
Medial Techniques for Automating Finite Element

Analysis

by

Jessica Renee Crawford Crouch

A Dissertation submitted to the faculty of The University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill

2003

Approved by:

Stephen M. Pizer, Advisor

Edward Chaney, Reader

Guido Gerig, Reader

Sarang Joshi, Reader

Carol Lucas, Reader

Julian Rosenman, Reader

ii

Copyright c© 2003

Jessica Renee Crawford Crouch

All rights reserved

iii

JESSICA RENEE CRAWFORD CROUCH. Medial Techniques for
Automating Finite Element Analysis.

(Under the direction of Stephen M. Pizer.)

ABSTRACT

Finite element analysis provides a principled method for modeling physical defor-

mation and is an ideal tool to apply when a medical imaging problem requires the

simulation of tissue deformation. The drawback to using finite element analysis for

imaging problems is the significant amount of labor and computational time that is

often required to construct a finite element model and solve the resulting large system

of equations. In particular, challenging questions include

1) how to generate a mesh from an image,

2) how to derive boundary conditions from images of deformed objects, and

3) how to solve the system of finite element equations as efficiently as possible.

These problems make the finite element method prohibitively expensive for some

applications and thus make it unlikely to be used in a clinical setting.

The use of medial models called m-reps opens the door to techniques that provide

solutions for these challenges.

1) A new meshing algorithm is presented that automatically generates a hexa-

hedral mesh from an m-rep segmentation of an image.

2) M-rep segmentations of an object in different stages of deformation can be

used to establish an approximate correspondence between points on the surfaces

of the different object configurations. This is sufficient to initialize finite element

displacement boundary conditions that enable the computation of a mapping

between two shape configurations.

3) An m-rep based mesh subdivision algorithm is presented which together with

a multi-grid solution algorithm to improves solution speed for the finite element

system of equations.

Taken together, these m-rep based algorithms allow the finite element method to be

applied to non-rigid registration problems in an automatic and efficient way.

iv

The methods have been tested using CT images of a phantom pelvis. Deforma-

tion accuracy estimates were obtained by calculating the difference between (a) the

observed locations of a constellation of brachytherapy seeds in an image of a deformed

prostate and (b) the predicted seed locations that result from applying the finite ele-

ment deformation to an image of the undeformed prostate. The average error was of

the same order as the seed segmentation error that was due to image resolution.

v

Acknowledgments

The teaching, encouragement, and support of many people have enabled me to com-

plete this dissertation and the Ph.D. course of study. First, I would like to thank

Steve Pizer for the energy and dedication he brings to both research and teaching. I

have learned a great deal from his instruction and his example. I would also like to

thank the members of my committee – Steve Pizer, Ed Chaney, Sarang Joshi, Guido

Gerig, Carol Lucas, and Julian Rosenman – for lending their expertise and experience

and for investing time in my education and research. Additionally, I would like to

thank Gig Mageras and Marco Zaider at Memorial Sloan-Kettering Cancer Center

who have been valuable collaborators in this research.

I am grateful for the rich collaborative environment provided by the members of

the Medical Image Display and Analysis Group (MIDAG) at the University of North

Carolina at Chapel Hill. The MIDAG graduate students, faculty, and staff have as-

sisted me in many ways and on many occasions. In particular Tim Quigg, Gregg

Tracton, and Graham Gash have provided valuable administrative and technical sup-

port for this work.

I have been financially supported through two programs. The Lucent Foundation’s

Graduate Research Program for Women (GRPW) funded the first four years of my

graduate education and provided me with a valuable learning experience at Bell Labs

and a mentor, Brian Kernighan. NIH grant CA P01 47982 funded the final two years

of this work.

I am grateful for the instruction and guidance I received as an undergraduate

from the computer science faculty at the University of Richmond that prepared me

for graduate school. In particular Gary Greenfield, my honors thesis adviser at the

University of Richmond, first helped me delve into research and encouraged my pur-

suit of a graduate degree.

I would also like to express appreciation for the encouragement and support pro-

vided by my family and friends from outside the UNC community. Shannon Pollard,

my roommate of three years and good friend, has provided me with a sympathetic

vi

ear and has been an invaluable sounding board and source of encouragement since

we first met on candidate’s day. She and her husband Robert have graciously hosted

me on a number of occasions. My entire family and most especially my parents,

Jackie and Frances Crawford, have supported me, believed in me, and helped me find

the perseverance to finish this work. My husband, Eric, has been unfailingly patient

throughout this process. His confidence in me and his encouragement have sustained

me for the past six years. Finally, I am grateful to God for the opportunities I have

had to work, learn, and interact with everyone through this process.

vii

Contents

Abstract iv

Acknowledgments vi

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Motivating Application: Brachytherapy 1

1.2 Image Registration with Physical Deformation Modeling 2

1.3 Overview of Approach . 4

1.4 Thesis and Claims . 5

1.5 Applicability to Non-Brachytherapy Problems 6

1.6 Overview of Document . 6

2 Deformation Modeling Background 8

2.1 Introduction . 8

2.2 Mathematical Definitions . 8

2.2.1 Strain . 8

2.2.2 Stress . 9

2.3 Deformable Materials . 10

2.3.1 Linear Elastic Solid . 10

2.3.2 Hyperelastic Solid . 11

2.3.3 Viscoelastic Solid . 11

2.4 Prostate Model . 13

2.5 Implementation of Constitutive Models 14

2.6 Equations of Linear Elasticity . 14

2.6.1 Generalized Hooke’s Law . 14

viii

2.6.2 Equilibrium . 16

2.6.3 Linear elastic PDE – Strong form 17

2.7 Algorithms for Discretizing and Solving PDEs 18

2.7.1 Finite Difference . 18

2.7.2 Finite Element . 18

2.7.3 Finite Volume . 19

2.8 Finite Element Formulation of Linear Elasticity 20

2.8.1 Linear elastic PDE – Weak form 20

2.8.2 Discrete approximation of the solution 23

2.8.3 Boundary conditions and Solution 25

3 Meshing Background 26

3.1 Introduction . 26

3.2 Mesh Design Options . 26

3.2.1 Element Shape . 27

3.2.2 Isoparametric Elements . 27

3.2.3 Element Size and Order . 30

3.2.4 Consistency and Continuity 32

3.2.5 Continuous vs. Overset Meshes 32

3.3 Meshing Algorithms . 34

3.3.1 Structured Meshing Algorithms 35

3.3.1.1 Algebraic Mesh Generation 35

3.3.1.2 Elliptic Mesh Generation 37

3.3.1.3 Hyperbolic Mesh Generation 39

3.3.2 Unstructured Meshing Algorithms 41

3.3.2.1 Delaunay Based Meshing 41

3.3.2.2 Advancing Front, Paving, and Plastering 43

3.3.2.3 Superposition and Grid-Based Methods 46

3.3.2.4 Quadtree / Octree Methods 46

3.3.2.5 Medial Methods . 48

3.3.2.6 Spatial Twist Continuum and Whisker Weaving . . . 50

3.3.3 Summary of Meshing Algorithms 52

3.4 Medical Image Based Meshing . 54

ix

4 M-Rep Based Meshing Algorithm 56

4.1 M-Reps . 56

4.1.1 Medial Model Concept . 56

4.1.2 Anatomy of an M-Rep Figure 57

4.1.3 Alternative Object Based Coordinate Systems 61

4.1.4 Multi-Figure M-Reps . 66

4.1.5 Current M-Rep Software . 68

4.2 Meshing M-Rep Objects . 68

4.2.1 Single Figure Meshes . 69

4.2.2 Mesh Quality Optimization 74

4.2.3 Mesh Subdivision . 75

4.2.4 Multi-Figure Meshes . 77

4.2.4.1 Structure of multi-figure meshing algorithm 79

4.2.4.2 Leaf figure meshing 80

4.2.4.3 Root figure meshing 90

4.2.4.4 General figure meshing 94

4.2.4.5 Blend Region Meshing 97

4.2.4.6 Limitations of multi-figure meshing 97

4.3 Meshing Space External to M-reps 98

5 Boundary Conditions 102

5.1 Boundary Conditions for Linear Elastic Finite Element Problems . . 102

5.2 Initial Approximation . 104

5.3 Boundary Condition Optimization . 106

6 Multiscale Solution Algorithm 109

6.1 Solution on a Base Level Mesh . 109

6.2 Solution on a Subdivided Mesh . 112

6.2.1 Overview of Multigrid . 112

6.2.2 Solution Algorithm . 115

7 Experimental Results 119

7.1 Prostate Phantom Experiment Overview 119

7.2 Mapping Uninflated → Inflated . 120

7.3 Mapping Inflated → Uninflated . 126

7.4 Error Sources . 126

x

7.5 Effect of Varying Elastic Parameters 128

7.6 Effect of Segmentation Error on Registration Results 129

7.7 Solution Efficiency . 132

7.8 Geometry Based Deformation vs. Mechanical Deformation 134

7.9 M-rep Generated Hexahedral Mesh vs. Tetrahedral Mesh 137

8 Conclusion 140

8.1 Claims Revisited . 140

8.2 Future Work . 146

8.2.1 Further elaboration and validation of current work 146

8.2.1.1 Local mesh subdivision 146

8.2.1.2 Experimentation and validation with clinical images 146

8.2.1.3 Implementation issues 148

8.2.2 Major extensions to current work 148

8.2.2.1 Overset meshing with m-reps 149

8.2.2.2 Non-linear material models 150

8.2.3 Long range possibilities of physically based modeling with med-

ical images . 151

Bibliography 153

xi

List of Tables

4.1 Object coordinates of mesh nodes . 72

6.1 Solution iterations required for subdivided mesh levels 111

7.1 Magnitude of seed movement . 120

7.2 Magnitude of seed movement for a subset of seeds 120

7.3 Error estimates for the Uninflated → Inflated mapping 121

7.4 Relative error estimates for the Uninflated → Inflated mapping . . . 122

7.5 Error estimates for the Uninflated → Inflated mapping based on a

subset of seeds . 122

7.6 Relative error estimates for the Uninflated → Inflated mapping based

on a subset of seeds . 123

7.7 Change in predicted seed locations due to use of subdivided meshes . 125

7.8 Error estimates for the Inflated → Uninflated mapping 126

7.9 Relative error estimates for the Inflated → Uninflated mapping . . . 127

7.10 Error estimates for predicted seed locations with varied elastic parameters129

7.11 Relative error estimates for predicted seed locations with varied elastic

parameters . 130

7.12 Error estimates for seed locations computed at mesh subdivision level

2 using perturbed m-rep shape models 131

7.13 Relative error estimates for seed locations computed at mesh subdivi-

sion level 2 using perturbed m-rep shape models 132

7.14 Complexity of Subdivided Mesh Levels 133

7.15 Solution Iterations for Subdivided Mesh Levels 133

7.16 Time Required for Stiffness Matrix Computation 134

7.17 M-rep geometry based displacements compared with finite element

computed displacements . 135

7.18 Error estimates for m-rep geometry based prediction of seed displace-

ments . 135

xii

7.19 Relative error estimates for m-rep geometry based prediction of seed

displacements . 135

7.20 Error estimates for m-rep geometry based prediction of seed displace-

ments for a subset of the seeds . 136

7.21 Relative error estimates for m-rep geometry based prediction of seed

displacements for a subset of the seeds 136

7.22 Size of level 1 hexahedral and tetrahedral prostate meshes 138

7.23 Comparison of error estimates for predicted seed locations: m-rep gen-

erated hexahedral mesh vs. tetrahedral mesh 138

7.24 Comparison of relative error estimates for predicted seed locations:

m-rep generated hexahedral mesh vs. tetrahedral mesh 139

xiii

List of Figures

2.1 Stress/Strain graphs for linear elastic and hyperelastic solids 11

2.2 Creep functions Maxwell, Voigt, and Kelvin viscoelastic models . . . 12

2.3 Relaxation functions for Maxwell, Voigt, and Kelvin viscoelastic models 13

2.4 A Cartesian grid compared to a boundary fitted grid 19

3.1 3D linear elements . 27

3.2 Hexahedral element . 28

3.3 Quadratic quadrilateral and quadratic hexahedral elements 30

3.4 Hanging nodes . 32

3.5 Overset grid . 33

3.6 Structured vs. unstructured mesh . 34

3.7 Boundary correspondences for algebraic and elliptic grid generation . 36

3.8 Algebraically generated grid . 37

3.9 Elliptically generated grid . 38

3.10 Hyperbolically generated meshes . 41

3.11 Meshing via Delaunay triangulation 43

3.12 Advancing front mesh generation . 45

3.13 Price and Armstrong’s meshable solid primitives 49

3.14 2D spatial twist continuum . 51

3.15 3D spatial twist continuum . 51

3.16 Surface mesh spatial twist continuum 52

4.1 2D figure with a branched medial axis 57

4.2 M-rep object structure . 58

4.3 Five regions of an m-rep figure . 62

4.4 Diagram of the (A,B,C) coordinate system in the rim region 63

4.5 Diagram of the (A,B,C) parameter space with the five m-rep regions

labelled . 64

xiv

4.6 Explanation of host figure surface mesh diagrams 66

4.7 Tree data structure of multi-figure m-rep models 67

4.8 Medial sheet sampling grid for mesh construction 70

4.9 Node placement for m-rep based meshes 71

4.10 Construction of prostate mesh . 72

4.11 Transparent prostate mesh . 73

4.12 Construction of pelvis mesh . 73

4.13 Histograms of prostate mesh element quality pre and post optimization 74

4.14 Histograms of pelvis mesh element quality pre and post optimization 75

4.15 Element subdivision patterns for hexahedra, pyramid, and tetrahedra

elements . 76

4.16 A prostate mesh at three scale levels. 76

4.17 Meshing order for an m-rep figure tree 78

4.18 Transition region meshing patterns 81

4.19 Host/subfigure intersection surface illustrated 82

4.20 Transition mesh interface patterns . 85

4.21 Attachment transition mesh templates for adjusting the number of rows 86

4.22 Attachment transition mesh templates for converting between host at-

tachment grid pattern and subfigure attachment grid pattern 86

4.23 Attachment transition mesh templates for increasing the number of

columns . 87

4.24 Attachment transition mesh templates for decreasing the number of

columns . 88

4.25 Sample column transition pattern . 88

4.26 A completed attachment transition mesh pattern 89

4.27 A more complicated attachment transition mesh pattern 89

4.28 An m-rep subfigure mesh . 90

4.29 Host figure surface diagram: collection of mesh line segments from

subfigure footprints . 91

4.30 Host figure surface diagram: mesh line segments extended and con-

nected to form continuous loops . 92

4.31 Host figure surface diagram: additional mesh lines interpolated to fill

gaps . 92

4.32 Host figure surface diagram: matched points on opposite sides of the

host figure’s surface . 93

xv

4.33 Interior mesh nodes interpolated between host surfaces 94

4.34 A host figure mesh that is compatible with the mesh of its subfigure. 95

4.35 Compression of an attachment transition mesh to avoid interference

with another attachment transition region 96

4.36 Blending diagram . 97

4.37 Mesh of blended object . 98

4.38 Surface mash effect of the medial sheet’s (u,v) parameter space corner 99

4.39 Tetrahedral and pyramid mesh that fills in space between modeled

pelvis objects . 100

4.40 Three subdivision levels of the prostate mesh and the surrounding

tetrahedral/pyramid mesh elements. 101

5.1 Boundary condition estimation based on m-rep geometry correspon-

dences. 105

5.2 Optimization of m-rep based boundary conditions 107

6.1 Error smoothing . 113

6.2 Multigrid schedules . 114

6.3 Multiscale collection of 2D meshes, as used by the mulitgrid method . 115

6.4 Solution schedule . 116

6.5 Subdivision illustration . 118

7.1 Original and computationally deformed prostate mesh 123

7.2 Undeformed, computationally deformed, and physically deformed CT

prostate images . 124

7.3 Histogram total error for seed location prediction 124

7.4 Histograms of the x, y, and z error components for seed location pre-

diction . 124

7.5 Perturbed prostate models for examining the effect of segmentation

errors on the prediction of seed displacement 131

7.6 Tetrahedral prostate mesh . 138

8.1 Hexahedral element subdivision patterns 147

xvi

Chapter 1

Introduction

1.1 Motivating Application: Brachytherapy

For cancer patients, the success of radiation treatment is dependent first of all on

the development of a good treatment plan. A desirable plan provides a high dose

of radiation to tumor regions and minimizes the amount of radiation delivered to

normal tissue. Secondly, success is dependent on the accuracy of treatment delivery.

Accuracy is determined by how closely the treatment actually delivered corresponds

to the plan.

Image registration can be a factor in both of these aspects of radiation treatment.

At the planning stage, images of different modalities may need to be registered in

order to combine the best knowledge about the locations of tumor(s) and normal

anatomy structures. In some cases pre-operative and post-operative images need to

be registered so that radiation treatment can be planned for a region of tissue that

surrounded a tumor before it was surgically removed.

At the treatment delivery stage, image registration is being used experimentally

to help adapt treatment plans to a patient’s condition at the time of treatment.

The tomotherapy model for delivering external beam radiation can involve adapting

a treatment plan to a patient [49]. This work involves adapting a brachytherapy

treatment plan given an intra-operative patient image.

Deformations of the body between planning and treatment can be caused by

mechanical shifting, stretching, or compression of tissue, which may be due to factors

such as gravity, differences in filling of the bladder, or devices inserted to aid imaging.

The lack of fast, reliable, and automated registration algorithms has in the past

precluded the use of treatment techniques that would require computational image

registration at the time of treatment. Therefore, the availability of such algorithms

will open the door for new strategies to improve the accuracy of treatment delivery.

Brachytherapy is a form of radiation treatment for prostate cancer in which ra-

dioactive seeds are implanted in the prostate to continuously deliver radiation to the

surrounding prostate tissue. A group of researchers at Memorial Sloan-Kettering

Cancer Center (MSKCC) are investigating a method for improving brachytherapy

outcomes by using magnetic resonance spectroscopy images (MRSI) in planning seed

placement. Magnetic resonance spectroscopy can measure levels of choline and citrate

within the prostate with a resolution of .24 cm3. An elevated level of these chemicals

in a region is believed to indicate the presence of a tumor deposit. Therefore the

MRSI modality may allow prostate tumors to be localized better than has previously

been possible. The MSKCC researchers intend to use MRSI information about tumor

location to plan patterns of seed placement that will deliver especially high doses of

radiation to areas of the prostate which are shown to be cancerous [84].

In order to effectively implement these plans, a precise method of placing the seeds

must be available. Trans-rectal ultrasound is used to visualize the prostate, needle,

and seeds intra-operatively and to guide seed placement. However, the positioning

of the MRSI probe used in planning presses the prostate against the pubic bone and

flattens it. Because the prostate appears in the planning MRSI shifted and deformed

as compared to its appearance in the intra-operative ultrasound image, it would be

difficult to use the original planning image to direct seed placement. To be most

useful, the prostate in the planning image must be registered with the prostate in

the ultrasound image. An accurately registered pair of these images would provide a

powerful tool for guiding seed placement and following the pre-operative plan.

1.2 Image Registration with Physical Deformation

Modeling

Generally, if image registration is required in a clinical setting, then rigid registration

is used. Obviously rigid registration is insufficient for the brachytherapy applica-

tion since it does not account for the significant deformation of the prostate. Active

research in the image analysis community has led to the development of several cate-

gories of non-rigid registration algorithms. See [38], [39], or [15] for a detailed survey

of non-rigid registration algorithms.

Many non-rigid registration algorithms do not use information about the material

2

properties or geometry of an imaged object to constrain the computed deformation to

the realm of physically possible deformations. Examples include landmark algorithms

such as kriging [41] and related spline fitting methods such as thin plate splines [11]

and elastic body splines [23], as well as optical flow algorithms such as Demons [73].

Methods like these lack physically based constraints and are most appropriate for

registration problems for which the shape differences between images are not caused

by mechanical forces. For example, registration of images from different patients

or registration of atlas and patient images requires non-mechanical deformations.

Also, if the material properties of the imaged objects or other parameters of physical

deformation problem are unknown, the use of physically based constraints may be

impossible. However when the physical parameters of a deformation can be reason-

ably approximated and the registration problem involves images of a single patient

that evidence deformation caused by mechanical forces, a registration algorithm that

explicitly models the physical deformation offers a distinct advantage. Such an algo-

rithm can guarantee that the computed deformation is physically realistic, at least

insofar as its model accurately represents the imaged objects. The finite element,

finite volume, and finite difference algorithms all provide different methods for mod-

eling deformable objects and computing mechanical deformations. These algorithms

are discussed in more detail in chapter 2.

For the brachytherapy application the deformation evident in the images is known

to be caused by a compressive force from the imaging probe. Therefore it is natural

to choose a registration algorithm that models the mechanical deformation of the

prostate and surrounding anatomy. The finite element method is well suited for this

problem, but poses the following challenges:

1. A mesh of the problem domain is required. Mesh creation from an image

requires image segmentation and element creation in each segmented region.

These are very time-consuming tasks to perform manually, and automatic seg-

mentation and mesh creation are areas of open research.

2. The finite element method is computationally intensive. It involves the formu-

lation of a typically large system of linear equations. Formulating the system of

equations and solving the system can require so much computational time that

the process becomes impractical for applications with a time constraint.

3. The finite element method requires boundary conditions that define forces

and/or displacements applied to portions of the mesh. Defining these man-

3

ually is a time-consuming and error prone task.

This dissertation describes methods, based on a geometric representation called m-

reps, for solving all three problems.

1.3 Overview of Approach

This work addresses the challenges of applying the finite element method to the

problem of generating a physically based non-rigid registration of a 3D source and

target image pair. The basic steps of the approach are as follows.

1. M-rep models are fit to the objects of interest in the source image. In images

with clear boundaries m-reps have been shown to perform well in automatic

segmentations [55]. For images that lack clear object boundaries, manually

drawn object contours can be used to produce binary images for which the

m-rep segmentation algorithm performs well.

2. The source m-rep models produced in step 1 are fit to the objects of interest

in the target image. This results in target m-rep models that share the same

topology and object coordinate space as the source models but represent the

differing geometry exhibited by the deformed objects.

3. A multi-scale mesh is automatically constructed from the source m-rep models

using the algorithm described in chapter 4.

4. The shared object coordinate space of the source and target m-rep models

implicitly defines a correspondence between source and target object surface

points. These surface correspondences are taken as the initial displacement

boundary conditions needed to compute a finite element based deformation.

5. Optionally, the initial boundary conditions may be refined. The refinement

process consists of solving the finite element equations on the coarsest mesh

and iteratively adjusting the surface correspondences between the source and

target m-reps so that the energy of the computed deformation is minimized.

6. Given the boundary displacements, an efficient multiscale solution algorithm is

used to solve the system of finite element equations on successively finer meshes

until the desired precision is reached.

4

7. The finite element solution can be interpolated through the mesh to define the

displacement at every point in the mesh. By interpolating the displacements at

voxel locations in the source image, a deformed source image can be computed

that is registered with the target image.

1.4 Thesis and Claims

M-rep based multiscale mesh generation, m-rep derived boundary conditions, and

multiscale solution of a finite element system of equations are techniques that improve

the automation and efficiency of finite element analysis as it is applied to medical

imaging applications and to the prostate brachytherapy application in particular.

The claims of this dissertation are that

1. A novel method of automatically generating quality hexahedral meshes from

3D images has been developed. This m-rep based method is designed to mesh

anatomical objects found in medical images and is capable of meshing objects

that can be modeled with a tree of m-rep protrusion figures.

2. A mesh subdivision algorithm based on m-rep object coordinates has been devel-

oped. A subdivided mesh produced by this algorithm represents object shape

more smoothly and accurately than the original mesh, thereby reducing the

error in the finite element solution that is due to the discrete spatial represen-

tation of a continuous, curved geometric object. This is a benefit not provided

by straightforward Euclidean mesh subdivision.

3. The m-rep based correspondence between source and target objects provides a

good initial approximation for both the finite element boundary conditions and

the solution. An approximation to the boundary conditions is necessary for the

application of the finite element method. A good solution approximation can

reduce the number of iterations required to solve the finite element system of

equations.

4. The method presented in this dissertation produces good results for the problem

of non-rigidly registering prostate images.

5

1.5 Applicability to Non-Brachytherapy Problems

Although the brachytherapy application provides the motivation for the work pre-

sented here, it is just one example of a medical application that could be impacted

by the availability of a fast, physically based elastic registration algorithm.

Physically based non-rigid registration algorithms have been successfully applied

to images of the prostate [9] [47], brain [26], and breast [4]. In addition to radiotherapy

treatment planning, non-rigid registration can be useful in image guided surgery by

enabling a pre-operative planning image to be adapted to an intra-operative situation.

Motion tracking is another medical imaging application that could benefit from

non-rigid registration. Some cardiac studies require tracking heart wall motion through

contractions. Segmenting the heart wall or other structure of interest from a series of

images and then registering images from successive time steps produces the desired

estimation of the motion [52].

Looking beyond image registration, much of the methodology described here could

be readily applied to medical simulation problems. Finite element analysis is a natural

tool to use in simulation tissue deformations, and published results include maxillo-

facial surgery simulation [17], liver surgery simulation [20], and childbirth simulation

[37].

The hexahedral meshing part of this work has the potential to be applied even

more broadly to non-image based and non-medical problems. The meshing algorithm

could be applied to any finite element problem if a method was available for con-

structing problem-specific m-rep object models. Although current m-rep tools focus

on producing models of imaged objects, it is certainly possible that the m-rep in-

frastructure could be enhanced to support non-image based modeling. For example,

support could be added for conversion of boundary based models into m-rep format,

allowing the m-rep meshing algorithm to be applied to CAD generated models [72].

1.6 Overview of Document

Chapter 2 presents background on mechanical modeling techniques and finite element

analysis in particular. Chapter 3 provides a survey of existing meshing algorithms,

while chapter 4 describes a new m-rep based meshing algorithm for collections of

simple and complex objects. The assignment of boundary conditions is explained in

chapter 5. The multi-grid solution algorithm is presented in chapter 6, and experi-

6

mental results are given in chapter 7. Finally, a discussion of conclusions and future

work can be found in chapter 8.

7

Chapter 2

Deformation Modeling Background

2.1 Introduction

Deformable models are used to represent real-world objects and predict those objects’

responses to applied forces. To provide this predictive capability, a deformable model

must incorporate

1. a description of an object’s geometry and -

2. information about an object’s material properties.

Deformable models generally satisfy the first requirement by representing object ge-

ometry with a grid or mesh, a topic that is discussed in chapters 3 and 4. This chapter

focuses on the second requirement, which is the mathematical modeling of a mate-

rial’s deformable characteristics. The most commonly used mathematical models are

based on partial differential equations (PDEs) that establish the relationship between

stress and strain for a given material. A review of these PDEs is presented here and

begins with the definitions of stress and strain. The reader is directed to [77] or [51]

for more thorough coverage of this topic.

2.2 Mathematical Definitions

2.2.1 Strain

Strain is a measure of deformation. If X is defined as X =
[
Xx Xy Xz

]
where[

Xx Xy Xz

]
is a point in a deformable object, and u(X) is a function that rep-

resents the displacement at point X, a change of distance between points in the

neighborhood of X can be characterized by the following normal strains:

εxx =
∂ux

∂x
εyy =

∂uy

∂y
εzz =

∂uz

∂z
(2.1)

A deformation that results in a change of angle between intersecting lines in the

neighborhood of X is characterized by the following shear strains.

εxy =
∂ux

∂y
+
∂uy

∂x
εxz =

∂ux

∂z
+
∂uz

∂x
εyz =

∂uy

∂z
+
∂uz

∂y
(2.2)

The linear strain tensor measures local deformation and is defined as

ε =

 εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

 (2.3)

2.2.2 Stress

Stress is a measure of the forces in a deformable object. Two types of forces can

cause deformation: body forces and surface forces. Body forces are applied to an

object’s volume. Examples include gravity and inertial forces. No body forces are

considered in this work, as surface forces are assumed to be the primary cause of

the observed anatomic object deformation. This assumption is reasonable for the

prostate deformation problem but might be revised for other specific problems. The

stress caused by surface forces is measured in terms of force per unit area. If P is a

force vector applied to a patch of surface A, the traction vector
−→
t can be defined as

the limiting value of the force to area ratio as the area shrinks to 0.

−→
t =

δP

δA
=

 tx

ty

tz

Traction vectors for patches perpendicular to the x, y, and z coordinate axes can be

labelled as follows:

If the patch surface normal −→n =

 1

0

0

 , then
−→
t =

 σxx

σxy

σxz

 (2.4)

9

If the patch surface normal −→n =

 0

1

0

 , then
−→
t =

 σxy

σyy

σyz

 (2.5)

If the patch surface normal −→n =

 0

0

1

 , then
−→
t =

 σxz

σyz

σzz

 (2.6)

The components of these traction vectors can be used to define the symmetric stress

tensor, which succinctly represents the stress in the neighborhood of a point.

σ =

 σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (2.7)

The diagonal elements are normal stresses, and the off-diagonal elements are shear

stresses. The stress tensor can be used to determine the traction vector for a surface

patch of any orientation because
−→
t = σ−→n , where −→n is the surface patch normal.

