate

patterns and colors. There are two main challenges in texture synthesis; both are related

with scale. The first is to capture the input exemplar texture’s visual characteristics

while adding enough randomness to maintain its natural feel. The second is to maintain

the relationship between the texture features, such as relative position, from the exem-

plar texture. Synthesizing textures based on target-specific constraints, due to properties

such as orientation, scale, and region, also brings new challenges to the problem.

Texture synthesis is used in many fields in computer graphics and digital image

editing tools. It has been widely used in surface and scene rendering to make objects

look more realistic. Other applications include image completion and video synthesis.

There have been two main approaches proposed for 2D and 3D texture synthesis:

procedural and exemplar-based.

1. In procedural approaches the textures are created using functions that represent
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“randomness” in nature. Depending on the functions and the parameters used in

them, realistic representations of natural elements can be obtained (e.g., wood,

marble, granite, metal, stone). Perlin noise is most commonly used as basis func-

tions in this method (Perlin (2002)). However, other simple functions are also

used, such as the sum of sinuisoidal functions. More details about procedural

texture synthesis can be found in Ebert et al. (2002).

The procedural approach has many advantages:

(a) It allows the synthesis of 2D and solid textures at any resolution.

(b) The memory needed to save the procedure is very small, compared to saving

a whole texture. For instance, saving a solid texture in memory is very

inefficient since we have to store the value of each voxel in memory. In

contrast, the color values for each voxel (x, y, z) on the surface of the mesh

can be easily computed using a function during rendering without any need

for precomputation and storage.

(c) It generates 2D and solid textures that are unaffected by distortions of surface

parameterization since each point on the surface is generated based on a

locally-flat 2D mesh coordinate.

(d) It handles the continuity between the adjacent surface patches automatically

using functions, which makes textures remain consistent on the model.

The procedural approach also has two important problems:

(a) It is not general. It is hard to find the appropriate function and the parameter

values for it to match a particular exemplar texture.

(b) It generates natural textures which have a cleaned appearance. This makes

it look artificial. Artificial noise can be added to solve this problem.
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2. In exemplar-based approaches the textures are created using one or several input

textures (2D or 3D depending on the approach). The aim is to generate an output

texture that matches the given input textures. The most successful approaches

in this technique are based on Markov Random Fields (MRF), though techniques

using different texture models have also been proposed. In MRF-based methods

the aim is to generate a texture in which the spatial neighborhood of each pixel

is similar to at least one neighborhood in the input texture (Paget & Longstaff

(1998)).

Exemplar-based techniques have many advantages:

(a) They can replicate both stochastic and structural features of a given texture.

(b) No expertise is required for setting their parameter values.

(c) They can be combined with guidance information, which can come from the

underlying data or surface model, to generate a constrained texture on the

surface of a model.

On the other hand, these methods have many disadvantages:

(a) They only work well for input textures that are homogeneous.

(b) They need large memory for storing the output texture (compared to proce-

dural methods) since they initially synthesize output texture and then map

it onto the model.

(c) They are not time-efficient when compared to the procedural approach. This

is caused mainly by the large number of neighborhood comparisons in the

search phase — this phase will be explained in the next section.

In this dissertation exemplar-based techniques are used for synthesizing anatomical

textures both on and inside the surface. Further background on this topic is presented

in detail in next sections.
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2.3.1 2D texture synthesis

There are pixel-based and patch-based techniques proposed for synthesizing textures.

Pixel-based methods go in order through all pixels of the synthesized texture and use the

input pixel with the best matching local neighborhood (Efros & Leung (1999)). Patch-

based methods copy the best-fitting parts from the input texture into the synthesized

texture and append these parts to each other (Efros & Freeman (2001), Kwatra et al.

(2003)). There are also optimization-based (Kwatra et al. (2005)) and hybrid approaches

(Nealen & Alexa (2003)) that combine the advantages of pixel-based and patch-based

methods. In this section the algorithms in these categories are described briefly. Details

of the methods can be found in the cited papers in each section.

2.3.1.1 Pixel-based texture synthesis

In pixel-by-pixel synthesis first each pixel in the output texture is initialized to intensity

of a random pixel selected from the input texture. Then the output texture is synthesized

by considering each pixel in a specified order (Figure 2.11).

The techniques in this category are composed of a search phase, in which an appro-

priate section of the exemplar is found as a best match, and a copy phase, in which the

selected pixel from the exemplar is copied to the output texture:

1. Search phase: For each pixel in the output texture, a spatial neighborhood around

it is considered. Then for this neighborhood the best match or the best N matches

are found from the neighborhoods in the input image. The sum of squared differ-

ences of pixel intensities are used as a matching function to find the best matches.

There are many factors that are considered in different approaches during this

phase:

(a) Order of synthesis: In most texture synthesis algorithms raster-scan ordering

is used. On the other hand, for constrained texture synthesis, such as syn-
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Figure 2.11: The search phase in exemplar-based texture synthesis. (Top left) An L-
shaped neighborhood is created around the pixel that is going to be synthesized in
the output (synthesized) texture. (Top right) Best matches are found in the exemplar
texture (input texture). (Bottom left) The color value of the selected pixel is assigned
to the synthesized texture. (Bottom right) The synthesis is done in scanline order.

thesis of oriented or region-specific textures, this order can be specified based

on the orientation field or material transition field. In certain situations with

irregular meshing, random ordering can be used.

(b) Size and shape of neighborhoods: Since the Markov random field model con-

siders the neighborhood information in texture synthesis and we would like

to preserve structures in the output texture, the size and shape of the neigh-

borhood are important. The size should be as large as the largest texture

structure in the input image, and the shape should include the already syn-

thesized pixels in the output texture. The size is usually specified by the user

since it is hard to compute the size of the structures in the input texture au-

tomatically. In addition, an L-shaped or a rectangle-shaped neighborhood is

usually used. If raster-scan ordering is used when synthesizing output texture,
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an L-shaped neighborhood is used in the first pass and a rectangle-shaped

neighborhood is used in the next steps.

(c) Multi-resolution neighborhoods: These are used to reproduce large scale tex-

ture elements without having to use a very large neighborhood by operating

at multiple resolutions. For instance, for synthesizing a 2N × 2N output

texture, we first reduce the size of the input and output textures to N × N

pixels and synthesize output. This captures the large scale elements. Then,

we expand them both to 2N × 2N and use the N × N synthesis output as

a starting point. Using this approach we can preserve the structures in an

efficient way. Image pyramids are usually used for achieving multi-resolution.

2. Copy phase: In this phase the color of the pixel is assigned using the results

obtained in the search phase. If only one best match value is found, this value is

copied to the output texture. On the other hand, if N best matches are found,

a pixel from this set is selected randomly and its value is copied to the output

image.

The main advantages of the pixel-based approach are that it is simple and gives

reasonable results. On the other hand, there are failure cases, and it is hard to control.

In addition, it is slow. For solving quality and speed problems in texture synthesis,

coherence-based techniques have been found very useful. The first method in this area

was proposed in Ashikhmin (2001) and later was extended by Tong et al. (2002) for

k-coherence. In k-coherence method for each pixel in the output texture k pixels with

similar neighborhoods are found from the input exemplar texture. In this approach

the search and copy phases mentioned above are the same except the following two

additions:

1. Preprocess step: This step consists of construction of a precomputed set for each

pixel containing the other pixels with similar neighborhoods.

38



2. Restriction on search: The search phase applies an additional restriction, which is

the consideration of the already synthesized neighborhoods’ precomputed sets.

K-coherence has been found very useful for improving the quality of the output textures,

especially for natural textures.

2.3.1.2 Patch-based texture synthesis

Although patch-based and pixel-based approaches are similar to each other in the search

and copy phases, there are many differences between them:

1. In patch-based synthesis patches are searched and copied instead of pixels.

2. In patch-based synthesis there is an additional step after the copy phase for han-

dling the overlapped regions between the copied patches. Different approaches are

proposed for this step:

(a) Overwriting new patches over existing regions, as proposed in Praun et al.

(2000), which works well for stochastic textures.

(b) Blending the overlapped regions of new patches and existing regions (Liang

et al. (2001)), which may cause blurring.

(c) Finding an optimal cut through the overlapped regions, using dynamic pro-

gramming techniques (Efros & Freeman (2001)) or graph cut approaches

(Kwatra et al. (2003)).

(d) Warping the patches to ensure pattern continuity across the patches (Soler

et al. (2002) and Wu & Yu (2004)).

Patch-based approaches are fast and give satisfactory results for many textures.

However they lack flexibility, and it is hard to speed up the process using parallelism.

As in pixel-based approaches, tuning the parameters, such as neighborhood size and

pyramid resolution, is required for high-quality synthesis.
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2.3.1.3 Optimization-based texture synthesis

The advantages of pixel- and patch-based techniques are combined in a single-optimization-

based algorithm proposed in Kwatra et al. (2005). This algorithm searches for the best

match for each pixel using its spatial neighborhood as is done in the pixel-based ap-

proach. Then it uses a global optimization technique which resembles the patch-based

approach to compute the value of each pixel in the copy phase.

The goal of this approach is to minimize a global texture energy function E that

measures how much the synthesized texture deviates from the exemplar texture using

the local 2D neighborhoods. By setting e as the input exemplar, x as the synthesized

texture, xp as the neighborhood of p, and ep as the exemplar neighborhood closest to

xp, the global energy function is described as follows:

Et(x; {ep}) =
∑
p∈xt

||xp − ep||r. (2.1)

Kwatra et al. (2005) found that the exponent r=0.8 makes the optimization robust.

The approach begins with a 2D image where the value of each pixel is randomly

chosen from the exemplar, and it synthesizes the output texture by solving the energy

function using an Expectation Maximization (E-M)-like algorithm. During synthesis,

the two steps of the E-M-like approach are repeated until the energy is minimized:

1. E (expectation) step: This step can be considered as the copy phase of texture

synthesis. In this step the value of each output pixel xp is assigned using a re-

weighted least squares approach, which considers the neighborhoods of xp while

it is computing the value of that pixel. More details of how it is computed can

be found in (Kwatra et al. (2005); Kopf et al. (2007)). In that step the set of

matching input neighborhoods ep remains fixed. This step is also considered as

the optimization phase.
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2. M (maximization) step: This step can be considered as the search phase of texture

synthesis. In this step the set of output pixels xp remains fixed, and the set of

best matching input neighborhoods ep is found using a tree search.

Although this technique gives satisfactory results for many textures, it has some

problems:

1. It is slower than the other techniques since it uses an iterative optimization.

2. The hierarchical tree search in the M-step is a speed bottleneck in the solver.

3. The least-squares solver in the E-step can cause blurring since it performs a

weighted average of calculated input neighborhoods for assigning the value on

the output.

2.3.2 Feature-guided (controllable) texture synthesis

The algorithms summarized in Section 2.3.1 are for synthesizing stationary output tex-

tures given a stationary texture as input. However, natural textures are mostly non-

stationary. They usually have changes in their orientation, scale, or material character-

istics depending on external or environment factors.

The textures that are local but non-stationary are referred as globally variant tex-

tures and can be synthesized using different methods:

1. User-constrained texture synthesis: The texture is synthesized using an input

texture, and a control map given by the user.

(a) Ashikhmin (2001) proposed an approach using inputs made of a local and

stationary texture and a selection map for guidance. The selection map

specifies choices in the input texture patterns for different regions of output

texture; it is used as a constraint in texture synthesis.
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(b) The approach proposed in Efros & Freeman (2001) is similar to Ashikhmin

(2001) except that this method operates on patches instead of pixels.

2. Image-constrained texture synthesis: The texture is synthesized by considering

the correspondence between the given two texture samples, A and A′. This cor-

respondence is then used as a constraint in generating new texture B′ from the

other given texture B (Figure 2.12). In the papers Hertzmann et al. (2001) and

Ramanarayanan & Bala (2007), the results of these approaches are shown with

various textures. However, these techniques have two main disadvantages. The

image similarity between two images is hard to specify, and the quality of the

results depend on the synthesis and correspondence algorithms.

Figure 2.12: A new analogous image B′ that relates to B is computed in the same way
as A′ relates to A. Here, A, A′, and B are inputs to the algorithm, and B′ is the output.
Figure is courtesy of Hertzmann et al. (2001).

2.3.3 Texture synthesis on surfaces

One of the applications of texture synthesis is creating textures on the surface of objects

to make them look realistic by illustrating their material characteristics. Given a surface

mesh (or description) and an exemplar texture, the purpose is to synthesize texture on

the surface without having distortions and discontinuities across the texture patterns.

Many approaches (Turk (2001), Wei & Levoy (2001), Gorla et al. (2003), Praun et al.

(2000)) for achieving this have been proposed in the last decade. The synthesis quality

of these approaches depends on the underlying texture synthesis algorithm (e.g., non-
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parametric sampling technique) and the surface handling scheme (e.g., subdivision of

the surface into patches). The approaches usually consist of the following steps:

• Specifying the guidance information, such as orientation and scale of texture;

• Synthesizing texture on the surface;

• Rendering the surface with the synthesized texture.

2.3.3.1 Computation of guidance information on the surface

Although output textures can be isotropic, typically they can be synthesized according

to the following guidance information specific to the model:

1. Scale: Texturing objects that have variations in the scale of the texture features

at different locations on the surface (such as the size of giraffe spots differing on

the animal’s legs and body), can be achieved by computing a scale field on the

surface mesh and considering it in texture synthesis. A scale field over the surface

is usually constructed by getting its values at a few locations on the surface from

the user and interpolating the values over the surface.

2. Orientation: Synthesizing anisotropic textures in which texture features smoothly

orient along the underlying orientation field is important for texturing different ob-

jects, such as woven fabrics, bricks, animal strips, and wood grain. There are three

general approaches for constructing the orientation field on the surface: utilizing

constant or principal curvature directions at the vertices (Gorla et al. (2003));

using relaxation methods (Wei & Levoy (2001)), or using user input (Praun et al.

(2000)).

3. Material: As in the scale field on the surface, material transition can be obtained

from the user utilizing an interface for specifying the regions with different mate-

rials.
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2.3.3.2 Synthesizing texture on the surface

There are many approaches proposed for synthesizing texture on the surface. They can

be categorized based on how they handle the surface during texture synthesis:

• Dense points on the surface: This approach populates the surface with a dense set

of points, in which each point is treated as a pixel. The creation of the point is usu-

ally done using point repulsion, which distributes points on the surface randomly

and then finds their final position by treating them as particles with the same

charge. Then a pixel-based texture synthesis approach is applied to synthesize

color for each point on the surface. As in the other texture synthesis approaches,

texture synthesis can be done at multi-resolution from coarse to fine. This speeds

up the process and increases the quality of the textures.

Synthesizing texture by coloring the vertices has been used in (Turk (2001) and

Wei & Levoy (2001)). The method presented by Turk consists of two steps for

initialization and one step for synthesis. In the first step a hierarchy of points from

low to high intensity is created on the surface of the mesh, and these points are

connected with each other to construct a hierarchy of meshes. In the second step

the user draws the direction of the texture at several locations, and the vectors are

interpolated over the remainder of the surface. In the third step the outputs from

the first and second steps are used for synthesizing texture. The main problem in

this approach is that it requires an additional mesh resampling step.

• Surface unfolding into the plane: This approach requires unfolding the mesh onto

the plane, synthesizing the texture on each flattened patch in 2D, and mapping

it back onto 3D surface. Unfolding the mesh includes subdividing the mesh into

patches and mapping them onto 2D surfaces. Subdivision of the surface can be

done using different techniques depending on the representation of the model. In

Ying et al. (2001) the models are represented as subdivision surfaces, making the
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texture chart creation straightforward. On the other hand, in Gorla et al. (2003)

the models are represented polygonally, making it necessary to create large charts

to achieve minimal distortion.

• Triangle patches: This approach is based on treating each triangle or a set of

triangles on the surface mesh as patches Praun et al. (2000) and Li et al. (2008).

First, for each triangle or a set of triangles, per-vertex texture coordinates ((u, v)

coordinates) are computed, and a texture map is specified. Then texture is syn-

thesized on this texture map in 2D. At runtime, triangles on the 3D mesh are

rendered using the 2D texture maps.

2.3.4 Solid texture synthesis

While 2D textures are commonly used for visualizing the object’s external surface, solid

textures are used for providing volumetric information about the objects’ interior ap-

pearance. Solid textures can be obtained by acquiring real data using 3D cameras (such

as CT) or can be synthesized using different texture synthesis approaches. There have

been many methods proposed for generating solid textures in the last decade due to the

advances in graphics cards and the need for visualizing the interior of the objects. In

Pietroni et al. (2010) these methods are divided into two categories:

• Shape-independent methods: These methods synthesize solid texture that are not

specific to a model. They are assumed to be uniform inside the volume.

• Shape-dependent methods: These methods generate textures for the inside of

a specific object. They are considered to be model-specific: they rely on the

boundary information and guidance information specific to that model.

In this section I will present these methods and their application for medical visualization

in detail.
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2.3.4.1 Shape-independent solid textures

As in 2D texture synthesis, shape-independent methods can be categorized as procedural

or exemplar-based:

1. Procedural approaches use functions of the 3D position of each voxel inside the

volume to calculate its color value via a set of user-provided functions and their

parameters. They are easy to implement and computationally efficient. A great

advantage of this approach is that they do not use any memory for storing the

texture. This makes them easy to use for visualizing high-resolution objects. How-

ever, finding the right function and its parameters for obtaining the desired texture

can be difficult for non-expert users.

2. Exemplar-based solid texture synthesis denotes the process of constructing a large

3D volume texture from a small 2D or 3D sample texture by considering the

content inside the sample. These methods can be categorized as follows:

(a) Statistical methods: These methods require the computation of a specific

statistical feature of a given texture and the synthesis of a solid texture that

has statistical features similar to those in the input texture. In practice, in-

put exemplar textures can be 2D or 3D. However, obtaining 3D textures is

really hard in the real world, since the objects should be scanned in 3D using

special equipment. Thus, in most of the recent work in this area the focus has

been on using 2D exemplar textures as input. However, since the input is 2D

and the output is a 3D texture, replicating the statistics becomes an issue in

these methods. In Heeger & Bergen (1995) histogram matching to match the

synthesized texture’s color distribution with that of the input exemplar has

been tried. Later, Jagnow et al. (2004) utilized stereology information for the

textures that are composed by models of different particle shapes. Stereology

provides 3D information about the given 3D data from measurements made
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on 2D planar sections. The approach proposed by Jagnow et al. (2004) re-

quires analysis of the distribution and shape of the particles in the 2D input

image and uses it in solid texture synthesis. Though this approach produces

good results, it is restricted to those solid textures that have particle shapes.

In the method presented in Qin & Yang (2007) a volumetric texture is synthe-

sized using Basic Gray Level Aura Matrices (BGLAMs), which capture the

input texture’s co-occurrence probability distributions of gray levels. The

main drawback of this approach is that it only works for greyscale images. If

the color channels are uncorrelated, this approach can be used for obtaining

satisfactory results. However, in many color textures the color channels are

correlated, and treating the channels separately causes visual artifacts in the

synthesized textures.

(b) Neighborhood-matching methods: These methods are based on using the

neighborhood information of each voxel in the 3D volume to characterize the

voxel and finding a similar neighborhood in the exemplar for that voxel. The

main issues in these methods are the representation of the 3D neighborhood

around a voxel for doing comparison with the input texture and the orienta-

tion of the input textures for specifying the color at a voxel. The earliest work

in this direction was presented by Wei (2003). The key idea in this method

is to consider a 2D exemplar texture for each orthogonal direction (basically

x, y and z directions) in the neighborhood search to find the best match.

These neighborhoods are also used in local optimization to converge to the

best color. The main problems in this approach are blurring in synthesized

textures that have high structural information.

(c) Energy-optimization-based methods: Kopf et al. (2007) extended the method

presented in Wei (2003) for synthesizing homogeneous solid textures from

2D exemplars by combining energy optimization and histogram matching
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techniques. This method preserves the local statistics of the texture using

an optimization scheme, and it preserves the global statistics using a his-

togram matching technique. Although this approach produces good results

for isotropic cubic solid textures, it does not handle anisotropy and spatial

variation of textures inside the model.

There are many advantages of shape-independent solid textures:

1. They can be used for rendering different surface models by embedding the model

into the solid texture domain.