2.3 Deformable Materials

The equations that describe a material’s deformable behavior are known as constitu-

tive equations. Fluid constitutive equations exist for viscous and non-viscous fluids,

as well as compressible and incompressible fluids. Solid tissues are often represented

using linearly elastic or viscoelastic constitutive equations. A search of the biome-

chanics literature reveals a number of more complicated and specialized models that

have been developed for particular tissue types. A few of the more common consti-

tutive models are reviewed below. A more detailed treatment of tissue biomechanics

can be found in Fung’s book on tissue biomechanics [29] and in Hirota’s dissertation

[?].

2.3.1 Linear Elastic Solid

Linear elasticity is the most idealized solid model. It assumes that deformations

occur instantly and neglects the effects that strain rate and temperature have on

the deformation process. It also assumes that an object immediately springs back to

its original form when a deforming stress is removed. For linearly elastic materials,

10

the stress tensor has a linear relationship with the strain tensor. The constitutive

equation is

σij = cijklεkl (2.8)

where the cijkl are constant coefficients that can be determined based on the elastic

properties of a material.

Figure 2.1: Stress/Strain graphs for (a) linear elastic solid, (b) hyperelastic solid

2.3.2 Hyperelastic Solid

The hyperelastic model retains the linear elastic assumption that the deformation

process is perfectly reversible, but it removes the requirement of a linear relationship

between stress and strain. With the hyperelastic model a material’s stiffness is not

a constant but rather a function of an object’s current state of deformation. The

constitutive equation for a hyperelastic model takes the general form

σ = f(ε) (2.9)

where f(ε) is a non-linear function. Fig. 2.1 shows how the stress/strain curve of a

hyperelastic material could compare to that of a linear elastic material.

2.3.3 Viscoelastic Solid

Viscoelasticity introduces the concept of a rate dependent deformation process. It

incorporates the complex behaviors of relaxation, creep, and hysteresis. Relaxation

occurs when the stress in an object slowly diminishes as its strain is kept constant.

Creep occurs when an object continues to slowly deform as constant stress is applied.

11

Hysteresis is involved if the deformation process that occurs when stress is applied to

an object does not happen exactly in reverse when the stress is removed. These three

effects are all time-dependent, and they replace the assumption of linear elasticity

that deformations are instantaneous. Many soft tissues can be well represented with

a viscoelastic model, and many different viscoelastic models exist.

Three of the simplest and most well-known of the viscoelastic models are the

Maxwell, Voigt, and Kelvin models [13] [29]. The constitutive equations for these

models are as follows:

Maxwell: Gσ + η
∂σ

∂t
= Gη

∂ε

∂t
(2.10)

Voigt: σ = Gε+ η
∂ε

∂t
(2.11)

Kelvin: G1σ + η
∂σ

∂t
= G1G2ε+ (G1 +G2)η

∂ε

∂t
(2.12)

The scalar constants G, G1, and G2 are dependent on the stiffness of the material,

the scalar constant η is a coefficient of viscosity, and t represents time. The Kelvin

model is the most general purpose of the three models, as it includes terms for the

stress, strain, and the first derivatives of each with respect to time. The shape of the

creep and relaxation functions of each of these models are shown in Fig. 2.2 and Fig.

2.3, respectively The exact curvature shown in these graphs will vary depending on

the G, G1, G2, and η constants.

Figure 2.2: Creep function shapes for (a) Maxwell model (b) Voigt model (c) Kelvin
model. Figure copied from [29].

12

Figure 2.3: Relaxation function shapes for (a) Maxwell model (b) Voigt model (c)
Kelvin model. Figure copied from [29].

2.4 Prostate Model

The prostate could probably be more accurately represented with a viscoelasatic

model than with a linearly elastic model, but at this time empirical data is not

available to determine what the parameters of such a viscoelastic model should be.

While extensive knowledge is available about the elastic behavior of steel, plastics,

wood, and other materials used in manufacturing, and the deformability of some soft

biological materials including lung [40], muscle [54], and brain tissue [45] have been

the subject of investigation, less information is available about the elastic properties

of other soft tissue structures such as the prostate.

At least one study has indicated that the prostate can be reasonably modeled as a

linearly elastic body [35]. In addition, other work that involved modeling the prostate

also relied on a linear elastic prostate model, with apparent success [9]. In the absence

of a more specialized constitutive model based on experiments with prostate tissue

samples, isotropic linear elasticity is a reasonable model to apply.

Each element in a finite element mesh is assigned elastic constants appropriate for

the material the mesh element represents. In the case of an isotropic linearly elastic

material, the only two constants needed are Young’s modulus and Poisson’s ratio.

For the prostate model in this work, the constants were chosen based on the results

reported in [35]. The chosen value for Young’s modulus is 60 kPa, and the chosen

value for Poisson’s ratio is .495.

13

2.5 Implementation of Constitutive Models

Although the linear elastic model is selected for the experiments detailed in this work,

most of the techniques presented could be applied equally well to a finite element

problem that employed a different constitutive model. For example, a simulation

based on a rate dependent viscoelastic model is implemented by discretizing both

space and time. The spatial discretization is achieved with a mesh, just as for a linear

elastic problem. The temporal discretization is achieved by dividing the problem’s

time domain into slices and treating each time slice as a non-rate dependent problem.

From an implementation point of view, this turns the task of solving a rate dependent

problem into the task of solving a series of non-rate dependent problems.

Therefore when modeling a rate dependent, non-linear problem, the issues of

mesh generation, boundary condition specification, and solution approach that are

discussed in the following chapters must be addressed. Perhaps the most significant

difference is that efficiency is an even greater concern with these types of problems

because the time slicing approach increases the computational load. Consequently, a

technique that offers a small savings in solution time for a linear elastic problem may

provide an even greater savings for rate dependent problems.

2.6 Equations of Linear Elasticity

A succinct description of the mathematical basis for the finite element method is pro-

vided here. For a more thorough treatment of the mathematical detail and derivations

the reader is referred to the references, especially [77]. See also [36], [51], [67], and

[25].

2.6.1 Generalized Hooke’s Law

The constitutive model for linear elasticity is given by the generalized Hooke’s Law,

which essentially states that the strain tensor is linearly related to the stress tensor.

The equation (as previously shown in equation 2.8) is

σij = cijklεkl

where the cijkl are constant coefficients that can be determined based on the elastic

properties of a material.

14

In the most general case there are 81 such coefficients, but for the special case of

an isotropic material there are only two coefficients. The constitutive equation for

isotropic linearly elastic materials is

σij = 2µεij + δijλ (εxx + εyy + εzz) (2.13)

where δij is Kronecker’s delta function and µ and λ are the two coefficients.

To allow equation 2.13 to be written in matrix form, vectors containing the unique

stress and strain coefficients are defined:

σ =

σxx

σyy

σzz

σxy

σxz

σyz

ε =

εxx

εyy

εzz

εxy

εxz

εyz

(2.14)

Now by defining a coefficient matrix D, equation 2.13 can be written as

σ = Dε (2.15)

where D =

2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ

(2.16)

µ and λ are known as Lamé’s coefficients and can be determined from Young’s mod-

ulus and Poisson’s ratio. Young’s modulus is a material’s stress/strain ratio for a

uni-axially applied force. Poisson’s ratio is the amount of a material’s contraction in

the direction perpendicular to a uni-axially applied force divided by the amount of

elongation in the direction of the force. The relationships between Young’s modulus,

15

E, Poisson’s ratio, ν and Lamés coefficients are as follows:

E =
µ (3λ+ 2µ)

λ+ µ
(2.17)

ν =
λ

2 (λ+ µ)
(2.18)

λ =
Eν

(1− 2ν) (1 + ν)
(2.19)

µ =
E

2ν + 2
(2.20)

The coefficient matrix D from equation 2.16 can be restated in terms of Young’s

modulus and Poisson’s ratio.

D =
E

(1− 2ν) (1 + ν)

1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν

(2.21)

2.6.2 Equilibrium

In order for a body to be stationary, force equilibrium conditions must be met. These

conditions are stated in the form of partial differential equations. The equations take

into account both the stress tensor and any body force. A body force,
−→
b , applies to

volume elements as opposed to surface elements. Gravity is an example of a body

force.

−→
b =

 bx

by

bz

 (2.22)

The force equilibrium equations are

∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
+ bx = 0

∂σxy

∂x
+
∂σyy

∂y
+
∂σyz

∂z
+ by = 0 (2.23)

∂σxz

∂x
+
∂σyz

∂y
+
∂σzz

∂z
+ by = 0

16

2.6.3 Linear elastic PDE – Strong form

Substituting the constitutive equation 2.13 into the force equilibrium equations 2.23

yields the linear elastic partial differential equations:

∂

∂x
(2µεxx + λ (εxx + εyy + εzz)) + 2µ

∂εxy

∂y
+ 2µ

∂εxz

∂z
+ bx = 0

2µ
∂εxy

∂x
+

∂

∂y
(2µεyy + λ (εxx + εyy + εzz)) + 2µ

∂εxz

∂z
+ by = 0 (2.24)

2µ
∂εxy

∂x
+ 2µ

∂εxy

∂y
+

∂

∂z
(2µεzz + λ (εxx + εyy + εzz)) + bz = 0

Substituting the definition of the strain terms (equations 2.1 and 2.2) produces

the following equations:

∂

∂x

(
2µ
∂ux

∂x
+ λ

(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z

))
+ 2µ

∂ε

∂y

(
1

2

(
∂µx

∂y
+
∂µy

∂x

))
+2µ

∂ε

∂z

(
1

2

(
∂µx

∂z
+
∂µz

∂x

))
+ bx = 0

2µ
∂ε

∂x

(
1

2

(
∂µx

∂y
+
∂µy

∂x

))
+

∂

∂y

(
2µεyy + λ

(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z

))
(2.25)

+2µ
∂ε

∂z

(
1

2

(
∂µy

∂z
+
∂µz

∂y

))
+ by = 0

2µ
∂ε

∂x

(
1

2

(
∂µx

∂z
+
∂µz

∂x

))
+ 2µ

∂ε

∂y

(
1

2

(
∂µy

∂z
+
∂µz

∂y

))
+
∂

∂z

(
2µεzz + λ

(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z

))
+ bz = 0

Collecting terms gives

µ

(
∂2ux

∂x2
+
∂2ux

∂y2
+
∂2ux

∂z2

)
+ (µ+ λ)

∂

∂x

(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z

)
+ bx = 0

µ

(
∂2ux

∂x2
+
∂2ux

∂y2
+
∂2ux

∂z2

)
+ (µ+ λ)

∂

∂x

(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z

)
+ bx = 0 (2.26)

µ

(
∂2ux

∂x2
+
∂2ux

∂y2
+
∂2ux

∂z2

)
+ (µ+ λ)

∂

∂x

(
∂ux

∂x
+
∂uy

∂y
+
∂uz

∂z

)
+ bx = 0

These equations are known as Navier’s equations and can be written more con-

cisely as

µ∇2−→u + (µ+ λ)∇
(
∇T−→u

)
+
−→
b = 0 (2.27)

17

2.7 Algorithms for Discretizing and Solving PDEs

Most real world deformation problems are complicated enough that it is not practical

to solve them analytically. Instead, a PDE of interest is usually solved numerically

using one of the finite difference, finite volume, or finite element methods. These

numerical approaches seek to approximate the solution to a PDE at a finite number

of points, called nodes, and interpolate the solution between those nodes. Each

of these methods requires a discrete representation of the problem’s spatial domain

that includes a set of node points, but they vary both in their approaches to spatial

discretization and in their formulations of the discretized equations.

2.7.1 Finite Difference

The finite difference method fills the region of interest with a regular Cartesian grid,

and the points where grid lines intersect form the nodes. Of the three methods, finite

difference has the most straightforward implementation. Interpolation of the solution

inside the grid cells provides a continuous solution approximation across the region of

interest, and numerical approximation of derivatives on a regular grid can be easily

computed using a Taylor expansion around node points. Efficient solution algorithms

that take advantage of the regular grid structure can be employed with the finite

difference method.

The main disadvantage of the finite difference method is that unless the object

of interest happens to be rectangular, the finite difference grid does not conform

to the object’s geometry. Therefore with the finite difference method the discrete

representation of a curved object either has a blocky, jagged boundary or is padded

to fit a rectangular grid. Either way, the representation contains geometric error that

contributes to solution error. This limitation is addressed by the more flexible meshes

of the finite element and finite volume methods.

2.7.2 Finite Element

The finite element method can represent objects with arbitrary geometry by using

a mesh with isoparametric elements that conform to object boundaries. Meshes are

discussed in greater detail in the following chapter; here it suffices to make three

points about finite element meshes.

1. A mesh can be composed of different types of elements. In 2D, triangles and

18

Figure 2.4: Left: Cartesian grid, like those used with the finite difference method.
Right: Boundary fitted grid, like those used with finite elements.

quadrilaterals are common element types. In 3D, tetrahedra and hexahedra are

common element types.

2. Isoparametric element edges do not have to be parallel with a coordinate axis,

the way grid lines are in a finite difference problem. That means that the

elements can be aligned with object boundaries and can model arbitrary ge-

ometries.

3. An element’s interpolation functions can be of arbitrarily high order. Increasing

the order of the polynomial interpolation functions is one method of improving

the accuracy of the interpolated solution.

This geometric flexibility comes at the cost of greater complexity in the solu-

tion algorithm. However, the advantages offered by the more customizable meshing

schemes are significant enough that the finite element method is perhaps the most

popular choice for simulations involving deformable solids.

2.7.3 Finite Volume

The finite volume method can be used with either finite element type meshes or finite

difference type grids. A unique characteristic of the finite volume method is that it

makes use of both an initial mesh and the dual of that mesh. The dual is constructed

so that the nodes in the initial mesh become element centers in the dual mesh.

The mesh dual is needed because the finite volume method uses an integral form

of the relevant partial differential equations. With this method, the value computed

19

for each node is a volume integral, where the volume is the corresponding element

in the dual mesh. For the linear elastic equations, the finite volume method com-

putes for each node in the initial mesh the average displacement of the points in the

corresponding element in the dual mesh.

The construction of the dual mesh is an additional step not required by the finite

element method. Another potential drawback to the finite volume method is that it

is difficult to use higher than second order interpolation functions, unlike the finite

element method [?].

The finite volume method conserves fluxes across element boundaries and has the

advantage of greater stability for some problems involving fluid dynamics or large

deformations. It is probably most commonly applied to fluid flow problems where

this stability advantage can be critical.

2.8 Finite Element Formulation of Linear Elasticity

For this work, the finite element method is chosen for discretizing and solving the

linear elastic PDE because it offers the advantage of flexible mesh geometry without

the added complication of computing a dual mesh.

2.8.1 Linear elastic PDE – Weak form

In order to apply the finite element method, the weak form of the linear elastic PDE is

needed. The general strategy for deriving the weak form of an equation is to multiply

the equation by a weighting function and then integrate. These steps provide a more

general formulation of the PDE that involves only first order derivatives, unlike the

strong form which includes second order derivatives.

Define v(−→x), an arbitrary weighting function defined over a problem’s spatial

domain:

v(−→x) =

 vx

vy

vz

 (2.28)

Multiply the force equilibrium equations 2.23 by the weighting function v(−→x) and

20

integrate over the volume V .∫
V

vx
∂σxx

∂x
dV +

∫
V

vx
∂σxy

∂y
dV +

∫
V

vx
∂σxz

∂z
dV +

∫
V

vxbx dV = 0∫
V

vy
∂σxy

∂x
dV +

∫
V

vy
∂σyy

∂y
dV +

∫
V

vy
∂σyz

∂z
dV +

∫
V

vyby dV = 0 (2.29)∫
V

vz
∂σxz

∂x
dV +

∫
V

vz
∂σyz

∂y
dV +

∫
V

vz
∂σzz

∂z
dV +

∫
V

vzbz dV = 0

The Green-Gauss theorem states∫
V

φ div q dV =

∫
S

φqTn dS −
∫

V

(∇φ)T q dV (2.30)

where φ and q are functions defined over the volume V , S is the surface of V , and n is

the outward facing unit-length surface normal. The Green-Gauss theorem is restated

below for three particular choices of the function q.

If −→q =

 ψ

0

0

 , then

∫
V

φ
∂ψ

∂x
dV =

∫
S

φψnxdS −
∫

V

∂φ

∂x
ψdV (2.31)

If −→q =

 0

ψ

0

 , then

∫
V

φ
∂ψ

∂y
dV =

∫
S

φψnydS −
∫

V

∂φ

∂y
ψdV (2.32)

If −→q =

 0

0

ψ

 , then

∫
V

φ
∂ψ

∂z
dV =

∫
S

φψnzdS −
∫

V

∂φ

∂z
ψdV (2.33)

The Green-Gauss theorem as stated in equations 2.31, 2.32, and 2.33 is used to

21

integrate equation 2.29.∫
S

vxσxxnx dS −
∫

V

∂vx

∂x
σxx dV +

∫
S

vxσxyny dS −
∫

V

∂vx

∂y
σxy dV +∫

S

vxσxznz dS −
∫

V

∂vx

∂z
σxz dV +

∫
V

vxbx dV = 0∫
S

vyσxynx dS −
∫

V

∂vy

∂x
σxy dV +

∫
S

vyσyyny dS −
∫

V

∂vy

∂y
σyy dV + (2.34)∫

S

vyσyznz dS −
∫

V

∂vy

∂z
σyz dV +

∫
V

vyby dV = 0∫
S

vzσxznx dS −
∫

V

∂vz

∂x
σxz dV +

∫
S

vzσyzny dS −
∫

V

∂vz

∂y
σyz dV +∫

S

vzσzznz dS −
∫

V

∂vz

∂z
σzz dV +

∫
V

vzbz dV = 0

Substituting the definition of the traction vector (equation 2.4) gives the following

equations:∫
V

vxtx dS −
∫

V

(
∂vx

∂x
σxx +

∂vx

∂y
σxy +

∂vx

∂z
σxz

)
dV +

∫
V

vxbx dV = 0∫
V

vyty dS −
∫

V

(
∂vy

∂x
σxy +

∂vy

∂y
σyy +

∂vy

∂z
σyz

)
dV +

∫
V

vyby dV = 0 (2.35)∫
V

vztz dS −
∫

V

(
∂vz

∂x
σxz +

∂vz

∂y
σyz +

∂vz

∂z
σzz

)
dV +

∫
V

vzbz dV = 0

Defining the operator ∇̃ allows the weak form of the equation to be written more

concisely.

∇̃ =

∂
∂x
∂
∂y
∂
∂z

∂
∂y

+ ∂
∂x

∂
∂z

+ ∂
∂x

∂
∂z

+ ∂
∂y

∇̃v(−→x) =

∂vx

∂x
∂vy

∂y
∂vz

∂z
∂vx

∂y
+ ∂vy

∂x
∂vx

∂z
+ ∂vz

∂x
∂vy

∂z
+ ∂vz

∂y

(2.36)

∫
V

(
∇̃v(−→x)

)T

σ dV =

∫
S

vT−→t dS +

∫
V

vT−→b dV (2.37)

where σ is the vector defined by equation 2.14.

22

2.8.2 Discrete approximation of the solution

The finite element method employs the following solution strategy:

1. Define a mesh across the space for which a solution is desired.

2. Compute an approximate solution for the nodes of the mesh.

3. Interpolate the solution between the nodes to get a continuous solution for the

space.

As the size of the mesh elements tends to zero, this approximate solution converges

to the exact answer that would be obtained analytically if an analytical solution were

feasible.

In this work linear mesh elements are used, and the displacement field is inter-

polated linearly between nodes. Each node has an associated shape function that

controls the interpolation of the solution. A shape function for node X equals 1 at

node X, varies linearly between 1 and 0 across the elements that touch node X, and

equals 0 at all points outside the elements that touch node X. The displacement

solution at any point in an element can be computed as a weighted sum of the dis-

placements at the nodes of the element, where the weights are determined by the

shape functions of the nodes.

If −→x is a position vector and N1 (−→x) ...Nn (−→x) are the shape functions for a three-

dimensional mesh with n nodes, the shape function matrix can be defined as follows:

N(−→x) =

N1(
−→x) 0 0 N2(

−→x) 0 0 ... Nn(−→x) 0 0

0 N1(
−→x) 0 0 N2(

−→x) 0 ... 0 Nn(−→x) 0

0 0 N1(
−→x) 0 0 N2(

−→x) ... 0 0 Nn(−→x)

(2.38)

If u (−→x) is a function that returns the displacement vector for any position −→x , and uix

uiy

uiz

 denotes the displacement of the ith node, the vector a of node displacements

23

can be defined as follows:

a =

u1x

u1y

u1z

...

unx

uny

unz

(2.39)

The continuous displacement function can then be written as the matrix - vector

product of N (−→x) and a.

u (−→x) = N (−→x) a (2.40)

Now define the matrix B as

B = ∇̃N =

∂N1

∂x
0 0 ∂N2

∂x
0 0 . . . ∂Nn

∂x
0 0

0 ∂N1

∂y
0 0 ∂N2

∂y
0 . . . 0 ∂Nn

∂y
0

0 0 ∂N1

∂z
0 0 ∂N2

∂z
. . . 0 0 ∂Nn

∂z
∂N1

∂y
∂N1

∂x
0 ∂N2

∂y
∂N2

∂x
0 . . . ∂Nn

∂y
∂Nn

∂x
0

∂N1

∂z
0 ∂N1

∂x
∂N2

∂z
0 ∂N2

∂x
. . . ∂Nn

∂z
0 ∂Nn

∂x

0 ∂N1

∂z
∂N1

∂y
0 ∂N2

∂z
∂N2

∂y
. . . 0 ∂Nn

∂z
∂Nn

∂y

(2.41)

Recalling the definition of strain from equations 2.1 and 2.2, the unique compo-

nents of the strain tensor can be rewritten using equation 2.40 and equation 2.41.

ε =

εxx

εyy

εzz

εxy

εxz

εyz

=

∂ux

∂x
∂uy

∂y
∂uz

∂z
∂ux

∂y
+ ∂uy

∂x
∂ux

∂z
+ ∂uz

∂x
∂uy

∂z
+ ∂uz

∂y

= ∇̃u = ∇̃ (N (−→x) a) = Ba (2.42)

Substituting equation 2.42 into the constitutive equation 2.15 gives

σ = Dε = DBa (2.43)

24

Recalling that the weight function v from equation 2.28 is arbitrary, here let it be

defined as

v(−→x) = NC (2.44)

where C is an arbitrary matrix. Applying the operator ∇̃ to equation 2.44 produces

the following equation.

∇̃v(−→x) = ∇̃(NC) = BC (2.45)

Substituting equation 2.45 into the weak form of the linear elastic PDE (equation

2.37) gives

CT

(∫
V

BTσ dV −
∫

S

NT−→t dS −
∫

V

NT−→b dV

)
= 0 (2.46)

Since C is arbitrary, it can be dropped from equation 2.46.∫
V

BTσ dV −
∫

S

NT−→t dS −
∫

V

NT−→b dV = 0 (2.47)

Substituting equation 2.43 into equation 2.47 gives(∫
V

BTDB dV

)
a =

∫
S

NT−→t dS +

∫
V

NT−→b dV (2.48)

Rewriting the equation with matrix notation gives

Ka = f where

K =
∫

V
BTDB dV

f =
∫

S
NT−→t dS +

∫
V
NT−→b dV

a contains the displacements at the nodes

(2.49)

2.8.3 Boundary conditions and Solution

If there are n nodes in a three dimensional mesh, equation 2.49 describes a 3n × 3n

system. The size of the system can be reduced by the number of essential boundary

conditions that are specified, and the resulting reduced system can be solved using

any of the conventional methods of solving linear system. The solution produces a dis-

placement vector for every node in the mesh, and by interpolating the displacements

between the nodes a continuous deformation field can be generated.

The handling of boundary conditions is described in detail in chapter 5, and the

particular solution method used in this work is explained in chapter 6.

25

Chapter 3

Meshing Background

3.1 Introduction

The finite element method requires that a deformable object’s geometry be repre-

sented by a mesh. A mesh provides a discrete model of an object using a set of node

points and a set of elements. The elements define node connectivity and determine

how a finite element solution is interpolated between the nodes. A wide variety of

mesh types exist, differing in element shape and size, interpolation order, and other

factors.

This chapter first reviews the basic design options that are available in mesh

construction and then surveys the main categories of mesh generation algorithms.

Finally, work in medical imaging that has included finite element analysis and meshing

is discussed. The intent is to present sufficient background information for the reader

to understand the novel meshing algorithm presented in chapter 4 in the context of

existing mesh generation algorithms.

3.2 Mesh Design Options

Meshes can be characterized by the type of elements that compose them and by

the way mesh elements fit together. Each of the following five sections discusses an

aspect of mesh construction by examining individual element attributes or by looking

at possible ways elements can be joined to form a mesh.

3.2.1 Element Shape

One of the defining characteristics of an element is its shape. In two dimensions,

triangles and quadrilaterals are common element shapes. In three dimensions, tetra-

hedral and hexahedral elements are predominant, while wedge and pyramid elements

are used less commonly. Tetrahedra, pyramid, and hexahedra element topology is

illustrated in Fig. 3.1. In the context of meshing, terms such as hexahedra and pyra-

mid refer to element topology, not geometry. For example, a hexahedral element has

the same topology as a cube but is not constrained to have planar faces or perpendic-

ular edges. Although many meshes consist entirely of elements with the same shape,

mixed meshes containing a variety of element shapes are equally valid.

Figure 3.1: Linear three-dimensional elements. Left: Tetrahedral element Center:
Pyramid element Right: Hexahedral element

For many finite element applications meshes constructed with hexahedral ele-

ments are preferable to meshes built from tetrahedral elements due to their superior

convergence and accuracy characteristics. Research has shown that for both linear

elastic problems and non-linear elasto-plastic problems the error in a finite element

solution is less for a mesh of linear hexahedral elements than for a mesh of similarly

sized linear tetrahedral elements [8]. However, currently available automatic mesh-

ing algorithms are more successful at constructing quality tetrahedral meshes than

quality hexahedral meshes. The development of automatic hexahedral meshing algo-

rithms is a challenging problem that motivates current research efforts in the meshing

community [62].

3.2.2 Isoparametric Elements

One of the advantages of finite element meshes is their ability to conform to the

boundaries of objects that have arbitrary geometry. This capability is made possible

27

through the use of isoparametric elements. Isoparametric elements exist in two coor-

dinate spaces. First, an isoparametric element exists in its parameter space, where

it maintains its ideal shape. Secondly, it exists in world space, where its shape may

be a rotated, stretched, and skewed version of its ideal shape. This arrangement pro-

vides the freedom to position elements in world space so that their edges and faces

are aligned with object boundaries rather than with the coordinate axes. The world

space and parameter space of a hexahedral element is illustrated in Fig. 3.2.

Figure 3.2: (a) Hexahedral element in its (ξ, η, ζ) parameter space (b) Hexahedral
element mapped into world space

Each of an isoparametric element’s nodes is assigned both parameter space and

world space coordinates, and a mapping function is defined to map points from the

parameter space into world space. The mapping function is simply a node based

interpolation function. Applied to the nodes’ world space coordinates, the mapping

function generates the world space coordinates that correspond to any parametric

point in an element. For a linear hexahedral element, the mapping function is as

follows.

N(ξ, η, ζ) =
8∑

i=1

Ni(ξ, η, ζ) · [xi yi zi] (3.1)

where [xi yi zi] are the coordinates of node i and

Ni is defined as

28

N1 = 1
8
(1− ξ)(1− η)(1− ζ)

N3 = 1
8
(1 + ξ)(1 + η)(1− ζ)

N5 = 1
8
(1− ξ)(1− η)(1 + ζ)

N7 = 1
8
(1 + ξ)(1 + η)(1 + ζ)

N2 = 1
8
(1 + ξ)(1− η)(1− ζ)

N4 = 1
8
(1− ξ)(1 + η)(1− ζ)

N6 = 1
8
(1 + ξ)(1− η)(1 + ζ)

N8 = 1
8
(1− ξ)(1 + η)(1 + ζ)

(3.2)

The same mapping function is used to interpolate a finite element solution across

an element’s interior space, except that [xi yi zi] node coordinates are replaced by

the computed solution at each node. For the three-dimensional deformation problem,

the desired result is a continuous vector field that represents the deformation an

object undergoes as it changes shape. The computed solution comes in the form of

a displacement vector for each node, and the mapping function is used to interpolate

the displacement vectors across the interior of an element to provide the continuous

vector field.

Although the flexibility afforded by isoparametric elements is beneficial because it

allows finite element meshes to more accurately model object geometry, it is important

that elements not be too distorted. If an element’s shape in world space deviates too

dramatically from its ideal shape, some of the assumptions made by the finite element

method become invalid. Therefore, mesh generation algorithms must be concerned

with measuring and controlling the quality of element shape. There are a number

of metrics for element shape quality. For hexahedral elements one of the common

element shape metrics is the determinant of the Jacobian of the mapping function.

Intuitively, the determinant of the Jacobian is a measure of element volume. When

an element is inverted, the volume becomes negative and the mapping between the

parameter space and world space folds. As a hexahedral element’s shape approaches

that of a cube, the scaled value of the determinant of the Jacobian tends to 1 since

the det(J) value approaches the element volume as computed by the product of three

edge lengths.

In order for a valid finite element solution to exist on a mesh, the determinant

of the Jacobian of the shape function N(ξ, η, ζ) must be non-negative everywhere

[7]. When the determinant of the Jacobian is divided by the product of three edge

lengths, it is scaled to the interval [-1, 1]. Although a solution can be computed as

long as det(J) is non-negative, desirable elements have a scaled Jacobian value of at

least .5. Smaller scaled det(J) values are associated with strongly distorted elements

that can negatively impact the condition number of the finite element stiffness matrix

and reduce the accuracy of the computed solution. It is sufficient to check the det(J)

values at the Gauss integration points in each element [34]. The computation of the

29

finite element stiffness matrix involves the numerical evaluation of an integral over

the volume of the entire mesh, and the Gauss integration points are the locations

inside each element where this integral is evaluated.

3.2.3 Element Size and Order

So far only linear elements have been discussed, but in fact quadratic, cubic, and

higher order elements can be used in the construction of a finite element mesh. These

higher order elements are so named because their mapping functions Ni are polyno-

mials of the specified degree. Typically, higher order elements have nodes not only at

their corners but also along their edges. For example, in two dimensions a quadratic

quadrilateral element (Fig. 3.3(a),(b)) has 8 nodes, and each side of the element is

a quadratic curve that interpolates the three nodes that lie along that side. The in-

terpolation function for the quadratic quadrilateral element, given below, is a second

order polynomial in both x and y.

N(ξ, η) =
8∑

i=1

Ni(ξ, η) · [xi yi] (3.3)

N1 = −1
4
(1− ξ)(1− η)(1 + ξ + η)

N3 = −1
4
(1 + ξ)(1 + η)(1− ξ − η)

N5 = 1
2
(1− ξ2)(1− η)

N7 = 1
2
(1− ξ2)(1 + η)

N2 = −1
4
(1 + ξ)(1− η)(1− ξ + η)

N4 = −1
4
(1− ξ)(1 + η)(1 + ξ − η)

N6 = −1
2
(1 + ξ)(1− η2)

N8 = 1
2
(1− ξ)(1− η2)

(3.4)

Figure 3.3: (a) 8-node quadratic quadrilateral element as it appears in parametric
space (b) 8-node quadratic quadrilateral element as it could appear in world space (c)
20-node quadratic hexahedral element as it appears in parametric space(d) 20-node
quadratic hexahedral element as it could appear in world space

The quadratic hexahedral element has 20 nodes and the following mapping func-

30

tion (3.3(c),(d)) :

N(ξ, η, ζ) =
20∑
i=1

Ni(ξ, η, ζ) · [xi yi zi] (3.5)

N1 = 1
8
(1− ξ)(1− η)(1− ζ)(−ξ − η − ζ − 2)

N3 = 1
8
(1 + ξ)(1 + η)(1− ζ)(ξ + η − ζ − 2)

N5 = 1
8
(1− ξ)(1− η)(1 + ζ)(−ξ − η + ζ − 2)

N7 = 1
8
(1 + ξ)(1 + η)(1 + ζ)(ξ + η + ζ − 2)

N9 = 1
4
(1− ξ2)(1− η)(1− ζ)

N11 = 1
4
(1− ξ2)(1 + η)(1− ζ)

N13 = 1
4
(1− ξ2)(1− η)(1 + ζ)

N15 = 1
4
(1− ξ2)(1 + η)(1 + ζ)

N17 = 1
4
(1− ξ)(1− η)(1− ζ2)

N19 = 1
4
(1 + ξ)(1 + η)(1− ζ2)

N2 = 1
8
(1 + ξ)(1− η)(1− ζ)(ξ − η − ζ − 2)

N4 = 1
8
(1− ξ)(1 + η)(1− ζ)(−ξ + η − ζ − 2)

N6 = 1
8
(1 + ξ)(1− η)(1 + ζ)(ξ − η + ζ − 2)

N8 = 1
8
(1− ξ)(1 + η)(1 + ζ)(−ξ + η + ζ − 2)

N10 = 1
4
(1 + ξ)(1− η2)(1− ζ)

N12 = 1
4
(1− ξ)(1− η2)(1− ζ)

N14 = 1
4
(1 + ξ)(1− η2)(1 + ζ)

N16 = 1
4
(1− ξ)(1− η2)(1 + ζ)

N18 = 1
4
(1 + ξ)(1− η)(1− ζ2)

N20 = 1
4
(1− ξ)(1 + η)(1− ζ2)

(3.6)

The accuracy of a finite element solution can be controlled by adjusting either

the element size or the element order. The finite element solution will converge to

the exact solution of the PDE as the element size tends to zero or as the order of

approximation tends to infinity. This makes sense intuitively because by creating

either smaller elements or higher order elements the number and density of nodes

is increased. A greater number of nodes means the solution is calculated at more

points. It should be noted that an increase in the number of nodes also leads to in-

creased computational cost, so the solution accuracy is always limited by the available

computation time.

With all meshing algorithms a design choice must be made between constructing

a mesh with a greater number of linear elements or a smaller number of higher order

elements. In adaptive meshing algorithms the number of nodes is increased until a

desired level of accuracy is reached. If as the node count is increased smaller linear

elements are created, the method is referred to as an h-adaptive method. If instead

the approximation order of the elements is increased with the addition of new nodes,

the method is known as p-adaptive.

31

3.2.4 Consistency and Continuity

In order for a finite element solution to be well defined, it must be uniquely determined

at each point in the mesh and vary smoothly across element boundaries as well as

inside elements. This means that all of the element mapping functions must stitch

together to form a composite mapping function that has no holes, no folds, and is C0

continuous over the entire meshed volume. To ensure that these conditions are met,

care must be taken with the way elements are joined to their neighbors.

First, there is the obvious requirement that neighboring element volumes have

no overlaps and no gaps between them. Second, if a face or edge is shared between

neighboring elements, the mapping function applied to the face or edge by each of the

elements must be identical. Otherwise, the inconsistency in the mapping functions

would cause the solution to be discontinuous across the element boundary.

Figure 3.4: Left: A mesh segment with no hanging nodes Right: The center node
is a hanging node. Each of the top two elements share half of the bottom element’s
upper edge, but not the whole edge.

Finite element meshing schemes typically disallow hanging nodes (see Fig. 3.4)

in order to guarantee mapping function consistency across element boundaries. A

hanging node occurs if two elements share part of a face or edge, but not the whole

face or edge. With hanging nodes along the shared interface the mapping functions

applied by the neighboring elements are different since the elements are performing

an interpolation between different sets of nodes.

3.2.5 Continuous vs. Overset Meshes

The only situation in which it is acceptable for mesh elements to overlap is if an

overset meshing strategy, also known as a chimera mesh, is employed. An overset

meshing scheme allows separate meshes to be constructed for neighboring objects or

32

for different sections of the same object. Each of the separate meshes must overlap

with one or more of the other meshes in the neighborhood of its interior edges so that

no unmeshed holes exist in the area of interest. Fig. 3.5 shows an example of a two

dimensional overset mesh.

Figure 3.5: An example of an overset grid of the Gulf of Mexico. Notice that the
sections of boundary fitted grid around the coastline overlap with the background
Cartesian grid and overlap with each other in spots. Figure copied from [18].

If an overset mesh is employed, in the solution phase an iterative method is used

with each of the separate mesh sections. A special interpolation procedure is used

to propagate the solution between neighboring mesh sections at their overlapped

boundaries after each solution iteration. This special interpolation step maintains the

consistency of the solution between each of the meshes, but it also involves a significant

amount of computational overhead in the solution phase. It has the advantage of

allowing very small mesh elements to be used in some regions and large elements used

in adjacent regions without dealing with the difficulty of patching together meshes

with disparate element sizes [42].

33

3.3 Meshing Algorithms

The two main categories of mesh generation algorithms are structured methods and

unstructured methods. The term structured is applied to meshes that have the same

topology as a Cartesian grid. Because the topology of a structured mesh is fixed,

it can be efficiently stored as an i × j array of nodes in two dimensions and as an

i × j × k array of nodes in three dimensions. The node connectivity of a structured

mesh is implicit in the data structure. See Fig. 3.6 for an illustration.

Figure 3.6: 3D meshes constructed with linear quadrilateral elements. Left: A struc-
tured example Right: An unstructured example

Structured meshing algorithms are typically based on a curvilinear coordinate

system that is imposed on the object being meshed. Structured meshing algorithms

differ in the way they create such a coordinate system within a non-rectangular object;

several of these methods will be discussed in the following section. Quadrilateral and

hexahedral elements can be easily used in a structured mesh.

An unstructured mesh allows a wider variety of node connectivity patterns and

explicitly stores the node list for every element. Unstructured meshing algorithms

have the advantage of being able to work with complicated object geometry within

which it may be difficult or impossible to generate a Cartesian coordinate system.

Unstructured meshes most often contain triangle or tetrahedral elements, although

there are some unstructured algorithms that generate predominantly quadrilateral or

hexahedral elements [62].

Not all meshing methods can be clearly categorized as either structured or un-

structured. In between the structured and unstructured categories are a number of

block structured and hybrid methods. A block structured method divides a com-

plicated object into pieces called blocks, defines a grid pattern for each of the grid

interface surfaces, and then generates a structured mesh for each block that matches

34

the specified interface patterns where neighboring blocks abut. This strategy allows

structured meshing techniques to be applied to more complicated and realistic objects

than would otherwise be possible.

A hybrid method employs both structured and unstructured techniques to form

a single mesh. In some instances this takes the form of creating a structured mesh

of separate objects or regions and then creating an unstructured mesh between the

structured pieces in order to patch all the regional meshes together into one continuous

mesh [63].

In order to provide a context for the m-rep based meshing algorithm presented

later in this chapter, several well-established structured and unstructured meshing

algorithms are briefly described and compared in the following sections. For a more

thorough treatment of each of these algorithms, the Handbook of Grid Generation is

an excellent resource [3].

3.3.1 Structured Meshing Algorithms

3.3.1.1 Algebraic Mesh Generation

There are parallels between algebraic mesh generation and the development of isopara-

metric elements. In both cases an interpolation function is used to establish a corre-

spondence between points in a parametric domain and points in a physical domain.

With isoparametric elements a parametric domain represents a single element, while

an algebraic mesh generation algorithm represents an entire meshed volume with a

single parametric domain.

The first step in algebraic mesh generation is the formation of a Cartesian grid

in the parametric domain that has the desired number of rows and columns of ele-

ments. In two dimensions this could look like a square filled with rows and columns of

quadrilateral elements, and in three dimensions this could look like a cube filled with

rows, columns, and layers of hexahedral elements. In the parametric domain these

elements have their ideal shape; the quadrilaterals are squares and the hexahedra are

cubes.

The second step is specifying a correspondence between the boundary of the pa-

rameter space grid and the boundary of the physical domain that needs to be meshed.

The physical domain does not need to be a square or cube, but corners and edges

must be defined on the surface of the physical domain so that it can be represented

with the same logical structure as the boundary of the parameter space grid. An

35

example of boundary correspondence between a square domain and a curved domain

is shown in Fig. 3.7. Depending on the mapping function chosen in the next step,

boundary tangent vectors or intermediate edge points may also need to be specified.

Figure 3.7: Algebraic and elliptic mesh generation algorithms require boundary cor-
respondences to be established between a parametric domain (left) and a physical
domain (right).

Third, a mapping function must be formulated that establishes a one to one

correspondence between each parametric point in the parameter space grid and a

point in the physical domain. Typically the mapping function is simply a polynomial

function that interpolates the coordinates of grid’s corner points across the parametric

grid. The order of the mapping function does not have to be the same for each of the

spatial dimensions. For example, the x coordinates could be interpolated cubically

and the y coordinates linearly. Lagrangian or Hermite interpolation formulas may

also be used if sufficient boundary derivatives or intermediate points are specified in

the second step.

Finally, the Cartesian grid is transformed from the parametric domain to the

physical domain by computing the physical coordinates of each of the nodes in the

parametric domain via the mapping function. The mesh maintains the same struc-

tured topology as the Cartesian grid has in the parametric domain. This is illustrated

in Fig. 3.8.

The advantage of algebraic mesh generation is that it offers a computationally

efficient and straightforward method of generating a structured grid of quadrilateral

or hexahedral elements. For some objects it can offer a quality mesh, but for objects

with significant curvature, concavity, or holes, the resulting mesh may not be usable.

Algebraically generated meshes can contain excessively skewed elements, and it is

possible for them to fold and extend outside the boundaries of an object. Therefore,

36

Figure 3.8: A quadrilateral mesh linearly interpolated from parametric domain to
physical domain

algebraically generated meshes are frequently used to provide an initial mesh that

is iteratively improved by the application of an elliptic mesh generation algorithm.

More information on algebraic mesh generation can be found in [66].

3.3.1.2 Elliptic Mesh Generation

Elliptic generation algorithms create structured meshes that typically have greater

smoothness and mesh line orthogonality than algebraically generated meshes; yet

the initial steps in elliptic mesh generation are similar to those for algebraic mesh

generation. For both meshing algorithms the first step is to create a Cartesian grid

in a parametric space and establish a correspondence between the boundary of the

parameter domain and the physical domain to be meshed. The elliptic mesh genera-

tion algorithm, however, differs from the algebraic algorithm in the method used to

transform coordinates from the parameter space to the physical space.

Instead of using polynomial functions to interpolate the physical coordinates of

mesh nodes, a system of elliptic partial differential equations is used to define a

transformation between the parametric domain and the physical domain. The sim-

plest example of such a system is the Laplace equation. The Laplace equation is

notable for generating smooth meshes; it is the elliptic equation that will generate

the smoothest mesh possible for a given domain [75]. In the Laplace equation given

below, ξ1, ξ2, ξ3 are the coordinate directions in the three dimensional parametric

space and x1, x2, x3 are the world space coordinate directions.

∇2ξi = 0 where i = 1, 2, 3 (3.7)

37

Expanded, the equation is as follows:(
∂2ξ1
∂x1

2
+
∂2ξ1
∂x2

2
+
∂2ξ1
∂x3

2

)
= 0(

∂2ξ2
∂x1

2
+
∂2ξ2
∂x2

2
+
∂2ξ2
∂x3

2

)
= 0 (3.8)(

∂2ξ3
∂x1

2
+
∂2ξ3
∂x2

2
+
∂2ξ3
∂x3

2

)
= 0

These equations establish a relationship between the parametric and physical coor-

dinates. In order for the system to be solvable, boundary conditions must be specified.

This requirement is met by the correspondence between the parametric and physical

domain boundaries that is one of the inputs to the method. An example of a mesh

generated with the Laplace equation is shown in Fig. 3.9.

Figure 3.9: An elliptically generated grid using the Laplace equation. Figure is from
[68].

Because it is more convenient to compute the solution to the system in the pa-

rameter space than in the physical space, the equations are transformed so that the

spatial coordinates xi are the dependent variables and the parametric coordinates ξi

are the independent variables. The resulting system of equations can be solved on

a regular grid in the parameter space using a standard PDE solver. The solution

gives physical space coordinates for each of the nodes of the parameter space mesh,

effectively creating a new mesh fit to the arbitrarily shaped physical domain. These

PDE solvers arrive at a solution by iteratively improving an initial guess. For elliptic

mesh generation, the usual strategy is to take an algebraically generated mesh as the

38

initial guess for the solution and then iteratively improve the spatial coordinates of

the mesh nodes until a convergence criteria is met.

The usefulness of the Laplace equation in mesh generation is limited by the fact

that with this equation there is no way to control the spacing or slope of the mesh lines.

More control is provided by the widely used Poisson’s equation for mesh generation,

given below.

∇2ξi = P i (3.9)

The control functions P i may be defined in a number of different ways and are

designed to achieve certain desired properties in the resulting grid such as orthogo-

nality at domain boundaries or variable spacing of mesh lines. For some methods the

control functions are determined based solely on initial boundary conditions, while

for other methods the control functions are iteratively adjusted to achieve the desired

mesh properties.

Much research has been devoted to developing variations and improvements to

the basic elliptic mesh generation algorithm. A good overview of elliptic algorithms

can be found in [68]. A briefer treatment can be found in [27]. A considerable

amount of effort has been invested in developing elliptic methods because the meshes

generated can be of very good quality. With an elliptic method it is straightforward

to create a mesh with quadrilateral or hexahedral elements. The meshes tend to be

quite smooth, boundary orthogonality of mesh lines can be achieved, and element

size and shape can be controlled, all of which are attractive qualities for a meshing

algorithm. A main disadvantage is that the method can be quite time consuming,

especially in three dimensions, due to the necessity of iteratively solving the partial

differential mesh generation equations. Another limiting factor is the need to establish

a correspondence between the boundary of the physical domain and the boundary of

the parametric domain as an input to the meshing algorithm. Depending on the

geometry of the object to be meshed, this requirement can be difficult to meet.

3.3.1.3 Hyperbolic Mesh Generation

The input to a hyperbolic mesh generation algorithm is an initial mesh boundary

with predefined node points. In two dimensions the mesh boundary is a curve, and

in three dimensions it takes the form of a surface. A hyperbolic mesh algorithm is

used to generate a mesh outward from the boundary, unlike algebraic and elliptic

39

algorithms that generate a mesh for the interior of a closed region. The hyperbolic

algorithm operates by beginning at the initial mesh boundary and marching outward

in the direction normal to the boundary to create a new layer of nodes. The mesh is

formed by creating and connecting successive layers of nodes until the area of interest

is filled. Because these type of meshes fill an exterior space, they are especially well

suited for problems that involve modeling fluid flow around an object. An example

of such a hyperbolic mesh is shown in Fig. 3.10.

The node positions on each new layer are found by solving the governing hyper-

bolic equations. These equations place constraints on the orthogonality of mesh lines

and require that element volumes match those specified by a user defined volume dis-

tribution function. The following hyperbolic field generation equations can be used

to generate a mesh in three dimensions.

∂x1

∂ξ1

∂x1

∂ξ3
+
∂x2

∂ξ1

∂x2

∂ξ3
+
∂x3

∂ξ1

∂x3

∂ξ3
= 0 (3.10)

∂x1

∂ξ2

∂x1

∂ξ3
+
∂x2

∂ξ2

∂x2

∂ξ3
+
∂x3

∂ξ2

∂x3

∂ξ3
= 0

∂x1

∂ξ1

∂x2

∂ξ2

∂x3

∂ξ3
+
∂x1

∂ξ3

∂x2

∂ξ1

∂x3

∂ξ2
+
∂x1

∂ξ2

∂x2

∂ξ3

∂x3

∂ξ1
(3.11)

−∂x1

∂ξ1

∂x2

∂ξ3

∂x3

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1

∂x3

∂ξ3
− ∂x1

∂ξ3

∂x2

∂ξ2

∂x3

∂ξ1
= 4V

where 4V is the element volume

This system of equations can be solved with a non-iterative method, resulting in

an algorithm one or two orders of magnitude faster than the elliptic mesh generation

algorithms that require an iterative solver. A finite difference solution technique that

can be employed to solve the hyperbolic equations is described in [18].

Hyperbolic mesh generation offers the advantages of mesh orthogonality (in some

dimensions), computational efficiency, and user controllable element sizes. A potential

disadvantage is that the generated mesh may not be smooth for certain combinations

of initial boundaries and element size distribution functions. In certain situations,

especially when meshing concavities, it is possible for very elongated elements to be

formed. This tends to occur when the mesh lines in the direction normal to the surface

are forced to lie close together because they proceed out from a concave surface, and

the mesh lines in the perpendicular direction must have much wider spacing in order

to satisfy the element volume requirement.

40

Figure 3.10: Hyperbolically generated meshes in (a) two dimensions and (b) three
dimensions. Figure is from [18].

3.3.2 Unstructured Meshing Algorithms

3.3.2.1 Delaunay Based Meshing

Delaunay methods produce a mesh composed of triangle elements in two dimensions

or tetrahedral elements in three dimensions. These methods require as input a set

of points distributed throughout an object to be meshed. The input points may lie

on the boundary and in the interior of the object being meshed, and their spacing

determines the resolution of the mesh. A variety of general and problem specific

algorithms have been developed to generate the required point distribution, including

regular and random sampling of the problem domain.

The Delaunay mesh is constructed by connecting the input points to form ele-

ments. The Delaunay tesselation can be explained as the dual of the Voronoi graph

of the input points. Briefly, the edges of the Voronoi graph form convex polygons

around each of the input points such that each input point’s polygon encloses the

space that is closer to that point than any of the other input points. Generically, in

two dimensions each edge in the graph is equidistant from two input points, and each

vertex is equidistant from three input points. Likewise, in three dimensions each face

is equidistant from two input points, each edge is equidistant from three input points,

and each vertex is equidistant from four input points. In constructing the dual of a

Voronoi graph, each vertex of the graph becomes the center of an element. Each of the

input points equidistant from a Voronoi vertex is connected to form an element. In

two dimensions the three equidistant points become the nodes of a triangle element,

41

and in three dimensions the four equidistant points become the nodes of a tetrahe-

dral element. Algorithms exist that construct the Delaunay mesh in O(n log n) time.

Details of these algorithms can be found in [50].

Frequently the initial Delaunay mesh must be adjusted before it is suitable for use

in finite element analysis. There are two main problems that may occur. First, the

edges of the input object may not be contained as edges of the mesh. If this happens,

the mesh representation distorts the object’s shape. See Fig. 3.11 for an example.

The second potential problem is the existence of elements with poor shape, especially

sliver like elements with very small volume. Delaunay based meshing algorithms

attempt to remedy these problems by adjusting the mesh in one or more of the

following three ways:

1. Extra input points can be added, either on the boundary or in the interior

of the object. The addition of an extra point will change the mesh in the

neighborhood of the new point. Extra points are often added to force the

inclusion of a boundary edge in the mesh.

2. If the exterior boundary of a group of elements sharing an edge or face is convex,

the shared edge or face can be deleted and the resultant convex polygon can

be subdivided into elements in a different way. This technique can be used to

remove poorly shaped elements.

3. A smoothing process can be employed to improve element shape. In some

implementations a Laplacian smoothing routine is used. In other cases node

positions are adjusted in an attempt to make all the edges incident on a vertex

close to the same length.

Delaunay based meshing algorithms have the advantage of being more robust and

more fully automatic than many of the other meshing algorithms. Delaunay meth-

ods can also be computationally efficient, but they are limited to the production of

triangular and tetrahedral elements. Other difficulties lie in getting uniform element

size and controlling the shape and orientation of the elements. Post-processing ad-

justment of the mesh can help with these problems, but guarantees cannot usually be

made regarding final element quality. A more thorough review of Delaunay-Voronoi

meshing algorithms is provided in [6].

42

Figure 3.11: (a) The boundary of a 2D object to be meshed (b) A distribution
of points in the object and on its boundary (c) The Delaunay triangulation of the
points. Note that the edges of the object’s concave wedge are not included as edges
of the triangulation, so the mesh does not accurately represent the object’s geometry.

3.3.2.2 Advancing Front, Paving, and Plastering

Advancing front, paving, and plastering algorithms share the same basic approach

to mesh generation, but they differ in the element types they create. Advancing

front algorithms typically create triangle or tetrahedral element meshes, while paving

algorithms create quadrilateral element meshes and plastering algorithms create hexa-

hedral element meshes. An overview of the advancing front methodology is presented

first, followed by comments about the differences in paving and plastering algorithms.

Unlike Delaunay methods that first begin with a set of nodes and then generate

the elements, advancing front meshing algorithms generate nodes and elements simul-

taneously. The input to an advancing front algorithm is a discretized representation

of the object boundary. In two dimensions this means a boundary defined by line

segments and in three dimensions by a triangulated surface. Each boundary element

must be accompanied by a normal, to differentiate the interior side from the exterior

side.

The key data structure in advancing front algorithms is the active front, which

contains the collection of oriented edges (2D) or faces (3D) that bound an open,

unmeshed portion of the object interior and are available to form a side of a new

element. Initially, the active front is the discretized boundary. After each new element

is created, the active front data structure is updated by removing the base face of

the newly formed element and possibly some other faces and adding one or more of

the faces of the new element to the active front. The algorithm terminates when the

active front is empty, signalling a completed mesh.

The element creation process is as follows:

43

• an edge(2D) or face(3D) belonging to the active front is selected

• either a node near the selected edge/face is selected, or if no suitable node exists

a new node is created and selected

• edges are created to connect the selected node with the selected edge/face so

that a new element is formed

• the active front is updated to include newly created edges/faces and any newly

inactivated faces are removed

The most complicated part of this process is the decision of which node to select,

or whether to create a new node to form the element. The first step in making this

decision is calculating the ideal location for the node that will be connected to the

selected edge/face.

The ideal node location is a function of the desired element size and shape as well

as the size and orientation of the selected edge/face. In the general case, the desired

element size can be a directional quantity that varies across the domain, leading to

the creation of anisotropic elements with graduated sizes.

Computing the ideal node location is simpler if a unit size element is desired

with equilateral angles. A transformation T can be defined that is a function of the

element size parameters and will transform the desired element into a normalized

space where it has unit size and equilateral angles. By applying the transformation

T to the currently selected face, the ideal node location for the formation of the next

element can be computed in the normalized space. Applying the inverse of T to the

ideal node location in the normalized space yields the physical coordinates of the ideal

node location. In the normalized space the ideal node location lies along the surface

normal that extends from the center of the face, and a point along that line is chosen

such that edges of unit length or a tetrahedra of unit volume is created.

After computing the ideal node location, a list of nodes that lie within a certain

radius of the ideal coordinates is created and sorted by distance from the ideal co-

ordinates. The first node on this list that could be used to form an element whose

faces do not intersect any existing element faces is selected. If no elements on this list

meet the criteria, a new element is created. Fig. 3.12 illustrates an advancing front

algorithm. More detail on advancing front algorithms can be found in [53].

Like the Delaunay meshes, tetrahedral advancing front meshes can be improved by

post-processing. Both the edge/face swapping and the smoothing routines described

in the Delaunay meshing section can be applied to advancing front meshes.

44

Figure 3.12: (a) An object boundary with boundary node points (b) The active front
of the mesh, after the first layer of elements has been created.

Paving and plastering algorithms tackle the more difficult problems of meshing ar-

bitrary regions with quadrilateral or hexahedral elements, respectively. The difficulty

with using quad and hex elements in an advancing front algorithm lies in finding a

way to join opposing fronts when they collide. With triangles or tetrahedra this is

simple, since a valid element is formed by connecting a base face from one front with

a single node from the opposing front. To form a quad element an edge from each

of the opposing fronts must be connected, and to form a hex element a quadrilateral

face from each of the opposing fronts must be connected. Matching edges and faces

turns out to be a more difficult problem than matching a face with a node.

The paving algorithm [81] has been made robust by checking for front collision

after the creation of every element with proximity and edge intersection tests. If

collision or impending collision is detected, one of three operations is performed to

join the colliding parts of the front.

• Seaming joins two faces from the same region of the advancing front that collide

due to the front’s high curvature in the region.

• Splitting results in one continuous advancing front being split into two separate

fronts, due to the collision of two opposing parts of the front. The colliding

parts are joined, and the two new fronts lie on either side of the joined region.

• Connecting occurs when two separate fronts collide and are joined into one

front.

Plastering [43] by hexahedral elements alone has failed to develop into a robust

algorithm because its active front can reach a condition where the remaining un-

meshed space is impossible to fill with hexahedra. The plastering concept is used in

45

the Hex-Tet algorithm contained in the CUBIT meshing package, which adds hexa-

hedral elements in an advancing front approach as far as possible and then fills the

remaining space with tetrahedra [43] [1].

3.3.2.3 Superposition and Grid-Based Methods

Grid based methods superimpose a standard background mesh, commonly a Cartesian

grid, on the space occupied by an object model. All the elements that lie outside the

object boundary are removed, along with all the elements that are intersected by

the object boundary or lie too close to the boundary. Typically, elements inside the

object that are closer than half the length of an element edge are also removed. The

result is an initial mesh that fits the inside of the object but has open space between

the exterior of the mesh and the object boundary.

The next step in this meshing process is the most difficult. The mesh must be

completed by adding a layer of elements to the outside of the initial mesh that conform

to the shape of the object boundary.

A typical strategy involves creating a corresponding node on the object boundary

for each node on the surface of the interior mesh. Node positions on the boundary

may be chosen by projecting the interior nodes outward from the object center, by

creating new nodes at the surface points closest to interior mesh nodes, or by some

other algorithmic process. After nodes are generated, edges are formed to connect

pairs of nodes, and edges are created between the new boundary nodes so that their

connectivity mirrors that of the nodes on the initial mesh surface. These new nodes

and edges form a layer of hexahedral elements that conform to the object boundary.

The difficult part of this process is choosing good locations for the new nodes on

the boundary surface. A very robust method must handle a variety of special case

geometries in order to avoid mesh folding and degenerate elements.

Without post-processing to improve the shape of the outer layer elements, their

quality is likely to be poor. The advantage of this method is that it gives good

quality elements in the interior of the object, and it can generate meshes very quickly.

Superposition methods are reviewed more thoroughly in [62]

3.3.2.4 Quadtree / Octree Methods

Spatial tree based meshing algorithms work in two stages. The first stage involves

building the tree data structure from the input object model, while the second stage

builds the mesh from the tree data structure. The first stage operates in a fairly

46

standard manner for most tree based meshing algorithms, but there is great variety

in the way the element construction in second stage is implemented. Therefore,

a description of the first stage is provided, and a few examples of how different

implementations handle the second stage are given.