2. They can usually be generated automatically. They do not require any input

from the user. For instance, exemplar-based techniques only need the user for

specifying some of the parameters (e.g., neighborhood length, iteration count) for

synthesizing textures.

3. They do not cause any distortion on the surface of the model since they don’t

consider the shape of the object.

The disadvantages of this approach can be summarized as follows:

1. They need high amount of memory for storage.

2. They do not consider any object-specific information.

3. They create solid textures which have the same anisotropy throughout the volume.

2.3.4.2 Shape-dependent solid textures

To synthesize shape-dependent (model-specific) solid textures, an appropriate represen-

tation (parameterization) of the interior of the object is required. The methods in this

category can be used for synthesizing progressively-variant solid textures in order to

illustrate objects using their model-specific material and shape properties as guidance.
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These advantages can be used for obtaining a large variety of model-specific volumetric

effects for many visualization and graphics applications.

1. Procedural approach: The method proposed in (Cutler et al. (2002)) is known

as the first method to synthesize model-specific textures. This method uses a

scripting language for specifying the regions inside the model and signed distance

fields for computing these regions. It uses procedural methods for generating

layer-specific textures on the cross sections.

2. Quasi-solid texture synthesis approach: These methods create 2D textures on

different cross sections of the model.

(a) Volumetric illustrations: The approach presented by Owada et al. (2004) pro-

vides a way to create quasi-solid textures for illustrating object interiors. This

approach utilizes user input from a browsing interface and a modeling inter-

face. The browsing interface enables the user to split the model as a means

of specifying the interior cross section surface to be textured. The modeling

interface is designed for specifying the internal regions on that specified cross

section. Given the inputs that come from these interfaces, their framework

synthesizes isotropic, layered, or oriented 2D textures on the cross sections.

Though this method is an important approach for creating scientific illustra-

tions, such as medical, biological, and geological, their expressive power is

limited, and they require too much input from the user for our application.

In addition, since 2D textures are synthesized on the cross sections every time

the model is cut, it leads to inconsistency among different cross-sections.

(b) Texturing internal surfaces from a few cross sections: Similar to the volu-

metric illustrations method in Owada et al. (2004), the proposed method in

Pietroni et al. (2007) is based on creating quasi-solid textures in the interior

of the model. The special property of this method is that it uses photographs
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of cross sections of real objects to generate textures using a warping approach

instead of a texturing approach. This method consists of a preprocessing and

a morphing stage. In the preprocessing stage the images are placed on the

model’s local reference frame on the selected cross sections. In the morphing

stage warping between these cross sections is used to generate textures on the

remaining cross sections. This method is good for obtaining realistic volu-

metric illustrations of models that have highly structured textures. However,

it cannot synthesize stochastic textures, and it requires the object domain to

be closed.

3. Warp-based solid texture synthesis approach: Takayama et al. (2008b) presented

a method that builds progressively changing oriented solid textures by repeatedly

pasting 3D texture exemplars within a tetrahedral mesh. This approach uses a 3D

exemplar texture for specifying the type of the output texture. It generates solid

textures inside a model using the variation of textures, the amount of anisotropy,

and the volumetric tensor fields, all obtained from user input. The synthesis

process is based on pasting a patch in the object’s interior volume. While this

method creates volumetric textures for many models with little memory, it has

some drawbacks. As input it requires 3D solid textures, which can be difficult to

obtain for real objects. In addition, for highly structured textures the patch seams

become noticeable in the synthesized texture.

These methods have many advantages for illustration purposes:

1. They provide user interaction that gives the ability to design different appearances

for a single model.

2. They create progressively changing solid textures that follow an object’s shape

using the boundary constraints and user-specified volumetric regions.

There are also some weaknesses in the proposed approaches:
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1. They require the boundary geometry to be well conditioned. For instance, Owada

et al. (2004) and Pietroni et al. (2007) require the model to be closed.

2. They do not provide correspondence between different instances of the same model

since they require user input for each model.

3. They may cause distortions of the textures due to the spatial parameterization of

the models.

2.3.4.3 Hybrid methods

The shape-independent methods can be modified to synthesize shape-dependent tex-

tures. To achieve this, there are some suggestions in the existing literature. For in-

stance, in Pietroni et al. (2010) a constrained synthesis approach using a 2D mask that

approximates the surface boundary is recommended as a possible extension for adding

the boundary dependency to the synthesized textures. In addition, it is suggested that

layered textures can be synthesized from multiple sources according to a given mask

using already existing methods.

Combining shape-independent and shape-dependent texture synthesis methods is a

major focus of this dissertation. The details of the proposed approach are explained in

Chapter 6.

2.3.4.4 Solid texture synthesis for medical visualization

Volume illustrations became popular over the past decade in medical visualization for

their effectiveness in illustrating the material and structural features of a data set while

emphasizing important details. One approach is to generate volumetric illustrations by

synthesizing model-specific textures. Dong & Clapworthy (2005) proposed a method for

synthesizing oriented volumetric solid textures via a patch-based solid texture synthesis

algorithm that uses the orientation field extracted from CT and 3D exemplar textures
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provided by the user.

Later, Lu & Ebert (2005) proposed a method for generating illustrative 3D textures

using Wang Cubes. This method basically uses 3D texture samples from the available

volume datasets as exemplars. First, the method recolors these exemplar textures to im-

itate the 2D illustrations in medical textbooks. Then, it generates output texture using

a Wang Cubes approach. The main disadvantages of this method are that the textures

do not reflect scale and orientation information, and they are not region-appropriate

but rather are homogeneous throughout the volume. In addition, 3D texture samples

are not easy to capture, and tiling of the 3D textures leads to repetitive patterns.

There are also some methods proposed for synthesizing oriented solid textures for

visualizing muscle fibers. Chen et al. (2009) proposed a method for the visualization

of muscle based on diffusion tensor images (DTI) using oriented solid textures. They

utilized a vector field computed from the DTI data as a guide to synthesize solid textures.

2.4 Object Representations in 3D Space

In computer graphics there have been many methods proposed for representing objects

in 3D space (Funkhouserl (2002)):

1. Raw data: Point cloud, range image, polygon soup

2. Surfaces: Mesh, subdivision, parametric, implicit

3. Solids: Voxels, binary space partitioning (BSP) tree, sweep

4. High level structures: Scene graph, skeleton, application-specific

As discussed earlier, depending on the type of texture synthesis, surface-based or

volumetric-based, a representation of the boundary or interior of the model is needed.

In this section backgrounds on surface representations and volume representations are
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given first. Then, an overview of the model-based coordinate system utilized in this

dissertation is presented.

2.4.1 Surface representations

Surface representations are used for defining the boundary of an object. There are many

criteria in surface representation. It must be accurate and concise. It should have local

support, and it should guarantee continuity. Methods trying to satisfy these goals have

been proposed for representing surfaces:

1. Discrete representation (mesh): Meshes consist of a connected set of polygons

(usually triangles). Complex objects can be represented easily using this method.

Independent faces, vertex and face tables, adjacency lists, and triangle meshes are

some examples of mesh data structures used in this representation.

2. Subdivision surface: This representation describes the surface with a coarse mesh

and a subdivision rule. The refinement stops when the surface is locally smooth.

They are simple for describing complex surfaces. They are relatively easy to

implement. They guarantee continuity and provide local support. On the other

hand, they do not represent object interiors and exteriors.

3. Parametric surface: This representation describes a surface by a parameter equa-

tion f with 2 parameters, u and v. In this representation it is easy to represent

points on the surface. In addition, this representation makes it possible to describe

complex shapes. The Bezier surface is one example of parametric surfaces.

4. Implicit surface: This representation describes the surface using the points satisfy-

ing an equation f . This means all points (x, y, z) on the surface satisfy f(x, y, z) =

0. Implicit functions can be defined using algebraics, blobby models, skeletons,

procedures, samples, and variational methods. They are widely used in computer
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graphics applications. The main advantage of this method is that it is possible

to distinguish the interior and exterior of the objects. In addition, it is easy to

compute intersections, unions, and differences between such surfaces. It is also

easy to handle topological changes. However, it is difficult to define an arbitrary

object with a function. It is hard to enumerate points on the surface, and it is

hard to describe sharp features.

Among these methods, the mesh representation is the most common since it is easy

to represent and manipulate complex objects in this representation. For many applica-

tions, such as texture mapping, resampling, surface painting, and 3D scanning, meshes

need to be parameterized. Parameterization enables us to operate on the 3D surface

as if it were flat. Given a triangle mesh, a surface can be parameterized using two

parameters. Surface parameterization can be seen as a 1-1 mapping from the surface to

a suitable domain. In general, surfaces cannot be flattened without some distortion. A

good mapping is one which minimizes either angle distortions or area distortions. For

surface parameterization there are many such mapping techniques: conformal mappings,

harmonic mappings, and discrete harmonic mappings.

2.4.2 Volumetric (solid) representations

Surface representation techniques are not enough for various visualization and animation

purposes since they do not capture the volumetric properties of the materials and they

do not allow big geometric changes. In contrast, volumetric representations model the

interior regions of the objects, which make them suitable for capturing the model’s

internal material structures.

2.4.2.1 Volumetric data structures

Different volumetric data structures have been proposed and used for different applica-

tions:
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1. Voxels: In this structure, voxels, which are obtained by subdividing the space into

tiny rectilinear solids, are arranged in a rectilinear grid to represent the volume.

Each voxel can store material information such as color and opacity. One example

of this data structure is medical data acquired from imaging devices, such as CT.

This data can be stored at different pixel resolutions with different spacing between

slices, and it can be rendered using volume rendering techniques. The advantages

of this method are that voxel values can store any number of subvalues, and they

can be accessed and manipulated easily. In addition, this representation has the

same complexity for all objects. However, due to memory constraints it is hard to

store high resolution volumes using this representation.

Voxels can be displayed using isosurface rendering, slicing, and ray casting. Most

of these rendering techniques are expensive to achieve. In addition, there are many

problems that can be noticed in the rendering from voxels. For instance, there is

the blurring problem due to averaging across each voxel. There is also the aliasing

problem due to the discreteness of the representation and the sharp edges and

corners in the voxel elements.

An additional problem with voxels is that they do not contain shape relevant

information.

2. Quadtrees and Octrees: Instead of using uniform sized voxels as in the voxel

representation, here the resolution of the voxels is defined hierarchically. This rep-

resentation is more concise and efficient for non-uniform representation of objects.

3. Slabs: This data structure is a surface-aligned volume data structure confined

to a narrow region around the boundary of the object. In this method voxels are

positioned and aligned locally with the surface. It has the advantage of combining a

voxel-based representation with a surface-only representation (Dorsey et al. (1999),

Agarwala (1999)). It has the advantage of converting distance functions from
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O(n3) to O(n2) memory space. The thickness of the slabs can be specified. For

thick slabs, more voxels are placed around the surface. The main advantages of this

model are that it does not have scalability problem as in voxel-based models but

it can still capture important volumetric information. However, for thin objects

or objects with long skinny regions, this approach is not appropriate. In addition,

alignment of the slabs to the surface is a complicated problem by itself. Note that

the term slabs used by Dorsey et al. (1999), Agarwala (1999) refers to a different

structure than what we used for slab in m-reps.

4. Tetrahedral Meshes: These meshes are generated from different surface models

(e.g., meshes, medial models) or volumetric models (e.g., voxels) by decomposing

them into a series of tetrahedra. They are mostly used for simulation purposes,

such as finite element methods. The placement, size, and shape of the tetrahedra

are the important aspects of this approach for obtaining physically plausible simu-

lations. In Cutler et al. (2004), creating tetrahedral models of complex objects for

the simulation and modeling purposes are investigated. In addition, in Takayama

et al. (2008b) rendering of tetrahedral meshes with solid textures is presented. In

this approach cubic solid textures are mapped on the interior of the model by

assigning texture coordinates to each vertex of each tetrahedron inside the model.

2.4.2.2 User-guided volumetric modeling

The volumetric data structures summarized in Section 2.4 are used for representing the

interior of the object. Assigning a value to each entity in a volume representation can

be used to specify region fields (e.g., layers) or orientation fields inside a model. This

can be used for visualization and simulation purposes.

Many user-guided approaches are proposed for specifying different regions inside the

model:

1. Procedural approach: Cutler et al. (2002) presented a procedural approach for
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generating layered solid models. In this approach, internal structures of the volume

are specified by the user using a simple scripting language. This scripting language

also provides sculpting and simulation operators for shaping and modifying the

model.

2. Sketch-based approach: Owada et al. (2008) proposed a a sketch-based interface

for designing volumetric data from scratch. In this approach voxels are painted

by distributing colored particles along guided surfaces.

3. Diffusion surface approach: Takayama et al. (2010) proposed a representation

called diffusion surfaces (DSs). This representation consists of 3D surfaces with

colors defined on both sides. These colors inside the volume are computed by

diffusing colors from nearby surfaces locally at user-defined cross sections using a

modified version of the positive mean value coordinates algorithm. In their work

they also present a simple sketch-based interface which enables the user to model

objects with rotational symmetries, such as the inside of tomatoes. In this way,

they model different objects which have smoothly changing global features inside

the object.

There are also approaches proposed for assigning orientation information to each

entity in the parameterized volume. For example, in (Takayama et al. (2008b)) an

interface for designing volumetric tensor fields over tetrahedral meshes is proposed. This

interface is used later for putting solid texture patches on the specified regions along the

tensor fields.

2.4.3 Model-based coordinate systems

Model-based coordinate systems provide a parameterization based on the model, not

based on world coordinates. Although there are other model-based coordinate systems,

in this dissertation skeletal models with an unbranching medial curve or sheets are
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considered since they yield a particularly nice along-, across-/around-, and through-

object coordinate system.

A model-based representation method for computing the along-object (u), around-

object (v), and through-object (τ) coordinates for any point in world space within each

region inside the model in the scene is important for illustrating anatomical models.

Consider an anatomical object, such as the duodenum or the sternocleidomastoid muscle

(scm). For the duodenum these coordinates should progress from one end to the other

and from the convex side to the concave side. For the scm these coordinates should

progress from one end to the other and across the object. A model-based coordinate

system can provide these two coordinate directions. Two surface-relevant coordinates

(u, v) can be defined with respect to the model in this coordinate system. In addition,

the τ coordinate, which tracks across the volume inside the 3D object, can be used for the

computing the regions along the depth field inside organs for synthesizing region-specific

solid textures, such as in bones (Figure 2.13).

Figure 2.13: The material variation is along the depth field (through the object) for
bones. (@2011 Elsevier)

These coordinates should also provide correspondence between different instances of

the anatomical models in order to describe the relation between two instances of the

same object. That is, corresponding points in different instances of an anatomic object,

such as an anatomical structure in different patients, should have the same u,v,τ values.

A model-based coordinate system, describing an object in an intrinsic model coordinate
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system, is a way to achieve this goal.

2.4.3.1 Discrete medial representation

The medial representation provides the three desired model based coordinates (u,v,τ).

For slabs like the scm, these are end-to-end, crest-to-crest-to-crest, and through-object.

For tubular objects like the duodenum, these are along the tube, around the tube, and

within the tube. The particular medial description system used in this dissertation is

called an m-rep. M-reps (Pizer et al. (2003)) have been successfully used to represent

anatomical objects and complexes of objects (Pizer et al. (2005), Chaney et al. (2004)),

mostly in medical image segmentation and shape analysis.

An m-rep consists of one or more medial sheets or curves, and the part of the object

associated with a particular sheet or curve is defined as a figure. So called “single figure

slabular” m-reps (Siddiqi & Pizer (2008)) represent 3D objects by a single continuous

medial sheet and a set of spokes. So called “single figure quasi-tubular” m-reps (Siddiqi

& Pizer (2008)) represent 3D objects by a single continuous medial curve and a wheel of

spokes across each point on the curve. The medial coordinate system is also well suited

to represent an object with parts (Pizer et al. (2005), Chaney et al. (2004)), such as

an object with a protrusion subfigure or an indentation subfigure (Han (2008)). In the

m-rep of a multi-figure object each part is geometrically represented by a single figure

m-rep, and they are connected by hinge geometry. In this dissertation the objects that

are modeled using a single medial sheet or curve are considered for texturing purposes.

But this approach could be extended to the multi-figure objects.

2.4.3.2 Single figure coordinate system

Medial geometry (Blum (1967); Siddiqi & Pizer (2008)) describes 3D objects in terms

of a skeletal surface or axis, which lies midway between opposing surfaces of the object.

Depending on the type of object, slab-shaped or tube-shaped, different parameterization
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techniques are used for medial geometry:

1. Slab parameterization: In this parameterization medial geometry describes 3D

objects in terms of a skeletal surface, a 2D curved sheet, and a set of spokes

extending to the object boundary from both sides of the skeletal surface. The

continuous medial manifold, M , of a 3D slabular object is a sheet of medial atoms

parameterized by (u, v), the coordinates along the medial manifold, with u and

v taking the atom index numbers for sample positions along and across M . The

single entity M(u, v) is called a medial atom. For slabular objects the medial

atom is a modeling primitive that represents a track through the object interior

(Fig. 2.14-left). Each medial atom has a hub, which is a point on the medial sheet

p(u, v). From each hub two or three spokes extend from the medial sheet to the

corresponding boundary points. To represent a hub, two spokes, and the common

length of those spokes, the medial atom is defined as a 4-tuple {p, r, U+1, U−1}

where p is the position vector, r is spoke length, and U+1, U−1 are the two spoke

orientations as two unit vectors (Figure 2.14-left). The medial atoms on the edge

of the medial sheet correspond to crests of the object boundary. Such an end atom

adds a bisector spoke U0 and its length r0 to the parameterization (Figure 2.14-

right). In this parameterization moving in the along-object (u) direction refers

to moving along the longer direction on the medial surface on both medial sides

of spokes. Moving in the across-and-around-object (v) direction refers to moving

along the shorter direction on the medial surface on one medial side and turning

onto the other side at the crest (Figure 2.15).

2. Quasi-tube parameterization: In this parameterization medial geometry describes

3D objects in terms of a skeletal curve and a set of spokes extending to the object

boundary from the sides of the skeletal curve. The continuous medial manifold, M ,

of a 3D tube-shaped object is a curve of wheel-like medial atoms parameterized

by u, the coordinate along the medial curve. In this parameterization v moves
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Figure 2.14: (Left) an internal medial atom; (right) a crest atom.

Figure 2.15: A single figure slabular m-rep for the scm and the object boundary implied
by it.

cyclically around the wheel of spokes forming a cross section of the quasi-tube.

The single entity M(u) is called a medial atom. For tubular objects the medial

atom is a modeling primitive that represents a plane of tracks through the object

interior. Each medial atom has a hub, which is a point on the medial sheet p(u).

From each hub spokes extend from the medial sheet to the corresponding boundary

points. To represent a hub, spokes, and the common length of those spokes for a

tube (quasi-tube in which every wheel of spokes is circular), the medial atom is

defined as a 4-tuple {p, r, U0} where p is the position vector, r is spoke length, U0

is the orientation orthogonal to the wheel. For a quasi-tube each spoke in a wheel

must have its own r value, and these values must be chosen such that each spoke

ends in a common plane (Figure 2.16-right). In this parameterization moving in

the along-object (u) direction refers to moving along the medial curve for all wheel
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spokes, and moving in the around-object (v) direction refers to rotating around

the wheels (Figure 2.17).

Figure 2.16: (Left) an internal medial atom for a tube; (right-top) a quasi-tube atom
with spokes; (right-bottom) cut-away section of the surface.

Figure 2.17: A single figure quasi-tubular m-rep for the pharynx and the object boundary
implied by it.

The final coordinate, measuring distance along the spoke directions from the implied

boundary is denoted by τ . It stores the fraction of the spoke from the medial sheet to

the boundary. This coordinate can be used for distinguishing the inside regions of the

figure from the outside. That is, τ < 1 in the interior of the figure, τ > 1 in the exterior

of the figure, and τ = 1 on the boundary.

Given an m-rep figure, a smooth object surface is generated to interpolate the bound-

ary positions and normals implied by the atom spokes using either Thall’s subdivision

method (Thall (2002)) or Han’s spoke interpolation method (Han (2008)) (the former

was used in this dissertation). If (u, v) parametrizes the spokes emanating from the
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medial sheet or curve, the implied boundary is parametrized by (u, v). Thereby, the

coordinates on the medial sheet can be transferred to the boundary of the model. In

the slab parameterization there are two corresponding points (u, v) on the boundary

for every hub p(u, v) on the medial sheet. In the quasi-tube parameterization there are

coplanar v points on the boundary for each hub p(u) on the medial curve. For two differ-

ent instances of a model the correspondence is defined by the same medial coordinates

for this model, which is also helpful to indicate the similar points in the instances of the

model. In this way, m-reps provide positional, metric, and orientation correspondences

(Fig. 2.18). In this dissertation correspondence is very important since we want consis-

tent orientation fields and material transition fields for different instances of the same

model.