Typically, quadtrees are used for two dimensional meshing problems and octrees

are used for three dimensional problems. The quadtree and octree methods operate

similarly, but since the focus of this chapter is on three dimesional meshing the octree

algorithm will be described.

The octree building stage begins by forming a bounding cube around the object

model. This bounding cube forms the root of the octree. If the root fails the sub-

division termination criteria, the bounding cube is subdivided into eight equal size

octants and the test/subdivide procedure is applied recursively to each of the octants.

In the tree structure each octant is represented as a child of the octant one level larger

that encompasses it.

The subdivision termination criteria could include several different tests. Typical

reasons to terminate subdivision include the following:

• The object boundary does not intersect the octant.

• The object boundary intersects the octant and the geometric complexity of the

portion of the boundary inside the octant is less than some limit. A measure of

geometric complexity can be a function of the curvature of the portion of the

boundary that lies inside an octant.

• A specified maximum tree level has been reached.

Some implementations require a maximum difference of one subdivision level be-

tween neighboring octants, and a few require all octants to be at the same subdivision

level. These addition of constraints would require further octant subdivision before

finalization of the tree structure.

As mentioned, the task of forming elements from tree octants can be approached

in several different ways. The simplest approach is to make one hexahedral element

out of each cell. If a tree contains terminal octants at different subdivision levels, the

faces of the hexahedral elements will not be compatible with each of their neighbors’

faces. This difficulty can be resolved by including additional constraint equations in

the formulation of the finite element equations in order to account for the hanging

nodes. A different solution avoids the problem altogether by requiring the entire

47

domain be subdivided to the same level, but it pays the price of creating possibly

many additional nodes and elements. A third solution allows a maximum one level

difference between neighbor cells, and at each subdivision step it divides edges into

thirds and creates 27 octants. Templates are available that provide a compatible hex

mesh between one level different neighbors.

The fact that the cells do not conform to object boundaries also poses a potential

problem for this method. Some implementations accept the jagged boundary that

results, while others solve the problem using the same strategy described in the su-

perposition section of adding a layer of boundary nodes and connecting them to the

interior mesh nodes. As before, the problem with this approach is that the shape of

the boundary elements can become very skewed.

Other element creation algorithms fill each tree octant with tetrahedra. Cells that

lie completely in the interior of the object can be meshed using tetrahedral templates.

Tetrahedral meshing patterns can be cataloged for each of the possible cell sizes and

cell neighbor configurations. This approach is most practical if a maximum of one

level difference between neighboring octants is permitted.

Another alternative is to mesh both interior cells and cells that are intersected by

the model boundary using the Delaunay method. The cell vertices and the points

where the cell and model intersect and be used as the input points to the Delaunay

method. This provides a way to control the distribution of input points across the

model so that the Delaunay method yields a mesh with tetrahedra of the desired size

is each part of the model.

Other methods of creating elements from the tree structure exist; a broader survey

of them can be found in [?].

As mentioned, some octree methods offer the advantage of hexahedral element cre-

ation, but like the superposition methods they can suffer from poor quality boundary

elements. These octree meshes can often be improved by post-processing. As usual,

smoothing can be applied to improve element shape. If tetrahedral elements are used,

the edge/face swapping described in the Delaunay section can also be applied.

3.3.2.5 Medial Methods

Price and Armstrong [60] have developed a meshing algorithm based on an object’s

medial axis. By using the global shape information provided by the medial axis, this

method can generate hexahedral meshes that conform to object boundaries and do

not face the same difficulties with boundary elements as the superposition and octree

48

methods. This medial method generates quadrilateral meshes in two dimensions and

hexahedral meshes in three dimensions, but the discussion here will be limited to

three dimensions. The quadrilateral algorithm is similar but simpler.

The algorithm relies on the medial axis, referred to as the medial surface in three

dimensions, to subdivide a geometrically complex solid object into convex polyhedra

for which hexahedral meshing templates have been defined. The medial surface can

be described as the locus of the center of an inscribed sphere of maximal diameter

as it rolls around the interior of an object. The medial surface together with the

radius function defined on the medial surface is sufficient to exactly reconstruct the

boundary of an object [10] [48]. The medial surface and radius function taken together

are known as the medial axis transform (MAT). For this algorithm the medial axis

is constructed using a constrained Delaunay tesselation of points distributed on the

object model’s boundary. The centers of some of the Delaunay tetrahedra will lie on

the medial surface and provide a starting point for mapping the surface.

Figure 3.13: The 13 meshable solid primitives used in Price and Armstrong’s medial
meshing algorithm. Figure from [60].

The subdivision strategy is based on an analysis of the medial surface. First,

49

the edges and vertices of the medial surface are classified based on their connectivity

and the object’s surface geometry. In this classification scheme there are four types

of medial edges and 19 types of medial vertices. Meshable subregions are formed

first around the edges and then around the vertices of the medial surface. Then, the

faces of the medial surface are subdivided according to rules about the type of edges

and vertices that bound a medial face. Finally, each subregion of the object can be

identified as matching one of the 13 solid primitives shown in Fig. 3.13. Each of the 13

primitives is a convex polyhedron with at most 8 faces and can be further subdivided

into hexahedral elements. Linear programming is used to match hexahedral element

edges that lie on the faces of subregion boundaries.

Other than being quite complicated, a difficulty with this method is that the

medial axis transform is not stable because slight changes in an object’s boundary

can lead to branching and significant changes in the medial surface. Therefore, small

boundary changes can significantly affect the global meshing pattern. Nevertheless,

this method is notable for being one of the first successful automatic hexahedral

meshing algorithms for complicated geometry.

3.3.2.6 Spatial Twist Continuum and Whisker Weaving

The spatial twist continuum (STC) [28] [62] bears some similarity to the medial axis.

The difference is that given a quadrilateral or hexahedral mesh, the STC runs through

the middle of rows or columns of elements rather than through the middle of an object.

In two dimensions, the STC is composed of chords, which are curves that run through

the center of a quadrilateral element and intersect two of its opposing faces. At the

center of each element is a chord intersection. Either two chords intersect, or a single

chord intersects itself. A quadrilateral mesh can be constructed as the dual of an

arrangement of chords, but the dual of every chord arrangement does not result in a

valid mesh. Figs. 3.14, 3.15, and 3.16 illustrate the STC for two dimensional, three

dimensional, and surface meshes, respectively.

In three dimensions the STC is composed of sheets, each of which runs through

the center of a layer of hexahedral elements. The chord curves are formed by the

intersection of two such sheets, and three sheets intersect at the center of a hexahedral

element. As in two dimensions, a hexahedral mesh can be constructed as the dual of

an arrangement of chords, but the dual of every chord arrangement does not result

in a valid mesh.

The whisker weaving algorithm uses the STC to construct hexahedral meshes that

50

Figure 3.14: Quadrilateral mesh and the corresponding two-dimensional spatial twist
continuum. Figure from [62].

Figure 3.15: Spatial twist continuum for a mesh of four hexahedra and corresponding
surface STC. Figure from [62].

are compatible with an arbitrary quadrilateral surface mesh of the object boundary.

The intersection of a sheet of the STC with the object boundary is a closed three

dimensional curve, or loop. The whisker weaving algorithm begins by constructing

loops through the quadrilaterals of an object’s surface mesh. Each loop can be con-

tracted to a point and in the process sweep out a sheet of the STC. The whisker

weaving algorithm contracts the surface loops to a point one at a time, until no loops

remain. The end result is a set of STC sheets. This set of sheets is then checked

and possibly modified to ensure that the dual of the STC defines a valid hexahedral

mesh. If degeneracies exist, they are removed by either moving existing STC sheets or

inserting a new sheet. The final step is to compute the dual of the STC and thereby

create the hexahedral elements.

The whisker weaving algorithm has been shown to successfully create hexahedral

meshes for a variety of geometries. Unfortunately, it frequently creates some elements

51

Figure 3.16: Spatial twist continuum of a surface mesh. Figure from [62].

with very poor shape. Large meshes created with the whisker weaving algorithm re-

portedly have 2% - 5% of the elements with a negative Jacobian. However, a literature

search found that the only algorithms attempting to construct a hexahedral mesh

compatible with a prescribed surface mesh for objects with arbitrary geometry were

whisker weaving and plastering. As discussed previously, the plastering algorithm has

only succeeded in creating hex-dominant meshes, so the whisker weaving algorithm

is unique in its ability to match a surface mesh with an all-hex volume mesh. Even

though element quality is not uniformly good, this algorithm represents a significant

advancement in meshing research and remains an area of active investigation.

3.3.3 Summary of Meshing Algorithms

This section summarizes the salient features of each of the previously discussed mesh-

ing methods and briefly addresses the question of which type of meshing task is best

suited for each of the meshing algorithm categories. The type of input a meshing

algorithm requires can be an important factor in selecting an appropriate method for

a problem.

• Mapped meshing (algebraic and elliptic methods) works for closed regions that

have a boundary that can be mapped to a square or cube. Elliptic algorithms

tend to give high quality meshes but can be computationally intensive.

• Hyperbolic methods can mesh a region that begins at a meshed surface but

does not have a closed boundary. Hyperbolic meshes are frequently used when

an overset meshing scheme is applied. Most applications for overset meshing

are in the field of computational fluid dynamics (CFD). The mesh quality can

be very good.

52

• Delaunay meshing is widely used due to the well known and robust algorithms

for computing a Delaunay tesselation. It must be initialized with a distribution

of input points. Some tetrahedra with poor shape are usually produced, and

the mesh quality can be improved with post-processing operations.

• Advancing front mesh generation is also a widely used method. It must be

initialized with a meshed boundary surface. Robust and efficient algorithms

exist to produce tetrahedra, and post-processing may be used to improve mesh

quality.

• Octree methods are initialized with a closed surface representation of an object

and subdivide space in a hierarchic fashion. This spatial subdivision provides

a structure for creating elements with different sizes. Typically octrees will

have smaller subdivisions along the object boundary, which leads to the cre-

ation of smaller elements near the boundary. The method of element creation

varies across octree methods, and mesh quality is highly dependent on the way

elements are created.

• Grid based methods are automatic and fast, but the straightforward methods

produce poor element shape at the boundary. Large, complicated grid based

codes exist with heuristics that improve the shape of boundary elements. This

method can be applied most easily if a relatively uniform element size is needed.

Hexahedral meshes are produced, and a predefined surface representation of the

object is required.

• Armstrong and Price’s medial meshing algorithm uses global knowledge about

an object’s shape to decompose it into smaller more easily meshed chunks. It is

a complicated algorithm, and current versions may not handle all possible ge-

ometries. However, it automatically produces hexahedral meshes in a principled

way and is an area of ongoing research.

• Whisker weaving attempts one of the most difficult meshing problems: the auto-

matic creation of a hexahedral mesh that conforms to an arbitrary quadrilateral

surface mesh. It also is a complicated algorithm and currently does not handle

objects with holes. Some of the elements it produces have very poor shape, but

it is a promising area of active research.

53

3.4 Medical Image Based Meshing

This dissertation was motivated by the problem of building quality finite element

meshes from three-dimensional medical images. Therefore an examination of the

choices made by other researchers facing the task of three-dimensional image based

meshing is instructive.

In all cases the objects of interest must be segmented from the image prior to

meshing. Segmentation is a challenging problem separate from mesh generation, and

the format of the segmentation results affects the choice of meshing algorithm. At a

minimum, a segmentation yields a boundary description of the objects. A segmented

object may be represented with a binary image, a stack of contours, a triangulated

surface, a smooth spline or NURBS surface, a medial model, or another type of

three-dimensional solid model.

Of particular interest is a study by Viceconti et al. [79] that compared the per-

formance of four meshing algorithms applied to a CT of a femur. One tetrahedral

meshing algorithm was studied along with three hexahedral meshing algorithms. A

summary of the results is as follows.

• The tetrahedral meshing program required a polygonal boundary model as input

and was able to generate a good quality mesh quickly.

• One of the hexahedral methods was a mapped meshing algorithm that required

a significant amount of human interaction to define a set of meshable blocks

that filled the femur volume. This algorithm required the most user time but

also produced a mesh that yielded the smallest error.

• Another of the hexahedral algorithms was a voxel based method that simply

turned each segmented voxel from the CT into a hexahedral element. A binary

image rather than a geometric model of the femur was required for this method.

This was a simple and fast algorithm that generated elements with good shape.

However, the surface of the model was jagged, and it had to generate a signif-

icantly greater number of nodes in order to get error rates comparable to the

other method. The increase in node count means that the solution stage for the

voxel based mesh was computationally more expensive.

• Finally, an unstructured hexahedral meshing algorithm called HEXAR was

tested. HEXAR required a polygonal model of the femur boundary. It used

a structured interior grid and added unstructured elements to the surface of

54

the interior mesh in order to capture the smooth object boundary. HEXAR

produced a good result for the femur, but it required a significant amount of

computational time on a Cray C90.

Of the meshing algorithms developed specifically for use with three-dimensional

images, a literature search revealed examples only of tetrahedral meshing algorithms.

Yao and Taylor [82] developed a tetrahedral algorithm that is capable of constructing

a mesh directly from a stack of contours drawn on a CT image. Cebral and Lohner

[16] developed an algorithm that begins with a three-dimensional binary image, tri-

angulates the surface of the black/white boundary, and then uses an advancing front

method to build a tetrahedral mesh.

As mentioned in section 3.2.1, hexahedral meshes offer some important computa-

tional advantages. However, tetrahedral meshing remains the most practical option

for image based meshing because existing hexahedral meshing algorithms are either

not sufficiently automatic, robust, capable of handling general geometries, fast, or

widely available.

The m-rep based meshing algorithm presented in the following chapter is an ap-

proach that uses medial models to tackle both the problems of segmentation and

automatic hexahedral mesh generation. This provides the benefits of a hexahedral

mesh as well as the convenience of an integrated segmentation and meshing process.

Since all image based meshing problems must address the issue of segmentation as

well as mesh construction, this is a notable advantage.

55

Chapter 4

M-Rep Based Meshing Algorithm

The meshing algorithm presented in this chapter relies on m-rep object models for

both global and local object shape information. An overview of m-rep models is

provided, followed by an explanation of the meshing algorithm.

4.1 M-Reps

The discussion of m-reps begins with an introduction to the basic idea of medial

modeling and then progresses to a detailed description of the structure of m-reps.

Both single figure and more complicated multi-figure m-rep models are considered.

Also included in this section is a review of the currently available methods of m-rep

construction. An explanation of two alternative object based coordinate systems that

are derived from m-rep object coordinates concludes this section.

4.1.1 Medial Model Concept

The medially based object representation introduced by Blum [10] consists of a medial

surface and a radius function defined on the medial surface. The intuitive picture is

of spheres with the largest possible radius fit inside an object so that they touch

the object’s boundaries on both sides of the object. The center point of each such

sphere is a point on the medial surface, and the radius of each sphere defines the

radius function at that point on the medial surface. The medial surface branches to

represent object protuberances. See Fig. 4.1 for an illustration.

Since their introduction by Blum, medial models have proven useful for a variety of

applications requiring shape modeling or shape decomposition. For example, medial

Figure 4.1: A 2D figure with a branched medial axis.

methods have been successfully applied to object recognition [19], image segmentation

[56], and modeling of an object population that incorporates shape variability [69].

One of the main advantages of medial representations is that the branching struc-

ture of the medial surface provides global topology information about an object, as

well as local boundary location information. However, Blum’s original medial axis

transform has been criticized because small protuberances and slight changes in ob-

ject boundary shape can lead to changes in the branching structure of the medial

axis. M-rep models provide an approach for managing this difficulty.

4.1.2 Anatomy of an M-Rep Figure

M-reps are medially based solid models that encapsulate information about interior

object shape more directly than traditional boundary based models. They also pos-

sess a number of characteristics that make them particularly well suited for modeling

anatomic objects. For the deformation modeling application, the object based coordi-

nate system provided by m-reps facilitates both the construction of the finite element

mesh and the efficient solution of the finite element system of equations.

In the general case, an m-rep consists of a hierarchical tree of figures, where each

figure represents a main component of an object or a protrusion or indentation of

one of the main components. The simplest m-rep consists of a single figure which

represents a slab-like region with a non-branching medial locus. Single figure models

will be described in this section, and multi-figure models will be addressed later in

the chapter. Readers are referred to [55] for a more thorough explanation of m-reps.

A figure is composed of a medial sheet and several functions defined on the medial

sheet. These functions include a scalar function that represents the object radius, a

57

Figure 4.2: (a) Diagram of a medial atom (b) A single figure m-rep model composed
of a lattice of medial atoms (c) M-rep with wireframe object surface rendering (d)
M-rep with solid object surface rendering

function that represents the object boundary’s vector displacement from the medial

sheet along the medially implied normal, and frame and angle functions that pro-

vide orientation information. For implementation purposes the medial sheet and the

functions defined on it are represented by discrete samples stored in a lattice data

structure. Each of the discrete samples is referred to as a medial atom. The structure

of a single atom is illustrated in Fig. 4.2(a). Medial atoms are the smallest building

blocks of an m-rep, and each stores the following information.

• x, position coordinates of the medial sheet at a sample point

• r, the radius, which is defined as the distance from x to the object boundary

• two vectors which originate at x and point to the implied boundary locations

that an inscribed sphere at x with radius r would touch.

• θ, the angle between ~b and a boundary vector

• F = (~n,~b,~b⊥), a frame that defines the tangent plane of the medial sheet at x

and the direction ~b on the tangent plane that is in the ∇r direction

Atoms along the outer edges of the lattice have an additional variable, the elon-

gation e. The elongation term allows control of the curvature around the crest of the

object.

58

The lattice arrangement of medial atoms helps define an object based coordinate

system for m-reps. Any point in an object can be referenced by its m-rep defined

(u, v, t, τ) coordinates. The u and v directions coincide with the rows and columns of

medial atoms. u ranges from 1 to the number of rows of medial atoms in the lattice.

v ranges from 1 to the number of columns of medial atoms in the lattice. Integer

values of u and v coincide with the medial atom locations. τ ranges between 0 at

the medial surface and ±1 at the object surface, while t measures the angle between

+θ and −θ in the crest region of the object. This object based coordinate system

provides spatial and orientational correspondence between deformed versions of the

same object. For example, in a prostate model a given set of (u, v, t, τ) coordinates

will reference approximately the same part of the prostate using both compressed and

uncompressed prostate m-rep models.

M-reps provide a smooth, continuous object boundary and medial surface by inter-

polating the medial atom data across the medial atom lattice. A subdivision surface

algorithm presented in [71] is used to interpolate object surfaces in the Pablo m-rep

modeling program. The approach taken by the m-rep meshing software is to acquire

a sufficiently dense sample of surface points from this Pablo subdivision surface code

and then simply apply a bi-cubic interpolation procedure to those sample points.

Bi-cubic patches parameterized by (u, v) provide a simple interface for quickly eval-

uating the (x, y, z) coordinates of any (u, v, t, τ) point on an object’s surface. This is

important for optimization functions that are applied to object surface coordinates,

such as the element shape and boundary condition optimization functions described

later in this document.

The medial surface is also represented with bi-cubic patches that interpolate the

medial atom locations. The transformation of (u, v, t, τ) to (x, y, z) for interior object

points is accomplished by computing the corresponding (u, v) point on the medial

sheet and the corresponding (u, v, t,±1) point on the object surface, and then linearly

interpolating between the two points based on the value of τ . The function objectxyz,

defined below in equation 4.1, maps (u, v, t, τ) m-rep based object coordinates to

59

(x, y, z) world coordinates.

objectxyz(u, v, t, τ) = medialSurfxyz(u, v) ∗ (1− |τ |) + objectSurfxyz(u, v, t, sign(τ)) ∗ |τ |

where medialSurfxyz is a function that returns the world (4.1)

coordinates of a point on the medial sheet.

objectSurfxyz is a function that returns the world

coordinates of a point on the object surface.

The shape complexity of an m-rep is, of course, limited by its sampling rate. A

dense lattice of medial atoms is capable of capturing more shape detail than a coarse

lattice. The dimensions of an m-reps lattice of atoms is determined by the model

builder and is based on an object’s shape complexity as well as the level of detail

required for a particular application.

M-reps deal with the difficulty of instability of the medial sheet’s branching struc-

ture by defining a displacement function on an object’s surface to account for small

surface perturbations. This allows a simple medial sheet with few branches to rep-

resent gross object topology, and it allows slight indentations and protrusions to be

represented by the surface displacement function. The function objectSurfxyz men-

tioned in equation 4.1 depends on this displacement function in the following way:

objectSurfxyz = boundaryV ector(u, v, t, τ) ∗ radius(u, v) + boundaryDisplacement(u, v, t, τ)

where boundaryV ector() is a function that returns a unit vector (4.2)

that sits on the medial sheet and points in the direction of the

object boundary

radius(u, v) is a function that returns a scalar value indicating

the object radius

boundaryDisplacement() is a function that returns a vector

of small magnitude that represents boundary surface details

Katz [33] discusses a method for determining which boundary protrusions should be

modeled using a surface displacement function and which should be modeled as actual

medial sheet branches. This strategy is advantageous because it both simplifies the

data structure and allows an m-rep with a fixed topology to model an entire class of

objects. For many object segmentation and object population modeling applications

60

a single m-rep with variable atom data and variable surface displacements can account

for whole class of objects.

One advantage of the object based coordinate system is that a mesh defined us-

ing an m-rep’s object based coordinates is automatically individualized to fit any

deformed version of the m-rep model. Since a deformed m-rep model maintains the

same (u, v, t, τ) coordinate space as the original model, a mesh defined in that space

can be transferred to a deformed model and mapped into world space using the de-

formed model’s (u, v, t, τ) → (x, y, z) mapping function. Such a mapping will transfer

a mesh structure from one geometry to another but does not guarantee physical cor-

respondence. The desire for physical correspondence motivates the application of the

finite element method.

Another benefit of the object based coordinate system is the ability to express

distances as a fraction of object width. This is convenient for mesh generation as it

provides a natural way to size elements according to the proportions of an object.

In addition to the advantages offered by object based coordinates, m-reps are

particularly attractive as part of an automatic meshing algorithm because they can

be used to automatically segment objects from images [55]. In this work m-reps form

a critical link between the image and the mesh generation process. Through the

automatic segmentation procedure m-rep models are fit to image data, and then the

geometry information stored in the m-rep is used to automatically generate a high

quality finite element mesh.

4.1.3 Alternative Object Based Coordinate Systems

While an object based coordinate system offers distinct advantages for mesh con-

struction, there are instances in which using four (u, v, t, τ) coordinates to reference

a point in three dimensional space causes difficulties. Most notably, optimization

algorithms are inefficient when forced to search a three dimensional space using four

coordinates. The problem is further exacerbated when the domain of an optimization

is the surface of a figure, since a surface is inherently two dimensional.

The solution to this problem involves two coordinate systems that are derived from

the m-rep (u, v, t, τ) coordinates. The (A,B,C) coordinate system that spans the

volume of an m-rep figure and the (a, b) coordinate system that spans the boundary

surface of an m-rep figure will be referenced several places in this document. The

structure of the coordinate systems is explained below, and the mapping functions

that transform (u, v, t, τ) coordinates into (A,B,C) or (a, b) coordinates are defined

61

Figure 4.3: Five regions of an m-rep figure

later in this section.

An m-rep figure can be divided into five regions: a center region and four rim

regions, labelled RA, RB, RC , RD and RE in Fig. 4.3. The (u, v, t, τ) → (A,B,C)

coordinate mapping is based on the observation that for any one of the regions only

three of the four medial coordinates are needed to uniquely identify a point. For the

entire center region, RE, all points can be referenced by (u, v, 1, τ); t does not need

to vary. In each rim region, either u or v maintains a constant value. Therefore, the

(u, v, t, τ) parameter space can be viewed as five three-dimensional parameter spaces

rather than as one four-dimensional space. The (A,B,C) parameter space simply

maps these five three-dimensional segments into one continuous three-dimensional

space. For the center region, the mapping is direct.

A = u B = v C = τ (4.3)

For the rim regions, a more complicated mapping is necessary because the t and

τ medial object coordinates for the rims are essentially polar coordinates, while the

(A,B,C) coordinates form an object based Cartesian type coordinate system. See

Fig. 4.4 for an illustration. To roughly fit this crest region with simply computed

coordinates, the (A,B,C) coordinates for each rim span a wedge shaped region, as

62

Figure 4.4: A sliced view of a rim region, with the polar type medial object coordinates
shown on the left and the corresponding (A,B,C) parameter space on the right.

shown in Fig. 4.5. The equations of the (u, v, t, τ) → (A,B,C) mapping for each rim

region are as follows:

63

Figure 4.5: Diagram of the (A,B,C) parameter space with the five m-rep regions
labelled

64

RA :

Atmp = 1− |τ |
tan
(

tπ
2

)
+ 1

A = = v (Atmp) + (1− v)

(
Atmp − 1

umax − 1

)
(umax + 1)

B = v

C = τ

(
1− 1

tan
(

tπ
2

)
+ 1

)
RB :

A = u

Btmp = vmax +
|τ |

tan
(

tπ
2

)
+ 1

B = (umax + 1− u) (Btmp) + (u− umax)

(
Btmp − 1

vmax − 1

)
(vmax + 1)

C = τ

(
1− 1

tan
(

tπ
2

)
+ 1

)
RC :

Atmp = umax +
|τ |

tan
(

tπ
2

)
+ 1

A = (vmax + 1− v) (Atmp) + (v − vmax)

(
Atmp − 1

umax − 1

)
(m+ 1)

B = v

C = τ

(
1− 1

tan
(

tπ
2

)
+ 1

)
RD :

A = u

Btmp = 1− |τ |
tan
(

tπ
2

)
+ 1

B = u (Btmp) + (1− u)

(
Btmp − 1

vmax − 1

)
(vmax + 1)

C = τ

(
1− 1

tan
(

tπ
2

)
+ 1

)

(a, b) medial object surface coordinates are defined using the (A,B,C) coordinates

described above. The (a, b) parameter space is basically the surface of the (A,B,C)

65

parameter space unfolded along the (umax + 1) edge.

a =

{
A if C ≥ 0

2 (umax + 1)− A if C < 0
(4.4)

b = B

Figure 4.6: A figure is sliced along its crest on three sides (outlined in green) and
remains hinged along its crest on one side (outlined in red). The flattened view of
the figure’s surface is shown on the right. In the diagram the (u, v) axis is mirrored
about the hinge crest, but the (a, b) axis remains consistent.
The mapping from the curved surface in three dimensions to the two dimensional
diagram necessarily stretches some parts of the surface. In particular, the crest region
must either be stretched or cut when mapped to a two dimensional diagram. In this
figure the crest region is stretched, so straight lines drawn through the crest region on
the diagram do not necessarily translate into straight lines or geodesic lines on three
dimensional surface.

4.1.4 Multi-Figure M-Reps

The (u, v) parameterization of the medial sheet described so far only covers a single,

unbranched medial sheet. However, many objects of interest have branching medial

sheets. M-reps represent branching through the use of sub-figures. Each continuous,

66

Figure 4.7: Left: 2D multi-figure m-rep of a hand Right: Hierarchical figure structure
for hand m-rep

unbranching portion of a medial sheet is represented by a single figure lattice of

medial atoms. Objects with a branching medial sheet have multiple figures, the

union of which represent the entire object volume.

M-rep object topology is captured by a tree data structure that organizes the

figures. For example, an m-rep hand model could consist of a single figure to represent

the palm and five sub-figures to represent the fingers. Fig. 4.7 illustrates a possible

arrangement of figures in two dimensions, along with the corresponding hierarchical

figure data structure.

In a multi-figure model each figure has a separate (u, v, t, τ) coordinate system,

and the coordinate systems overlap in the attachment regions. An attached sub-figure

stores information about the location and orientation of its object based coordinate

system in terms of its host figure’s object coordinates. The result is that a multi-figure

object is covered by a patchwork of object based figural coordinate systems.

In the m-rep model construction process decisions must be made about which

object features should be represented with a sub-figure and how the figure hierarchy

should be arranged. Katz and Pizer [33] have addressed this issue and have developed

a method for deriving a stable m-rep figure hierarchy for complicated object shapes.

This method analyzes an object’s medial axis transform (MAT) and determines which

parts of the medial axis primarily account for an object’s substance and which parts

primarily represent connections between different object regions. Only those sections

67

of the medial axis that account for a significant amount of object substance need to

be modeled as an m-rep figure or sub-figure.

To increase the versatility of sub-figures, blending parameters are available to

govern the smoothness of the object surface in the neighborhood of a sub-figure

attachment. For each sub-figure two blending parameters are defined. One parameter

controls how far the blend region extends onto the surface of the subfigure, and the

other controls how far the blend region extends onto the surface of the host figure.

4.1.5 Current M-Rep Software

There are three ways m-rep models can be generated:

• Build a new m-rep from scratch, using a modeling tool.

• Modify an existing m-rep to fit an object in a new image.

• Automatically generate an m-rep from volumetric data.

An m-rep model building tool named Pablo has been created that allows m-rep

figures and sub-figures to be manually created and edited. Pablo allows figures to be

created and deleted and provides editing access to the position, radius, and angle θ

of individual medial atoms. This allows a user to construct a model for any object

shape.