Figure 2.18: Medial-based correspondences between a figure and a deformed figure for
boundary positions (left), and for interior and exterior positions to the boundary (mid-
dle). Boundary points on a deforming kidney (right).
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Chapter 3

Texture Metamorphosis

In anatomical illustrations different regions of anatomical models are visualized using

different material textures. The transition between these regions can be illustrated with

textures that are perceptually between the two material textures.

To obtain this effect in the model-guided texture synthesis (MGTS) framework,

region-specific exemplar textures along with the transition textures between them are

needed as input. In this dissertation texture metamorphosis is used to create these

transition textures by morphing one region-specific texture into another region-specific

texture.

This chapter presents a technique that is accepted to the Computer Graphics Forum

in 2011 as a journal publication (Kabul et al. (2011)).

3.1 Introduction

While image registration only deals with the alignment of a source image to a target

image, image metamorphosis also considers changes in image appearance allowing the

computation of transitions from a source image to a target image. Image metamorphosis

has been of increasing importance in computer graphics as well as in medical imaging.

It has been used to morph between faces, to mix multiple images, and to accommodate

appearance changes in image registration in general.



Figure 3.1: Comparison between registration (left) and metamorphosis (right). Here,
the control variable v (the time and space dependent velocity field) controls the image
deformation (flow of image over time), and the control variable q controls the change in
appearance over time.

Image metamorphosis requires the computation of point correspondences (a time-

dependent warp field) and an optimal change of pixel intensities over time. The change

of pixel intensities (e.g., single intensities for a gray-value image, multiple intensities for

color images) allows for an exact match to the target image. This joint optimization

problem has for example been described in (Trouve & Younes (2005); Holm (2009)).

Their method is a natural extension of fluid-flow registration methods that estimate

time-dependent velocity fields to smoothly transform one image into another (Beg et al.

(2005)). Figure 3.1 illustrates the difference between registration and metamorpho-

sis. While image registration is considered to be an inexact matching problem, image

metamorphosis is considered to be an exact matching problem.

Texture metamorphosis is a special case of image metamorphosis that is used to de-

sign new textures by interpolating between the input textures or to visualize the change

of material on the objects by creating a smooth transition between the input textures.

Structure features and appearance of the interpolated textures should perceptually be

maintained between input texture-pairs. In this difficult problem, transformation of the

intensity values as well as their feature masks, such as edges and ridges, should have an

effect in the computation of the warping in order to split or merge structural features.
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In this chapter a new texture metamorphosis approach is presented. This approach

considers structural and appearance transitions of textures in a single framework. Con-

sideration of structural features in an optimization framework is a novel approach. The

proposed framework uses an optimal control framework (as proposed in Hart et al. (2009)

for the image registration problem), and it uses a new numerical solution method that

solves the metamorphosis problem as an initial value problem (and can therefore ex-

ploit a numerical solution strategy from a widely used fluid registration approach (Beg

et al. (2005))). It is based on the large-displacement-diffeomorphic metric mapping

(LDDMM) formulation of fluid registration (Beg et al. (2005); Hart et al. (2009)).

This new approach results in an intuitive solution method for texture metamorphosis

that has a number of advantages (shown in Section 3.7) compared to other approaches

for texture metamorphosis:

1. It is designed to interpolate textures while considering appearance and features in

a single framework. This removes the need for an additional blending or synthesis

scheme.

2. It can easily accommodate different image information, such as color or structural

feature masks. Thereby structural information in the textures can have an effect

on the deformation. The user can decide whether s/he would like to include that

control in the deformation.

3. It can easily accommodate different measures of image/feature similarity, such as

simple sum of squared differences, correlations, or mutual information.

4. It is designed to be symmetric with respect to the two textures.

5. It is robust and automatic. It requires neither user input for feature correspon-

dences nor the selection of transition functions.

6. It interpolates structural textures as well as stochastic and natural textures.
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The remainder of the chapter is organized as follows: Section 3.2 presents the

overview of the basic image registration approach on which the metamorphosis is based.

Section 3.3 presents the overview of the optimal-control-based texture metamorphosis

method. Section 3.4 details this method for general textures. How to add color informa-

tion is explained in Section 3.5. Section 3.6 details the texture metamorphosis approach

for structural textures. Section 3.7 presents results.

3.2 Image Registration

Image registration involves finding a transformation that maps one image to another

image as well as possible. In contrast to image metamorphosis, image registration is only

concerned with determining this mapping and does not consider appearance changes.

Therefore, perfect image matching is in most cases not achievable in image registration

due to image noise, structural differences, or appearance differences in the images.

In fluid flow registration the deformation is achieved by flowing the image I0 by a

time-dependent velocity field v. The fluid flow registration problem is highly complex

because the full spatio-temporal velocity field needs to be estimated. By choosing an

appropriate norm to penalize non-smoothness, diffeomorphic image transformations can

be assured.

The inspiration for the proposed metamorphosis approach comes from LDDMM fluid

flow registration. In that formulation the energy equation to be minimized is (Beg et al.

(2005); Hart et al. (2009)):

E(v) =

∫
‖v‖2

L dt+
1

σ2
‖I(1)− I1‖2, (3.1)

subject to It + (DI)v = 0, I(0) = I0

where I0 is the initial image, I1 is the target image, and σ is a scalar which controls the

tradeoff between image match and transformation smoothness. See Hart et al. (2009)
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for details on how to solve such an optimization problem.

3.3 Texture Metamorphosis

Given two exemplar texture images I0 and I1, the aim is to create interpolated images

I(t). Here, t corresponds to interpolation time where t ∈ [0, 1] under the constraint that

I(0) = I0 and I(1) = I1. This enforces that the initial and the final texture images are

matched exactly under metamorphosis.

Since there are infinitely many possible ways to morph image I0 into I1, the so-

lution space needs to be constrained in a meaningful way. In metamorphosis this is

accomplished by formulating an optimization problem which seeks to determine a time-

and space- dependent velocity field v and a time- and space- dependent source term

(texture intensities) q which are appropriately regularized. This means it should seek

a deformation and a texture variation both of which change smoothly across space at

each t.

To allow exact matching of the texture appearance, the metamorphosis formulation

in equation 3.2 adds the control variable q to the transport equation. This variable

controls the image intensity change that is penalized according to ‖q‖2
Q.

In an optimal control setting the metamorphosis optimization problem is equivalent

to minimizing the following energy E under a dynamic constraint for the image change:

E(v, q) =

∫ 1

0

‖v‖2
L + ‖q‖2

Q dt, (3.2)

subject to It + (DI)v = q, I(0) = I0, I(1) = I1

where the control variables v (the time and space dependent velocity field) controls the

image deformation (flow of image over time), q controls the change in appearance over

time, and D denotes the Jacobian. The deformation map can be computed from v by

integration. L and Q denote norms to penalize change in v and q, respectively. Here,
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‖v‖2
L = 〈Lv, Lv〉 in which L is a differential operator to encourage smoothness of the

velocity field over space, typically chosen of the form L = −α∇2 + γ. In this norm

α encourages smoothness of the vector field (e.g., for large α strong deformations are

discouraged, and the interpolation looks like blending); γ controls how much the overall

travel distance of a particle is counted in the energy (e.g., a large γ will favor small

overall displacements over an accurate image match). The norm for q is computed using

‖q‖2
Q = 〈Qq,Qq〉, in which Q is a chosen linear operator. (For an easy numerical solution

the operator is chosen as Q = id, the identity.)

The following constraints are imposed onto the optimization problem:

1. Image Flow: This constraint is simply a transport equation with a source term q;

it controls the flow of the image from I0 to I(t). Intuitively it can be considered as

a constraint which imposes that image intensity along a streamline of the velocity

field v changes over time only through q. For q = 0 intensities will be constant

along such a streamline (characteristic).

2. Initial and final constraints: To allow for texture morphing between two texture

exemplars, the initial and the final condition for I are fixed. This is the main

difference compared to standard image registration where an inexact match of the

warped source image to the target image is admissible. This requires determining

the time and spatially dependent q such that the exact match is achieved under

the image flow constraint.

Note that the main difference to the registration problem in equation 3.2 is that the

inexact matching term 1
σ2‖I(1)−I1‖2 has been replaced by the final constraint I(1) = I1.

The challenging optimization problem in equation 3.2 is solved with the use of an

adjoint solution method as proposed in Hart et al. (2009) for image registration. Details

of the solution method and its relation to the corresponding image-to-image registration

approach are given in the next section.
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3.4 Solving the Texture Metamorphosis Equation

To solve this constrained optimization problem, it is converted to its unconstrained form

by adding the dynamic constraint through a time- and space-varying Lagrange multiplier

λ. Then the final state condition is added through the space-varying Lagrange multiplier

τ . This makes minimizing equation 3.2 equivalent to minimizing the unconstrained

energy:

E(v, q, λ, I, τ) =

∫ 1

0

‖v‖2
L + ‖q‖2

Q + 〈λ, It + (DI)v − q〉 dt

+〈τ, I(1)− I1〉

with respect to v(x, t), q(x, t), I, and the Lagrange multipliers λ(x, t), τ(x).

For a candidate minimizer of the unconstrained energy, its variation with respect to

v, q, I, λ, and τ need to vanish. Computing the first variation and rearranging terms

yields

δE(v, q, λ, I; dv, dq, dλ, dI) =

∫ 1

0

〈2L†Lv + λ(DI)T , dv〉

+〈2Q†Qq − λ, dq〉+ 〈It + (DI)v − q, dλ〉

+〈−λt − div(λv), dI〉 dt+ 〈λ, dI〉|10

+〈dτ, I(1)− I1〉+ 〈τ, dI(1)〉,

assuming zero boundary conditions for v and a known I(0) = I0. Since δE needs to

vanish for any dv, dq, dI, dλ, and dτ , fulfilling the boundary conditions (i.e., zero

boundary conditions for v, I(0) = I0, I(1) = I1), at optimality the following conditions
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need to hold:

It + (DI)v = q, I(0) = I0,

−λt − div(λv) = 0, λ(1) = −τ,

2L†Lv + λ(DI)T = 0,

2q − λ = 0,

I(1)− I1 = 0, (3.3)

These conditions can be categorized as follows:

1. Initial Condition: Sets the starting point for the images at time t = 0.

I(0) = I0

2. State Equation (Transport Equation): Flows the image forward to time t = 1

using the velocity field v. The source term in the transport equation simply changes

image appearance. This makes the change of intensity values in an image possible.

It + (DI)v = q

3. Final Conditions: Sets the final image and provides a final condition for the adjoint.

− τ = λ(1) = 2q(1) (3.4)

I(1) = I1

4. Adjoint Equation (Scalar Conservation Law): Governs the dynamics of the adjoint

(Lagrange mutliplier λ). Since the final condition λ(1) is given by equation 3.4,

these dynamics can be solved backward in time. The adjoint corresponds to the
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concept of moments in physics (Miller et al. (2006)), and the scalar conservation

law for the adjoint consequentially resembles the physical law of conservation of

momentum.

−λt − div(λv) = 0

5. Compatibility Condition: Computes the gradient of E and shows the relation

between q and λ.

2L†Lv + λ(DI)T = 0,

2Q†Qq − λ = 0

The first equation is used to compute the gradient of E with respect to v on the

interval tε[0, 1]. From δE(v, q, λ, I; dv, dq, dλ, dI) =
∫ 1

0
〈2L†Lv+λ(DI)T , dv〉dt, the

gradient ∇L2
v E(v) = 2L†Lv + (DI)Tλ with respect to the L2 norm or ∇V

v E(v) =

2v + (L†L)−1((DI)Tλ) with respect to the V-norm (induced by the operator L) is

obtained.

The second equation expresses that q is directly related to the adjoint λ (subject

to a potential smoothing operator Q). To simplify the problem, it is assumed that

the appearance control is penalized by an L2 norm that makes Q = id, so the

second compatibility condition becomes 2q − λ = 0.

The optimality conditions reveal an interesting structure: the only differences from

the image-to-image registration (Hart et al. (2009)) case are the source term q in the

transport equation (the forward model), the additional compatibility condition on q,

and the final condition on I.
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3.4.1 Adjoint solution method

An analytic solution can in general not be obtained from the optimality conditions for

metamorphosis. Numerical solution methods have been proposed in Miller & Younes

(2001) and Garcin & Younes (2005). In both cases the metamorphosis problem is cast

as a boundary value problem, subject to the fixed source and target images, and the so-

lution proceeds by alternating gradient solution schemes for the image values (implicitly

accounting for the image source terms, q, in the transport equation) and for the velocity

field.

Here, by exploiting the relation between λ and q, an iterative update of the image I

is used, and only gradient descent with respect to the velocity field v is performed. This

approach results in an initial value problem that allows the use of a similar map-based

solution as in Beg et al. (2005), which reveals the simple structure of the underlying

optimality conditions and allows the integration of alternative image-matching terms (as

they only affect the estimates for the velocity field through the final condition for the

adjoint; see Hermosillo et al. (2002) for computations of these final conditions). While

the use of maps is not strictly necessary for the solution of the optimization problem

(Hart et al. (2009)), it is beneficial to avoid smoothing due to numerical dissipation

effects.

Specifically, given an estimate of the velocity field v, the flow on I runs according to

the forward deformation map Φ(t) computed from t = 0 to t = 1 using

Φ(t) + (DΦ)v = 0, Φ(0) = id, (3.5)

and the reverse flow on λ runs according to the reverse deformation map Φr(t) computed

from t = 1 to t = 0 using

− Φr(t)− (DΦr)v = 0, Φr(1) = id, (3.6)
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where id denotes the identity map, D denotes the Jacobian, and Φr(t) maps from t = 1

to t = 0. This allows the replacement of the direct solution for λ and I by solutions of

transport equations on the maps Φ and Φr. The advantage of the map-based approach

is that the maps are expected to be smooth (since the velocity fields are regularized

according to L) and are therefore easier to propagate numerically.

In order to conserve the values of λ over time, the transformation is multiplied by

|DΦr(t)|, which corresponds to the amount of deformation the map has undergone:

λ(t) = |DΦr(t)|λ(1) ◦ Φr(t). (3.7)

Use of these maps to compute the solutions I(t) is slightly more complicated than in

the standard image registration problem (Beg et al. (2005); Hart et al. (2009)) due to

the source term q, which needs to be integrated along the characteristics (streamlines)

of the velocity field to affect the overall intensity value. This can be expressed by adding

the change of intensity to the transformed image I0 ◦ Φ(t) as

I(t) = I0 ◦ Φ(t) +

∫ t

0

q(τ) ◦ Φt,τ dτ, (3.8)

where Φt,τ = Φ(t) ◦ Φ−1(τ),

which simply sums up all the q contributions over time in the current reference coordi-

nate system at time t.

The proposed solution strategy builds on the observation that given a velocity field

v, the final condition λ(1) can be computed using the source term q that leads to the

result I(1) = I1 exactly. This is possible since we know from the optimality conditions

that q = λ
2
. Specifically, we observe that

q(1) =
Io1 − I(1)∫ 1

0
1

|DΦ1,t| dt
(3.9)
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pointwise (the details of this equation are in the Appendix). Given q(1), we can compute

λ(1) and in turn q(t). Here, Io(1) denotes the solution to the source-less transport

equation Iot + (DIo)v = 0; I(0) = I0 using the given velocity field v.

Algorithm 3.1 Texture metamorphosis

Input: I0, I1, L
Output: v

Assume an intial flow field v is given
repeat

Flow image forward using
Iot + (DIo)v = 0, I(0) = I0

Find q(1) according to Eq. 3.9
Find adjoint λ(1) from q(1) using q = λ

2

Flow adjoint λ(t) backward using Eq. 3.7
Compute q(t) from the solution of the adjoint using q = λ

2

Compute the image I(t) according to Eq. 3.8
Compute the gradient for v from the compatibility conditions
Perform a gradient descent step using ∇vE

until convergence

The so-called adjoint solution method proceeds according to Algorithm 3.1, which

is illustrated in Figure 3.1 and Figure 3.2. In effect, given an estimate of v, one (i)

computes the solution to the source-less transport equation, (ii) uses it to compute the

final condition for q, which then (iii) allows to the computation of λ(t), q(t), and I(t),

from which (iv) the gradient ∇v(t)E can be computed. After taking a gradient descent

step with respect to the velocity field, these steps are repeated until convergence. Figure

3.2 shows the intermediate results along with the deformation fields in each step.

Figure 3.3 illustrates the metamorphosis results. Here, the textures contain struc-

tural patterns in them. Unlike in linear interpolation, splitting and merging of these

structural patterns should not lead to blurry textures in the interpolation. Using the

proposed metamorphosis approach, even though there is no control in the structural fea-

tures of these textures in metamorphosis, the structural patterns are split and merged

only using the q term.
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Table 3.1: Steps of the optimal control solution framework for computing I(t).
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Table 3.2: Steps of the optimal control solution framework for computing ∇vE.

Figure 3.2: The texture sequences obtained in different steps of iteration. The rightmost
image shows I0, and the leftmost image shows I1.

3.4.2 Combining forward and backward transitions

in metamorphosis

According to the constraint I(1) = I1, the morphed image I(1) should always match

exactly the target image I1. However, due to numerical inaccuracies, the constraint

may not be satisfied exactly. In order to avoid this problem, the whole solution method

described in Section 3.4.1 is applied in the forward direction and in the backward direc-

tion, which allows us to make the problem symmetric and to obtain exact matching by

construction. Specifically, two linearly weighted appearance control terms qF and qB are

used in the energy equation. Here qF controls the change in appearance from I0 to I1,
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Figure 3.3: Metamorphosis from one texture to another using image intensities. The
top row shows the results of linear interpolation, and the bottom row shows our results.
The results obtained using linear interpolation are more blurry than the ones obtained
using the proposed metamorphosis approach. As is seen, the end image in the top row is
not exactly the same as the end image in the bottom row. This is due to the numerical
inaccuracies; this problem is solved using the approach in Section 3.4.2.

and qB controls the change in appearance from I1 to I0. The modified energy function

is

E(v, q) =

∫ 1

0

‖v‖2
V + (1− t)‖qF‖2

Q + t‖qB‖2
Q dt, (3.10)

subject to IF,t + (DIF )v = qF ,

IB,t + (DIB)v = qB,

IF (0) = IB(0) = I0, IF (1) = IB(1) = I1

where IF (t) denotes the transformed image in the forward direction from I0 to I1 at

time step t, and IB(t) refers to the transformed image in the backward direction from

I1 to I0 at time step t.

The resulting optimality conditions are similar to the ones obtained previously (now

for two sets of equations) except for the compatibility condition, which becomes

2L†Lv + (1− t)λF (DIF )T + tλB(DIB)T = 0.

(3.11)

This simply amounts to solving the problem twice (in opposite directions) while

keeping only one velocity field that needs to be estimated. The gradient for the velocity
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field is then a linear combination of the gradients for the image solutions in the different

directions. The image itself is recovered as

I(t) = (1− t)IF (t) + tIB(t).

In what follows it is assumed that all equations are solved numerically in this way

without explicitly writing down the resulting forward/backward equations.

3.5 Metamorphosis for Color Textures

In texture metamorphosis the traditional approach is to warp single intensity values

which come either from the texture image or its feature mask. One of the advantages

of the proposed approach in this dissertation is that it can warp multiple color intensity

values and structure features using a single framework. In this section addition of

multiple color channels to the framework is explained.

The proposed framework allows multiple channels to be easily integrated into the

energy equation by adding q terms for each channel. In that case the energy equation

becomes

E(v, q) =

∫ 1

0

‖v‖2
L +

n∑
i=1

‖qi‖2
Q dt, (3.12)

s.t. I it + (DI i)v = qi, I i(0) = I i0, I
i(1) = I i1

where n is the number of channels that should be considered in the optimization frame-

work. In this dissertation the red, green, and blue color channels are used. For each

channel the same optimality conditions for metamorphosis are obtained independently

(i.e., initial and final condition, transport equation, conservation law). The compatibil-
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ity condition for v which is used to compute the gradient changes becomes

2L†Lv +
n∑
i=1

λi(DI i)T = 0. (3.13)

3.6 Metamorphosis for Structured Textures

Some of the textures have strong structural components, such as edges, ridges, etc. in

the appearance (intensities). These features model texture as a layout of regions. For

texture metamorphosis, regions obtained using binary masking and signed distance fields

to the edges are important to represent these layouts (Figure 3.4). These features F

should be considered in the metamorphosis in order to obtain visually pleasing results

especially since the structural components may undergo topological changes such as

splitting and merging.