The Pablo program also has the capability to automatically fit an m-rep to image

data. It uses a conjugate gradient algorithm to adjust the medial atom properties to

maximize the boundary match between the boundary implied by the m-rep and the

visible boundary of an imaged object.

Styner [69] presented a method for automatically building m-rep models from

object surface data using pruned Voronoi skeletons. The primary focus of his work

is the use of object shape statistics to build an m-rep model that is representative of

not just one object but a population of objects. Such a model can be optimized to

fit a particular instance of the object population.

4.2 Meshing M-Rep Objects

Some of the most promising methods of unstructured hexahedral mesh generation

have made use of global information about an object’s shape. For example, the

68

medially based meshing algorithm presented by Armstrong [60] uses global shape

information contained in the medial axis transform (MAT) to decompose an arbi-

trary object into meshable polyhedral subregions. Though this algorithm is quite

complicated and computing the MAT is a challenging problem for some objects, this

approach has enjoyed some success.

The whisker weaving algorithm builds hexahedral meshes for arbitrary objects

using global shape information represented by the spatial twist continuum (STC).

While it produces some elements with poor shape, it is a promising area of research.

Examining the STC is enlightening because it highlights the reason that a hexahedral

mesh design should be based on global shape information. Every hexahedral mesh

has a STC dual, and valid modifications to a STC can only be performed by adding,

deleting, or moving entire sheets of the STC. A sheet of the STC corresponds to a

whole layer of hexahedral elements, and partial sheets cannot be permitted because

they would represent an incompatible mesh with hanging nodes. Therefore, any

modification to a hexahedral mesh is a global operation.

The m-rep based meshing algorithm described in the following section is simpler

than whisker weaving and Armstrong’s meshing method because it does not derive

global shape information from a surface mesh or polygonal boundary model. Instead,

it relies on the global and local shape information encapsulated in an m-rep model.

M-reps are particularly well suited for medical image segmentation and registration

applications [57] [55], and they carry the additional advantage of simplifying hexahe-

dral mesh generation.

4.2.1 Single Figure Meshes

An explanation of the m-rep meshing algorithm begins naturally with the simplest

m-rep model, a single figure. The m-rep based meshing algorithm uses a standard

meshing pattern for each figure of a model and assigns object based coordinates to

each node. The mapping from object based coordinates to world space coordinates

determines the nodes’ placement in world space.

The first step in meshing an m-rep figure is the construction of a sampling grid

on the (u, v) parameter plane of the medial sheet. The vertices of the sampling grid

are placed at regular intervals in (u, v) coordinates, and their world space coordinates

are calculated by interpolating a position on the medial sheet. The spacing in the u

and v directions is determined by the ratio of the average thickness of the object to

the average world space distance between medial atoms. Su, the number of medial

69

Figure 4.8: (a) M-rep constructed from 3x3 lattice of medial atoms. (b) The (u,v)
parameter plane of the medial sheet with a 5x5 grid of sample points indicated. (c)
Object with sample point interpolated and drawn on the medial sheet.

sheet samples in the u direction and Sv, the number of medial sheet samples in the v

direction are defined as follows.

(4.5)

Su =
umax

(umax − 1) ∗ vmax

∗
umax−1∑

i=1

vmax∑
j=1

‖objectxyz(u, v, .5, 1)− objectxyz(u+ 1, v, .5, 1)‖
‖objectxyz(u+ .5, v, 0, 1)− objectxyz(u+ .5, v, 1, 1)‖

Sv =
vmax

umax ∗ (vmax − 1)
∗

umax∑
i=1

vmax−1∑
j=1

‖objectxyz(u, v, .5, 1)− objectxyz(u, v + 1, .5, 1)‖
‖objectxyz(u, v + .5, 0, 1)− objectxyz(u, v + .5, 1, 1)‖

where objectxyz is defined by equation 4.1.

Using the computed sample spacing, the average hexahedral element will have

roughly equal dimensions. This process is illustrated in Fig. 4.8.

From the sampling grid on the medial sheet, the coordinates of the other layers

of nodes can be derived. For every (u, v) sample point except those around the outer

rim of the medial lattice, five nodes are created at τ = −1,−.5, 0, .5, 1. For sample

points around the rim, a slightly different set of six nodes is created, with the sixth

node sitting out on the object crest. The object coordinates of the nodes are given

in Table 4.1, and the node and element patterns are illustrated in Fig. 4.9.

The basic four layer figure meshing pattern shown in Figs. 4.9, 4.10, 4.11, and

4.12 provides a good coarse mesh of a figure and has the advantage of having no more

70

Figure 4.9: Left: Three groups of nodes constructed from three corresponding medial
sheet samples are labelled. a0 and b0 are samples on the center portion of an object’s
medial sheet that give rise to nodes a0 - a4 and b0 - b4, respectively. c0 is a sample on
the outer rim of the medial sheet, from which nodes c0 - c5 are constructed.

Right: This is an interior view of the structure of the single figure meshing pattern.
For a meshed single figure m-rep, any slice that is perpendicular to either the −→u or
−→v directions on the medial sheet will reveal the same element structure as shown
above.

The vector
−−−−−→
(c5 − c0) from each group of crest nodes (see group c on the left) is roughly

perpendicular to the boundary of the medial sheet. This is true for the crest nodes at
the corners of the medial sheet’s (u, v) parameter space as well as for the crest nodes
that lie along an edge of the parameter space.

than one face of any element lie on the surface of the object. This is important for

the subdivision process described later. It also works well for objects with both high

and low curvature crests.

Although the sample spacing is regular in medial coordinates, when the mesh is

mapped into world space (x, y, z) coordinates the elements in narrower regions of

the object tend to be smaller than the elements in wider areas. Typically, this is a

desirable property, as a mesh usually needs to have smaller elements in narrower parts

of an object in order to sufficiently model the detail. This behavior flows naturally

from the use of the m-rep object coordinate system.

Because the mesh construction is guided entirely by information contained in the

m-rep model, the meshing process requires no user interaction.

71

Table 4.1: Object coordinates of the mesh nodes shown in Fig. 4.9, where (ua, va)
and (uc, vc) are the coordinates of the medial sheet samples that generate the ai and
ci nodes.

node label u v t τ
a0 ua va 1 0
a1 ua va 1 -.5
a2 ua va 1 -1
a3 ua va 1 .5
a4 ua va 1 1
c0 uc + .3 vc 1 0
c1 uc vc 1 -.5
c2 uc vc 1 -1
c3 uc vc 1 .5
c4 uc vc 1 1
c5 uc vc 0 1

Figure 4.10: (a) M-rep model of a prostate (b) Prostate m-rep with implied surface
(c) Base level prostate mesh

72

Figure 4.11: Two transparent views of the prostate mesh, intended to show the three
dimensional structure of the mesh. (a) A view perpendicular to the prostate’s medial
sheet. (b) A view through the stacks of slightly shrunk elements.

Figure 4.12: (a) M-rep model of male pelvis, including pubic bones, rectum, bladder,
and prostate (b) Mesh of male pelvis objects

73

Figure 4.13: Histograms of det(J) for elements of the prostate mesh (a) before element
quality optimization and (b) after element quality optimization

4.2.2 Mesh Quality Optimization

A three dimensional isoparametric element is defined in a parameter space (Fig.

3.2a) and is mapped into world space (Fig. 3.2b) via the element shape function

(x, y, z) = N(ξ, η, ζ). The mapping function for an 8-node isoparametric linear hex-

ahedral element is given in equation 3.2.

As explained in section 3.2.2, an important measure of hexahedral element qual-

ity is the determinant of the Jacobian of the mapping function. As gauged by the

determinant of the Jacobian, the element quality of the majority of hexahedral ele-

ments generated by the m-rep based meshing algorithm is good, but some elements

generated near the corners of the parameterized medial sheet or in areas of higher

curvature can have poorer shape. Therefore, after mesh construction an optimization

is performed to improve the shape of the less desirable elements.

The mesh quality improvement procedure first assigns to each element a score

that is the minimum value of the determinant of the Jacobian of the element shape

function evaluated at each of the Gauss integration points in the element. The node

positions of all elements with a score less than .5 are optimized so that the det(J)

values of the element and its neighbors are maximized.

Because the mesh is constructed with medial object (u, v, t, τ) coordinates but

node positions do not actually have four degrees of freedom, coordinate transforms

are applied in the optimization process. For nodes in the interior of a figure the

parameters optimized are (A,B,C) coordinates, whose derivation from (u, v, t, τ)

coordinates is explained in section 4.1.3. (A,B,C) coordinates are better for the

74

Figure 4.14: Histograms of det(J) for elements of the five-object male pelvis mesh (a)
before element quality optimization and (b) after element quality optimization

optimization purpose than (x, y, z) world coordinates because they are closely based

on the medial object coordinates and the mapping between (u, v, t, τ) and (A,B,C)

is easily invertible, unlike the mapping between (u, v, t, τ) and (x, y, z). For nodes on

the surface of a figure the parameters optimized are (a, b). The derivation of the (a, b)

to (u, v, t, τ) coordinate mapping is also given in the appendix. Optimization in this

two-dimensional parameter space implicitly constrains surface nodes to remain on the

surface. The benefit of using these coordinate transformations in the optimization

process is that the number of coordinate variables needed to specify node positions

is reduced, thereby making the optimization process more robust and efficient.

This optimization process has successfully produced a mesh in which determinant

of the Jacobian of all hexahedral elements is greater than .5 for the prostate model.

This mesh is shown in Fig. 4.10, and histograms of element quality before and after

optimization are in Fig. 4.13. For the five-object male pelvis model that includes

the pubic bones, rectum, and bladder in addition to the prostate, all elements had a

positive det(J) after optimization, and only a few elements had scores less than .5.

The five-object mesh is shown in Fig. 4.12 and element quality histograms for the

pelvis model are in Fig. 4.14.

4.2.3 Mesh Subdivision

If greater accuracy than provided by the initial coarse mesh is desired, the initial

mesh can be subdivided. The result is a mesh with smaller elements that provides

a finer representation of the solution. The subdivision algorithm involves adding a

75

node to the midpoint of each existing edge in the mesh, adding a node to the center

of each existing quadrilateral face, and adding a node to the center of each existing

hexahedral element. Fig. 4.15 shows the subdivision pattern for the three element

types.

Figure 4.15: Element subdivision patterns for (a) hexahedra (b) pyramid (c) tetra-
hedra

Figure 4.16: A prostate mesh at three scale levels.

The hexahedral elements that represent the m-rep modeled objects have nodes

with both world space (x, y, z) coordinates and medial (u, v, t, τ) coordinates. By sub-

dividing these elements using their medial node coordinates, an improved, smoother

approximation to the object geometry is achieved with subdivision. The smoother

76

boundary achieved with subdivision of the prostate mesh can be seen in Fig. 4.16. In

contrast, straightforward subdivision with world space coordinates would also provide

improved resolution for representing the solution but would not reduce the geometric

error or blockiness of the mesh. The medial coordinate based subdivision process

allows for increased precision in both the geometry and the solution.

If adjacent faces of an element lay on the object surface, the subdivision process

described would lead to increasingly distorted and flattened elements since any surface

patch is flat at a sufficiently small scale. The meshing pattern presented here has no

elements with more than one face lying on the object surface, thus allowing good

element shape to be maintained through an arbitrary number of mesh subdivisions.

4.2.4 Multi-Figure Meshes

Meshing multi-figure m-reps is significantly more complicated than meshing single

figure m-reps due to the requirement that host figure and and subfigure meshes share

a common interface at their intersection boundary. Satisfying this requirement results

in continuous meshes for multi-figure objects, allowing the deformation of complicated

objects to be simulated. The meshing algorithm previously described for single figure

models must be modified to ensure mesh compatibility at host/subfigure intersection

boundaries. Without taking steps to ensure compatibility in the attachment region, a

separate, unconnected mesh would be generated for each figure, and deforming forces

would not be transmitted across a sub-figure attachment boundary.

One of the issues that must be dealt with in the multi-figure algorithm is the

varying size of elements between figures. It is possible for a subfigure to be signifi-

cantly smaller than its host figure. Generated separately from its host figure, such a

subfigure’s mesh would naturally have smaller elements than the host figure’s mesh.

Connecting small elements to large elements clearly poses a difficulty. A possible

solution would be to make the elements throughout a model have a uniform size.

However, that solution typically does not provide an efficient allocation of computa-

tional resources. Element size is related to node density, and the number of nodes

impacts the amount of memory required as well as the solution time required for a

finite element problem. Therefore putting small elements in areas of a mesh that do

not require small elements for accurate modeling wastes resources. Meshes that make

efficient use of resources typically have elements whose size reflects an object’s scale

and level of geometric detail in the elements’ neighborhoods.

An alternative strategy is to mesh the main body of a subfigure with elements

77

Figure 4.17: The tree nodes represent figures in an m-rep tree data structure. The
numbers show the order in which the figures would be meshed.

that are appropriate for its size and shape, mesh the main body of a host figure

with elements that are appropriate for its size and shape, and create a transitional

mesh in the region where the two figures are joined. The transitional mesh elements

can gradually change size and provide a smooth, blended connection between the

main bodies of the host and subfigure meshes. This is the approach taken by the

multi-figure meshing algorithm. Therefore the goal in the design of the multi-figure

meshing algorithm was to create an algorithm derived from the single figure meshing

algorithm that made only the minimum adjustments necessary to the single figure

meshing pattern to guarantee host/subfigure mesh compatibility. This goal was based

on the premise that the single figure meshing pattern is ideally fitted to a figure and

that the size of the elements in a single figure mesh are appropriate for the scale of the

figure. Therefore mesh quality will be best preserved by making minimal alterations

to the single figure meshing pattern.

The multi-figure meshing algorithm described in this section manages the meshing

of a sub-figure’s attachment region. This algorithm is recursive, and it traverses an

m-rep figure tree in depth-first fashion. Before a mesh is generated for a host figure,

meshes are created for all of its subfigures. The order of meshing for a sample figure

tree is shown in Fig. 4.17.

This approach has similarities to the block structured meshing methods mentioned

in chapter 3. Block structured methods typically require users to manually decompose

an object into meshable chunks and define a logical correspondence between each

chunk and the unit cube. Then a Cartesian-type structured mesh is generated for each

78

chunk and some heuristic is applied to guarantee mesh compatibility between chunks.

With the multi-figure m-rep meshing algorithm, the decomposition into chunks is

implicitly defined by the m-rep figure tree structure. The figure meshing pattern is

not a Cartesian-type mesh but rather the meshing pattern described in section 4.2.1.

To satisfy the compatibility requirement, the multi-figure meshing algorithm creates

the attachment transition mesh that is described in detail in section 4.2.4.2.

4.2.4.1 Structure of multi-figure meshing algorithm

The structure of the recursive multi-figure meshing routine is as follows:

meshFigure(currentFig) {

for i = 1 : currentFig.numSubfigures

meshFigure(currentFig.subfigure(i))

if currentFig.numSubfigures == 0 and currentFig.host == NULL

meshSingleFigure(currentFig)

else if currentFig.numSubfigures == 0

meshLeafFigure(currentFig)

else if currentFig.host == NULL

meshRootFigure(currentFig)

else

meshGeneralFigure(currentFig)

}

The meshSingleFigure routine refers to the single figure meshing algorithm pre-

viously described in section 4.2.1. meshLeafFigure handles the case of a figure that is

attached to a host figure but has no subfigures of its own. Transition region meshing

is described in depth in the explanation of the meshLeafFigure algorithm in section

4.2.4.2. meshRootFigure handles the case of a figure that is not attached to a host

figure but does have subfigures attached to it. The mechanism for getting the surface

mesh of a host figure to be compatible with the footprint of a subfigure is explained

along with the meshRootFigure algorithm in section 4.2.4.3. meshGeneralFigure

handles the case of a figure that is both attached to a host figure and has one or

more subfigures attached to it. This algorithm contains many of the steps from the

meshLeafFigure and meshRootFigure routines and is covered in section 4.2.4.4. The

way the multi-figure meshing algorithm treats a smooth blend region is discussed in

79

section 4.2.4.5.

4.2.4.2 Leaf figure meshing

This section examines each of the steps in the meshLeafFigure routine. Meshing

a leaf figure includes the task of creating a transition mesh that connects the main

body of the leaf figure mesh with the surface of the host figure mesh. In the interest

of clarity in the following discussion, some terms relating to the transition mesh are

defined below.

• hinge atom row - the row of medial atoms along one edge of a subfigure’s medial

atom lattice that attaches to a host figure

• top of transition mesh - a slice through a subfigure that lies between the transi-

tion portion of the subfigure mesh and the main body of the subfigure (see Fig.

4.18(b))

• bottom of transition mesh - the portion of a host figure’s surface mesh that

corresponds to the footprint of a subfigure on the host figure’s surface (see Fig.

4.18(a))

• sides of transition mesh - the surface of the transition mesh region, not including

the portions already labelled as top and bottom

The constraints imposed on the transition mesh are as follows:

1. It must be composed of hexahedral elements in order to meet the goal of con-

structing an all-hex mesh.

2. Its top surface must exactly match the meshing pattern of a cross-section of the

leaf figure’s main body mesh.

3. Its bottom surface must exactly match the meshing of the subfigure’s footprint

on the host figure’s surface.

In general, constructing a hexahedral mesh that conforms to a given quadrilateral

surface mesh is a difficult task. In fact it has been proven impossible to create a

hexahedral mesh for certain quadrilateral surface mesh patterns [46]. The creation of

the host/subfigure transition mesh here is simplified by the fact that a surface mesh is

specified only for the top and bottom surfaces of the transition region rather than for

80

Figure 4.18: An example of transition region meshing patterns for (a) the Cartesian
pattern found on the bottom of a transition mesh that corresponds to the portion
of a host figure’s surface mesh occupied by a subfigure’s footprint (b) the m-rep
generated pattern that that exists on the top of a transition mesh and corresponds
to a cross-section of a subfigure’s mesh.

its entire surface. There are no constraints applied to the surface mesh pattern of the

sides of the transition region. The pattern on the top surface of the transition mesh

will always be the m-rep generated kind of pattern shown in 4.18(b). The pattern on

the bottom surface of the transition mesh will always be a Cartesian mesh of the kind

shown in 4.18(a). The number of rows and columns in the patterns can vary, but the

topology of the patterns will be as shown in Fig. 4.18. Because the topology of the

transition region’s top and bottom surface patterns is known, a set of templates can

be generated that provide transitions between two types of patterns. Although the

diagram shows a subfigure whose intersection with its host is roughly perpendicular,

the template based transition algorithm works equally well if a subfigure meets its

host in a smooth, blended curve. In such a case the intersection region of the subfigure

would be wider than its main body, but the meshing pattern would not be different.

The template based transition meshing process is described in the following leaf figure

meshing steps.

Leaf step 1: Locate the host/subfigure intersection surface in both host

figure and subfigure coordinates.

81

Figure 4.19: (a) A blue host figure has an attached gray subfigure. (b) A view of the
two figure m-rep model shows the area of overlap between the host and subfigures
in green. (c) The intersection patch that cuts through the subfigure and lies on the
boundary of the host figure is shown in green.

Both the host and subfigure (u, v, t, τ) coordinate systems are defined in the area

of overlap shown in Fig. 4.19. The perimeter of the intersection surface needs to

be known in terms of host and subfigure coordinates; this is accomplished through a

spatial search process. Points on the perimeter of the intersection surface satisfy the

following equation:

‖subF igurexyz(uc, vc, tc, τc) − hostF igurexyz(up, vp, tp, τp)‖ = 0 (4.6)

where (uc, vc, tc, τc) are subfigure coordinates

(up, vp, tp, τp) are host figure coordinates

τc = ±1

τp = ±1

subF igurexyz() and hostF igurexyz() are functions

that return (x, y, z) world coordinates corresponding

corresponding to (u, v, t, τ) figure coordinates,

as defined in equation 4.1.

If a subfigure is attached along the u = 0 or u = umax edge of its coordinate

system, a set of points on the perimeter of the intersection surface can be computed

by finding the (up, vp, tp, τp) and (uc, vc, tc, τc) points for which equation 4.6 is true.

A dense sampling of these points is computed by choosing a set of fixed values for vc

and minimizing the left hand side of equation 4.6, allowing uc, tc, up, vp, tp to vary.

82

If a subfigure is attached along its v = 0 or v = vmax side, a set of fixed values for uc

may be chosen and the left hand side of equation 4.6 minimized by allowing vc, tc,

up, vp, tp to vary.

Starting coordinates for the minimization are provided by the m-rep hinge atoms.

Hinge atoms are the row or column of medial atoms in a subfigure that are connected

to the host figure. The m-rep data structure stores the positions of the hinge atoms

in terms of host figure coordinates, so the hinge atom positions are known in both the

host and subfigure coordinate systems. Because hinge atoms lie in the host/subfigure

attachment region, their coordinates provide a good starting place in the search for

points on the perimeter of the intersection surface.

Leaf step 2: For the intersection surface, compute (1) the surface mesh

topology dimensions that best fit the ideal element size and meshing pat-

tern for the host figure and (2) the surface mesh topology and dimensions

that best fit the ideal element size and meshing pattern for the subfigure.

A host figure’s intersection surface mesh pattern is shown in Fig. 4.18(a). As

described in the later explanation of the root figure meshing algorithm, the host

figure’s mesh is constructed to ensure that the portions of its surface that coincide

with the footprint of a subfigure have the topology of a Cartesian grid; the number of

rows and columns in the grid will vary for different figure geometries. In the context of

attachment region meshing, a row of elements runs parallel to the subfigure’s medial

sheet, and the extent of a row is referred to as the length of the intersection surface.

A column of elements runs perpendicular to the subfigure’s medial sheet, and the

extent of a column is referred to as the width of the intersection surface. The length

and width of the intersection surface and the desired element size for the host figure

determines the number of rows and columns in the pattern.

numRows =
intersection surface width

ideal element edge length
(4.7)

numCols =
intersection surface length

ideal element edge length
(4.8)

While the attachment area mesh connects to the surface of the host figure, it

attaches to a cross-section of the subfigure. This is reflected in the subfigure inter-

section mesh pattern shown in Fig. 4.18(b). The number of columns in a subfigure’s

mesh pattern is determined by the overall dimensions of the subfigure, as explained

83

in section 4.2.1.

The attachment region mesh must somehow connect the differing host and subfig-

ure intersection mesh patterns in order to form a continuous mesh. This is the task

of the next step in the algorithm.

Leaf step 3: Create an attachment transition mesh that connects the

host figure mesh and the subfigure mesh.

The construction of an attachment mesh is template based. It begins by taking

the host mesh pattern as the base of the attachment transition mesh. Templates are

then chosen to build up from the base to produce a mesh that matches the subfigure’s

mesh pattern at the top of the attachment transition mesh.

The attachment transition mesh is constructed in three phases. The first phase

adjusts the number of rows in the pattern. The second phase adjusts the topology of

the pattern, switching from a Cartesian mesh topology (Fig. 4.18(a)) to the topology

consistent with a cross-section of a subfigure’s mesh (Fig. 4.18(b)). The third and

final phase adjusts the number of columns in the pattern. Examples of transition

mesh cross-section patterns for each phase are shown in Fig. 4.20.

In the first phase templates are applied to produce a pattern with two rows of

elements. The templates applied for this purpose are shown in Fig. 4.21. The

first template shown converts a pattern with one element row to a pattern with two

element rows. The remaining templates convert patterns with more than one row to

a pattern with just two rows. These two dimensional templates are applied to the

base pattern column by column so that in three dimensions the elements formed are

extruded versions of the two dimensional patterns. This works properly because the

base pattern is a Cartesian type grid, as shown in the upper left corner of Fig. 4.20.

The second phase of attachment mesh pattern construction starts with a pattern

like the one shown in the upper right corner of Fig. 4.20. In this phase, a three

dimensional template is applied to the ends of the mesh pattern to convert from the

Cartesian grid topology of the host’s pattern to the subfigure’s mesh pattern (see Fig.

4.18). The template shown in Fig. 4.22(a) is applied to the elements in the first and

last columns of the pattern, while the template shown in Fig. 4.22 is applied to the

remaining elements column by column. The result is a mesh pattern that matches the

subfigure’s attachment pattern, except that the number of columns in the transition

mesh may differ from the number of columns in the subfigure’s attachment pattern.

The third phase adjusts the number of columns in the attachment transition mesh

84

Figure 4.20: Transition mesh interface patterns

The Cartesian type pattern on the surface of the host figure begins with m rows of
mesh lines and n columns of mesh lines, as shown in the upper left corner. In phase
one of the transition mesh the number of mesh lines is adjusted to 3, resulting in a
3×n Cartesian type pattern at the end of phase one. In phase two, three dimensional
templates are applied to change the topology of the pattern. At the end of the second
phase, the cross-section transition mesh pattern is similar to the one shown in the
bottom left corner. In the third and final phase, the number of columns is adjusted
to match the number of columns, s, in the subfigure mesh. This results in the kind
of pattern shown in the bottom right corner.

85

Figure 4.21: Templates for converting a mesh pattern with up to seven rows of mesh
lines to a pattern with three rows of mesh lines.

Figure 4.22: 3D templates for converting between a host figure’s Cartesian grid type
attachment pattern and the pattern associated with a cross-section of a subfigure’s
mesh. (a) The template applied to the columns at either end of a pattern in the
second phase of a transition mesh (b) The template applied to the center columns
of a pattern in the second phase of a transition mesh, shown at an angle so that
its compatibility with pattern (a) is obvious. (c) The same pattern as shown in (b),
drawn in the plane of the page.

86

so that it exactly matches the subfigure’s attachment pattern. The number of columns

may need to be either increased or decreased, and templates for both options are

shown in Fig. 4.23 and and Fig. 4.24. A column adjustment template is applied

across all four of the element rows. Different column templates may be applied to

different columns, to achieve the desired final column count. An example of two

different column templates used together to achieve a 10 → 4 column transition is

shown in Fig. 4.25.

Figure 4.23: Templates that may be applied to increase the number of columns in an
attachment transition mesh pattern.

The final result is a collection of templates put together in such a way that a con-

tinuous transition is provided between the host attachment pattern and the subfigure

attachment pattern. An example of such a result is shown in Fig. 4.26, and a more

complicated transition result is shown in Fig. 4.27.

The attachment transition pattern topology is computed in a cubical (i, j, k)

parameter space. Afterwards the coordinates are scaled to fit into the subfigure’s

(A,B,C) coordinate space. The (A,B,C) coordinate system is explained in detail in

Appendix A. Finally, the (A,B,C) coordinates are mapped to the subfigure (u, v, t, τ)

figure coordinates and (x, y, z) world coordinates. A view of an attachment transition

mesh in world space is provided in Fig. 4.28.

Leaf step 4: Mesh the remaining volume of the subfigure using the single

figure meshing algorithm.

87

Figure 4.24: Templates that may be applied to decrease the number of columns in an
attachment transition mesh pattern.

Figure 4.25: Sample column transition pattern to reduce the number of mesh line
columns from 10 to 4.

88

Figure 4.26: An example of an attachment transition mesh. The lower pair of images
shows the transition mesh from two different viewpoints.

Figure 4.27: Another example of an attachment transition mesh.

89

Figure 4.28: A view of a completed subfigure mesh.

The portion of the subfigure that lies above the top of the attachment transition is

meshed using the single figure meshing algorithm described in section ??. Connecting

this portion of the mesh to the attachment transition mesh is straightforward since

the top of the transition mesh matches the subfigure’s mesh pattern.

4.2.4.3 Root figure meshing

The meshRootFigure routine creates meshes for figures that have one or more at-

tached subfigures but are not themselves attached to a host figure. The basic strategy

of the meshRootFigure algorithm is to create the meshing pattern that was described

for single figures but do it in such a way that the mesh lines on the surface of the

figure are aligned with the footprints of the attached subfigures.

The explanation of root figure meshing involves the careful examination of a root

figure’s surface mesh, so this section includes several diagrams of root figure surface

meshes. These diagrams are of the (a, b) parameter space of the root figure’s surface.

They are drawn as if the root figure has been sliced open and flattened on the page.

Fig. 4.6 illustrates how these two dimensional diagrams are related to the three

dimensional figure.

The algorithm consists of the following steps:

Root step 1: Compile a set of surface mesh line segments.

90

Prior to meshing a root figure, all of its subfigures figures are meshed. Therefore,

the footprints of all the subfigures figures on the surface of the root figure are known

in terms of the root figure’s coordinates system. For an explanation of how the

footprints are computed, see leaf figure meshing step 1.

The first step of the root figure meshing process consists of simply collecting the

footprints of all the root figure’s subfigures and forming a list of the line segments

that must be included in the root figure’s surface mesh in order for the root to attach

properly to its subfigures. Fig. 4.29 illustrates what the surface mesh of a root figure

looks like at this preliminary stage.

Figure 4.29: A root figure with two subfigures is shown on the left, and a diagram of
the figure’s surface with the footprints of its subfigures is shown on the right.

Root step 2: Extend and connect the surface mesh line segments to form

continuous loops.

In the second step the surface mesh line segments are analyzed and categorized

as either horizontal or vertical mesh edges, depending on the orientation of the line

segments relative to the root figure’s −→u and −→v directions. Next the line segments are

sorted spatially and are assigned numbers according to ascending u coordinates for

vertical lines and ascending v coordinates for horizontal lines. Line segments sharing

the same orientation and number are then connected. All of the lines are extended

and connected so that continuous loop lines are formed on the root figure’s surface.

Fig. 4.30 illustrates this process for the root figure shown in Fig. 4.29.

91

Figure 4.30: (a) The line segments in the subfigures’ footprints are categorized as
horizontal (h) or vertical (v) and are numbered. (b) The line segments are extended
and connected to form continuous loops.

Root step 3: Add more surface mesh lines to fill in surface mesh gaps.

The average size of the gaps between neighboring surface mesh lines is computed

and compared to the root figure’s ideal element edge length. If a gap’s average size is

more than one and a half times the ideal edge length, one or more new mesh lines is

generated to fill the gap. New mesh lines are generated by interpolating between two

existing mesh lines or by interpolating between an existing mesh line and one of the

root figure’s crest edges. Fig. 4.31 provides a diagram of a root figure surface after

additional mesh lines have been filled in.

Figure 4.31: From Fig. 4.30, additional mesh lines have been interpolated to fill large
gaps in the surface mesh.

Root step 4: Build hexahedral volume elements; produce interior nodes

by interpolating coordinates between opposite sides of the surface mesh.

92

The topology of a hexahedral mesh built for a root figure is the same as the

topology of the single figure meshes discussed in section 4.2.1. The difference lies in

the way node coordinates are generated. For a single figure mesh, the node coordinates

are generated based on a sampling grid defined on the medial sheet. For a root figure

mesh, the node coordinates are generated by interpolating between mesh lines that

lie on a figure’s boundary surface. The difference is between propagating a mesh

structure from the medial sheet outward and propagating a mesh structure from the

boundary surface inward.

For root figures the portion of the surface mesh that lies on the t=1 side of the

surface has the same structure and same number of rows and columns as the portion

of the surface mesh that lies on the t=-1 side. However the curvature and shape of

the mesh lines may be different on each side of the object in order to accommodate

the footprints of subfigures on the figure’s surface. This is evident by examining Fig.

4.32.

Figure 4.32: This root figure surface diagram highlights matched points on opposite
sides of the figure surface.

The interpolation of node coordinates is performed in the (A,B,C) coordinate sys-

tem described in appendix A. This coordinate system is used instead of (u, v, t, τ)

coordinates because straightforward linear interpolation with (A,B,C) coordinates

produces the expected intermediate points, whereas interpolation with (u, v, t, τ) co-

ordinates is complicated by the inclusion of the angle parameter, t. Also, if inter-

polating with (u, v, t, τ) coordinates the crest region must be handled as a special

case.

Fig. 4.32 shows on a root surface diagram how surface mesh points have a match-

ing point on the other side of the figure. Mesh nodes are interpolated between such

93

Figure 4.33: Interior mesh nodes are interpolated between matched pairs of surface
mesh points.

matched surface points. Fig. 4.33 illustrates how interior nodes are created through

this interpolation process. Fig. 4.34 shows an example of the result of the root figure

meshing process.

4.2.4.4 General figure meshing

In the most general case a figure will have both a host figure and subfigures figures.

The meshGeneralFigure routine applies to this case, and the steps of the algorithm

are outlined below. All but one of these steps are the same as a step from either

the root or leaf meshing routines. To avoid duplicating previous explanations, the

steps that are shared with one of the other routines reference the appropriate previous

section.

General step 1: Compile a set of surface mesh line segments. (See Root

step 1.)

General step 2: Extend and connect the surface mesh line segments to

form continuous loops. (See Root step 2.)

General step 3: Add more surface mesh lines to fill in surface mesh gaps.

(See Root step 3.)

General step 4: Locate the host/subfigure intersection surface in both host

figure and subfigure coordinates. (See Leaf step 1.)

94

Figure 4.34: On the left side, a view of each side of the surface of a meshed root figure
is shown, with the subfigure invisible. The topology of the mesh on either side of the
surface is the same, but the shape of the surface mesh lines differ to account for the
footprint of a subfigure on one of the sides. On the right side, a cutaway view of the
same root figure is shown, this time with the subfigure visible.

95

General step 5: For the intersection surface, compute (1) the surface mesh

topology that best fits the ideal element size and meshing pattern for

the host figure and (2) the surface mesh topology that best fits the ideal

element size and meshing pattern for the subfigure. (See Leaf step 2.)

General step 6: Create an attachment transition mesh that connects the

host figure mesh and the subfigure mesh. (See Leaf step 3.)

General step 7: If necessary, compress the attachment transition mesh so

it does not overlap any subfigure attachment surfaces.

When a subfigure has subfigures of its own, care must be taken to ensure that

the attachment transition meshes do not interfere with each other. This meshing

algorithm does not handle the case of an attachment transition mesh attaching to

another transition mesh. Since the surface of an attachment transition mesh does

not have the same Cartesian grid type topology as the rest of the mesh, the template

based transition mesh algorithm would not necessarily be able to design an acceptable

transition pattern. Therefore, a figure’s own transition mesh is fit below the the

attachment of any subfigures.

Figure 4.35: This mesh of a three figure m-rep object shows how the attachment
transition portion of the mid-sized figure is compressed to fit below where the smallest
figure attaches.

General step 8: Build hexahedral volume elements; produce interior nodes

by interpolating coordinates between opposite sides of the surface mesh.

(See Root step 4.)

96

4.2.4.5 Blend Region Meshing

Blending parameters may be specified for a multi-figure m-rep model to control the

curvature of the object surface in the vicinity of a host/subfigure attachment. The

manner in which surfaces are blended is more a modeling problem than a meshing

problem, so the approach taken here is to modify the model from which the mesh is

built to accommodate blending rather than modify the meshing algorithm. Within

the meshing program, the object surface is represented as a collection of bicubic

spline patches. When blending is applied, the spline surfaces of both the host and

subfigures are adjusted to conform to the blended surface (see Fig. 4.36). The way

this adjustment is performed is not critical to the meshing algorithm; examples have

been generated by fitting the m-rep model to an image of a two figure object with

a smooth transition between the figures. In these cases the blend region curvature

was captured by the m-reps’ surface displacement function described in section 4.1.2.

With a properly adjusted spline surface, the meshing process proceeds normally and

produces a mesh that conforms to the blended object surface. This approach is very

general and would work with any blending method.

Figure 4.36: (a) An unblended two figure object, with gray curves showing how
blending would change the object profile (b) A blended two figure object (c) The
arrows show how figures’ spline surfaces are adjusted in the attachment region to
account for blending.

4.2.4.6 Limitations of multi-figure meshing

The multi-figure meshing algorithm works well for many object shapes and configu-

rations, but there are some figure arrangements which cause difficulties for this algo-

rithm. First, the multi-figure meshing algorithm may not produce good meshes for

objects that have two branch points very close together. This is a difficulty because

97

Figure 4.37: (a) A base level mesh of a blended two figure object. (b) A solid surface
view of the same object.

the attachment transition portion of the mesh that connects host and subfigures must

take up some space. If two branches occur close together, the attachment transition

portion of the mesh may be compressed (see step 7 of the general figure meshing

algorithm) to such a degree that mesh element quality is seriously degraded. In some

cases, the mesh element quality optimization procedure can remedy this after the

mesh is generated. In other cases, skewed or flattened elements may be unavoidable.

Second, the meshing pattern on the surface of a figure resembles a Cartesian grid

over most of its surface. Only at the four corners of the (u, v) parametrization of the

medial sheet does the surface mesh pattern have irregularities (see Fig. 4.38.) The

attachment transition templates are all designed to attach to a host surface mesh with

Cartesian grid topology. This means that using the existing templates a subfigure

cannot be attached to the corner of a host figure. This limitation might be removed

by either creating a more extensive template library or by allowing the corner points

to be shifted on the surface of a host figure to avoid interfering with a subfigure

attachment.

4.3 Meshing Space External to M-reps

In a multi-object deformation problem the space between the objects also needs to

be meshed. In a single object situation it is often useful to mesh not just the object

98

Figure 4.38: Surface mash effect of the medial sheet’s (u,v) parameter space corner.

of interest but also a region surrounding the modeled object. A mesh of the space

exterior to modeled objects is necessary in order to compute a continuous deformation

field for an entire region of interest. Such a mesh also allows deforming forces to be

transmitted between different objects in a scene.

The m-rep meshing algorithm does not address the external space meshing prob-

lem because of the difficulty of creating m-rep models for the arbitrarily shaped space

that lies between modeled objects. Instead, a tetrahedral mesh is created for the

space between objects and the remainder of the volume of interest using CUBIT [1].

To provide a transition between the hexahedral elements of the m-rep models and

the tetrahedral elements of the ambient space, a layer of pyramid elements is built

on top of the exposed quadrilateral faces of the hexahedral elements.

The construction of the pyramids is straightforward. Each surface quadrilateral

is taken as the base of a pyramid. The apex node is placed along the surface normal

passing through the center of the quadrilateral base. The initial height of the pyramid

is the average of the base edge lengths. When all the pyramids have been constructed,

intersection tests are performed, and the height of any intersecting pyramid is reduced

so that intersections are eliminated.

The construction of the tetrahedral mesh is performed using the tetrahedral mesh-

ing capability found in CUBIT [1]. The pyramid and tetrahedral elements that fill

the space external to the models are shown in Figs. 4.39 and 4.40.

Subdivision of the pyramid and tetrahedral elements outside the m-rep modeled

object volumes is performed using the nodes’ world space (x,y,z) coordinates. See

Fig. 4.15 for an illustration of the subdivision patterns.

99

Figure 4.39: (a) Mesh of the male pelvis model with the transitional pyramid layer
visible on top of the hexahedral elements (b) A sliced view of the meshed volume of
the male pelvis model, including the pyramid and tetrahedral elements that fill the
space between modeled objects.

100

Figure 4.40: (a) Prostate m-rep model (b) Base level prostate mesh (c) Level 2
subdivided prostate mesh (d) Level 3 subdivided prostate mesh (e) Exterior view
of the base level meshed volume of interest (f) Sliced view of the base level meshed
volume (g) Level 2 subdivided sliced view of the meshed volume (h) Level 3 subdivided
sliced view of the meshed volume

101

Chapter 5

Boundary Conditions

Boundary conditions must be specified for any finite element problem before a solution

can be computed. The first section of the chapter examines why this is true and

explores the role that boundary conditions play in the finite element analysis of linear

elastic problems. The remaining two sections explain how m-rep object models can

be used for the prediction and optimization of boundary conditions.

5.1 Boundary Conditions for Linear Elastic Finite

Element Problems

Displacements and forces are the two varieties of boundary conditions that can be

applied to linear elastic finite element problems. In both cases boundary conditions

must be expressed as vectors applied to individual mesh nodes.

The finite element system of equations for linear elasticity was developed in chap-

ter 2. The chapter concluded with the following concise representation for the system

of equations. (See equation 2.49.)

Ka = f where

K =
∫

V
BTDB dV

f =
∫

S
NT−→t dS +

∫
V
NT−→b dV

a contains the displacements at the nodes

An important characteristic of this system of equations is that the determinant of

the stiffness matrix, K, is 0. A proof of

detK = 0 (5.1)

can be found in [51]. This implies that the stiffness matrix is singular and that

an infinite number of solutions to the system of equations exists. However if K is

reduced by eliminating any row of the matrix along with the corresponding column,

the determinant of the reduced matrix, KR, is not 0. A proof of

detKR 6= 0 where KR is any submatrix of K (5.2)

is also given in [51]. As explained in [51], specifying a component of the displacement

vector a allows the stiffness matrix to be reduced in the following way.

First, let the specified component of a be ga, and partition the system of equations

in this way:

K11 K12 K13 · · · K1n

K21 K22 K23 · · · K2n

K31 K32 K33 · · · K3n

...
...

...
. . .

...

Kn1 Kn2 Kn3 · · · Knn

ga

a2

a3

...

an

=

f1

f2

f3

...

fn

(5.3)

Then define these submatrices and vectors (recalling that K is symmetric):

A1 =
[
K11

]
A2 =

[
K12 K13 · · · K1n

]

AT
2 =

K21

K31

...

Kn1

 KR =

K22 K23 · · · K2n

K32 K33 · · · K3n

...
...

. . .
...

Kn2 K · · · Knn

(5.4)

g = [ga] aR =

a2

a3

...

an

 r = [f1] f
R

=

f2

f3

...

fn

 (5.5)

This allows the system of equations to be written as follows:[
A1 A2

AT
2 KR

]
=

[
g

aR

]
=

[
r

f
R

]
(5.6)

103

Performing the matrix-vector multiplication gives these equations:

A1 g + A2 aR = r ⇒ r = A1 g + A2 aR (5.7)

AT
2 g +KR aR = fR ⇒ KR aR = f

R
− AT

2 g (5.8)

Equation 5.8 represents the reduced system of equations that is not singular and can

be solved using any of the standard methods of linear algebra. Once equation 5.8 is

solved and aR is known, the vector can be plugged into equation 5.7 and r can be

calculated. In this way all of the unknown quantities from equation 5.3 can be found.

The conclusion is that the computation of a deformation requires one or more node

displacements to be specified. The previous exercise showed from a mathematical

point of view that a displacement type boundary condition was necessary. Intuitively,

consider that if the displacements of none of the nodes were specified a rigid body

translation could be applied to an entire mesh without affecting the force equilibrium

equations (see equation 2.23). Therefore given a solution to a finite element system

of equations with no displacement type boundary conditions, another equally valid

solution could be generated by shifting all of the nodes by some arbitrary vector.

For the experiments described in this document, displacement type boundary

conditions were generated from pairs of m-rep models. The following section describes

the m-rep based algorithm that was developed to automatically estimate displacement

type boundary conditions.

5.2 Initial Approximation

As previously mentioned, boundary conditions can be specified in terms of either

forces or displacements applied to nodes. However for an image registration problem

neither forces nor point displacements are available directly from the images. What

is visible in the images is shifting and/or change in the shape of the object boundary.

M-reps provide a way to derive an initial approximation to point displacements from

observed boundary changes in an image.

In the prostate case, the m-rep model that was fit to the original image and used

to guide mesh construction is transferred onto the image of the deformed prostate

and automatically fit to it. The original and deformed m-rep models have the same

topology, and their object based coordinates span exactly the same parameter space.

This means that the m-rep’s object based coordinate system defines a one to one

104

geometry based correspondence between points in the original and deformed prostate.

Fig. 5.1 illustrates this geometry based based correspondence. For each surface node

with medial coordinates (ui, vi, ti, τi) the approximate displacement vector di is defined

in the following way.[
xi yi zi

]
= MedialToWorld(model, ui, vi, ti, τi)[

x′i y
′
i z

′
i

]
= MedialToWorld(model′, ui, vi, ti, τi)

−→
di =

[
x′i y

′
i z

′
i

]
−
[
xi yi zi

]
(5.9)

where MedialToWorld() maps

medial coordinates to world space

The nodes on the exterior surface of the whole meshed volume are assumed to be

fixed, so their displacements are set to 0. These exterior surface nodes are the ones

lying on the outermost faces of the tetrahedra seen in Fig. 4.10e.

Figure 5.1: The m-rep figure on the right is a deformed version of the figure on
the left. The m-rep object coordinate system that is shared by both versions of
the figure establishes a correspondence between boundary points. (u1, v1, t1, τ1) and
(u2, v2, t2, τ2) mark two sets of corresponding points.

Using this set of boundary conditions will result in a deformed object that evi-

dences the shape change observed in the image and captured by the m-rep. However,

this geometry based approximation of the boundary conditions is not the only set of

boundary conditions that accomplishes the desired shape change. In order to improve

the accuracy of the computed deformation, the boundary conditions applied to the

105

surface of the modeled object(s) are optimized so that the energy of the deformation

is minimized.

5.3 Boundary Condition Optimization

In the optimization step the assumption is made that, given two sets of boundary

conditions that both result in the observed shape change of the boundary, the one

that requires the smaller energy to accomplish the deformation is more likely.

The boundary conditions being optimized are applied only to the nodes on an

object surface, so the optimization is most efficiently performed using the nodes’

(a, b) surface coordinates which are explained in appendix A. For any node i on the

surface of an object, (ai, bi) references the location on the surface of the original

model and (a′i, b
′
i) denotes points on the surface of the deformed model′. Then the

displacement di is as follows.[
xi yi zi

]
= SurfaceToWorld(model, ai, bi)[

x′i y
′
i z

′
i

]
= SurfaceToWorld(model′, a′i, b

′
i)

di =
[
x′i y

′
i z

′
i

]
−
[
xi yi zi

]
(5.10)

Initially (a′i, b
′
i) = (ai, bi). In the optimization process the (a′i, b

′
i) coordinates are

adjusted so that the energy of the deformation is minimized. Fig. 5.2 illustrates the

optimization.

The work required for the deformation is equal to the change in the object’s elastic

potential. The general formula for elastic potential energy of a three dimensional

linearly elastic body is as follows [12] :

PE =
1

2

∫
V

σ · εdV −
∫

V

b · udV −
∫

S

t · udS (5.11)

106

Figure 5.2: In the boundary condition optimization process, (u, v, t, τ) coordinates
are converted to the more compact (a, b) surface coordinates. Corresponding points
are then allowed to slide along the object surface, as shown on the right, to minimize
the energy of a deformation.

where

u is the vector of node displacement

b is the body force applied to the object’s volume

t is the force applied to the object’s surface

σ is the stress

ε is the strain

For the finite element problem constructed here, only boundary displacements are

specified. No body forces or surface forces are considered. Therefore, for this problem

the second and third terms of the potential energy formula are 0, and only the first

term needs to be calculated.

For the prostate phantom registration problem, the boundary condition optimiza-

tion resulted in a 20% reduction in the energy of the deformation and an average

change of .12 cm in the optimized boundary displacement vectors that were applied

to nodes on the prostate surface. Interestingly, this optimization had a small negative

impact on the accuracy of the deformation computed with the base level mesh, and

it had a negligible impact on the accuracy of the deformation computed using the

second and third level subdivided meshes. These results are reported in more detail

in chapter 7.

107

The likely explanation for the boundary condition optimization not resulting in

any improvement in the accuracy of the prostate deformation is that the m-rep pre-

diction algorithm provided a sufficiently accurate initial estimate of the boundary

conditions. For deformations that involve little or no torsion or other complicated

warps, the m-rep geometry predicted boundary conditions are probably sufficiently

accurate for image registration problems. Additional testing of the boundary predic-

tion algorithm with a variety of objects and a variety of deformations would be useful

to determine the limits of the algorithm’s reliability.

108

Chapter 6

Multiscale Solution Algorithm

Computing a deformation via the finite element method involves solving a system of

linear equations. A number of methods exist for solving systems of linear equations,

including direct methods such as Gaussian elimination and Cholesky factorization,

iterative methods such as Gauss-Seidel [31] and conjugate gradient [31], and more

sophisticated methods based on wavelet [59] or multigrid [78] theory. Any of these

solution methods may be applied to the finite element system of equations, but the

efficiency of the available methods varies widely. Computational efficiency is an im-

portant concern for finite element analysis because the system of equations can be

quite large. When a mesh is subdivided, the number of nodes and therefore the

size of the system of equations increases dramatically, making efficiency even more

important.

In the first part of this chapter the solution algorithm applied to the base level

mesh is motivated and explained. In the second part the multiscale solution algorithm

that is applied to subdivided meshes is discussed.

6.1 Solution on a Base Level Mesh

For a three dimensional mesh with N nodes, the full size of the stiffness matrix, K,

defined by equation 2.49 is 3N × 3N . After the system has been reduced through the

application of boundary conditions as described in section 5.1, the size of the reduced

matrix, KR, is (3(N − NBC)) × (3(N − NBC)) where NBC is the number of nodes

for which displacement type boundary conditions are specified. The reduced matrix,

KR, is symmetric positive definite [51].

As mentioned, a variety of solution algorithms are available for this type of ma-

trix; a primary criteria for choosing an algorithm is computational efficiency. LU

factorization based on Gaussian elimination is a well known general purpose solution

method. For an N×N matrix, LU factorization requires O(N3) operations. Cholesky

factorization and other direct methods are also O(N3) algorithms.

Basic iterative methods such as Gauss-Seidel have similar computational com-

plexity. Each iteration requires a matrix-vector multiplication which is ordinarily an

O(N2) operation. O(N) iterations are typically required, which means the algorithm

needs O(N3) operations to reach a solution. However, the stiffness matrix is sparse,

and when a sparse matrix data structure is employed, the cost of matrix-vector mul-

tiplication is reduced to O(N). This represents a significant savings and brings the

number of operations required by a basic iterative method down to O(N2).

The conjugate gradient method is an iterative algorithm that converges more

quickly than the basic iterative methods. The exact rate of convergence is problem

dependent and is related to a matrix’s distribution of eigenvalues. The number of

operations required to compute a solution with a conjugate gradient algorithm when

using a sparse matrix data structure is somewhere between O(N2) and O(N). It

has been estimated that a properly preconditioned conjugate gradient method may

perform as well as O(N
9
8) for a three dimensional finite element system of equations

[80], although this has not been proven.

Because of its desirable convergence behavior, a preconditioned conjugate gradient

solver was chosen as the solution method for base level meshes. As with any iterative

method, an initial solution guess is required for the first iteration. While it is per-

missible to make an arbitrary guess, such as the zero vector, m-rep models provide

a way to make a more accurate guess. As explained in section 5.2 and illustrated

in Fig. 5.1, the m-rep based object coordinate system that is shared by deformed

versions of an m-rep model can be used to establish a correspondence between points

in different versions of the model. In chapter 5 the discussion was confined to finding

corresponding points on the surfaces of objects, but the same technique can also be

applied to interior points. Equation 5.10, reproduced below, is used to compute
−→
di ,

an initial estimate for each node’s displacement vector.

110

[
xi yi zi

]
= modelxyz(ui, vi, ti, τi)[

x′i y
′
i z

′
i

]
= model′xyz(ui, vi, ti, τi)

−→
di =

[
x′i y

′
i z

′
i

]
−
[
xi yi zi

]
where modelxyz() maps medial coordinates to

world space, as defined in equation 4.1.

With the base level prostate mesh the computational savings that were realized

by using the m-rep based solution estimate versus an arbitrary estimate were small

because the preconditioned conjugate gradient algorithm required few iterations to

converge, as shown in Table 6.1. However, the savings become more noticeable for

meshes that have more nodes and are represented by larger systems of equations.

This observation is supported by the results reported in Table 6.1 for the subdivided

meshes that have significantly more nodes than the base level mesh. The next section

discusses in detail the issues of solving a finite element system of equations on a

subdivided mesh.

Table 6.1: Solution Iterations Required for Subdivided Mesh Levels

In the rightmost two columns of the table each row reports the number of conjugate
gradient iterations that were required at a mesh level, given that the initial solution
approximation for that level was either arbitrary or m-rep predicted.

Conjugate Gradient Iterations
Subdivision Nodes Elements with arbitrary with m-rep interpolated

level initial approximation initial approximation
1 254 836 2 2
2 1,836 6,792 5 4
3 14,068 54,960 26 13

111

6.2 Solution on a Subdivided Mesh

As previously noted, the size of a system of finite element equations grows quickly

with mesh subdivision. Consider that the level 3 prostate mesh has 16,530 nodes as

reported in table 6.1, so the size of the stiffness matrix for this mesh is 3(16, 530 −
NBC) ≈ 40, 000. This is the size of the matrix for a simple one figure mesh; meshes

with more complicated geometry can be significantly larger. While it is reasonable to

solve such large systems of equations with the preconditioned conjugate gradient al-

gorithm discussed in the previous section, an additional option exists for a subdivided

mesh that was created by refining a coarser mesh.

Any function defined on a coarse mesh can be approximated on a subdivided

mesh through interpolation on the coarse mesh. Intuitively, it seems reasonable that

a deformation computed on a coarse mesh would be a good estimate of the same

deformation, computed with more precision on a subdivided mesh. With an itera-

tive solution algorithm, the number of iterations required depends partially on the

accuracy of the initial solution approximation. So one approach to solving a finite

element system of equations on a subdivided mesh is to first solve the equations on

the coarser mesh and then interpolate the solution to the subdivided mesh and refine

the solution with additional solution iterations.

This idea of using a multiscale approach to solving systems of equations is explored

in multigrid theory. The solution algorithm applied to subdivided meshes in this

work is not an implementation of the full multigrid method but is based on the

multigrid concept. An overview of multigrid theory is provided in 6.2.1, and the

solution algorithm applied to subdivided meshes is covered in 6.2.2.

6.2.1 Overview of Multigrid

Multigrid theory is covered in depth in [78] and [80]. A brief synopsis is provided

here to motivate the solution algorithm presented in 6.2.2.

The multigrid approach begins with an initial approximation to the the solu-

tion and finds the final solution by computing the error of the initial approximation

and adjusting the approximation appropriately. A key observation of the multigrid

method is that the error consists of both high and low frequency components. The

smooth, low frequency part of the error can be well approximated on a coarse mesh,

while the high frequency part can only be represented on a fine mesh. Prolongation

and restriction operators are defined to transfer the error approximation from any

112

given mesh onto a finer mesh (prolongation) or a coarser mesh (restriction).

The error approximation on a mesh can be smoothed through the application of

certain iterative solver, such as Gauss-Seidel. This is illustrated in Fig. 6.1. The

multigrid method operates by recursively smoothing an error estimate and restricting

it to a coarser mesh until some base level mesh is reached. The error is computed

exactly on the base level mesh and then prolongated back onto finer meshes where

additional solution iterations refine the error estimate.

Figure 6.1: Error smoothing that results from Gauss-Seidel iterations. Figure copied
from [78].

A variety of multigrid strategies exist, and one of the respects in which they differ

is the order in which mesh levels are visited. The order depends on a particular

method’s scheduling policy; both fixed schedule and adaptive scheduling algorithms

exist. Fig. 6.2 diagrams several popular fixed schedule schemes.

A highly attractive quality of the multigrid approach is its computational order

of complexity. A full multigrid solution algorithm can produce a solution with O(N)

operations because

1. the multigrid algorithm can take advantage of the sparse structure of the stiff-

ness matrix, so that matrix-vector multiplication is an O(N) operation and

2. by exploiting the multiscale nature of the problem, only O(1) iterations are

required to produce a solution.

A proof of this order of complexity can be found in [78]. It should be noted that

the ideal of O(1) iterations only applies if a multigrid implementation’s coarsest grid

contains a fixed number of nodes that is unrelated to the size of the full mesh. In

113

Figure 6.2: Sample multigrid schedules. Hollow circles indicate a base level mesh
where the solution is computed exactly. Dark circles indicate a mesh level where
smoothing is applied. A circle’s vertical placement indicates which mesh level it
represents. The progression of circles from left to right indicate successive time steps.
Figure copied from [78].

114

the ideal case, the coarsest mesh contains only one element, as shown in Fig. 6.3.

Many implementations stop short of this, so their actual complexity is O(N) plus the

number of operations required to compute a solution on the base level mesh. For

example, if an O(N2) algorithm is used to compute the solution for the base level

mesh, the cost of the method is O(Nfull) + O(N2
base) where Nfull is the number of

nodes in the full mesh and Nbase is the number of nodes in the base level mesh.

Figure 6.3: A single element coarse mesh on the left, with successively finer meshes
to the right. The multigrid method relies on meshes that are subdivided so that edge
lengths are halved with each subdivision.

The full multigrid method cannot be readily applied to the finite element problem

considered here because there is no obvious method to construct an arbitrarily coarse

mesh that maintains the necessary connectivity from a base level mesh generated by

the m-rep meshing algorithm. This is due to the fact that the m-rep generated meshes

are unstructured. However, the notion of interpolating the solution from a coarser

mesh to a finer mesh is applicable to this work. As explained in the next section, the

solution algorithm employed for subdivided meshes relies on the multiscale concept

inherent in the multigrid algorithm.

6.2.2 Solution Algorithm

The solution approach taken for subdivided meshes is to solve the finite element

system of equations on the initial mesh using the procedure outlined in section 6.1

and then interpolate that solution to the subdivided mesh and solve again using the

conjugate gradient solver. This is similar to using the multigrid algorithm with the

schedule shown in Fig. 6.4. It is also similar to a technique called nested iteration

that was one of the predecessor algorithms of the multigrid method [78].