Figure 3.4: Texture features for metamorphosis. (Right) Textures; (left) textures’ fea-
tures obtained by computing signed distance fields to the edges.

In this optimization framework the aim is to simultaneously morph one image into

another with respect to appearance while aligning their feature masks (without consid-

ering appearance change). This can be accomplished by adding the feature mask as an

inexact matching term (as in image registration) subject to a transport equation without

a source term, and also not having a final state constraint. The energy equation to be
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minimized becomes

E(v) =

∫ 1

0

‖v‖2
L + ‖q‖2

Q dt+
1

σ2
‖F (1)− F1‖2, (3.14)

s.t. It + (DI)v = q, I(0) = I0, I(1) = I1,

Ft + (DF )v = 0, F (0) = F0.

This can be combined with multiple color channels for metamorphosis as desired. Note

that the feature image does not have a final state constraint. This makes the problem

nonsymmetric. If desired, F (0) could be estimated jointly such that 1
σ2‖F (0)−F0‖2 (as

described in Hart et al. (2009)), which would result in a symmetric solution.

Adding the inexact matching term results in optimality conditions for F and its

adjoint ω, which are the same as for image registration (Hart et al. (2009)). The com-

patibility condition for v changes respectively to include the influence of the feature

image (i.e., the feature image influence is added). All other optimality conditions re-

main the same as in Section 3.4:

Ft + (DF )v = 0, F (0) = F0, (3.15)

−ωt − div(ωv) = 0,

2L†Lv + λ(DI)T + ω(DF )T = 0,

F (0)− F0 = = 0,

ω(1) =
2

σ2
(F (1)− F1).

See Algorithm 3.2 for a description of the solution steps.

In Figure 3.5 the comparison of the proposed approach with a texture-synthesis-based

interpolation approach is shown. As can be seen in this figure, the intensity changes in

the interpolated images are not smooth in the results obtained using the approach of

Ray et al. (2009). In the results obtained using Ray et al. (2009)’s approach, the bright
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Algorithm 3.2 Feature-based texture metamorphosis

Input: I0, I1,F0, F1, L
Output: v

Assume an initial flow field v is given
repeat

Flow image forward using
Iot + (DIo)v = 0, Io(0) = I0

Flow feature image forward using
Ft + (FI)v = 0, F (0) = F0

Find q(1) according to Eq. 3.9
Find adjoint λ(1) from q(1) using q = λ

2

Flow adjoint λ(t) backward using Eq. 3.7
Flow adjoint ω(t) backward using
−ωt − div(ωv) = 0, ω(1) = 2

σ2 (F (1)− F1)
Compute q(t) from the solution of the adjoint
Compute the image I(t) according to Eq. 3.8
Compute the gradient for v from the compatibility conditions
Perform a gradient descent step using the gradients ∇vE

until convergence

Figure 3.5: (a) Source and target textures with their feature images (signed distance
fields to the edges). (b) The first and second rows show the results obtained using the
approach in Ray et al. (2009). (c) The first and second rows illustrate our results. In
each pair, even numbered rows show the texture images, and odd numbered rows show
their feature image.
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regions inside the pattern get bigger first, and then they get smaller to match with the

target image. On the other hand, in the results of the proposed approach the bright

regions move smoothly inside the patterns to generate the regions in the target image,

even though the final feature images do not match.

3.7 Results of Texture Metamorphosis Variants

The proposed technique is suited for regular, semi-regular, and stochastic textures, since

the deformation and appearance change is performed in a single framework.

Figure 3.6: When meaningful features cannot be defined in the textures, such as natural
textures, our metamorphosis can morph between textures by only considering appear-
ance information. For each of the four texture pairs, the first column shows the results
with linear interpolation, and the second column illustrates the results with our ap-
proach.

In Figure 3.6 the results generated using only image intensity information is pre-

sented. As can be seen, the approach created textures which are sharp and detailed,

even when it is hard to define structures and the correspondences between them. Espe-

cially, the interpolation between pink flowers to white flowers created new flowers that

have features present in both input images. The interpolated textures in this figure can
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Figure 3.7: Including a feature channel in metamorphosis changes the deformation.
(Top row) Linear interpolation; (middle row) metamorphosis without using structural
features; (bottom row) metamorphosis using structural features.

Figure 3.8: Including a feature channel in metamorphosis changes the deformation.
(Top row) Linear interpolation; (middle row) metamorphosis without using structural
features; (bottom row) metamorphosis using structural features.
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be easily used in texture synthesis to generate textures on the surface of 3D models in

order to visualize the change of materials over regions. On the other hand, if feature

information is available, smooth and seamless transitions can be obtained. Figure 3.7

and Figure 3.8 show that the addition of feature channels in metamorphosis provides

more control over deformation.

In Figure 3.9 and Figure 3.10 the comparison of the results with those presented

in Ray et al. (2009) are shown. In Figure 3.9 since there are no meaningful structural

patterns in the input textures, only image information in the energy equation is used.

The proposed approach created smooth transformations from the leopard texture to the

dice texture by forming the dots on the dice from the spots on the leopard texture.

Figure 3.9: Comparison of interpolation results from Ray et al. (2009) with our results.
The top row shows the results obtained using linear interpolation, the middle row illus-
trates the results from Ray et al. (2009), and the bottom row shows the results obtained
using our approach.

In Figure 3.10 the structural feature information along with the image information

is used to create interpolated textures. Since the method presented in Ray et al. (2009)

interpolates texton masks using an advection algorithm and then synthesizes interpo-
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lated textures constrained by these masks, it does not provide control over appearance

transitions along with the texton masks.

Figure 3.10: Comparison of interpolation results from Ray et al. (2009) with our results.
(a) Linear blending; (b) our approach; (c) results from Ray et al. (2009).

On the other hand, the proposed approach in this dissertation deforms the structural

features in the texture along with their intensity values, thereby providing control over

intensity changes along with the structural features.

Figure 3.11: Comparison of results. (a) Linear blending; (b) results from (Ruiters et al.
(2010)); (c) results from (Ray et al. (2009)); (d) our approach. Read each image sequence
in column-major order; the upper left texture corresponds to I0, and the bottom right
texture corresponds to I1.

In Figure 3.11 the results of the proposed approach are compared with those pre-

sented in Ray et al. (2009) and Ruiters et al. (2010). In this comparison, the textures
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in the middle of the sequence are different from each other due to the fact that in each

method the computation of deformation fields considers different information.

In Figure 3.12 the results are compared with the image registration method proposed

in Hart et al. (2009). First, registration from I0 to I1 and I1 to I0 is applied. Then, the

results obtained from them are combined using linear interpolation. As shown in the

figures, the results obtained using registration and interpolation look more blurry.

Figure 3.12: For each of three initial and target textures, the top row shows the results
obtained using registration and linear interpolation for each channel, and the bottom
row shows the results obtained using our metamorphosis approach. In the first row due
to color values of green and red, which are (0,1,0) and (1,0,0) respectively, the dots are
deformed by warping.

In Figure 3.13 medical applications of texture metamorphosis are illustrated with

textures of the prostate. Interpolated textures are obtained from the boundary regions

to the inner regions using the proposed metamorphosis approach. These textures can

be used as exemplar textures for creating model-specific solid prostate textures.
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Figure 3.13: Texture interpolation results for region-specific illustrative textures of the
prostate.

In Figure 3.14 the effect of changing α in the differential operator L is illustrated.

Here, it can be seen that for large α strong deformations are discouraged, and the

transformation becomes like blending.

Figure 3.14: Top row illustrates results obtained by setting α to 0.01, and bottom row
illustrates results obtained by setting α to 0.001.

3.8 Discussion

In this dissertation the metamorphosis problem is treated as an initial value problem.

This property allows integrating additional terms into the framework easily with respect

to the formulation as a boundary value problem. For instance, the proposed framework

can easily accommodate different measures of image/feature similarity, such as simple

sum of squared differences, correlations, or mutual information. This feature can be used

to have more control on the features of the textures. For instance, if the user wants to

have control of the splitting and merging of the regions, similarity between landmarks
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and their order can be integrated into the energy term. The other limitation of the

proposed approach is that it only considers two input textures as input and warps one

to the other one. It would be interesting to design a new optimization framework with

additional penalty terms and constraints to perform the interpolation among a number

of input textures. This can be used for interpolating multiple textures.

3.9 Appendix

3.9.1 Optimality conditions

For a minimizer of energy equation 3.3, its variation with respect to v, λ, I, and γ need

to vanish. Computing

δE(v, q, λ, I; dv, dq, dλ, dI) =

∂

∂ε
E(v + εdv, I + εdI, λ+ εdλ) |ε=0

yields

δE(v, q, λ, I; dv, dq, dλ, dI) =

∫ 1

0

〈2L†Lv, dv〉

+〈2Q†Qq, dq〉+ 〈dλ, It + (DI)v − q〉

+〈λ, (dI)t + (DdI)v + (DI)dv − dq〉 dt

+〈dτ, I(1)− I1〉+ 〈τ, dI(1)〉

since

∫ 1

0

〈λ, dIt〉dt =

∫ 1

0

〈−λt, dI〉dt+ 〈λ, dI〉|10,
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and (by Green’s theorem)

〈λ, (DdI)v〉 = 〈−div(λv), dI〉+

∫
∂Ω

dIλv · dS

= 〈−div(λv), dI〉.

By assuming v vanishes on the domain boundary, we get

δE(v, q, λ, I; dv, dq, dλ, dI) =

∫ 1

0

〈2L†Lv

+λ(DI)T , dv〉+ 〈2Q†Qq − λ, dq〉+ 〈It + (DI)v − q, dλ〉

+〈−λt − div(λv), dI〉 dt+ 〈λ, dI〉|10

+〈dτ, I(1)− I1〉+ 〈τ, dI(1)〉,

assuming zero boundary conditions for v and a known I(0) = I0. Since δE needs

to vanish for any dv, dI, dλ, fulfilling the boundary conditions of the problem, the

optimality conditions are obtained.

3.9.2 Source term

To be able to compute the values for q without implicitly obtaining them through a

gradient descent on I, we can make use of the fact that, for the L2 norm penalizer, q

is directly related to the adjoint λ and therefore also has to fulfill a scalar conservation

law.

For such a transport equation without a source term, values stay constant along the

characteristics (streamlines) of the transport equation. With a source term the source

values get integrated along the characteristic. Hence, along a characteristic

I(t) = I(0) +

∫ t

0

q(t) dt
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needs to hold. In particular, for our exact matching problem we need to have

I1 − I0 =

∫ 1

0

q(t) dt.

However, representing everything in the coordinate frame of image I1 we know that

q(t) =
1

|DΦ1,t|
q(1)

since it needs to fulfill a scalar conservation law. Assuming we discretize time into n

intervals spanning [0, 1] and assuming q is piecewise constant over the time intervals,

n−1∑
i=0

1

|DΦ1,t|
q(1)∆t = I1 − Io(1),

which can be solved for

q(1) =
I1 − Io(1)∑n−1
i=0

1
|DΦ1,t|∆t

.

In the limit as ∆t → 0 the sum becomes an integral and we get the desired expression

(which holds pointwise):

q(1) =
I1 − Io(1)∫ 1

0
1

|DΦ1,t| dt

expressed in the coordinate system of image I1. Here
∫ 1

0
1

|DΦ1,t| dt corresponds to com-

puting the map from each time point to the final time point.
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Chapter 4

Model-based Guidance Computation

Guided (constrained) texture synthesis generates textures considering given guidance

information, such as the model’s regions and the direction and scale of the texture

features in those regions. One problem with guided solid texture synthesis for anatomical

structures is determining where to get the guidance. As discussed earlier, many textures

on or within anatomical organs are oriented along or across the model, and they vary

progressively depending on their position with respect to the model. Thus, the proposed

approach in this dissertation is a method for computing the along-object (u), around-

object (v), and through-object (τ) coordinates for any point in world space within each

region inside the model. These coordinates should provide correspondence between

different instances of the anatomical models. That is, corresponding points in different

instances of an anatomic object, such as an anatomical structure in different patients,

should have the same u,v,τ values.

In the literature, there are methods for computing the vector fields on and inside

3D models (Takayama et al. (2008a)). However, they need user interaction for the

computation of these vector fields. Thus, they do not guarantee that these vector fields

will be along or around the model. In addition, they do not provide consistency among

different instances of the same model. To achieve that goal, I take advantage of m-reps.

M-reps provide the three desired model-based coordinates (u,v,τ). They can also be used



to obtain consistent orientation fields and region classifications for different instances of

the anatomic objects.

In this chapter the computation of the model-based orientation fields, scalar fields,

material transition fields, and object layers are explained. Details of m-reps were pre-

sented in Section 2.4.3. In this dissertation it is assumed that an m-rep has been fit

to the 3D object to be textured. Image segmentation methods that produce m-reps

are described in Siddiqi & Pizer (2008). Merck (2009) describes the power of m-reps in

volume visualization.

4.1 Overview

In this dissertation for computing the guidance information for a 3D model, such as

orientation field and material transitions, the surface mesh of the model with its medial

representation are used as input. First, using the fact that an m-rep implies the bound-

ary, two model-based coordinates (u,v) are computed at each vertex on the surface mesh

(τ = 1 at all of these). These model-based coordinates are stored for each vertex in ad-

dition to the vertex’s position (x,y,z). Secondly, the model-based coordinates at each

voxel inside the model are computed using a standard scanning method, which interpo-

lates the (u, v, τ) coordinates at each voxel. Finally, these model-based coordinates on

the boundary and inside the volume along with the spokes from the medial sheet are

used to compute different types of guidance information for that model:

1. Orientation field: Orientation vectors on and inside the 3D model surface are

used to orient the structural features of textures on the surface and inside the

model of the objects, respectively. In this dissertation, along, across, and through

orientation vectors are computed using m-reps. The combination of these vectors

can be used to obtain other kind of orientation fields, such as the oblique muscle

layer of the stomach.
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2. Material transition field: Material transition values are used to select the type

of exemplar texture for synthesizing region-specific textures on the surface and

inside the model of the objects. In this dissertation material transition values

are specified using the along, across, and through coordinates for each primitive

element in the model.

3. Scale field: Scale values are used to specify the size of the texture features in the

exemplar textures for synthesizing textures inside the model. A change in size

can be caused by many things. In this dissertation it is assumed that the narrow

regions in the organs contain textures that have small scales and wide regions

contain textures that have big scales.

These guidance fields are computed for both mesh vertices on the surface and the

voxels inside the volume of the given 3D model. The orientation field of the surface is

defined as a unit orientation vector for each mesh vertex, while the orientation field of

the volume is defined as a unit orientation vector for each voxel.

4.2 Model-based Coordinate Generation

Assignments of a model-based coordinate for each vertex on the surface and for each

voxel inside the volume are done using the following approaches:

1. Model-based coordinates on vertices: The model-based coordinates on the

surface mesh can be computed using m-reps. Each boundary point carries a nor-

mal in the direction of the spoke at that position and two linearly independent

directions in the tangent plane to the boundary corresponding to moving in the

medial u and v coordinates respectively. For example, for the duodenum initially

a set of surface points are generated from a grid of discrete medial atoms by fol-

lowing the spokes at each hub position to their surface tangencies. Each resulting
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surface point is labeled with its source (u, v) as the (u, v) at the hub. Surfaces are

recursively subdivided, and the u, v values at the new points are interpolated (if

a new point is added between [3,7] and [3,8], its [u, v] is [3,7.5]).

2. Model-based coordinates on voxels: Providing the (u, v) coordinates of each

vertex on the boundary allows us to compute model-based coordinates inside the

model. In order to compute a model-specific along, across/around, through map,

which is called an X2U map in Merck (2009), a fast coordinate scan-conversion

algorithm is used. First, repeatedly for many onion skins this method computes

(u, v, τ) values at the vertices of the onion skins. Then, using clipping techniques it

rasterizes the (u, v, τ) values into an (x, y, z) array. As a result (u,v,τ) coordinates

at every voxel inside the model are obtained and stored as a lookup table. This

method is proposed by Merck (2009). The details of this approach can be found in

Merck (2009). The X2U map contains an object coordinate (u,v,τ) for each world-

space (x, y, z) triplet inside the model. This coordinate system is precomputed and

stored as a lookup table for each model. Figure 4.1 illustrates the X2U map of the

scm both on the surface of the model and inside the model.

Figure 4.1: Direct display of the X2U map near the right sternocleidomastoid (scm)
muscle. The red channel encodes u, the green channel encodes v, and the blue channel
encodes τ . (Left) The X2U map is illustrated on the surface of the scm. (Right-top)
The X2U map is illustrated on a layer through the model; (right-bottom) the X2U map
is illustrated on a cross section across the model.
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Beginning with a segmented model and the model-based coordinates, storing its

X2U map has great advantages over other methods which encode only 3D distance

information from the boundary, since this approach allows automatic computation

of 3D model-based orientation information (du,dv,dτ) and material transition in-

formation (called st) for illustrative purposes. In Merck (2009) X2U maps are

used for integrating different sources of information into a single framework. In

this dissertation they are used for computing the model-based guidance informa-

tion.

4.3 Material Transition Field Computation

Material transitions are important for some of the anatomical models. There are ba-

sically two kind of transitions in the medical models of interest to my client. One is

along the object, and the other is through the object. To obtain this transition for the

models, a thresholding scheme is applied to the values in the X2U map.

Figure 4.2: Along-object material transition field for the scm. Left: the X2U map on the
model. The red channel encodes u, the green channel encodes v, and the blue channel
encodes τ . Right: the material transition field along the model. The red channel encodes
the first region, the green channel encodes the second region, and the yellow channel
encodes the transition region between the first region and the second region.

1. Transition through the model: For the models in which the material is changing
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according to the depth (e.g., bone), a thresholding scheme is applied on the depth

information that is provided by the parameter τ . Using the fact that τ is zero at

the medial sheet and 1 on the boundary, the regions are classified by the user by

setting threshold values for τ (e.g., 0 < τ < 0.5 is the marrow region, 0.5 < τ < 0.7

is the interior bone region, and 0.7 < τ < 1 is the exterior bone region).

2. Transition along the model: For the models in which the material changes along

the model (e.g., muscles), a thresholding scheme is applied based on user selection

on the along-object coordinate that is provided by the parameter u (Figure 4.2).

After regions are classified using the model-based thresholding scheme, this informa-

tion is used to compute a smooth transition field, st, for each voxel inside the model. The

main advantage of this approach is that it gives consistent transition fields for different

instances of the same anatomical organ.

4.3.1 Adding randomness to the transition regions

Although the thresholding scheme works well for obtaining uniform transitions along the

desired directions, in Frank Netter, MD’s illustrations, the transition is more random

along that transition region. For example, in Figure 4.3 there is a randomness in

transition field in addition to the distinction between the regions.

Figure 4.3: An illustration of the scm from Netter (2009). The transition between the
red and white regions on the scm is not smooth. (@2011 Elsevier)
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Figure 4.4: Along-object material fields can be modified by adding randomness around
the thresholds via the sketch-based interface presented in Takayama et al. (2008a).
(Left) two lines drawn on the model; (left-middle) part of the model between the lines;
(right-middle) an example of regions specified for the model; (right) another example of
regions specified for the same model.

To obtain randomness in the transition regions on the models, the sketch-based

interface proposed in Takayama et al. (2008a) is adapted. In Takayama et al. (2008a)’s

approach, the user is allowed to put colored points on the 3D model by clicking the

mouse on the surfaces. The user has the ability to cut off the model, if s/he wants

to place the points on the inner regions of the model. After assigning the points on

and inside the model, the system computes a smooth material transition field inside

the model. In this dissertation the position and colors of these points are obtained from

medial-coordinates and the lines drawn by the user. The steps of the proposed approach

in this dissertation are as follows:

1. Load the model with its medial representation: This step consists of loading both

the 3D mesh of the model and the model-based coordinates of each vertex of that

model.

2. Specify model-based regions along and through the object: This step is done using

ranges of u. (The method can be extended to ranges in τ as well.)

3. Assign a region label value to each specified region of the object surface: These

label values will be used in step 6 as constraints to compute a smoothly varying

color field across the voxels within the object. Here a fixed label value is assigned
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to all vertices whose u value falls in the range specified for that region.

4. Add randomness to the boundaries between adjacent regions: This step is achieved

by drawing a piecewise linear curve around the thresholded region boundaries using

the sketch-based interface. These curves are applied at all depths relative to the

screen (Takayama et al. (2008a)). The subdivision of the mesh into subregions is

updated based on the position of the curves.

5. Update the label values of the mesh vertices if their regions are changed: If the

region of a vertex is changed from region 1 to region 2, then change the label of

that vertex from 1 to 2.

6. Use interpolation to find a real label value for each voxel inside the model; these

will be used to interpolate the textures between the regions . Here, thin plate spline

interpolation (Turk & O’Brien (1999)) from the object surface vertex coordinates

is used to find a smoothly varying scalar field in the 3D space.

Using this approach, different region boundaries can be obtained near the same

thresholded region boundaries. Figure 4.4 illustrates some transition fields obtained

using this technique.

4.4 Scalar Field Computation

For some of the objects, the scale of the textons inside the textures can change depending

on the region. This change can be due to the thickness in depth of the region or due

to hypertrophy, which is an increase in cell size. In this dissertation the first case is

considered.

The thickness of each region is computed as guidance information using the medial

representation. To achieve that, the length of the spoke is used for encoding the thickness

of a region inside the model. This is done by computing a X2L (X to length) map which

99



stores for each voxel the length of the spoke passing through it. For instance, for a voxel

that has medial coordinates (u, v, 0.5), the value that is going to be stored for that voxel

is the distance between the voxel at (u, v, 0) and the voxel at (u, v, 1). Computation of

X2L is done by the same kind of rasterization as with X2U. Figure 4.5 shows the X2L

map for a pyramid model.

Figure 4.5: Scale field (X2L map) for a pyramid model. This model gets narrower when
you move from bottom to top. Intensity values correspond to the narrowness of the
regions.

4.5 Vector Field Computation

The MGTS framework consists of oriented surface and solid texture synthesis methods.

Thus, orientation vectors of each vertex and voxel have to be computed to be used as

input for these methods:

4.5.1 Surface vector field

For anatomical objects the model-based orientation field on the surface mesh is computed

using medial coordinates (u, v, τ) at each vertex (x, y, z). To achieve that, directional

derivatives of [u, v] are then taken with respect to [x, y, z]. Assuming that the underlying

samples are organized so that u runs along the object and v runs across it (typically en-

forced by construction), the direction du ends up representing the local surface direction
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along the object and the direction dv ends up representing the local surface direction

across the object (except at the boundary points where u or v is 0 or 1). When a shape is

loaded with its medial representation, first du and dv are computed using the gradient

with respect to u and v at each vertex, respectively. The dv vectors are reversed on

one side of the model, since the orientation of dv vectors should traverse around the

model. Then a basis for the tangent plane at each vertex is computed by projecting

the local du and dv directions. These projected vectors, duproj and dvproj, may not be

orthogonal to each other. Thus, duproj and dvproj are orthogonalized to give duorthogonal

and dvorthogonal. This orthogonal basis can then be used as the so-called “tangent” and

“bitangent” directions for synthesizing the textures on the surface.

Fig. 4.6 shows du and dv for two different instances of duodenum model.

Figure 4.6: Vector fields for two different instances of the duodenum. (Left) Along-object
vector field; (right) across-object vector field

4.5.2 Volumetric vector field

For anatomical objects the model-based orientation field inside the model is computed

using medial coordinates (u, v, τ) at each vertex (x, y, z) of many layers through the

model. This is achieved using the following steps:
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Figure 4.7: Along-object volumetric vector fields computed for the scm. (a) The scm
surface model; (b) along-object vector field on the outmost layer; (c) along-object volu-
metric vector field; (d) streamlines computed from the vector field

1. Computation of layers: For a user chosen n, n surface layers are computed through

the model using linear interpolation according to the τ values. (u, v) values for

each vertex on these layers are also stored with each layer.

2. Computation of the vector fields on each layer: Vector fields (along and across the

object) are computed for each surface layer. This is achieved automatically from

the gradient of the (u, v) coordinates at each vertex of these layers.

3. Interpolation of vector fields: Orientation vectors on the nearby mesh vertices are

blended to set the orientation vector of boundary voxels. To achieve that, the

interpolation method proposed in Takayama et al. (2008a) is adapted.

4. Projection of the layer vector fields to the tangent planes: It is assumed that the

directions should be parallel to the model’s surface layers. If the vectors at each

voxel are not tangent to the surface of the model, the vectors associated to the

mesh vertices are projected to their tangent planes.

5. Smoothing of vector fields: A Laplacian smoothing is applied to the voxels inside

the model in order to obtain the final volumetric vector field. This is achieved

using the method presented in Takayama et al. (2008a).

6. Normalization of vectors: Vectors at each voxel are normalized since magnitudes
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of the vectors are not considered in guided solid texture synthesis.

Figure 4.7 shows the along-object vectors for the scm.

It is hard to compute the dτ orientation field using this approach, since you have

to specify many surfaces and the orientation fields on these surfaces along the object.

Instead, dτ is computed by finding the orientation field that is orthogonal to the du and

dv orientation fields.
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Chapter 5

Model-based Surface Texture Synthesis

Surface textures are important for illustrating some anatomical organs, especially those

which have simple, smooth shapes made from a simply curving cross section gradually

varying along a smoothly curving axis. Such objects include bones (not at the end

of the arm/ leg/ finger bones), muscles, tubular structures (e.g., the stomach and the

intestines), and many others.

Figure 5.1: Different layers of the stomach (http://www.rivm.nl)

For some applications, like virtual endoscopy and virtual colonoscopy, rendering of

the single outside organ surface could be enough for identification purposes. However,

many organs have multiple tissue layers of interest near their surfaces, and these layers

''http://www.rivm.nl/interspeciesinfo/Images/stomach_tcm75-26442.gif''


are mostly illustrated separately with different textures in textbook illustrations. Each

of these layers can be composed either of the same material with different orientation

and scale, or of different materials with different tissues. For the digestive system, the

common layers in the organs are the mucosa layers, the muscular layers, and the serosa

layers. There is usually more than one muscular layer in these organs, and each layer

has differently oriented muscle fibers. For instance, the stomach has three layers of

muscle: innermost oblique, middle circular, and outer longitudinal. Figure 5.1 shows

an illustration of the layers of the stomach.

To obtain illustrative visualization of these organs, surface textures for each layer

should be generated, and a means for exposing these inner layers to view must be pro-

vided. Given 2D exemplar textures and 3D surfaces, there exist several approaches

for synthesizing anisotropic textures on the surfaces. Commonly these methods (Praun

et al. (2000)) need user intervention to create the orientation field and layers on the

surface, and for that reason they cannot provide orientation correspondence between

different instances of the same model. To solve these problems, this dissertation pro-

poses an automatic method called model-based texture synthesis, which generates consis-

tent anisotropic surface textures for patient-specific anatomical models using illustrative

model-specific exemplars. This method relies on m-reps to generate oriented textures

on the surface of the object. The main advantage of using m-reps here is that it gives

model-based orientation fields on the surface of the models for each patient data with-

out any user intervention. These vectors are consistent for different instances of the

model. M-reps also provide the layers along the depth of the model. These layers are

important for the illustration of different tissue layers for that specific model. Using the

orientation field on each layer of the model, the model-based surface texture synthesis

generates surface textures for that layer.

Given a 3D model M with its medial representation and 2D exemplar textures,

the textures on different layers of the model M are synthesized using an exemplar-
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based texture synthesis technique. Texture synthesis on a 3D surface layer of a given

anatomical model is achieved by combining and extending the mesh partitioning and

parameterization approaches proposed in Gorla et al. (2003) with the optimization-based

texture synthesis algorithm summarized in Section 5.3. In particular, the framework

has two main components: (1) model-specific guidance and subdivision information

computation and (2) texture synthesis.

1. Model-specific guidance and subdivision information computation: The aim of this

component is to preprocess the object model. These steps are completely inde-

pendent of texture synthesis to make texture synthesis faster. The preprocessing

consists of a sequence of steps. These steps need to be applied only once per

model to support any number of texture synthesis. In addition, this precomputa-

tion provides the ability to apply different pixel-based texture synthesis approaches

without modifying the mesh related parts.

(a) Computing the vector field: This step consists of computing orientation fields

for different layers of a specific anatomical model. The details of how this is

achieved were presented in Section 4.5.1. There are two particular types of

orientation fields that can be generated using m-reps:

i. Along-, across-, through- object vector fields over the surface: They are

obtained using the model-based coordinate system, and they provide a

common basis for any oriented texture.

ii. Combination of along-, across-, and through- object directions: They

provide a specific local orientation frame. For instance, the orientation

field for the innermost oblique muscle layer in the stomach can be ob-

tained by combining the around- (circular), and along- (longitudinal)

object orientation fields.

(b) Partitioning the 3D surface mesh: In this step contiguous patches of the
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polygons of the model are computed. The partitions should be as nearly

planar as possible in order to prevent distortion of the texture when it is

mapped on the 3D surface. In addition, the partitions should have similar

sizes to simplify the texture mapping.

(c) Projection onto the 2D reference plane, the computation of which is described

in Section 5.1: In this step the triangles and vector fields in each patch are

projected onto a reference plane of that patch in order to do texture synthesis

in a 2D plane.

2. Texture synthesis: The aim of this component is to create textured surface layers

of a patient-specific model using mesh-related inputs from the first component, 2D

exemplar textures, and guidance information.

(a) Synthesizing texture over each of the projected 2D patches: In order to main-

tain pattern continuity across the patch boundaries (seams), a pixel-based ap-

proach is used for texture synthesis. As described in Section 5.3, the approach

presented in Kopf et al. (2007) is extended for synthesizing textures with ori-

entation fields. In the results presented in this section the anisotropic textures

are applied such that their dominant orientation is everywhere aligned with

the direction field specified using the model-based coordinate system.

(b) Mapping synthesized textures onto the 3D surface: The synthesized texture

for each patch is mapped on the 3D surface mesh. Alpha blending is done

around the border of each patch in order to achieve continuity across the

seams.

The layers of the textured models are visualized using the model-based clipping

technique available in the MGRView framework (Merck (2009)). In that approach first

each surface layer is textured with material-specific textures. Then, a range of u and v

values are used to define a clipping region on a selected layer. Finally, the vertices that
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have the (u, v) values in the specified range are deleted from that layer. Figures 5.9 and

5.10 illustrate the results obtained using this approach.

5.1 Surface Partitioning

In this stage the 3D surface mesh is partitioned into a minimum number of planar

patches which have similar sizes. It consists of two main steps (More details can be

found in (Gorla et al. (2003))):

• Initially, the 3D surface is partitioned using a greedy algorithm. In this algorithm a

randomly-selected triangle (reference plane) is assigned to its own group, and then

new triangles are added to this group based on the angle and distance between the

new triangle and the other triangles in the group. Thresholds are used for both

angle and distance for this approach.

• An optimization step is performed to reduce the number of patches and the number

of triangles that are oriented at a sharp angle to the plane onto which they will

be projected.

5.2 Projection of Surface Patches

The triangles in each patch are projected onto their common reference plane. Using the

coordinates of the projected vertices in the reference plane coordinate system, the texture

coordinates are computed. In addition, the neighboring patches are projected onto the

reference plane since the textures synthesized for the patches in the neighborhoods are

used as boundary conditions in texture synthesis. Figure 5.2 illustrates the process.
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Figure 5.2: Projection of the triangles onto 2D. The grey-shaded triangle is the reference
triangle. Its normal defines the plane onto which the other triangles in the patch will
be projected. This figure is taken from Gorla et al. (2003).

5.3 Texture Synthesis

Textures are synthesized for each patch of the surface layer. In order to synthesize

texture for a patch, first a 2D image x0 is created for that patch. Then initial values

are assigned for each pixel in x0 from two different sources: (a) intensity values of the

pixels in the projection of the triangles inside that patch; and (b) intensity values of the

pixels in the projection of the triangles in the neighborhood patches.

For anisotropic textures, per-pixel texture orientations v are computed by first pro-

jecting the vector values at the vertices of the triangles onto the reference plane and

then interpolating the vector values for each pixel inside the triangles using barycentric

coordinates.

Texture synthesis is done by adapting the approach presented in (Kwatra et al.

(2005)). This approach is summarized in Section 2.3.1.3. Given the 2D image x0 and

the projected vector field v, textures are synthesized for the image x0 by considering the

vector field v. During texture synthesis, textures synthesized for the boundary patches

are taken into consideration in order to maintain the continuity of the texture pattern

across seams at the patch boundaries. For each patch Pi on the surface the following

steps are applied in order to achieve that goal:

1. Create a 2D planar texture Ti for patch Pi.

2. Project the triangles that are in Pi onto that planar texture and assign their colors
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Figure 5.3: Steps of texture synthesis for each patch. The figure is taken from Gorla
et al. (2003). Upper row: Texture synthesis for a selected patch Pi on the surface. (Left)
synthesized textures on the first two patches; (center) the triangles on the selected patch
(the patch is shown with red, except for the green triangle that is the reference plane
of the patch); (right) textured surface after the texture is synthesized for the third
patch. Lower row: texture synthesis on the 2D projected plane for the selected patch.
(Left) the planar projection of the selected patch; (left center) the selected patch with
the boundary conditions provided by the neighboring textured triangles rotated into
the plane of the patch; (right center) midway through the texture synthesis process
(synthesis is proceeding from left to right); (right) the complete synthesized patch.

to white.

3. For each neighbor patch Pj of Pi, check whether a texture is synthesized for that

patch before. If so, project this texture onto the plane of texture Ti.

4. Synthesize texture Ti.

The lower row in Figure 5.3 illustrates these steps.

For anisotropic textures the synthesized texture is locally constrained into alignment

with the vector field v over the surface. This alignment is achieved by rotating the

neighborhoods at each pixel in the image using the orientation vector v at that pixel.

This rotation of neighborhood is done both in the search phase of the approach (in the

M step) for finding best-matching neighborhoods and in the optimization phase of the

approach for calculating the intensity value at that location. Figure 5.3, obtained from

Gorla et al. (2003), illustrates the texture synthesis process for a selected patch. After
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the texture is synthesized for the selected patch, the 2D image is stored as a result for

that patch. This image is mapped onto the 3D surface for rendering the texture.

5.4 Results

Given models, which can be generated automatically using methods from image analysis,

the presented framework is fully automatic and does not require any user interaction

during either the model-based part or the texture synthesis part. The user only specifies

the regions in u and in τ . There are several parameters in the system that can be set

by the user, such as the size of a single patch and the size of the neighborhoods.

In this section the results of the framework on three different organ models from

different patients are presented. These models are obtained from real patients’ seg-

mented data. The exemplar textures are created using imaging tools by considering

Frank Netter’s illustrations. Below are the selected anatomical organ models:

• Duodenum: This model consists of many layers: longitudinal muscle, circular

muscle, submucosa, mucosa, and circular folds. Among these layers the first two

muscle layers and mucosa layer are oriented along or across the duodenum.

• Sternocleidomastoid muscles (scm): These muscles attach to your top two

ribs and to several neck vertebrae, resulting in muscle fibers of varying lengths.

The muscle fibers are elongated along the object.

• Stomach: This is a J-shaped hollow muscular organ. It has mucosa, submucosa,

and muscularis externa layers. The muscularis externa has its own three layers,

which are the inner oblique layer, middle circular layer, and outer longitudinal

layer.

Figure 5.4 shows the results of the approach for the duodenum model. Textures for

the longitudinal muscle layer, circular muscle layer, and mucosa layer of the duodenum
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are synthesized for that duodenum model. The result for each muscle layer illustrates the

arrangement of the muscle fibers using the exemplar texture, the model-based orientation

field, and the model.

Figure 5.4: Three different layers of the duodenum: (left) longitudinal muscle layer,
(middle) circular muscle layer, and (right) mucosa layer. Before using the input texture
as an exemplar, its orientation has been adjusted.

Figure 5.5 shows the results of the approach for the submucosa layer of the duodenum

model. This layer is illustrated with isotropic textures as opposed to the other layers of

the duodenum, which are anisotropic.

Figure 5.5: Submucosa layer of the duodenum. As opposed to the other three layers,
this layer is isotropic.

The synthesis approach is applied to generate texture on different models using the

same exemplar texture. In Figure 5.6, the models, stomach and scm, are textured using

the model-based orientations along the objects.
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Figure 5.6: Stomach (top) and scm (bottom) textured using along orientation fields.
(Left) Orientation fields; (right) textured results.

Using different combinations of along- and across-model orientation fields, other

orientation fields can be obtained on the surface of the models. For example, for the

oblique muscle layer of the stomach, the sum of the along- and across- orientation fields

are used to obtain the oblique orientation field for that layer (Figure 5.7).

Figure 5.7: Oblique layer of muscularis externa on stomach model. (Left) Orientation
field; (right) textured result.

In order to show the orientation correspondence, textures for different instances of

the same model are synthesized using the along-object and across-object orientation

fields. The orientation fields for that model are shown in the previous section in Figure

4.6. As can be seen in Figure 5.8, the presented framework generated consistent textures
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on the models without any user intervention for orientation field and texture generation.

Figure 5.8: Two instances of the duodenum textured with along and across orientation
fields.

To obtain better understanding of complex 3D shapes and interrelations between

3D objects, the textured 3D anatomical models have been integrated inside real patient

3D data display (Merck (2009)). In Figure 5.9 and Figure 5.10 the duodenum inside

the patient data is shown in MGRView framework presented by Merck (2009). Three

different layers of the duodenum (longitudinal, circular muscle, and internal rugae) are

combined to obtain the illustration of that model. Using this approach, patient-based

anatomic illustrations are obtained with model-based oriented textures and segmented

3D surfaces.

In addition to synthesizing oriented textures, the presented surface texture synthesis

approach can also be applied for synthesizing isotropic textures, such as the surface of

the bone shown in Figure 5.11.

These results have demonstrated the main advantage of the presented framework,

that it can perform texture synthesis on different patients’ organs without any user
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Figure 5.9: Model-guided rendering of the duodenum with oriented textures for context
cues. The duodenum is visualized inside the real 3D patient data using MGRView
(Merck (2009)).

intervention for specification and computation of the model-based vector field. In addi-

tion, the results show that the method successfully provides orientation correspondence

between different instances of the same model, which is a requirement for producing

consistent results in anisotropic texture synthesis. This framework can be used for vi-

sualizing different anatomical structures that consist of many layers. In addition, in the

future this framework can be applied to variable scenarios in order to reflect differences

in individual patients.
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Figure 5.10: Textured duodenum visualized in MGRView (Merck (2009)) with respect
to two clipping planes.

Figure 5.11: Surface of the bone is textured.
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Chapter 6

Model-based Solid Texture Synthesis

Many anatomical objects have slowly changing variations in local material properties,

such as material type, scale, and orientation, over the surface of the model and inside the

model. In many of the hand-drawn medical illustrations commonly used for anatomy

reference, these features are illustrated mostly with textures. The artists used textures

that suggest features arranged along, across/around the object, and through the object.

For example, the bone has hard exterior, soft interior, and soft marrow interior regions,

and these regions are illustrated with different material textures. In addition, artists

also illustrate the inner regions of models by putting textures on the clipped sections of

the selected regions.

In order to provide this behavior for the illustrative visualization of patient data sets

in a 3D environment, in this dissertation a method is presented for synthesizing patient-

specific progressively variant solid textures for segmented patient data. The proposed

approach is based on the non-parametric exemplar-based techniques used in Kopf et al.

(2007), in which uniform cubic solid textures are synthesized. The major contribution

of the proposed method is providing an extension to this method to efficiently support

object-specific progressively changing anisotropic textures. This part of my dissertation

is published in Kabul et al. (2010).