Sufficient information is not available to precisely state the complexity of this solu-

tion algorithm. However, upper and lower bounds can be established. The optimistic,

115

Figure 6.4: Multigrid schedule that corresponds to the approach taken by the solution
algorithm applied to subdivided meshes.

best case scenario is as follows:

O(N
9
8
base) − for the preconditioned conjugate gradient algorithm

applied to the base level mesh

O(Nfull) − for the multiscale algorithm applied to the

subdivided mesh levels

Taken together, these two bounds result in the following best case complexity bound:

O(N
9
8
base) +O(Nfull) (6.1)

There are two reasons to suspect that the complexity of the solution algorithm

might not be as good as equation 6.1. First, the O(N
9
8) bound for the preconditioned

conjugate gradient algorithm applied to the base level mesh has not been proven. Sec-

ond, the O(N) bound for the multiscale algorithm may not apply because the manner

in which meshes are subdivided in this work is different from the way subdivision is

defined in the proof of the O(N) bound for the multigrid algorithm. The difference

is that meshes in this work were subdivided in the m-rep object coordinate system,

while the meshes that are assumed to exist in the multigrid proof are subdivided in

the Euclidean coordinate system. This difference is illustrated in Fig. 6.5. The way

the difference in subdivision technique impacts the theoretical convergence properties

of the multigrid method is unknown. Therefore, the worst case complexity bound

for this solution algorithm given in equation 6.2 assumes no benefit from the multi-

scale strategy and is the worst case bound for the preconditioned conjugate gradient

116

algorithm applied to the full mesh. The worst case complexity bound is as follows:

O(N2
full) (6.2)

Empirically, table 6.1 shows that for the prostate deformation problem the number

of operations required does not approach the worst case bound. The fourth column

of the table lists the number of iterations required by the preconditioned conjugate

gradient algorithm without the benefit of a good initial approximation to the solu-

tion. Clearly the number of iterations does not increase quadratically with the node

count. The fifth column of the table lists the number of iterations required by the

preconditioned conjugate gradient algorithm when the best available initial solution

estimate was provided. For the base level mesh, the solution estimate was derived

from m-rep geometry based correspondences as described in section 6.1. For the sec-

ond and third level subdivided meshes, the solution approximations were generated

by interpolating the solution from the coarser mesh one level up.

The reduction in the number of required iterations that resulted from the better

initial solution approximations indicates that the multiscale approach still provides

a benefit when m-rep based subdivision is employed. Table 6.1 shows that the com-

putational savings gained by using the solution approximations increases with the

subdivision level. These results indicate that the m-rep based solution algorithm

provides better efficiency than the conjugate gradient algorithm alone and that the

efficiency improvement increases for finer meshes. Additional results from the m-rep

based multiscale solution algorithm are presented in the following chapter.

117

Figure 6.5: (a) A coarse mesh. (b) A subdivision of the coarse mesh using Euclidean
space midpoint computations. (c) A subdivision of the coarse mesh using medial
object coordinate midpoint computations. The subdivision in (c) provides a smoother
approximation of the object’s boundary than the subdivision in (b).

118

Chapter 7

Experimental Results

7.1 Prostate Phantom Experiment Overview

Because the clarity and resolution of CT images are superior to MRSI and ultrasound

images, the initial validation study of the methodology was performed using CT

images. CT images were acquired at Memorial Sloan-Kettering Cancer Center of a

male pelvis phantom with an inflated and deflated MRSI probe in place. The phantom

prostate was implanted with 75 seeds, so the accuracy of the computed deformation

can be examined by comparing the computed seed displacement with the observed

seed displacement. The magnitude of the observed seed displacements is reported in

table 7.1.

The seeds closest to the rectum are displaced the most by the imaging probe,

and the registration accuracy near the rectum is particularly important for radiation

treatment purposes. Therefore, error estimates for the subset of 25 seeds nearest the

rectum are computed separately. The magnitude of the observed displacements for

this subset of seeds is reported in table 7.2.

For all of the tests reported in this chapter, the single object prostate m-rep model

was used and the other pelvic structures were not explicitly modeled with m-reps.

The area around the prostate was represented as a homogeneous region.

The linear elastic model has two elastic constants that describe a material’s de-

formable characteristics: E, Young’s modulus, and ν, Poisson’s ratio. For the first

series of experiments the prostate was assigned E = 60kPa and ν = .495 based on

the prostate tissue test results published in [35]. The meshed area exterior to the

prostate was assigned E = 10kPa and ν = .3. The effect of varying these elastic

parameters is examined in section 7.5.

Table 7.1: Magnitude of seed movement

Estimates of actual seed movement between the uninflated and inflated prostate im-
ages are provided based on manual segmentation of seed locations in each of the
images. The estimates are in units of millimeters and are averages of the measure-
ments for each of the 75 seeds.

total total x x y y z z
movement std. movement std. movement std. movement std.

dev. dev. dev. dev.
9.377 2.001 1.392 0.818 8.601 2.125 2.670 1.940

Table 7.2: Magnitude of seed movement for the subset of 25 seeds closest to the
rectum

These are the same measurements as provided in table 7.1, except that only the 25
seeds nearest the rectum were included in the computations.

total total x x y y z z
movement std. movement std. movement std. movement std.

dev. dev. dev. dev.
11.587 1.488 1.439 0.696 10.738 1.912 3.482 1.742

7.2 Mapping Uninflated → Inflated

The locations of 75 seeds implanted in the phantom prostate were identified manually

in both the uninflated and inflated CT images with 3 mm slice thickness and .7 mm

within slice resolution. The computed deformation was applied to the identified seed

locations in the uninflated image in order to predict the seed locations in the inflated

image. The predicted seed locations were then compared to the observed locations

in the inflated image. The discrepancies between the predicted and observed seed

locations for the entire set of 75 seeds are presented in tables 7.3 and 7.4. The

discrepancies between the predicted and observed seed locations for the subset of 25

seeds nearest the rectum are presented in tables 7.5 and 7.6. Results are provided for

the first three mesh subdivision levels and for optimized and unoptimized boundary

conditions in table 7.3. Histograms of the error distribution are shown in Fig. 7.3

and Fig. 7.4. Fig. 7.1 depicts the shape change that the uninflated prostate mesh

undergoes with this deformation. Fig. 7.2 shows how a slice of the CT image changes

120

Table 7.3: Error estimates for Uninflated → Inflated mapping

Estimates are based on the difference between (a) the observed seed locations in
the inflated image and (b)the predicted seed locations that result from applying the
computed deformation to the seed locations in the uninflated image. All errors are
in units of millimeters and are averages of the measurements for each of the 75 seeds.
The x and y components lie in a high resolution image plane. The z component lies
across the image planes. The three subdivision levels of the prostate mesh used for
these computations is shown in Fig. 4.40.

Mesh total total x x y y z z
Subdivision error std. error std. error std. error std.

Level dev. dev. dev. dev.
unoptimized 1 2.273 0.934 1.043 0.642 0.696 0.641 1.608 1.036
boundary 2 2.044 0.790 0.857 0.617 0.666 0.534 1.474 0.893
conditions 3 1.999 0.808 0.763 0.580 0.764 0.599 1.392 0.930
optimized 1 2.705 0.869 1.308 0.785 1.026 0.776 1.730 1.057
boundary 2 2.054 0.799 0.852 0.605 0.679 0.547 1.485 0.900
conditions 3 2.000 0.807 0.766 0.580 0.761 0.598 1.393 0.928

when the computed deformation is applied to it and compares the computationally

deformed slice to the corresponding slice from the deformed prostate image.

The accuracy of the manual seed labelling was limited by the image resolution,

which was coarser in the across slice direction. This limitation contributed to the

error estimate, as evidenced by the fact that the error component in the z direction

is significantly larger than x and y components. To the extent that errors in seed

coordinates contributed to the error estimate, the estimate is indicative of a limitation

of the validation procedure rather than a limitation of the registration methodology.

For this experiment it was not possible to separate the error due to segmentation

from the error due to inaccuracies in the deformation.

121

Table 7.4: Relative error estimates for Uninflated → Inflated mapping

Relative error estimates are the absolute errors reported in table 7.3 divided by the
observed displacements reported in table 7.1. The relative errors in the x and z di-
rections are large because the total amount of seed movement in those directions is
small, being approximately the size of one or two voxels in those directions. There-
fore the segmentation error in those directions is comparable to the amount of seed
movement, making it impossible to evaluate the quality of the deformation in those
directions. Most of the seed movement occurs in the y direction, and the relative
error is smaller in that direction.

Mesh total x y z
Subdivision relative relative relative relative

Level error error error error
unoptimized 1 24.2% 74.9% 8.1% 60.2%
boundary 2 21.8% 61.6% 7.7% 55.2%
conditions 3 21.3% 54.8% 8.9% 52.1%
optimized 1 28.8% 94.0% 11.9% 64.8%
boundary 2 21.9% 61.2% 7.9% 55.6%
conditions 3 21.3% 55.0% 8.8% 52.2%

Table 7.5: Error estimates for Uninflated → Inflated mapping based on the subset of
25 seeds nearest the rectum

Mesh total total x x y y z z
Subdivision error std. error std. error std. error std.

Level dev. dev. dev. dev.
unoptimized 1 2.524 0.760 1.349 0.690 1.211 0.684 1.390 0.914
boundary 2 2.270 0.779 1.298 0.581 0.851 0.616 1.310 0.980
conditions 3 2.191 0.787 1.181 0.544 0.884 0.620 1.253 1.020
optimized 1 2.821 0.750 1.313 0.626 1.686 0.723 1.399 1.066
boundary 2 2.299 0.800 1.278 0.555 0.888 0.638 1.348 1.008
conditions 3 2.193 0.787 1.183 0.545 0.884 0.620 1.254 1.019

122

Table 7.6: Relative error estimates for Uninflated → Inflated mapping based on the
subset of 25 seeds nearest the rectum

Relative error estimates are the absolute errors reported in table 7.5 divided by the
observed displacements reported in table 7.2.

Mesh total x y z
Subdivision relative relative relative relative

Level error error error error
unoptimized 1 21.8% 93.8% 11.3% 39.9%
boundary 2 19.6% 90.2% 7.9% 37.6%
conditions 3 18.9% 82.0% 8.2% 36.0%
optimized 1 24.4% 91.2% 15.7% 40.2%
boundary 2 19.8% 88.8% 8.3% 38.7%
conditions 3 18.9% 82.2% 8.2% 36.0%

Figure 7.1: Left: Original mesh of the prostate superimposed on a slice of the unin-
flated CT image. Right: Deformed mesh of the prostate superimposed on the same
slice of the uninflated CT.

123

Figure 7.2: Left: CT Slice of the phantom prostate with uninflated probe; Center:
Same slice as left, after computed deformation has been applied; CT slice of the
phantom prostate with inflated probe

Figure 7.3: Histogram of error estimates for predicted seed locations in the Uninflated
→ Inflated mapping

Figure 7.4: Histogram of the separated x, y, and z components of the error estimates
for predicted seed locations in the Uninflated → Inflated mapping

124

Table 7.7: Amount of change in predicted seed locations produced by computing
the deformation using a higher subdivision level. Subdivision level 1 → 2 gives the
difference in predicted seed locations between mesh level 2 and mesh level 1.

Subdiv. total change x x y y z z
Level change std. change std. change std. change std.

dev. dev. dev. dev.
unoptimized 1 → 2 1.584 0.572 0.680 0.636 0.973 0.644 0.637 0.457
boundary 2 → 3 0.401 0.213 0.154 0.117 0.239 0.194 0.191 0.195
conditions
optimized 1 → 2 1.006 0.515 0.496 0.349 0.493 0.392 0.542 0.470
boundary 2 → 3 0.374 0.169 0.148 0.111 0.224 0.182 0.174 0.146
conditions

125

7.3 Mapping Inflated → Uninflated

For the brachytherapy application, the MRSI planning image shows a prostate de-

formed due to the MRSI probe. This planning image with an inflated probe in place

must be registered with an intraoperative image of the prostate without an inflated

probe. Therefore, it is important to examine the result of applying the registration

methodology to the inverse of the previous section’s problem.

The image with an inflated probe must be deformed to match the image with an

uninflated probe. The results of this mapping are given in table 7.8. The error esti-

mates for this problem are of the same order as the error estimates for the uninflated

→ inflated mapping. The error is perhaps slightly greater for this problem because

the linear elastic model is likely most applicable to a prostate in an unstressed state.

For the inflated → uninflated mapping, the initial prostate is in a pre-stressed state

due to the pressure from the inflated probe.

Table 7.8: Error estimates for the Inflated → Uninflated mapping

Estimates are based on the difference between (a) the observed seed locations in the
uninflated image and (b)the predicted seed locations that result from applying the
computed deformation to the seed locations in the inflated image. All errors are in
units of millimeters and are averages of the measurements for each of the 75 seeds.
The x and y components lie in a high resolution image plane. The z component lies
across the image planes.

Mesh total total x x y y z z
Subdivision error std. error std. error std. error std.

Level dev. dev. dev. dev.
unoptimized 1 3.049 1.337 1.093 0.708 2.038 1.204 1.610 1.101
boundary 2 2.253 0.901 0.721 0.502 1.196 1.007 1.378 0.887
conditions 3 2.153 0.915 0.639 0.471 1.204 0.947 1.309 0.893
optimized 1 2.312 0.953 0.870 0.512 1.135 0.969 1.450 0.960
boundary 2 2.188 0.858 0.718 0.495 1.135 0.960 1.345 0.870
conditions 3 2.161 0.918 0.632 0.472 1.219 0.943 1.315 0.893

7.4 Error Sources

There are three primary sources of error in the prostate registration process.

126

Table 7.9: Relative error estimates for Inflated → Uninflated mapping

Relative error estimates are the absolute errors reported in table 7.8 divided by the
observed displacements reported in table 7.1. See the caption of table 7.4 for further
explanation of relative error.

Mesh total x y z
Subdivision relative relative relative relative

Level error error error error
unoptimized 1 32.5% 78.5% 23.7% 60.3%
boundary 2 24.0% 51.8% 13.9% 51.6%
conditions 3 23.0% 45.9% 14.0% 49.0%
optimized 1 24.7% 62.5% 13.2% 54.3%
boundary 2 23.3% 51.6% 13.2% 50.4%
conditions 3 23.1% 45.4% 14.2% 49.3%

1. Differences between prostate tissue mechanics and the linear elastic model - As

discussed in section 2.4, prostate tissue is not an ideal, homogeneous linearly

elastic solid. To the extent that the mechanical behavior of prostate tissue

deviates from the linear elastic model, the model will provide inaccurate pre-

dictions. There is some evidence to suggest that prostate tissue behaves in an

approximately linear elastic way within limited ranges of stress and strain [35].

An inappropriate choices for Poisson’s ratio, one of the linear elastic model

parameters, could also increase the error. This effect is examined in section 7.5.

2. Boundary condition error - Boundary conditions for the prostate deformation

problem are specified as displacements of nodes on the prostate surface. Error

in these point displacements can be due to inaccuracies in segmentation of the

prostate surface and/or inaccuracies in the correspondence established between

points on the surfaces of the m-reps representing the deformed and undeformed

prostates. The segmentation error is a concern, especially in images where the

prostate’s border is unclear. The effect of segmentation error is discussed in

section 7.6. The correspondence problem probably contributes a small amount

to the total error and is managed by the boundary condition optimization pro-

cedure described in chapter 5.

3. Discretization error - The solution to the linear elastic equations is not analyt-

ically derived, but rather approximated on a mesh. There is always some error

127

in the solution due to this discrete approximation. However, the discretization

error can be made arbitrarily small with mesh subdivision. The results in ta-

bles 7.3 and 7.8 clearly show that at mesh subdivision level 3 and higher, other

components of the error greatly outweigh the discretization component.

Additionally, error in the manual identification of seed locations contributes to

the reported error estimates. However this is an error in the validation process, not

the registration process.

The largest contributors to the registration error are most likely the overly simpli-

fied linear elastic model and inaccuracies in prostate segmentation. If greater accuracy

were desired, improvements could potentially be made by developing a more sophis-

ticated and realistic model of tissue mechanics and by using clearer images that allow

for more accurate segmentation.

7.5 Effect of Varying Elastic Parameters

The isotropic linear elastic model has two material parameters: Young’s modulus

and Poisson’s ratio. Section 2.6.1 details the significance of Young’s modulus and

Poisson’s ratio and explains how they figure into the linear elastic equations.

Interestingly, if only displacement type boundary conditions are specified for a

linear elastic finite element problem and body forces are not considered, the value of

Young’s modulus does not affect the deformation field solution. Examining the linear

elastic PDE shows why this is true mathematically. The linear elastic PDE given in

eqn. 2.27 is as follows:

µ∇2−→u + (µ+ λ)∇
(
∇T−→u

)
+
−→
b = 0

Substituting the definitions of µ and λ given in equation 2.17 produces this equa-

tion:

E

2ν + 2
∇2−→u +

(
E

2ν + 2
+

Eν

(1− 2ν)(1 + ν)

)
∇
(
∇T−→u

)
+
−→
b = 0 (7.1)

Since body forces are not considered the
−→
b term can be dropped and Young’s

modulus, E, can be factored out of the equation.

E

[
1

2ν + 2
∇2−→u +

(
1

2ν + 2
+

ν

(1− 2ν)(1 + ν)

)
∇
(
∇T−→u

)]
= 0 (7.2)

128

The insensitivity of the deformation computation to the Young’s modulus value is

demonstrated experimentally by the trials presented in the first segment of table 7.11.

It should be noted that although Young’s modulus does not affect the solution to this

type of problem, it does have a scaling impact on the energy of the deformation. If

any of the boundary conditions were specified in terms of applied forces rather than

node displacements, the value of Young’s modulus would affect the solution.

Poisson’s ratio lies in the range of .3 - .5 for most living tissues. An incompressible

material has a Poisson’s ratio of .5, and a Poisson’s ratio of .495 is recommended by

[35] for the prostate. The computed prostate deformation is sensitive to the value

of Poisson’s ratio, as is evidenced by the results of the trials shown in the second

segment of table 7.11.

Table 7.10: Error estimates for predicted seed locations with varied elastic parameters

All errors are in units of millimeters and are averages of the measurements for each
of the 75 seeds.

Young’s Poisson’s total total x x y y z z
Modulus Ratio error std. error std. error std. error std.

dev. dev. dev. dev.
6 kPa .495 2.044 0.790 0.857 0.617 0.666 0.534 1.473 0.893
60 kPa .495 2.044 0.790 0.857 0.617 0.666 0.534 1.474 0.893
600 kPa .495 2.044 0.790 0.857 0.617 0.666 0.534 1.474 0.893

60 kPa .3 2.207 0.818 0.900 0.621 0.720 0.619 1.592 0.961
60 kPa .35 2.156 0.802 0.870 0.608 0.694 0.583 1.570 0.945
60 kPa .4 2.101 0.781 0.834 0.594 0.666 0.551 1.543 0.929
60 kPa .45 2.048 0.761 0.799 0.583 0.643 0.533 1.511 0.909
60 kPa .495 2.044 0.790 0.857 0.617 0.666 0.534 1.474 0.893

7.6 Effect of Segmentation Error on Registration

Results

To examine the effect of segmentation error, five perturbed versions of the prostate

m-rep model from the inflated probe image were created. The uninflated → inflated

mapping was computed for each of the perturbed models, and the seed displacement

error estimates were calculated for each of those mappings. The original m-rep model

129

Table 7.11: Relative error estimates for predicted seed locations with varied elastic
parameters

Relative error estimates are the absolute errors reported in table 7.11 divided by the
observed displacements reported in table 7.1. See the caption of table 7.4 for further
explanation of relative error.

Young’s Poisson’s total x y z
Modulus Ratio relative relative relative relative

error error error error
6 kPa .495 21.8% 61.6% 7.7% 55.2%
60 kPa .495 21.8% 61.6% 7.7% 55.2%
600 kPa .495 21.8% 61.6% 7.7% 55.2%

60 kPa .3 23.5% 64.7% 8.4% 59.6%
60 kPa .35 23.0% 62.5% 8.1% 58.8%
60 kPa .4 22.4% 60.0% 7.7% 57.8%
60 kPa .45 21.8% 57.4% 7.5% 56.6%
60 kPa .495 21.8% 61.6% 7.7% 55.2%

from the inflated probe image has a volume of 39.22 cm3, and is pictured in Fig.

7.5 along with the perturbed models. A description of each of the perturbed models

follows, and the error estimates for each model can be found in Table 7.12.

1. An m-rep model for the prostate with the inflated probe has one end flattened,

since it was built from from a stack of contours that were missing the last 4

slices (1.2 cm) of the prostate. Model volume is 36.06 cm3.

2. An m-rep model for the prostate with the inflated probe has a depression .6 cm

deep on its top surface. Model volume is 38.46 cm3.

3. An m-rep model for the prostate with the inflated probe has a bump .6 cm high

on its top surface. Model volume is 40.06 cm3.

4. An m-rep model for the prostate with the inflated probe has a depression .6 cm

deep on its bottom surface. Model volume is 38.38 cm3.

5. An m-rep model for the prostate with the inflated probe has a bump .6 cm high

on its bottom surface. Model volume is 40.23 cm3.

These results show that segmentation errors do lead to an increase in registration

error, as expected. The amount of registration error is related to the extent of the

130

Figure 7.5: Perturbed prostate models used to examine the effect of segmentation
errors on the prediction of seed displacement.

Table 7.12: Error estimates for seed locations computed at mesh subdivision level 2
using perturbed m-rep shape models

All errors are in units of millimeters and are averages of the measurements for each
of the 75 seeds.

perturbed % vol. total total x x y y z z
model change error std.

dev.
error std.

dev.
error std.

dev.
error std.

dev.
original 0% 2.044 0.790 0.857 0.617 0.666 0.534 1.474 0.893

1 - flat end -8.1% 3.016 0.995 1.162 0.809 1.568 0.772 1.828 1.309

2 - top -1.9% 2.062 0.835 0.850 0.623 0.757 0.684 1.408 0.911
depression
3 - top bump +2.1% 2.176 0.827 0.979 0.690 0.786 0.601 1.474 0.922

4 - bottom -2.14% 2.567 1.719 1.045 0.906 1.417 1.586 1.562 1.117
depression
5 - bottom bump +2.6% 2.771 1.237 1.068 0.823 1.443 1.476 1.524 0.912

131

Table 7.13: Relative error estimates for seed locations computed at mesh subdivision
level 2 using perturbed m-rep shape models

Relative error estimates are the absolute errors reported in table 7.12 divided by the
observed displacements reported in table 7.1. See the caption of table 7.4 for further
explanation of relative error.

perturbed total x y z
model relative relative relative relative

error error error error
original 21.8% 61.6% 7.7% 55.2%

1 - flat end 32.2% 83.5% 18.2% 68.5%

2 - top 22.0% 61.1% 8.8% 52.7%
depression
3 - top bump 23.2% 70.3% 9.1% 55.2%

4 - bottom 27.4% 75.1% 16.5% 58.5%
depression
5 - bottom bump 29.6% 76.7% 16.8% 57.1%

segmentation error and the location of the segmentation error. For the prostate

model, a segmentation error on the prostate’s lower surface had a more detrimental

effect than a similar error on the prostate’s upper surface.

7.7 Solution Efficiency

The solution process described in chapter 6 requires a few seconds to a few minutes

to compute a deformation, depending on the size of the mesh. The benefits of the

m-rep predicted solution are realized most fully at higher levels of mesh subdivision.

At subdivision level 3, the m-rep solution prediction reduces the number of required

conjugate gradient iterations by half for the prostate problem. Table 7.14 lists the

number of nodes and elements for each mesh subdivision level, so that mesh com-

plexity can be associated with the solution iteration data presented in table 7.15 and

the stiffness matrix computation times reported in table 7.16.

Given the efficient solution strategy, the most computationally intensive and time

consuming part of the deformation calculations is the computation of a mesh’s stiffness

matrix. Stiffness matrix computation times are given in table 7.16 for three levels of

132

Table 7.14: Complexity of Subdivided Mesh Levels

Mesh Node Element Hexahedral Pyramid Tetrahedral
Subdivision Count Count Element Element Element

Level Count Count Count
1 254 836 76 52 708
2 1,836 6,792 608 312 5,872
3 14,068 54,960 4,864 1,872 48,224

Table 7.15: Solution Iterations for Subdivided Mesh Levels

Mesh Conjugate Gradient Iterations Conjugate Gradient Iterations
Subdivision with Arbitrary with M-rep Predicted

Level Initial Guess Initial Guess
unoptimized 1 2 2
boundary 2 5 4
conditions 3 26 13
optimized 1 2 2
boundary 2 5 5
conditions 3 26 13

the prostate mesh. A compiled and optimized finite element package would certainly

produce stiffness matrices faster than the times reported in the table. However, even

with optimized software the stiffness matrix often poses a computational bottleneck.

The main technique available for speeding this part of the process is the use of parallel

computation.

One mitigating factor is that a mesh’s stiffness matrix can be computed before

any boundary condition information is available. Therefore in a clinical situation the

mesh and stiffness matrix could be pre-computed for a planning image. To produce a

registration between a planning image and an intraoperative image, only the relatively

fast solution step would need to be done in the clinical setting.

133

Table 7.16: Time Required for Stiffness Matrix Computation

Mesh Subdivision Level Stiffness Matrix Computation
Time in Seconds

1 6.3
2 859
3 50,431

7.8 Geometry Based Deformation vs. Mechanical

Deformation

The initial finite element solution is approximated using m-rep geometry based corre-

spondences. As described in chapter 6, the solution is refined by applying an iterative

conjugate gradient solver to the finite element system of equations. The initial ge-

ometry based correspondences can be derived more quickly than the finite element

mapping, and for some applications the geometry based correspondences may be suf-

ficiently accurate. Therefore, it is important to understand precisely how accurate

geometry based correspondences are compared to the finite element mapping.

This section examines how the m-rep geometry correspondences compare with

the correspondences generated by the finite element method. Table 7.17 reports the

differences between the geometry based prediction of node displacements and the node

displacements computed with the finite element method for the prostate uninflated→
inflated mapping. For the results computed using unoptimized boundary conditions,

only the interior nodes were considered. This was because the m-rep correspondences

defined the unoptimized displacement boundary conditions. For the results computed

using optimized boundary conditions, all the prostate mesh nodes were included in

the results.

Tables 7.18 and 7.19 report the error estimates for seed displacements computed

from m-rep correspondences for both the uninflated→ inflated and the inflated→ un-

inflated mappings. Tables 7.20 and 7.21 report the same error estimates for the subset

of 25 seeds nearest the rectum. These results were computed using the level 2 mesh.

Displacements were assigned to the mesh nodes using the m-rep correspondences, and

the displacements were interpolated through the mesh to the seed locations.

134

Table 7.17: Node displacements: Agreement of m-rep geometry based displacements
with finite element computed displacements for level 2 mesh

total diff. x x y y z z
diff. std. diff. std. diff. std. diff. std.

dev. dev. dev. dev.
unoptimized
boundary condi-
tions

2.536 1.626 0.574 0.494 2.053 1.665 0.975 0.752

optimized
boundary condi-
tions

2.561 1.633 0.603 0.544 2.060 1.666 0.984 0.762

Table 7.18: Error estimates for m-rep geometry based prediction of seed displacements

Compare these error estimates to the FEM errors in tables 7.3 and 7.8. All errors are
in units of millimeters and are averages of the measurements for each of the 75 seeds.

mapping total total x x y y z z
error std. error std. error std. error std.

dev. dev. dev. dev.
uninflated → inflated 2.957 0.914 1.524 0.888 0.937 0.715 1.911 1.205
inflated → uninflated 2.920 0.895 1.313 0.778 1.346 1.054 1.730 1.053

Table 7.19: Relative error estimates for m-rep geometry based prediction of seed
displacements

Relative error estimates are the absolute errors reported in table 7.18 divided by the
observed displacements reported in table 7.1. See the caption of table 7.4 for further
explanation of relative error.

mapping total x y z
relative relative relative relative
error error error error

uninflated → inflated 31.5% 109.5% 10.9% 71.57%
inflated → uninflated 31.1% 94.3% 15.65% 64.79%

135

Table 7.20: Error estimates for m-rep geometry based prediction of seed displacements
for the subset of 25 seeds closest to the rectum.

Compare these error estimates to the FEM errors in tables 7.5. All errors are in units
of millimeters and are averages of the measurements for each of the 25 seeds nearest
the rectum.

mapping total total x x y y z z
error std. error std. error std. error std.

dev. dev. dev. dev.
uninflated → inflated 3.108 0.686 1.835 0.933 1.379 0.812 1.567 0.979

Table 7.21: Relative error estimates for m-rep geometry based prediction of seed
displacements for the subset of 25 seeds closest to the rectum.

Relative error estimates are the absolute errors reported in table 7.20 divided by the
observed displacements reported in table 7.2. See the caption of table 7.4 for further
explanation of relative error.

mapping total x y z
relative relative relative relative
error error error error

uninflated → inflated 26.8% 127.5% 12.8% 45.0%

136

7.9 M-rep Generated Hexahedral Mesh vs. Tetra-

hedral Mesh

The superiority of linear hexahedral meshes to linear tetrahedral meshes was discussed

in section 3.2.1. An experiment comparing the seed prediction errors that occur with

an m-rep generated hexahedral mesh to the errors that occur with a linear tetrahedral

mesh supports the view that hexahedral meshes typically perform better.

The tetrahedral mesh used for comparison purposes was generated by the tetrahe-

dral meshing tool available in CUBIT [1] which is based on the TETMESH program

developed at INRIA [2]. This meshing program requires a triangulated surface as

input and takes element size cues from the size of the surface triangles. To make the

comparison as equitable as possible, the quadrilateral faces that lie on the surface

of the level 1 hexahedral prostate mesh were split into triangles and passed to the

tetrahedral meshing program as the input surface.

As shown in table 7.22, the output tetrahedral mesh had a few more nodes than

the level 1 hexahedral mesh and it had many more elements. Since the computation

of the finite element system of equations is an O(Nnodes) + O(Nelements) operation,

the higher node and element counts imply that computing the solution with the

tetrahedral mesh is more computationally expensive.