My method produces solid textures that are constrained by a 3D vector field as well



as by material information specific to the patient’s anatomical structures. To capture

model-based directions, material transitions, and depth of layer information consistently

inside the model for the segmented patient data, the texture synthesis approach utilizes

the model-based coordinate system presented in Section 2.4.3. Given a surface model

with its medial representation and 2D exemplar textures, the proposed method first

computes the model-based vector fields and region masks, and then it uses them to syn-

thesize model-based progressively changing solid textures inside the models. As opposed

to the approach presented in Takayama et al. (2008b), control of texture variation and

texture orientation is accomplished by generating the textures “in-place” for a model

in world space instead of in model space. This approach prevents the possible seams

that might be caused by bending and twisting a standard texture cube according to a

particular model.

My method considers orientation and material information for each voxel as the

means of constraining texture synthesis. The 2D input exemplar textures suitable for

synthesizing anatomic structures are taken from illustrated sources such as Netter (2009)

or from specifically designed anatomic texture catalogs. As indicated in the previous

chapters, the appearance of the texture undergoes changes depending on the model.

To solve this problem, model-based texture synthesis control is added to restrict the

appearance of the textures for clipping planes that are rotated based on the orientation

of medial axis.

Some of the structural textures consist of structural primitives (textons), such as

glands in the prostate. The number of textons and the size of the gap between them

can change depending on the organ and depending on the patient. In this framework

the user has the ability to control these features in the synthesized texture via a new

texton matching technique. In addition, the synthesis of structural solid textures from

2D exemplar textures needs to accommodate control of the shape of the structures in

3D. To achieve that, a texton-based solid texture synthesis is proposed for controlling
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the construction of 3D textons via a medial representation of textons in 2D exemplar

textures.

The results of the approach are demonstrated on several examples including the

thyroid, the sternocleidomastoid muscle (scm), the prostate, and the mandible. The

method has been shown to work for the anatomical organs in the head and neck region.

However, the method is extensible to different instances of many organs, such as muscles.

The goal of this approach is eventually to be able to fill a space containing many organs

with synthesized solid textures to create an illustrated look for a particular patient. In

this dissertation, all of the organs could not be rendered with textures due to the lack

of segmented models.

6.1 Overview

The model-guided texture synthesis (MGTS) method synthesizes progressively changing

solid textures specific to a model of an anatomical object by considering the orientation

and variation of the textures inside the model. The purpose of this method is to obtain

illustrative renderings of patient-specific anatomical structures. The input to the system

consists of a 3D triangular surface mesh, a model-based coordinate system for the model

(in our method obtained from a medial model of the object), and a predetermined set

of 2D exemplar textures. The output is a solid textured model. Thus, the model-

guided texture synthesis is a post-segmentation process. Our method also consists of

synthesizing solid textures according to the guidance information, such as the vector

field and the depth of layer.

As with the 2D texture synthesis described in Chapter 5, in this method the 3D

guidance vector field is obtained from a medial representation called ‘m-reps’. M-reps

nicely provide a 3D along-object, across-object, and through-object parameterization on

and within the model. Details of this approach have been explained in Section 4.5.2.
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The two features considered in the texture synthesis step are the guidance vector

field and the variation of the textures inside the model. Depending on the anatomical

structure, the texture may vary along the depth of the model or along (or around) the

model, whether on the surface or its interior. This variation information is obtained

from the user-annotated model-based coordinate system from the first stage and is used

to guide the solid texture synthesis.

For some of the anatomical models, the textures look different depending on the

orientation of the clipping plane. For example, the texture on the outside of the ster-

nocleidomastoid muscles (scm) looks like a stream of lines, whereas when you cut the

scm, you see a circular blobs texture. In order to obtain this effect in our visualization,

the 3D model-based guidance information computed in stage 1 is again used.

In the following sections I will discuss the solid texture synthesis methods proposed

for generating oriented, progressively-changing, and texton-constrained solid textures.

Notation: In the following sections e denotes the input exemplar texture, ef is the

feature image (e.g., signed distance field) of e, em represents the medial coordinates

of each pixel in e, and et stores transition of the material information (see Section 6.2

for explanations of ef and et). Also, s refers to the synthesized solid texture. Three

model-based coordinates at each position in the object are defined as along-object (u),

around-object (v), and through-object (τ) coordinates. Three special orientations at

these positions are du = ∇u, dv = ∇v, dτ = ∇τ . These three are not necessarily

orthogonal in x, y, z space. The neighborhood of the voxel w in the slice perpendicular

to the ith spatial axis (i = x, y, or z) is represented by sw,i. The neighborhoods for the

exemplar texture and for the synthesized solid texture at voxel w are denoted by ew and

sw, respectively. For region-based textures, st denotes the 3D transition field inside the

model, which is computed using the model parameterization.
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6.2 Texture Features For Solid Texture Synthesis

As explained in Section 2.1, a texture can be represented using different techniques

depending on the type of the texture. Texture features are important in texture syn-

thesis for representing the exemplar textures and generating the output textures. Most

of the texture synthesis approaches use statistical (intensity-based) and region-based

(structural) features of the textures. Intensity-based features model the joint statistical

properties of features extracted at pixel locations; thereby they are useful to preserve

the color information in the synthesized texture. Structural features model texture as a

layout of regions; thereby they are important in synthesizing the structural layout of the

output texture. Many approaches use different features such as edges or signed distance

fields to these edges as structural texture features. However, these features do not pro-

vide a good parameterization of the structural primitives in the texture. For instance, a

signed distance field gives the through-region parameterization of the primitives. It does

not provide the along-region parameterization, which is important information when you

synthesize solid textures.

In this dissertation the textons, which are the structural primitives, in the textures

are themselves represented using an approximate medial representation. This parame-

terization provides the along and through coordinates of each pixel inside each texton

in the exemplar textures. These texton parameters are used to restrict the search phase

of the synthesis method. In this section, the computation of textons, their parameter-

ization, and their histograms are presented. The details of the synthesis process are

explained later in Section 6.3.

6.2.1 Textons

Color textons have been widely used in texture recognition problems. Although there

exist many methods for finding the textons automatically in a given texture (Ahuja &
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Todorovic (2007)), these methods do not work for all textures. The research in this

area is beyond the scope of this dissertation. In MGTS textons are specified using a

thresholding scheme and manual manipulation of the thresholded image. After that a

method to label the connected components in the binary image is applied. Using this

approach, a texton segmentation is obtained for each given exemplar texture.

6.2.2 Signed distance field

Signed distance is important for the computation of the inner coordinate system of

the textons in the exemplar texture. Given the thresholded exemplar texture, first an

edge detection technique is applied to obtain the edges of the texture. Then the signed

distance field is computed on that image (Figure 6.1).

Figure 6.1: (Left) Texture image; (right) signed distance field of the texture.

6.2.3 Medial representation of textons

In order to find the approximate medial coordinates of each pixel in each labeled texton

of a given texture, I utilized the following steps:

1. Threshold the given image to obtain the binary image that contains the textons

(Figure 6.2-(b)).

2. Label each texton of the given binary image (Figure 6.2-(c)).
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3. Compute the signed distance field of the given binary image. Store it as the τ

coordinates image (Figure 6.2-(d)).

4. Calculate the medial skeleton of each texton.

5. Remove the branches in order to obtain a single medial axis.

6. Parameterize the medial axis using along-object coordinates u.

7. Classify the pixels in each texton of the input image based on their distances to

the medial axis. Assign the u value of the closest point on the medial axis to that

pixel. Store the u values to form the u coordinates image (Figure 6.2-(e)).

8. Classify the pixels in each texton of the input image based on their u values.

Assign the distance value of the closest point on medial axis to that pixel. Store

the distance values to form the rτ coordinates image (Figure 6.2-(f)).

Figure 6.2: Medial representation of a 2D texture. (a) A 2D texture; (b) binary thresh-
olded image of the given texture; (c) image that contains the labeled textons; (d)
signed distance field image computed using binary thresholded image; (e) along-texton
parameterization for each texton in the given image; (f) thickness of each pixel based
on the along-texton coordinate.

6.2.4 Histograms

A histogram is one way to represent the distribution of data in a texture in a compact

way. Histograms on certain values can be useful to represent the properties that are

important for the target application. For instance, a histogram of texture intensity
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values is an important property for preserving the global statistics of the 2D example

texture in the synthesized texture. More details of the histogram types used in texture

synthesis are presented in Section 6.3.3.1.

6.3 Optimization-based Solid Texture Synthesis

The intensity value at a pixel/voxel in a 2D/3D texture is highly dependent on the

intensity values of neighboring pixels/voxels around that pixel/voxel unless the texture

is a random noise. This dependence can be explained using a Markov Random Field

(MRF) (Cross (1980)). In such a model the probability of a pixel given the rest of

image is equal to the probability of that pixel given the neighborhoods of that pixel

(P (pixel p|rest of image) = P (pixel p|neighborhood of p)). An important requirement

for both 2D and solid texture synthesis is to satisfy this property in the synthesized

texture. This is typically achieved by searching the input exemplar texture for all

sufficiently similar neighborhoods and selecting one match at random.

The MGTS framework uses 2D exemplar textures as input (since it is hard to find

3D exemplar textures). Thus, the neighborhoods, which are used in the search phase,

are constructed in 2D in order to compare the neighborhoods in the synthesized texture

and in the exemplar texture. The number of neighborhoods and their orientations is

an important parameter in solid texture synthesis, since the best-match search is done

for the values in these neighborhoods. Although increasing the number of neighbor-

hoods can give better results, the computation time for the neighborhood search will

increase in that case. Thus, the orientations that are going to be matched to the given

exemplar/s should be selected. This selection can be done depending on the type of the

output texture. If the solid texture is isotropic, it should be similar to the exemplars

on arbitrary slices through the entire volume. Thus, using three orthogonal directions

can be sufficient. If the output texture is anisotropic, these directions of the neighbor-
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hoods should be chosen such that the exemplar for the selected direction represents the

intended appearance in that direction.

Texture synthesis consists of two main steps: a search phase and an optimization

phase. The approach presented in Kopf et al. (2007) for synthesizing solid textures

is also a two-phase optimization method that tries to minimize the sum of differences

under the Lp norm between each local neighborhood sw,i (i = x, y, z) of a voxel w in the

output texture and a corresponding neighborhood ew,i (i = x, y, z) in the 2D example

texture e. Initially the colors are randomly generated for each voxel inside the cube from

the 2D exemplar textures. Then in the optimization stage the matching neighborhood

of each voxel is determined by optimizing the energy function Et:

Et(s; {e}) ≈
∑
w

∑
i∈x,y,z

||sw,i − ew,i||r =
∑
w

∑
i∈x,y,z

weightw,i,u||sw,i − ew,i||2 (6.1)

In the search stage the best matching neighborhood from the exemplar texture is

found for each voxel. The details of this approach can be found in Kopf et al. (2007).

The main problem in Kopf et al. (2007)’s method is the blurring problem in the

synthesized texture. This is mainly caused due to the averaging done for the computation

of the voxel values in the output texture. To solve this problem, another approach

based on Kopf et al. (2007) is proposed in Chen & Wang (2010). In this approach

the optimization framework is achieved using the k-coherence search presented in (Tong

et al. (2002)) and the discrete solver presented in Han et al. (2006). To avoid blurring,

this approach requires that all the voxel colors be copied directly from the exemplars.

This approach also introduced two new histogram matching methods (for details see

Section 6.3.3.1) in the re-weighting scheme to ensure that all the voxel colors are copied

uniformly from the exemplars. This approach produces isotropic cubic textures. Figure

6.3 shows the results of this approach for the thyroid. In this dissertation the method

proposed in Chen & Wang (2010) is extended for synthesizing anisotropic, region-specific
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solid textures.

Figure 6.3: Isotropic texture is synthesized for the thyroid using a sample exemplar
texture from an illustration.

6.3.1 Optimization phase

In this phase of the approach to minimize the energy, the discrete solver proposed in

Chen & Wang (2010) is used instead of the least-squares solver proposed in Kopf et al.

(2007). In a least squares solver, the updated voxel is computed using

sw =

∑
i∈x,y,z

∑
u∈Ni(w)weightu,i,weu,i,w∑

i∈x,y,z
∑

u∈Ni(w) weightu,i,w
(6.2)

In contrast, in the discrete solver, sw is calculated first, and then eu,i,v is selected

from the set {s(w) = eu,i,w | i ∈ {x, y, z}, u ∈ Ni(v) } that is most similar to sw for

the updated voxel. Since the color values are copied directly from the exemplar texture

instead of using the averaged value sw, this approach avoids the blurring problem and

enables the computation of position and index histograms.

6.3.2 Search phase

The best match for each orthogonal neighborhood (Nx(w), Ny(w), and Nz(w)) of each

voxel w in the output texture is found in the exemplar texture E. One way of selecting

the best match is to find the pixel v from the exemplar texture that has the minimum

distance between Ni(w) and Ni(v), where i ∈ {x, y, z}. The main problem in this
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approach is that it is too time-consuming. Figure 6.4 illustrates the search for three

orthogonal neighborhoods around a voxel.

Figure 6.4: Best-matches are searched for each orthogonal neighborhood around each
voxel in the synthesized texture (Kopf et al. (2007)).

The k-coherence search approach is used in order to find the best match for the

corresponding neighborhoods. In the k-coherence method, for each voxel in the output

texture k pixels with similar neighborhoods are found from the input exemplar texture

for three orthogonal neighborhoods. This approach has an additional preprocess step

and a modification for the search step:

1. Preprocess step: In the preprocess step the k-closest pixels are found for each

exemplar pixel. The indices of these k-closest pixels are stored as the k-candidates

(also called similarity-sets) for that exemplar pixel.

2. Restriction on search: In the search step first a candidate set is created for each

output voxel by finding the union of all similarity-sets of the neighborhood pixels.

Then, the best match for each voxel is found by searching this candidate set.

This approach is efficient since the number of neighborhood comparisons is restricted

by the size of the candidate set.
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6.3.3 Histogram matching phase

The synthesized texture should represent the statistical and structural features of the

given exemplar textures. One way to achieve that is to use histogram matching tech-

niques in the texture synthesis. The main purpose in all these techniques is to match

the histogram Hsynthesized of synthesized texture to the histogram Hexemplar of exemplar

texture. The histograms can store the frequency of different values depending on the

application. For example, they can store the frequency of the intensity values, or they

can store the frequency of structural primitives. In Kopf et al. (2007) a color histogram

matching technique is used to match the color histograms of the exemplar and the syn-

thesized texture as closely as possible in order to retain the color information in the

exemplar texture. However, this approach ignores necessary texture layout distinctions

in synthesizing textures that have similar intensity values in them. To solve this prob-

lem, Chen & Wang (2010) introduced position and index histograms. The purpose of

using histogram matching on both position and index is to make sure that most of the

pixels in the exemplar texture appear equiprobably in the synthesized texture. The in-

dex histogram stores the frequency of each pixel, in each of the planar exemplars, being

initially selected as contributing to the ultimate 3D intensity that is assigned to the

target voxel. The position histogram stores the frequency of each pixel, in each planar

exemplar, being closest in intensity to that ultimate assigned 3D intensity.

In this dissertation position and index histogram matching techniques are added to

the MGTS framework and extended for synthesizing progressively-variant solid textures.

In addition, texton histogram matching is proposed for manipulating the number of

the specific textons in the synthesized textures. In this section I briefly describe the

histograms (position and index) that are integrated into the MGTS framework, and I

present the texton histogram proposed in this dissertation.
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6.3.3.1 Histogram types

1. Position Histogram: This histogram is defined as a 2D image of the same size

as the exemplar. It is only stored for the synthesized texture. It is computed in the

copy phase of texture synthesis. When the intensity value for a voxel is computed

and copied to the synthesized (output) texture, the pixel that has closest match

to that intensity value is found in the exemplar texture and the frequency of that

pixel in the position histogram is increased by one. The higher the frequency of

a pixel, the higher the brightness of that region in the histogram. If the region

is black, this means that the corresponding part in the exemplar does not appear

in the synthesized texture. If the intensity values in the position histogram have

similar values, this means that almost all the pixels in the exemplar texture can

be found with similar frequency in the synthesized texture.

2. Index Histogram: This histogram is also stored only for the synthesized texture,

and it is represented as a 2D image of the same size as the exemplar. It is computed

in the search phase of texture synthesis. When the best matched pixels are found

from the exemplar texture for each neighborhood of each voxel in the synthesized

(output) texture, the frequencies of these pixels in the position histogram are

increased by one.

3. Texton Histogram: This histogram is used for structural textures that have

structural primitives (textons) in them. This histogram stores the frequency of

each texton in the synthesized texture. The purpose of this histogram is to control

the number of specific textons in the synthesized texture. It is stored for the

synthesized texture.
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6.3.3.2 Position, index and texton histogram matching

The histogram matching can be applied at different phases of the synthesis process,

either at the search phase or at the copy phase. In the index and texton histogram

matching, the distance in the neighborhood search is manipulated based on the match

between the specified histograms in the search phase of the approach. In the position

histogram matching, it is used in the copy phase of the approach. As is shown in Equa-

tion 6.2, weights weightu,i,w are needed to compute the color value of the synthesized

voxel w at the copy phase. The modified weights are used as a means to match the

histograms of the exemplar and synthesized textures.

In this section, the details of the computation of the modified weights weight
′

u,i,w are

explained.

1. Position histogram matching: To achieve position histogram matching, the

histograms of the source position information for all the synthesized voxels are kept

during texture synthesis. Then a re-weighting scheme is applied in the optimization

(copy) phase of the approach:

weight
′

u,i,v =
weightu,i,w

1 +max[0, Hpos(p(eu,i,w))− θ)]
(6.3)

where p(eu,i,w) refers to the position of the pixel eu,i,w, Hpos is the position his-

togram, Hpos(p) is the value of the position p in the histogram Hpos, and θ is the

histogram value when all the pixels from the exemplar completely evenly appear

in the synthesized texture. This equation means that if Hpos(p) > θ, the weight is

reduced to make it less likely to select p for the voxel w. If Hpos(p) < θ, the weight

is increased to make it more likely to choose eu,i,w for the synthesized voxel w.

Since in this dissertation the focus is on synthesizing a region-specific solid texture

inside a model as opposed to synthesizing an isotropic solid texture inside a cube,

the value of θ is computed depending on the type of the synthesized texture and
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the number of voxels inside it:

• Computation of θ for isotropic textures: If the synthesized texture is an

isotropic solid texture, θ is computed as the number of voxels in the model

divided by the number of pixels in the exemplar texture.

• Computation of θ for region-specific textures: If the synthesized texture is a

region-specific solid texture, θ is computed for each region separately. In that

case, θ for a specific region is computed as the number of voxels in that region

divided by the number of pixels in the exemplar texture for that region.

2. Index histogram matching: As opposed to the position histogram matching

which is applied in the optimization phase of the approach, index histogram match-

ing is used in the search phase to restrict the nearest neighborhood search. During

the search phase, the distance between two neighborhoods is modified based on

following equation:

d = weightd · ‖sw,i − ew,i‖2 (6.4)

in which weightd is

weightd = 1 +max[0, H index(i(ew,i))− φ] (6.5)

where i(ew,i) refers to the nearest neighborhood index corresponding to the pixel

ew,i, H
index is the index histogram, H index(i) is the histogram value of the index

i, and φ is the histogram value when all the indices completely equally distribute

in the exemplar. This equation means that when H index(i(ew,i)) > φ, the distance

d between two neighborhoods ew,i and sw,i will increase, making it less likely to

choose ew,i as the nearest neighborhood index for sw,i. Without this modification

in the distance function, the search phase can converge to the same position in the

exemplar, making the preservation of the texture structures impossible.
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3. Texton histogram adjusting: Using the texton histogram matching technique,

the frequency of the textons can be increased or decreased in the synthesized

texture. Texton histogram matching has an opposite effect from position histogram

and index histogram matching. While in position and index histogram matching

the aim is to make the pixels in the exemplar texture appear uniformly in the

synthesized texture, in texton histogram matching the aim is to increase/decrease

the frequency of some of the textons. The decision as to the frequency of textons

can be determined depending on the specific organ or region inside the organ. As

in the index histogram matching technique, in texton histogram matching during

the search phase the distance between two neighborhoods is modified based on the

following equation:

d = weightd · ‖sw,i − ew,i‖2 (6.6)

in which weightd is

weightd = 1 +max[0, Htexton
s (i(ew,i))−Htexton

e (i(ew,i))] (6.7)

where i(ew,i) refers to the nearest neighborhood index corresponding to the pixel

ew,i, H
texton
s is the texton histogram of the synthesized texture, Htexton

s (i) is the

texton histogram value of the index i at the synthesized texture, Htexton
e is the

texton histogram of the exemplar texture, and Htexton
e (i) is the texton histogram

value of the index i at the exemplar texture. The equation for texton histogram

matching is very similar to the equation for index histogram matching except

for the usage of texton histogram of the exemplar texture (Htexton
e ). Htexton

e is

precomputed using the binary image of the texton (Figure 6.2-(b)). For each

pixel p outside the textons, φ, which is the histogram value when all the indices

completely equally distribute in the exemplar, is assigned to that pixel in Htexton
e .

For each pixel inside the textons, the value is computed based on whether the
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application needs to increase or decrease the number of textons in the synthesized

texture. If the goal is to increase the number of textons in the synthesized texture,

then φ is multiplied by a large number. If the goal is to decrease the number of

textons and increase the distance between the textons in the synthesized texture,

then φ is multiplied by a small number.

Figure 6.5: In each column, the images in the left and in the middle columns show
slices of the synthesized texture, and the images in the right column show the texton
histogram for that synthesized texture. For each row, results for different Htexton

e are
illustrated. The top row shows the results when the values inside the texton regions are
set to a high value in Htexton

e . The other rows show the results when these values are
set to successively lower values.

Figure 6.5 shows the results obtained using the texton matching method. As is

shown, this method can be used for the illustration of hyperplasia (proliferation of cells
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within an organ or tissue) in anatomical organs.

Discussion of histogram matching

Color histogram matching, proposed in Kopf et al. (2007), is not always an appropri-

ate technique since it only works for color but not for structural features available in the

texture. In addition, when the texture channels are decorrelated it fails to preserve the

color histograms. For the purpose of this dissertation, it is not appropriate for most of

the anatomical textures, especially when the colors of the texture structures are similar

to each other.

Using position and index histograms, both texture structures and color histograms

can be preserved in the synthesized textures. Position histogram matching ensures that

color histogram matching is also satisfied, since position histogram matching considers

that all the pixels in the exemplar should have the same probability to appear in the

result, which would preserve the color histograms and texture structures in the synthe-

sized texture. The purpose of these matching techniques is to make sure that every

pixel in the exemplar texture will appear same number of times in the synthesized tex-

ture. These techniques are really useful if the aim is to have the same local and global

statistics in both exemplar and synthesized textures. However, if we want to change the

number of specific textons in the texture, then texton matching is a useful technique.

It gives the user the ability to control the amount of specific textons in the synthesized

texture. This can be used for visualizing hyperplasia (proliferation of cells within an

organ or tissue) in an organ.

6.3.4 Multi-resolution

As in most texture synthesis approaches, the MGTS framework uses multi-resolution. It

generates the output texture from the lowest resolution (coarse version of volume) to the

highest resolution (finer version of volume). It uses trilinear interpolation to switch from

a coarse level to a finer level. There are two main advantages of using multi-resolution
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in texture synthesis:

1. It decreases the computation time required to synthesize the solid texture.

2. It increases the quality of the synthesized textures by preserving the relations

between the texture primitives.

Figure 6.7 show the effect of multi-resolution in the synthesized texture. The exem-

plar texture in Figure 6.6 is used for synthesizing the solid textures.

Figure 6.6: 2D exemplar texture for illustrating glands.

Figure 6.7: (Top row) slices of solid texture synthesized without multi-resolution.
(Bottom row) slices of solid texture synthesized with multi-resolution.
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6.4 Vector-guided Solid Texture Synthesis

In order to synthesize solid textures that are oriented along the model-based vector field,

the neighborhood search phase of the synthesis algorithm is extended. In this phase of

the approach the orthogonal neighborhoods sw,i (i = x, y, z) are rotated in 3D space

around their center by a rotation matrix Rw, which is computed by considering the

vectors duw, dvw, and dτw at that voxel w.

Rw =


duxw dvxw dτxw

duyw dvyw dτ yw

duzw dvzw dτ zw


srw,i = Rw ∗ sw,i

Here, the rotated neighborhoods are denoted by srw,i (i = x, y, z). In our case, the

pixels in srw,i (i = x, y, z) are resampled from that of synthesized texture s. Figure 6.8

illustrates the three rotated neighborhoods of a selected voxel in the synthesized texture

and the best-matches found for them in the exemplar texture.

Figure 6.8: Best-match is searched for the three oriented neighborhoods in the synthe-
sized texture.

The approach proposed in this dissertation for synthesizing oriented solid textures is

an improvement over the method presented in Chen et al. (2009) since the misalignment
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Figure 6.9: Comparison for solid texture synthesis: (a) solid textures synthesized for
the scm by my method. Neighborhoods are rotated by considering left: only du; right:
both du and dv. (b) Comparison of Chen et al. (2009)’s approach with my method: left:
Chen et al. (2009)’s approach; right: my approach

of the structural feature of the texture along the vector field is avoided by rotating the

neighborhoods in 3D space using the rotation matrix that is computed by considering

both du and dv. Figure 6.9a illustrates that using both du and dv in the computation of

the rotation matrix improves the result. In Chen et al. (2009) the neighborhood for each

plane is rotated in 2D space by considering the projection of the orientation vector on

that plane (Figure 6.10). Using this method, the continuity of the structures cannot be

preserved and the structural features of texture may not follow the guidance vector field.

However, in the new approach the continuities can be preserved since the neighborhoods

are rotated by considering model-based smooth vector fields. Figure 6.9.b illustrates

the effects of the proposed algorithm compared to the approach presented in Chen

et al. (2009). For both illustrations the same 2D examplar textures are used in texture

synthesis. For the first illustration only the along-object vector duw is considered in

texture synthesis for rotating the neighborhoods using the approach presented in Chen

et al. (2009). In the second illustration the results are obtained using the proposed

method in this dissertation.

The synthesis order of the voxels has a significant effect on the output texture’s qual-
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Figure 6.10: Comparison of neighboorhoods in solid texture synthesis: (a) orthogonal
neighborhoods; (b) neighborhoods in Chen et al. (2009); (c) neighborhoods computed
using our approach

ity. Most algorithms such as Kopf et al. (2007) grow a synthesized patch by selecting the

voxels randomly or sequentially in the search phase. That approach is not appropriate

in oriented solid texture synthesis since the structural features of the textures may not

be preserved along the orientation field. To solve this problem, I adapted the oriented

surface texture synthesis method so that it follows the streamlines on the surface (Zhang

et al. (2003)) for oriented solid texture synthesis. I first computed streamlines from the

3D vector files inside the volume. Then I synthesized the texture by considering the

individual streamlines to decide the order of voxels for the neighborhood search.

Figure 6.11: Solid textures synthesized for two different scm models.

The proposed approach is consistent for different instances of the same model. By
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this method two different scm models with the same medial representation structure are

textured automatically (Figure 6.11).

6.5 Material-guided Solid Texture Synthesis

Progressively variant solid textures need to be synthesized for anatomical organs such

as the mandible and the scm. For example, inside the mandible there are different tissue

types along depth. On the other hand, the scm has homogeneous tissue strands inside

it but attaches to the bone at each end by tendons, which look like white muscle fibers.

In order to imitate these features in the patient-specific illustrations, the oriented

solid texture synthesis method outlined above was further extended by considering

model-specific material constraints in choosing the exemplar texture region that is going

to be used during texture synthesis. As in Zhang et al. (2003), a 2D exemplar texture

is used that varies in color or material. Each exemplar texture has a feature image ef

and a transition image et. The feature image stores the structural properties of the

textures, such as a signed distance field obtained from a binary mask of the image, and

the transition image stores the transition of color or material information in the texture.

These textures can be either designed using imaging tools or other image processing

techniques (Zhang et al. (2003)).

In the neighborhood search and optimization phase of the solid texture synthesis,

only the exemplar pixels that satisfy the condition given in Equation 6.8 are considered

for computing the color value in voxel w.

||stw,i − etw,i|| < threshold (6.8)

Figure 6.12 illustrates the neighborhood search and selection process for the three

neighborhoods of a voxel by considering the material transition of the exemplar texture

and the synthesized texture. For simplicity, the process is shown for a cubic texture
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Figure 6.12: Best-match is searched and selected using the the material transition in-
formation.

and the neighborhoods are shown orthogonal to each other. For material-guided texture

synthesis inside a specific model, the process is achieved for a transition field inside the

model using rotated neighborhoods for each voxel inside it.

Synthesizing progressively variant textures can be applied to many organ illustra-

tions. For the illustration of the scm there are two different regions along the model.

In patient-specific illustration of the mandible my objective is to obtain an illustration

similar the one in Netter (2009). In the anatomic illustration of the mandible the tex-

ture elements are different for the inner layers (bone tissue) and outer layers (endosteum

tissue). Both of these features are illustrated by synthesizing solid textures for a specific

patient’s mandible using the proposed approach (Fig. 6.13 and Fig. 6.14).
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Algorithm 6.1 Guided Solid Texture Synthesis

e0
w ← random neighborhood in e
et0w ← random neighborhood in et
Rw ← Compute rotation matrix using duw,dvw and dτw
for n = 0 to N do
sn+1
w ← arg min Et(sw; enw)

for i = (x, y, z) do
srn+1
w,i ← Rotate sw,i using Rw

strn+1
w,i ← Rotate stw,i using Rw

en+1
w,i ← Find nearest neighbor of srn+1

w,i in ei
which satisfies ||etn+1

w,i − strn+1
w,i || < threshold

end for
if en+1

w = enw then
sw ← sn+1

w break
end if

end for

Figure 6.13: Different textures are synthesized along the model for different regions of
the scm.
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Figure 6.14: Different textures are synthesized for different regions of the mandible.
(Left) clipping planes along and through the mandible; (middle) inputs to solid texture
synthesis: transition field for the mandible, exemplar texture with its transition image;
(right) synthesized solid texture visualized by clipping planes.

6.6 Scale-guided Solid Texture Synthesis

Scale-guided solid texture synthesis is achieved in a way similar to that in model-guided

solid texture synthesis. First, the anisotropic 2D exemplar texture, which has variation

in scale, is created using 2D isotropic textures and the target variation in the synthesized

2D texture.

Figure 6.15: (a) 2D exemplar textures which differ in scale; (b) the transition of scale
values in the anisotropic 2D exemplar texture; (c) the anisotropic 2D exemplar texture;
(d) the transition of the scale values for the target solid texture on the model; (e) the
scale-guided solid texture synthesized for the model.

Figure 6.15a shows the 2D exemplar textures which differ in scale, and Figure 6.15c
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shows the synthesized anisotropic 2D exemplar texture. Second, this anisotropic 2D

exemplar texture is used for synthesizing solid texture by considering the transition

of the scale values. The approach for synthesizing material-guided solid textures is

applied for synthesizing scale-guided solid textures. Figure 6.15d shows the target scale

transition on the pyramid model, and Figure 6.15e shows the synthesized solid texture

which has variation in scale.

6.7 Model-based Texture Synthesis Control

In anatomical illustrations such as Figure 1.6 the muscle textures look different for

different clipping planes. The important thing here is that the texture look different

based on the orientation of the clipping plane. It is very computationally expensive

to constrain the texture on the clipping plane for every possible orientation in texture

synthesis since we have to do neighborhood search for each constrained direction.

Figure 6.16: Model-based texture synthesis control is achieved using different exemplar
textures for each oriented neighborhood.

In anatomical illustrations the models are mostly clipped either perpendicular to the

medial axis or along the medial axis. Thus, texture synthesis is constrained to these
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Figure 6.17: Texture appearance changes based on the orientation of the clipping plane:
(top) along object clipping plane; (bottom) through object clipping plane

directions. To do so, different 2D exemplar textures are picked as input for different

longitudinal vs. axial directions, and neighborhoods are rotated in the search phase of

the approach as in oriented solid texture synthesis. Figure 6.16 illustrates the inputs

needed for synthesizing orientation constrained textures for the scm. It also shows the

textures on and inside the model. Figure 6.17 shows the textures and the CT data on

the clipping planes along the model and through the model.

The selection of 2D exemplar textures in this method is very important since they

should contain similar colors. Otherwise the synthesized texture may contain colors that

are not in any of the exemplar textures due to the optimization phase in the method.

To solve this problem, the approach presented in Welsh et al. (2002) is used to match

the colors of the exemplar textures in texture synthesis. Color is transferred from one

exemplar texture to the other one.

In Kopf et al. (2007) using different exemplar textures for each neighborhood direc-

tion is also used for texture synthesis control. However, as is seen in Figure 9 of Kopf

et al. (2007), the circles on the cross section can form lines which is not desirable. Thus,

in this dissertation I added a correction term to solve this problem. First, in the search

phase the sums of the distances between the neighborhoods in each of the three orthogo-
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nal directions are computed separately. Then, in the optimization phase of the approach

the weights are increased by a small amount if the sum of the distances between the

neighborhoods in that direction is more than the distance between the neighborhoods

in the other directions. This is to give more importance to the directions that do not

match very well. Figure 6.18 shows the effect of this reweighting scheme.

Figure 6.18: (Left) When the method in Kopf et al. (2007) is used, circles may form
lines in the cross section of synthesized texture even if this direction is constrained by
a circle texture. (Right) When the weights are updated based on the similarities for
each neighborhood, circles on the cross section of the synthesized texture become more
apparent.

6.8 Texton-based Solid Texture Synthesis

In this dissertation a texton-based solid texture synthesis approach is presented for

synthesizing textures that have high structural components. In this approach the inner

regions of textons are represented by an approximate 2D medial representation (Figure

6.2). The purpose in this approach is to use the texton-based coordinates in the search

phase of the approach in order to control the construction of 3D textons from 2D textons.

Texton-based texture synthesis is achieved using a multi-step neighborhood search

scheme. Initially when searching neighborhoods, for each voxel the k-best matching

neighborhoods are collected in two orthogonal neighborhoods, specifically the neighbor-
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Figure 6.19: Comparison between solid textures synthesized (top) without and (bottom)
with texton-based solid texture synthesis. Solid textures are synthesized using the 2D
exemplar textures in Figure 6.2.

hoods x and y. The best-match for the third neighborhood z is not found since it is

hard determine what will be the shape of the texton along that dimension. Among

those k-best matches, the best matches are found based on the medial coordinates of

textons, and these values are used for that voxel. Figure 6.19 illustrates the effect of

using textons in solid texture synthesis. The top row of this figure illustrates one slice

of the solid texture obtained without using texton information. As seen in the regions

inside the yellow circles, the shape of the textons on that particular slice do not look like

the shape of the textons in the 2D exemplar texture. On the other hand, in the bottom

row of this figure it is seen that the shape of the textons are preserved when the texton

information is used in the synthesis process. Though this addition improved the qual-

ity of the results for textures that have structural primitives on a uniform background

(e.g., gland texture inside prostate), for simpler shape textons (e.g., stripes in muscles)

no improvement was observed since basic exemplar-based texture synthesis performed

quite well for those textures.

146



6.9 Results for Illustrative Medical Visualization

Given segmented models, which can be generated automatically using methods from

image analysis, and given exemplar textures from medical textbooks and other medical

illustrations, the MGTS framework is fully automatic and does not require any user

interaction during either model-based part or texture synthesis part. There are several

parameters in MGTS that can be set by the user, such as the thresholds for transition

regions and the size of the neighborhoods.

Figure 6.20: Solid textured models (the parotid, masseter, scm, mandible, thyroid)
integrated into the model-guided rendering framework

As indicated in the introduction of this chapter, the goal of the MGTS framework

is eventually to be able to fill a space containing many organs with synthesized solid

textures to create an illustrated look for a particular patient. In Figure 6.20 solid

textured models (the parotid, masseter, scm, mandible, thyroid) are visualized inside

the CT data using the Model Guided Rendering (MGR) framework (Merck (2009)) to

identify these organs.

While the solid textured models in a volume rendering environment help the user to
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Figure 6.21: (Top row) solid textured models are visualized inside volume rendering.
(Bottom row) a clipping plane is applied to the 3D data. The left image illustrates that
without textures it is hard to distinguish the anatomical organs and the regions inside
them. The right image shows that with solid textures mapped onto the 2D slices, the
organs can be easily identified.

distinguish the organs inside the CT data, the textures mapped onto a 2D slice help the

user to distinguish them in a 2D slice view of CT data. In Figure 6.21 solid textures are

mapped onto a 2D slice to visualize and distinguish the organs on that slice.

Figure 6.22 demonstrates the usage of texture in radiation dose visualization. Here

the textures help identification of organs whose surfaces are washed with dose colors.

For the applications in which color is used to encode a separate data set, like dose

in radiation treatment planning, texture can be used to identify the models and their

shapes.

The MGTS framework is not designed for illustrating pathological regions inside
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Figure 6.22: (Left) Solid textured models under dose color wash in 3D. (Right) Dose is
mapped onto the textured model.

Figure 6.23: Solid textured lung model. The texture is synthesized for illustrating the
emphysema of the lungs assuming that it has this disease. Sample illustration is available
in “http://www.virtua.org/”

an organ since image intensity information inside the organ should be investigated for

determining these regions. However, the framework has capability of synthesizing tex-

tures that express a pathology (e.g., sickness) in the organ. In Figure 6.23 the textbook

illustration on the top shows the emphysema of the lungs for a typical patient. A 2D

exemplar texture is cropped from this illustration and used for synthesizing lung texture

for a real patient’s lung model. The synthesized textures on and inside the model are

shown in the two images below the illustration.

The MGTS framework can also be used for synthesizing complex objects that consists

of many substructures, such as the kidney. Figure 6.24 illustrates some of the textured

structures inside a patient’s kidney.

As shown with these results MGTS has advantages over other approaches (Chen
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Figure 6.24: Solid textures are synthesized for the layers of kidney and for the pyramids
inside the kidney.

et al. (2009)) because it can generate consistent and detailed progressively changing

solid textures from 2D exemplar textures. Different solid textures can be produced for

different models using the proposed framework, and they can easily be integrated with

the CT image data. In addition, the illustrations can be used to highlight the models

inside the CT data for different application. The drawback of the framework, however,

is the cost in both computation and memory, as it explicitly computes and stores a

dense 3D array of voxels covering the entire target model. In addition, the guidance

information is based on the model, not the image-intensity pattern. In the future these

drawbacks can be dealt with, and new approaches can be added to the system.
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Chapter 7

Conclusion

Traditional medical illustration has focused on presenting information in an effective,

efficient and attractive way to understand the anatomy of a typical patient. Its main

goals are to record and disseminate medical knowledge by reducing visual overload.

Computer-supported medical illustrations use different visual elements, such as shading,

cutting, deformation, and annotation to achieve that goal.

While in scientific visualization the objective is to provide detailed, objective infor-

mation by mapping data to color value, in illustrative visualization the goal is to provide

aggregated or abstracted information; sometimes subjective (e.g., personal ideas / the-

ories) by mapping data to colors, textures, symbols, styles, patterns, sketches, etc. The

focus of this dissertation is to provide one of these means, texture, to obtain illustrative

visualizations of anatomic objects. The main goal of the model-guided texture synthesis

(MGTS) framework is to maintain the global comprehension from traditional medical il-

lustrations while visualizing the shape of the anatomical structures of individual patient

data. There are methods that try to create illustrative visualization of patient data,

such as methods in Lu & Ebert (2005) which use a color-transfer function for isotropic

texture cubes. However, none of these methods consider the variation of materials inside

the anatomical models.

The main advantage of MGTS over the other methods is that it considers the guid-



ance information obtained from model-specific parameterization and region-specific tex-

tures in order to synthesize region-specific anisotropic textures. Texture generation

requires only limited manual intervention, which consists of setting some parameters.

MGTS is designed to be based on deformable model-based segmentation technologies,

which have been under development at UNC. It can be applied to a broad variety of

patient-specific, segmented anatomical models. One can interact with it (e.g., using

model-based clipping planes to see the interior regions of a textured organ) in a 3D

visualization environment, for example in the Model Guided Rendering framework pro-

posed in Merck (2009).

This chapter has four main sections. First, there is a review of the dissertation’s

thesis statement and claims in the context of the methods and materials presented in

the previous chapters. Second, there is a discussion of some of the problems of the

methods and framework presented along with some limitations of my study. Third,

there are suggestions of directions for future research and for method improvements.

Fourth, there are implementation details about each component of MGTS.

7.1 Thesis Statement and Claims Revisited

In this section, I revisit the contributions and the thesis that were presented in Section

1.4 to summarize how each one was addressed.

This dissertation supports the following thesis:

Combining texture synthesis (in 2D and 3D) with volume parameterization provides

a framework for generating illustration of patient-specific data. Also, structural and

material variations of the organs can be illustrated by textures obtained using a meta-

morphosis approach that takes intensity and structure into account to generate a smooth

transition from one texture to another.

There are two parts to the demonstration of this thesis. First, the methodology
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claims have been presented in Chapters 3, 4, 5, and 6. These methods are texture meta-

morphosis and model-based guidance generation methods for creating the inputs of the

framework, and surface and solid texture synthesis methods for generating model-specific

textures using these inputs. The contribution of texture metamorphosis is discussed in

contribution number 2 below. The contribution of model-based guidance generation

is discussed in contribution number 1 below. The contributions in texture synthesis

are discussed in contributions numbered 3 and 4. The contributions in model-based,

material-specific texture synthesis are discussed in contribution number 5 below.

Second, there are the results obtained by these methods that have been presented

in these sections. Texture metamorphosis has been applied to different textures that

have different complexities, and the results along with comparisons have been presented

in Section 3.7. Model-based guidance information is created for different anatomical

models that have medial representations, such as along-object vector fields and material

transition information for different instances of the scm presented through Chapter

4. Surface and solid textures synthesized for different anatomical models have been

presented in Section 5.4 and Section 6.9. The contributions related to the demonstration

of the framework have been presented in contribution numbers 6 and 7 below.

The contributions of this dissertation are as follows:

1. A method of computing 3D model-based guidance information, such

as an orientation field and a material transition field, for different

instances of the same anatomical organs using a volumetric model-

based coordinate system obtained from a medial representation.

Guidance information, such as orientation and material transition field, for a spe-

cific model is one input of texture synthesis for creating anisotropic, model-based

textures. Though some applications use sketch-based techniques for creating this

information, this process is too time-consuming and may not be consistent for

different instances of the same model. Chapter 4 presented a new method for ob-
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taining model-based guidance information using medial representations. One can

obtain consistent orientation and material transition fields for different instances of

various anatomical models by extending the along-, across-, through- (X2U) map

proposed in Merck (2009). This approach does not require any user intervention.

2. A method of generating progressively changing 2D exemplar textures

using a new energy-based metamorphosis approach. This method uti-

lizes appearance information along with the structural features in a

single framework to create transformations from a source texture to

a target texture.

The synthesis of progressively-variant textures requires progressively-variant 2D

exemplar textures as input. As with existing methods, my method does this

via texture interpolation. However, my metamorphosis method overcomes the

weaknesses of the interpolations in the existing methods (see Figure 3.9 and Figure

3.10), which are based on the warping of the structural features of the textures

without considering the transition of the intensity values.

The optimization-based texture metamorphosis approach for texture interpola-

tion, presented in Chapter 3, is a new energy optimization scheme derived from

optimal control principles that exploits the structure of the metamorphosis op-

timality conditions. It considers changes in pixel position and pixel appearance

in a single framework. In contrast to previous techniques that compute a global

warping based on feature masks of textures and use texture synthesis to generate

the morphed textures, the approach allows transforming one texture into another

by considering both intensity values and structural features simultaneously. The

approach presented in this dissertation can morph stochastic, semi-structural and

regular textures, with different levels of complexity. Results along with the com-

parison with their methods have been presented in Section 3.7.

154



3. A method for constraining the synthesis of structural primitives in

a solid texture using medial-based representations of the structural

primitives (textons). The solid textures are synthesized from three 2D

exemplar textures. The medial representations are generated from the

2D exemplar textures, and they are used in forming the synthesized

solid texture.

Because the original exemplar-based solid texture synthesis algorithm lacks shape

information of structural primitives (textons) in exemplar textures, it performs

poorly in synthesizing these structural primitives in the output solid texture. Pa-

rameterization of the textons provides the additional information for constraining

the selection of values from the exemplar textures in texture synthesis. In Section

6.8 I showed that medial axis parameterization of the textons along with their

labels improves the quality of the synthesized textures, especially for textures that

have structural primitives on a uniform background (e.g., gland texture inside the

prostate). For simpler shape textons, such as stripes in muscles, no improvement

was observed since basic exemplar-based texture synthesis performs quite well for

these textures.

4. A method for controlling the number of textons in a texture synthe-

sized from exemplars using a texton-based histogram matching tech-

nique in texture synthesis.

In most texture synthesis approaches the purpose is to maintain the features in

the exemplar texture as much as possible in the synthesized texture. The recent

work on position and index histogram matching techniques is effective for syn-

thesizing textures that contain the values from the exemplar texture uniformly.

For example, structural textures that have same number of textons as the exem-

plar texture can be created via these techniques. Controlling the numbers of the
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textons in the synthesized texture can be beneficial for illustrating different cases,

such as hyperplasia in specific organs. In Section 6.3.3 I introduced a new method,

texton-based histogram matching, for manipulating the number of textons in the

synthesized texture. The results were illustrated for prostate textures.

5. A method of synthesizing progressively-varying, anisotropic, model-

based surface and solid textures for obtaining “Netterly” renderings

of patient-specific anatomical organs using a novel framework. This

framework uses model-based guidance information and progressively

changing 2D exemplar textures as input and creates textured anatom-

ical models as output. Depending on the application, the contributions

in item 3 and 4 are used in texture synthesis.

When synthesizing isotropic, uniform textures from a 2D exemplar texture, it is as-

sumed that the output texture will have the same orientation, scale, and material

features as in the given exemplar texture. On the other hand, when synthesiz-

ing anisotropic, region-specific textures, the output texture should be synthesized

based on a guidance information using interpolated exemplar textures as input.

Specifically, the guidance information specifies how the values in the output tex-

ture will be selected from the interpolated exemplar textures. It contains the

variation of a particular information (e.g., orientation, scale, material type) in the

output texture. As indicated in item 1, in this dissertation this guidance infor-

mation comes from model-based volumetric parameterization. The second input,

region-specific interpolated exemplar textures, is used to create the output tex-

tures under the guidance information. For instance, if material transition is given

as the guidance information, the interpolated textures should contain variation

in their material characteristics. My contributions of methods for creating the

interpolated textures were discussed in item 2.
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As presented in Chapter 6, using the model-based guidance information on and

inside the model and 2D interpolated exemplar textures as input, the MGTS

framework synthesizes textures on and inside the model that change progressively

in orientation and material according to the given guidance information. Depend-

ing on the application and texture type, the synthesis process can take advantage

of the structural texture primitives and their parameterization. Contributions re-

lated with these were discussed in contribution numbers 3 and 4. In the results

section of Chapter 5 and Chapter 6, the robustness of this method was illustrated

with a variety of textures applied to different anatomical structures, such as the

muscles and the mandible.

6. Demonstrating that MGTS supports the illustration of any patient’s

segmented data so as to achieve illustrative visualization of his/her

organs. This is useful to identify and convey the shape of the organs

in a complex environment with many structures.

This claim summarizes my thesis and has been dealt with throughout this disser-

tation. In particular, surface and solid texture synthesis methods, both of which

allow synthesizing patient-specific textures for the anatomical models, are used to

achieve this goal. These algorithms were applied to a variety of anatomical organs

(e.g., the mandible, the scm, the thyroid) using a variety of textures (stochastic,

semi-structural, structural, static, non-static). In all these textured models, the

objective was to obtain illustrative rendering of the anatomical organs using tex-

tures along with their stochastic and structural features for improving anatomical

understanding of the acquired data. The results were presented in Section 5.4 and

Section 6.9.

7. Demonstrating the usage of texture in radiation dose visualization

to help identification of organs whose surfaces are washed with dose
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colors.

For the applications in which color is used to encode a procedural information, like

dose in radiation treatment planning, texture can be used to identify the models

and their shapes. In Chapter 6.9 the textured models are used for identifying the

objects in a complex environment under the dose.

7.2 Limitations

In this section limitations of the MGTS framework along with the limitations of the

related methods used in it are discussed:

1. Abstraction degree via textures: Illustrative textures in medical illustrations are

being used for depicting the characteristics of organs within the human body,

while at the same time removing details that are not necessary for understanding

their material characteristics, shape and functions. On the other hand, textures

obtained with photography and modern scanning methods provide too many de-

tails and too complex lighting operations that can decrease the understanding of

the essential information in the organs. Thus, the kind of textures to be used is

a decision that should be made depending on the degree of abstraction wanted

in a particular application. It is essential to adapt the appearance of objects or

regions to their relevance for a specific application. For instance, for a surgical

simulation, photographic textures are more appropriate since this trains the users

for interacting with the real data in the future. Though in this dissertation I used

the textures that are not realistic, the methods utilized in this dissertation can be

extended to realistic textures.

2. Sources of medical illustrative textures: Due to the lack of a standard database for

medical textures, the textures used as exemplar textures in the MGTS framework

have been cropped from textbook medical illustrations. However, these cropped
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exemplars include variations due shading and lighting affects used in the illustra-

tions. This causes problems in texture synthesis. This work tried to remove these

variations using imaging toolboxes as a means of creating the exemplar images.

Though my results are preliminary for a clinical application, controlled user studies

can be done with doctors and medical illustrators for evaluating my system. In this

study it could be investigated whether the addition of textures help identification

of the organs.

3. Dependency on segmentation: Segmentation of anatomical organs is a challenging

task. Careful segmentation is important for many applications, such as radiation

treatment. Minimally interactive solutions using different approaches is an area

of ongoing research. In this dissertation it is assumed that the segmentation of all

relevant structures with their medial representations are available for synthesizing

textures specific to that segmented model.

The methodologies included in the MGTS framework also have some limitations:

1. Selection of texture features: Texture features, which were presented in detail

in Section 2.1.2, are essential for representing the content of the textures. Dif-

ferent texture features are selected depending on the purpose of the technique

and the type of the texture (e.g., stochastic, semi-structural, structural). In both

metamorphosis and synthesis, texture features are important for preserving and

propagating the stochastic and structural details of the textures. Structural tex-

ture features, such as texton masks and signed distance fields based on this masks,

are used in texture synthesis and metamorphosis in the MGTS framework. The

process of deriving texture features is not done automatically in every texture. For

instance, the textons are specified by the user using an imaging toolbox. Since tex-

ture analysis and derivation of texture features is not the focus of this dissertation,

available techniques were used for achieving that.
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2. Preservation of texture content: In texture synthesis the details of the textures

can be lost due to the averaging in optimization or to lack of control on global

statistics in the best neighborhood search. Even when the texture is invariant,

preserving its features is a hard problem by itself. When the texture has many

overlapping structural primitives, this problem becomes much harder. This is

one of the limitations of my approach, which I tried to avoid by using additional

feature channels in texture synthesis. However, this approach is insufficient to

achieve that, and further investigation is needed.

3. Construction of 3D textons from 2D textons: Constructing 3D information from

2D information is a difficult task. The correspondences between the texture fea-

tures and preservation of the details are important. In solid texture synthesis

medial representation of the textons along with signed distance fields are used

for setting these correspondences constraint during neighborhood search in syn-

thesis. This work is an initial attempt to solve this problem. That solution is

limited in the sense that the correspondences could use a different form of medial

representation.

4. Computation time: Model-based texture synthesis happens in world-coordinates as

opposed to the other techniques that warp cubic textures in object coordinates to

fill the space. Thus, every voxel in world-coordinates has to be synthesized in this

coordinate system in order to fill the space inside the model. Though this solves

the problem of preserving the structural continuity in the synthesized textures,

it brings computational expense. This dissertation focuses on the accuracy of

the techniques more than the efficiency of them. However, improvements in the

computational efficiency can be done via different techniques, such as subdivision

techniques for the model.
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7.3 Future Work

In the future the possibility of adding information from different sources to overcome the

limitations of a specific data source will be important for various applications, such as

guiding complex work processes, expressing uncertainty in the raw data, and improving

communication across domain disciplines. New methods and intermediate steps must

then be developed in illustrative visualizations to support the integration and visual-

ization of different sources of information. In this section possible near-term additions

to the framework are discussed first. Then the potential applications of illustrative vi-

sualization methods from this dissertation are covered. Finally, some suggestions for

improving the algorithms presented in this dissertation are discussed.

7.3.1 Future directions for the framework

Some of the possible additions to the framework can be as follows:

1. Evaluation of renderings: In my dissertation evaluating the success of the illustra-

tions generated using the MGTS framework is a hard task as for other illustrations.

In general, the evaluation of renderings can be done by measuring some quality or

by asking users expert on the application. Measuring the quality of the illustrative

renderings is hard to achieve since it is hard to find the right quality to measure.

2. Using image-based guidance information for understanding acquired medical data

sets: In this dissertation the model-based guidance information is used for con-

straining texture synthesis inside a model. Though this guidance information is

based on the medial representation of a segmented model, which is obtained via

analyzing the underlying intensity information in the acquired data set, it does

not give any information about the tissues in different regions of the anatomical

model. In the future, tissue-specific guidance information can be derived directly

from image intensities in the acquired data set (CT or MRI) or images derived
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from them. This information can be used as guidance information or for selecting

region-specific textures in texture synthesis. In this way, I believe we can provide

more information about the patient in an effective and understandable way to the

doctors.

Using such guidance information for other datasets, especially ones that include

both healthy and diseased anatomies, can be an important next step to use the

approaches presented in this dissertation. One example of such an image-guided

texture synthesis approach is presented in Patel et al. (2009) for the visualization

of seismic data. In that approach information available in the raw seismic data

is interpreted to guide the creation of geoscientific illustrations via textures. In

these illustrations, textures and their features (e.g., orientation, scale, intensity) on

planar surfaces are used to emphasize layers and faults in seismic data as opposed

to labeling them.

3. Adapting different rendering styles: The properties of a texture, such as its scale,

orientation, color, and pattern, are a common means to encode different sources

of information. In the MGTS framework, the combination of these properties is

used to visualize the material characteristics of the anatomical structures. Other

visualization techniques could be integrated into the MGTS framework for other

visualization purposes. For example, silhouette and feature lines can be added to

the illustrations to emphasize the shape of objects, and hatchings can be employed

to highlight the curvature of objects as in Saito & Takahashi (1990). Thus, com-

bination and selection of different rendering styles to visualize different objects

should be investigated in the future.

4. Labeling of anatomical models: Labels in visualizations give textual explanations

about the data. Label placement is an important problem in visualization since

labels should be placed near to the relevant information, and they should not
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occlude other labels. In Luboschik et al. (2008) an approach that considers other

visual elements and labels for solving label placement problem is presented for

information visualization purposes. In anatomical illustrations, there are two types

of labeling: internal and external. For internal labeling, medial-axis alignment is

used as a common method in putting labels on the objects. In the future, this can

be added to our framework. Axis-aligned labels can be put on textured models in

order to give more explanations about the organs. This is an easy addition since

medial representations of the models are assumed to be given in this dissertation.

5. Standard medical texture database: As indicated in item 2, in geoscientific illus-

trations textures are used to encode the information available in the data. To

ease communication, geologists and geoillustrators use a standardized texture lan-

guage for representing rock types in these illustrations. There is a need for a

similar database for medical textures in order to provide a common language in

doctor-doctor and doctor-patient communications. Especially in the future when

image-based guidance information is used to interpret the acquired data, this will

be a more important issue since encoding should use a common language to avoid

possible confusions.

6. Visualization of sub-resolution detail using textures: The 2D exemplar textures

used in this dissertation are assumed to have simple details. Though this is helpful

for identification purposes, it should be improved in the future for clinical appli-

cations. For some applications, it can be useful to generate the missing details

via different textures depending on the sub-resolution desired by the user. Micro-

scopic textures might be utilized to obtain the desired zooming effect. Investigating

methods for obtaining this effect can be an interesting future direction.

7. Visualizing uncertainty via textures: Textures synthesized using MGTS can change

progressively from one region to another to visualize the material transition. This
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transition effect can be used for other applications. For instance, textures can

be used to show detailed pictures of something we are very uncertain about. For

segmentation they can be used to allow visualizing the uncertainty of the seg-

mentations in regions of the 3D segmented objects. The intensity values can be

manipulated to express the level of uncertainty.

8. Applications besides medicine: The methodology presented in this dissertation can

be applied to other applications for obtaining illustrative visualizations in order

to encode information in the underlying data and identifying models inside the

volume. One example can be flow visualization.

7.3.2 Future directions for methodologies

To solve the limitations of the framework and the methods in it, further investigation is

necessary. In this section, possible future directions are presented to solve some of these

limitations:

1. Possible improvements for texture metamorphosis:

(a) Usage of different distance metrics: Integrating alternative features and land-

marks into the energy equation in order to better control the transformation

of the textures can be a good future direction.

(b) Metamorphosis between multiple textures: In this dissertation interpolation

between two input textures is investigated. It would be interesting to design

a new optimization framework with additional penalty terms and constraints

to perform the interpolation among a number of input textures.

(c) Metamorphosis between solid textures: The aim of metamorphosis was to

obtain interpolated 2D exemplar textures in this dissertation. In the future,

metamorphosis can be extended to morphing solid textures.
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2. Possible directions for guidance information:

(a) Guidance information for multi-figure objects: Some anatomical organs are

represented by multi-figure medial representations. For these objects, com-

putation of the along-, across-, through- object parameterization should be

handled in the future for computing the model-based guidance information

specific to these organs.

(b) Guidance information from s-reps: In slabular m-reps, not counting crest

spokes, each atom is composed of two spokes of equal length, one pointing

towards the top boundary and the other towards the bottom boundary. In

such cases, both of the spokes in an atom change together when the object

deforms. In s-reps, which are presented in detail in Pizer et al. (2011), the

spokes can change independently. Thus, when a specific boundary feature

moves on the object, its corresponding spoke moves on the medial sheet, pre-

serving the correspondence. This correspondence preservation can be useful

for obtaining consistent visualizations of similar objects.

(c) Different-sources of guidance information: In this dissertation, one input to

the framework was the segmented anatomical organs along with their me-

dial representations. This medial representation was used for computing the

guidance information. However, having a medial representation for a seg-

mented anatomical organ may not be possible for every case. In the future,

alternative ways of computing around/along/through coordinates can be in-

vestigated. One possible approach can be having model-based guidance infor-

mation for an average model of a specific anatomical organ, and modifying

it for different instances using the deformation between the average model

and that specific instance. The guidance information on that average model

could be created using a sketch-based approach.
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3. Possible directions for texture synthesis:

(a) Material-specific histogram-matching: The decision about how the textons

are distributed in the synthesized texture is made by considering illustrations

in textbooks. In the future, photographs of the organs can be used for mea-

suring the scattering properties of a given set of base materials. Based on

this guidance, different histogram-matching techniques, besides textons, can

be used for texture synthesis.

(b) Advanced parameterization methods for texture features: There are several

kinds of texture features that can be used for preserving structural features

in texture synthesis that were not discussed in this dissertation. For instance,

I utilized an approximate medial representation for creating 3D texton struc-

tures from 2D structures. Though in this dissertation it is shown that this

improved the quality of the results, in the future more precise parameteriza-

tion, such as shock graphs (Siddiqi et al. (1998)), can be used for solving this

problem.

(c) Computation time: One of the limitations of the texture synthesis approach

that I presented is that the computation time increases with the number

of voxels inside the model. This might not be a problem in smaller objects

with low detail, but it could become prohibitive with large objects with many

details. Therefore, in the future adaptive strategies can be used for increasing

the efficiency of the approach.

7.4 Implementation

The MGTS framework consists of three main components. All of the methods in these

components have been implemented:

166



1. Texture metamorphosis: This component is implemented in Matlab. This com-

ponent gets two 2D images as input, and it generates 2D images between them.

The parameters for this component, such as the number of intermediate images,

can be set by the user.

2. Model-based guidance information: This component is implemented in Visual

C++. It gets the 3D mesh of the object and its medial representation as in-

puts, and it generates different model-based guidance information for each voxel

inside the model depending on the application.

3. Texture synthesis: This component is implemented in Visual C++. This compo-

nent gets 2D exemplar textures, the 3D mesh of the model, and the model-based

guidance information as input. It synthesizes textures for that specific model us-

ing these inputs. For the solid textures it saves the output in the .vol file format,

which can be used as input in the MGR framework. For the surface textures, it

saves them as 2D output textures for each patch, which can also be read by other

rendering frameworks.

This code can be found in the web page www.cs.unc.edu/˜ilknurk/MGTS.
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