The displacement boundary conditions applied to the surface nodes of the hexa-

hedral and tetrahedral meshes were identical. Table 7.23 shows that even though the

tetrahedral mesh contains more nodes and more elements, its seed prediction errors

were worse than those of the hexahedral mesh. Therefore for the phantom prostate

deformation problem the m-rep generated hexahedral mesh had a smaller computa-

tional cost for the solution step and provided better solution accuracy than the linear

tetrahedral mesh. This result does not indicate that a good deformation result could

not be obtained with a tetrahedral mesh, since using quadratic tetrahedral elements

or smaller linear tetrahedral elements would likely improve the result. However, using

smaller elements or higher order elements would incur a computational cost, further

increasing the efficiency gap between the tetrahedral and hexahedral meshes. This

result illustrates the reason that hexahedral meshing is an active area of research.

The comparison of the hexahedral and tetrahedral prostate meshes concludes the

series of experiments that were performed with the phantom prostate images. The

implications of the experimental results presented in this chapter are discussed further

in the following chapter along with possible future studies.

137

Figure 7.6: The tetrahedral prostate mesh generated for the hexahedral / tetrahedral
comparison experiment. (a) exterior view of the prostate mesh surface (b) interior
slice view of the prostate mesh

Table 7.22: Mesh size information for level 1 hexahedral and tetrahedral prostate
meshes

This table reports the node and element counts for the prostate volume only, unlike
table 7.14 that included the counts for the tetrahedral/pyramid mesh that filled the
surrounding volume of interest.

mesh node element
type count count

hexahedral 114 76
tetrahedral 127 431

Table 7.23: Comparison of error estimates for predicted seed locations: m-rep gener-
ated hexahedral mesh vs. tetrahedral mesh

The hexahedral mesh used is the level 1 prostate mesh shown in Fig. 4.40(b) and
Fig. 4.40(f). The tetrahedral mesh used is shown in Fig. 7.6. All errors are in units
of millimeters and are averages of the measurements for each of the 75 seeds.

mesh total total x x y y z z
type error std. error std. error std. error std.

dev. dev. dev. dev.
hexahedral 2.273 0.934 1.043 0.642 0.696 0.641 1.608 1.036
tetrahedral 2.724 1.357 1.083 0.876 1.454 1.300 1.562 1.048

138

Table 7.24: Comparison of relative error estimates for predicted seed locations: m-rep
generated hexahedral mesh vs. tetrahedral mesh

Relative error estimates are the absolute errors reported in table 7.23 divided by the
observed displacements reported in table 7.1. See the caption of table 7.4 for further
explanation of relative error.

mesh total x y z
type relative relative relative relative

error error error error
hexahedral 24.2% 74.9% 8.1% 60.2%
tetrahedral 29.0% 77.8% 16.9% 58.5%

139

Chapter 8

Conclusion

The first part of this chapter reviews and discusses the accomplishments presented in

this dissertation in relation to the claims made in chapter 1. Future work and long

term research goals are discussed in the second part of this chapter.

8.1 Claims Revisited

Each of the four claims made in 1.4 is restated in italics and is followed by a summary

and discussion of the related accomplishments.

1. A novel method of automatically generating quality hexahedral meshes from

3D images has been developed. This m-rep based method is designed to mesh

anatomical objects found in medical images and is capable of meshing objects

that can be modeled with a tree of m-rep protrusion figures.

Chapter 4 explained the novel m-rep meshing algorithm in detail. The main

features of this algorithm are as follows:

(a) It generates meshes for single figure and multi-figure m-rep models.

(b) It creates only hexahedral elements inside modeled figures.

(c) The process of constructing a mesh from an m-rep model is entirely auto-

matic.

Example meshes were generated for the prostate and male pelvis models. The

quality of these meshes was evaluated using a standard element quality metric

and was determined to be sufficient to support stable computation of defor-

mations via finite element analysis. This was an encouraging result, especially

since the pelvis model included figures that had some medial sheet torsion and

significant width changes.

The single figure meshing algorithm is straightforward, elegant, and effective

for the following two reasons:

(a) M-rep models explicitly store both global and local shape information, en-

abling a top-down approach to mesh design. This is a key attribute that

successful hexahedral meshing algorithms share. A number of tetrahedral

meshing algorithms generate mesh elements based only on local knowledge

of element shape, but various attempts to adapt these algorithms to work

with hexahedral elements have failed. This is because it is considerably

more difficult to locally alter the structure of a hexahedral mesh than to

locally alter the structure of a tetrahedral mesh. The possible configu-

rations of hexahedral elements are more limited than those of tetrahedral

elements, necessitating careful top-down planning of a hexahedral meshing

pattern.

(b) The m-rep object based coordinate system provides a way to create and

subdivide elements in a well behaved and well understood parameter space,

and then map the elements into world space. This is advantageous because

the construction of a meshing pattern in object based coordinate space is

more straightforward than in world coordinates. It is easier to apply mesh

templates or a standardized meshing pattern such as the one described in

chapter 4 when working in a parameter space with simple, regular bound-

aries than when dealing with the intricacies and unconstrained curvature

of an object boundary in world space.

The multi-figure meshing algorithm works, which is significant since hexahedral

meshing of arbitrarily shaped objects is a difficult and open research problem.

However, the multi-figure algorithm lacks the elegance and simplicity of the

single figure algorithm. This is due to the fact that the object based coordinate

system exploited by the single figure meshing algorithm is not continuous at

host/subfigure intersections. Host figures and subfigures have separate, over-

lapping object coordinate systems. This means that an entire multi-figure mesh

cannot be constructed in the same parameter space. Instead, the mesh for each

figure of a multi-figure model must be constructed in a separate parameter

spaces and then the figure meshes must be pieced together to form a single

141

continuous mesh. While this is a reasonable approach which produces accept-

able results, both the concept and the implementation have messy details. An

obvious remedy is to develop an object based coordinate system that is con-

tinuous across host/subfigure boundaries. However, this is a difficult problem,

and it is doubtful whether it is possible to construct a continuous object based

coordinate system for arbitrarily complicated objects. Another possible alter-

native for meshing multi-figure models is discussed in the future work part of

this chapter in section 8.2.2.1.

2. A mesh subdivision algorithm based on m-rep object coordinates has been de-

veloped. A subdivided mesh produced by this algorithm represents object shape

more smoothly and accurately than the original mesh, thereby reducing the error

in the finite element solution that is due to the discrete spatial representation of

a continuous, curved geometric object. This is a benefit not provided by straight-

forward Euclidean mesh subdivision.

The mesh subdivision algorithm was explained in section 4.2.3 and was illus-

trated in Figs. 4.15 and 4.16. The subdivision algorithm divides elements in

the standard way topologically by creating new nodes at edge midpoints and

at the centers of quadrilateral faces and hexahedral volumes. Its distinctiveness

lies in the fact that the midpoint and center computations are performed in the

medial object coordinate space rather than in Euclidean world space.

The main advantage of this subdivision algorithm is that each finer mesh created

by it more accurately represents the object shape captured by an m-rep model.

Therefore the geometric accuracy of a sufficiently subdivided mesh is limited

only by the accuracy of its underlying m-rep.

One limitation of the current subdivision algorithm is that it will only perform

subdivision globally; each subdivision step involves subdividing every element

in the mesh. It is often desirable to perform subdivision locally so that new

nodes are only created within a limited region. Local subdivision is a possible

extension of the current algorithm and is discussed as future work in section

8.2.1.1.

3. The m-rep based correspondence between source and target objects provides a

good initial approximation for both the finite element boundary conditions and

the solution. An approximation to the boundary conditions is necessary for the

142

application of the finite element method. A good solution approximation can

reduce the number of iterations required to solve the finite element system of

equations.

Chapter 5 covered the estimation and optimization of boundary conditions

based on the point correspondences that exist implicitly between deformed

versions of an m-rep model. The main features of the boundary condition

estimation algorithm are as follow:

(a) It accepts as input two instantiations of the same m-rep model.

(b) It defines a vector field displacement function that maps the surface of one

model to the surface of the other model.

(c) The mapping is automatically generated by computing the difference (in

world space coordinates) between pairs of surface points that share the

same medial object coordinates.

Chapter 6 explained the solution algorithm that is applied to the finite element

system of equations. This algorithm derives an initial solution guess from m-rep

geometry based correspondences and refines the guess using an iterative solver.

The solution on subdivided meshes is computed in a multiscale fashion, where

the initial solution estimate on a subdivided mesh is provided by the solution

computed on the mesh one level coarser.

For the prostate deformation problem the m-rep based correspondences worked

well for both defining boundary conditions and estimating the solution to the

finite element equations. However it is not known how well these m-rep based

correspondences would work in the case of larger deformations. It is likely that

the difference between m-rep based correspondences and physical correspon-

dences would be greater for larger deformations, but additional experimentation

is needed to evaluate this.

The degree of difference between m-rep and physical correspondences is closely

related to the method of deforming an m-rep. The current method implemented

in Pablo is to optimize medial atom quantities (medial sheet position, object

radius, etc.) in order to minimize an objective function that combines an image

match term and a geometry term. The image match term indicates how well

the m-rep’s shape matches the shape of an imaged object. The geometry term

indicates how well the m-rep’s shape matches the expected configuration of

143

the m-rep. There are many ways each of these terms could be defined; the

choice of definitions affects how m-reps will deform and therefore what the m-

rep correspondences will be. Currently, the geometry term used in Pablo is

based on neighbor relationships between atoms. The factors examined includes

changes in distance between neighboring atoms and changes in frame between

neighboring atoms. Other factors that could be included in the geometry term

include the following:

• Multiscale neighbor relationships - If an m-reps’ lattice of medial atoms

is defined at multiple scales, then the relationships between neighboring

m-rep atoms can be examined at different scale levels.

• Medial sheet properties - These include curvature of the medial sheet,

compression, stretching, or other distortion of the (u, v) coordinate system

on the medial sheet.

• Potential energy metric - A physically based measurement of the energy

of a deformation, such as defined by equation 5.11, might indicate the

likelihood of a deformation.

Using a physically based geometry term in the m-rep deformation process would

probably improve the agreement between m-rep correspondences and physical

correspondences, especially for large deformation problems. In any case, if m-

rep based correspondences were poor for a large deformation problem, then the

methods described in this dissertation would still work. However in such a case

the following would be true:

(a) The boundary condition optimization would be more important because

the initial estimate would be unreliable.

(b) The solution efficiency gains provided by m-rep correspondences would

diminish.

4. The method presented in this dissertation produces good results for the problem

of non-rigidly registering prostate images.

Chapter 7 detailed deformation results for a phantom prostate. These results

were encouraging and were as good as could be hoped given the method of

validation and the resolution of the phantom prostate images. Notable findings

included the following:

144

(a) The accuracy of the computed deformation increased with the subdivision

level of the mesh.

(b) Boundary condition optimization did not improve the deformation accu-

racy for the phantom prostate.

(c) The computed deformation that mapped the uninflated prostate image to

the inflated prostate image was slightly more accurate than the computed

deformation that mapped the inflated prostate to the uninflated prostate.

(d) Varying the value of Poisson’s ratio by 30% or more affected the accuracy

of the computed deformation in a non-negligible way.

(e) The deformation accuracy achieved with the second and third level subdi-

vided meshes was in all cases better than the accuracy provided by m-rep

correspondences.

These results show that the finite element method can produce useful non-rigid

registrations of prostate images and that the automation provided by the m-rep

framework supports the application of the finite element method to such non-

rigid registration problems. However, all of these results are based on prostate

phantom CT images. Further validation and experimentation is needed with

clinical images and with image modalities other than CT, not to mention other

anatomical areas. This future work is discussed further in section 8.2.1.2.

Finally, the thesis statement is revisited. The thesis statement was as follows:

M-rep based multiscale mesh generation, m-rep derived boundary con-

ditions, and multiscale solution of a finite element system of equations

are techniques that improve the automation and efficiency of finite ele-

ment analysis as it is applied to medical imaging applications and to the

prostate brachytherapy application in particular.

Mesh generation, the derivation of boundary conditions, and the multiscale so-

lution algorithm have been reviewed in the survey of the first three claims, and the

results of applying these methods to the prostate deformation problem was reviewed

in the final claim. The final conclusion is that the automatic methods presented in

this dissertation relieve a user of the tasks of managing mesh construction, specifying

boundary conditions, and overseeing the solution process without the loss of solution

stability or deformation accuracy. This automation makes finite element analysis

more accessible and brings it a step closer to being a clinically practical tool.

145

8.2 Future Work

Finally, consideration is given to ways that this work could be extended to improve

performance, add functionality, and provide stronger validation. The future work is

divided into three categories based on the complexity of the ideas and the amount of

time that would likely be required to explore and develop them.

8.2.1 Further elaboration and validation of current work

The first three future work ideas are straightforward and could be implemented in

the near future. These ideas concern local mesh subdivision, clinical validation, and

implementation improvements. Detailed explanations are provided in the following

sections.

8.2.1.1 Local mesh subdivision

The current mesh subdivision algorithm subdivides an entire mesh and does not

provide an option for local refinement. The ability to refine a mesh in a limited

neighborhood is valuable, as it allows additional precision to be gained for areas of

particular interest without incurring the computational cost associated with reducing

the element size throughout the mesh. Local subdivision of a hexahedral mesh must

be performed carefully to avoid the creation of hanging nodes. (See section 3.2.4

for a discussion of hanging nodes.) Schneiders [62] presents a nice group of template

patterns (Fig. 8.1) that can be applied in hexahedral mesh subdivision and that do not

create hanging nodes if properly applied. For m-rep mesh subdivision, these patterns

could be applied to elements in the regions that require refinement. The coordinates

of newly created nodes could be generated by interpolating between the medial object

coordinates of pre-existing nodes, as is done in the current m-rep mesh subdivision

algorithm. This approach would provide local mesh refinement functionality while

retaining the benefits of subdivision with m-rep object based coordinates.

8.2.1.2 Experimentation and validation with clinical images

Validation of this work has only been performed using prostate phantom computed

tomography (CT) images. Further experimentation would determine the applicability

of the methods presented in this dissertation to clinical images of the prostate. Vali-

dation could be performed using various imaging modalities, including magnetic reso-

146

Figure 8.1: Hexahedral element subdivision patterns

nance, magnetic resonance spectroscopy, ultrasound, and CT. Plans have been made

to apply the methodology to the registration of magnetic resonance spectroscopy and

ultrasound images in a prostate brachytherapy study at Memorial Sloan-Kettering

Cancer Center.

Experiments with larger and more complicated deformations, perhaps involving

significant torsion, would provide a better understanding of the limits of the m-rep

geometry based correspondences and the associated boundary condition prediction

method. Good performance for the prostate phantom case does not ensure good

performance for all geometries and deformations, and such experiments are needed

to develop an understanding of the circumstances in which the boundary condition

prediction method works and the quality of the result.

It would also be interesting to apply the methodology to parts of the anatomy

other than the prostate. Application to the liver is being considered. The meshing

algorithm could be applied to air and fluid filled structures such as the lungs or

the heart as part of computational fluid dynamic analysis. Application to other

soft tissue organs as well as hard structures, i.e. bones, would be appropriate. An

intriguing idea for bone meshing is to assign elastic parameters to elements based on

the elements’ medial object coordinates. For example, elements with nodes whose

coordinates satisfy |τ | > 1−ε are near the surface of the bone and should be assigned

147

parameters consistent with cortical bone. Interior elements whose nodes do not satisfy

the relation should be assigned parameters consistent with trabecular bone. These are

just a few of the ways m-rep based meshing could be applied to anatomical modeling.

8.2.1.3 Implementation issues

In the process of implementing the algorithms described in this dissertation, software

was both developed by the author and acquired from other sources. The result is

a collection of programs which taken together provide all of the functionality of the

described algorithms. This collection is composed of the following:

• Matlab functions and scripts written by the author to generate hexahedral

meshes for m-rep figures and to generate transitional pyramid elements.

• Matlab functions and scripts written by the author and adapted from the

CALFEM package [25] to assemble and solve finite element systems of equa-

tions.

• A C++ program written by the author for viewing image, meshes, and deforma-

tion results. This program uses Visualization Toolkit (VTK) classes for image

visualization and image warping.

• Pablo, a C++ program for building m-reps and segmenting images using m-

reps. Pablo was developed by a number of people in the Medical Image Display

and Analysis Group (MIDAG) at the University of North Carolina at Chapel

Hill.

• CUBIT, a meshing program from Sandia National Laboratories that was used

to create the tetrahedral parts of the meshes.

These programs were adequate for the purpose of prototyping and testing the

efficacy of this dissertation’s methodology. However, for more widespread distribution

fewer programs and faster running times are needed. Ideally the functionality of all

these programs would be condensed into a single program. Plans have been made to

combine at least the first three items listed above into a single compiled executable.

8.2.2 Major extensions to current work

This section discusses two ideas that would expand the applicability of this work

to situations with more complicated geometry and more complicated physics. First,

148

the possibility of using an overset meshing scheme with m-reps is discussed, along

with the advantages and disadvantages of such a scheme. Second, the possibility of

modeling objects that undergo non-linear deformation is considered.

8.2.2.1 Overset meshing with m-reps

An alternative to the multi-figure meshing algorithm described in section 4.2.4 is

overset meshing (section 3.2.5). Overset meshing is simpler and more flexible than

the multi-figure meshing algorithm, but it necessitates additional complexity in the

solution algorithm.

Overset meshing involves creating a hierarchy of independent meshes. For the

m-rep meshing application, a top level hexahedral background mesh with uniformly

spaced rows, columns, and layers could be created to fill the entire area of interest

and ensure that the space exterior to the m-rep modeled objects is meshed. Then

a separate hexahedral mesh could be constructed for each of the figures in an m-

rep model using the single figure meshing algorithm described in section 4.2.1. No

attempt would be made to join host and subfigure meshes in a compatible fashion;

they would simply overlap. The hierarchy of figures in an m-rep model would lead to

a hierarchy of meshes. By placing the background mesh at the top of the hierarchy,

a complete overset mesh would be generated.

Such an overset mesh would offer several advantages. First, generating an overset

mesh as described would be more straightforward and robust than the multi-figure

meshing algorithm. In particular, the overset meshing scheme would not suffer the

limitations that the multi-figure meshing algorithm has regarding the proximity of

branch points or the attachment of subfigures near the corners of the medial sheet’s

(u, v) parameter space. Second, an overset meshing scheme could handle objects

with holes and indentations that the multi-figure meshing algorithm cannot handle.

A hole or indentation could simply be modeled with an m-rep figure and meshed like

other figures. It would become the responsibility of the solution algorithm to detect

the overlap of a hole figure with a solid figure and manage the relationship properly.

Finally, an overset mesh would be more appropriate for situations in which there is

relative motion between objects, such as occurs between bones in a joint. Elements

in a non-overset mesh often become excessively skewed when relative motion occurs.

Therefore simulation of such motion can require remeshing at multiple time steps.

Using an overset mesh, each figure’s mesh could travel with it, reducing the need for

costly remeshing.

149

The main disadvantage to overset meshing is the additional complexity required

by the solution algorithm to manage a hierarchy of meshes and transmit deforming

forces between meshes appropriately. If an overset meshing scheme was implemented

for m-reps, it would be most appropriate to make use of one of the existing finite

element or fluid dynamic solvers that accepts overset meshes.

8.2.2.2 Non-linear material models

Linear elasticity is the simplest material model and does not account for all the

complexities of human tissue deformation. The most accurate anatomic deformable

models incorporate a non-linear material model that describes the way a tissue re-

sponds to stress over time and represents any anisotropic aspects of the tissue. For

soft tissue organs a viscoelastic material model such as those described in section 2.3.3

is probably most appropriate. However for some tissues, including prostate tissue,

testing has not been performed to determine what the best viscoelastic model would

be. Therefore the implementation of more advanced material models is dependent on

those models first being developed and validated. There is no reason to invest time

in implementing and computing deformation simulations with complicated material

models unless there is evidence to suggest that a particular complicated model is more

accurate than a simple one such as linear elasticity.

Spatio-temporal analysis of object motion and deformation is another research

direction that could be pursued with the m-rep methodology. Examples of problems

requiring spatio-temporal analysis include breathing motion, heart contraction, and

joint movement. Each of these problems involves non-linear deformation, and an ac-

curate simulation would require solutions for a number of time steps. Once again

accurate mathematical models of the tissues would be needed before the computa-

tional models could be constructed.

The m-rep meshing and multiscale solution approach are applicable for all of these

non-linear problems. In each case the necessary changes would involve (1) altering the

system of equations that is assembled for a meshed object and (2) altering the solution

algorithm to compute solutions for multiple time steps rather than just a single end

state. The other aspects of the deformation modeling process could remain as they

have been described for linear elastic problems.

150

8.2.3 Long range possibilities of physically based modeling

with medical images

An interesting long range possibility for physically based modeling with medical im-

ages is the automated creation of patient specific simulations. Suitably enhanced,

anatomic atlases could facilitate the creation of such simulations. The Visible Hu-

man Project has created an atlas of human anatomy that goes far beyond the tra-

ditional artists’ illustrations and provides real medical images of every part of the

body, segmented and tagged. Research efforts are underway to further expand the

atlas concept by including a characterization of the anatomic variability of a popu-

lation along with individual instances of the anatomy. These efforts could be further

extended by tagging atlas data with not only name and function information but

tissue constitutive equations as well. Databases of anatomic variability could include

not just the geometric variability of anatomy but the variability of the deformable

model parameters as well.

Such an enhanced atlas could be used to automatically create individualized sim-

ulations for patients. An image of a patient could be acquired and automatically

registered with the atlas. Based on the registration, the atlas’ segmentation and

tagging could be transferred to the patient image. From the segmentation, a mesh

could be automatically constructed. The mesh together with the material models

associated with the atlas are sufficient to construct a finite element model for the

patient.

Such a model would have many uses including surgical simulation and the sim-

ulation of a variety of other medical procedures. Since there would likely be some

uncertainty about material parameters such as stiffness and viscosity, several different

simulations could be constructed to determine the range of possible outcomes. This

kind of tool could help doctors avoid complications and plan procedures for the best

possible result.

In order to make this kind of automated simulation possible, advancements are

needed in several research areas. First, accurate constitutive equations need to be

developed and validated for the organs and tissue types of interest. Studies are also

needed to determine the variability of the deformable model parameters across a pop-

ulation. Second, automatic atlas based registration and segmentation methods need

to improve. Some positive results have been achieved in this area, but more reliable

and general purpose atlas based registration and segmentation software is needed.

151

Finally, the time required to compute non-linear deformations needs to be reduced in

order for such simulations to be practical on a routine basis. Speed improvements may

come from hardware acceleration and from improvements in algorithm design. Once

these pieces are in place, automated and individualized simulations will be possible.

152

Bibliography

[1] CUBIT information available at http://endo.sandia.gov/cubit/.

[2] Tetmesh-ghs3d information availabe at http://www.simulog.fr/mesh/gener2.htm.

[3] Fundamental concepts and approaches. In N P Weatherill J F Thompson, B
K Soni, editor, Handbook of Grid Generation. CRC Press, Boca Raton, Florida,
1998.

[4] F Azar. A deformable finite element model of the breast to register mr images of
the same breast under different plate compressions. World Congress on Medical
Physics and Biomedical Engineering, 2000.

[5] F Azar. A deformable finite element model of the breast for predicting mechanical
deformations. Journal of Academic Radiology, pages 965–975, October 2001.

[6] T J Baker. Delaunay-voronoi methods. In N P Weatherill J F Thompson, B
K Soni, editor, Handbook of Grid Generation. CRC Press, Boca Raton, Florida,
1998.

[7] K Bathe. Finite Element Procedures. Prentice-Hall, New Jersey, 1996.

[8] S E Benzley, E Perry, K Merkley, B Clark, and G Sjaardama. A comparison of all
hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic
analysis. Proceedings, 4th International Meshing Roundtable, pages 179–191,
October 1995. www.andrew.cmu.edu/user/sowen/abstracts/Be172.html.

[9] A Bharatha, M Hirose, N Hata, S Warfield, M Ferrant, K Zou, E Suarez-Santana,
J Ruiz-Alzola, A D’Amico, R Cormack, R Kikinis, F Jolesz, and C Tempany.
Evaluation of three-dimensional finite element-based deformable registration of
pre-and intraoperative prostate imaging. Medical Physics, 28:2551–2560, Dec
2001.

[10] H. Blum and R. Nagel. Shape description using weighted symmetric axis features.
Pattern Recognition, 10, 1978.

[11] F L Bookstein. Principal warps: Thin-plate splines and the decomposition of
deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(6), June 1989.

153

[12] A Bower. Lecture notes for EN224: Linear Elasticity.
Division of Engineering, Brown University, 1997-1998.
http://www.engin.brown.edu/courses/En224/notes.htm.

[13] A Bower. Lecture notes for EN222: Mechanics of Solids II. Division of Engi-
neering, Brown University, 2003. http://www.engin.brown.edu/courses/En222.

[14] C Broit. Optimal registration of deformed images. Dissertation, The Moore
School of Electrical Engineering at the University of Pennsylvania, 1981.

[15] L G Brown. ACM Computing Surveys, 24(4), December 1992.

[16] J R Cebral and R Lohner. From medical images to CFD meshes. Proceedings,
8th International Roundtable, pages 321–331, October 1999.

[17] M Chabanas and Y Payan. A 3D finite element model of the face for simulation in
plastic and maxillo-facial surgery. Proceedings, Third International Conference
on Medical Image Computing and Computer-Assisted Intervention (MICCAI),
2000.

[18] W M Chan. Hyperbolic methods for surface and field grid generation. In
N P Weatherill J F Thompson, B K Soni, editor, Handbook of Grid Genera-
tion. CRC Press, Boca Raton, Florida, 1998.

[19] J.M. Chung and N. Ohnishi. Matching and recognition of planar shaped using
medial axis properties. First International Workshop on Multimedia Intelligent
Storage and Retrieval Management, October 1999.

[20] Stphane Cotin, H. Delingette, and N. Ayache. Real-time elastic deformations
of soft tissues for surgery simulation. IEEE Transactions On Visualization and
Computer Graphics, 5(1):62–73, January-March 1999.

[21] J Crouch, S Pizer, E Chaney, and M Zaider. Medially based meshing for finite
element analysis of prostate deformation. submitted to: Information Processing
in Medical Imaging, 2003.

[22] J Crouch, S Pizer, E Chaney, and M Zaider. Medial techniques to automate finite
element analysis of prostate deformation. submitted to: IEEE Transactions on
Medical Imaging, Feb 2003. http://www.cs.und.edu/ jrc/TMI JRC.pdf.

[23] M Davis. A physics-based coordinate transformation for 3-d image matching.
IEEE Trans. Medical Imaging, 16:317–327, 1997.

[24] F Boux de Casson and C Laugier. Modeling the dynamics of a human liver
for a minimally invasive surger simulator. Proceedings, Second International
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), September 1999.

154

[25] Department of Mechanics and Materials, Lund University. CALFEM, a finite
element toolbox to MATLAB. Lund, Sweden, 1999.

[26] M Ferrant, S K Warfield, A Nabavi, F A Jolesz, and R Kikinis. Registration of 3D
MR images of the brain using a finite element biomechanical model. Proceedings,
Third International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), 2000.

[27] M Filipiak. Mesh generation. Technology Watch Report, Edinburgh Parallel
Computing Centre, 1996.

[28] N T Folwell and S A Mitchell. Reliable whiskerweaving via curve contrac-
tion. Proceedings, 7th International Meshing Roundtable, pages 365–378, October
1998.

[29] YC Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer,
New York, 2 edition, 1993.

[30] P L George, F Hecht, and E Saltel. Automatic mesh generator with specified
boundary. Computer Methods in Applied Mechanics and Engineering, 92:269–
288, 1991.

[31] G H Golub and J M Ortega. Scientific Computing and Differential Equations.
Academic Press, 1992.

[32] C M Hoffmann. Geometric approaches to mesh generation. pages 31–52, 1995.

[33] R A Katz and S M Pizer. Untangling the blum medial axis transform. Interna-
tional Journal of Computer Vision, 2002.

[34] P Knupp. Hexahedral mesh untangling and algebraic mesh quality metrics. Pro-
ceedings, 9th International Meshing Roundtable, pages 173–183, October 2000.

[35] T A Krouskop, T M Wheeler, F Kallel, B S Garra, and T Hall. Elastic moduli of
breast and prostate tissues under compression. Ultrasonic Imaging, 20:260–274,
1998.

[36] Y W Kwon and H Bang. The Finite Element Method Using Matlab. CRC Press,
Boca Raton, Florida, second edition, 2000.

[37] R J Lapeer and R W Prager. Finite element model of a fetal skull subjected to
labour forces. Proceedings, Second International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), 1999.

[38] H Lester and S R Arridge. A survey of hierarchical non-linear medical image
registration. Pattern Recognition, 32:129–149, 1999.

[39] J. Maintz and M. Viergever. A survey of medical image registration. Medical
Image Analysis, 2(1):1–36, 1998.

155

[40] GN Maksym and JHT Bates. A distributed nonlinear model of lung tissue
elasticity. Journal of Applied Physiology, 82:32–41, 1997.

[41] K V Mardia and J T Kent. Kriging and splices with derivative information.
Biometrika, 83(1):207–221, 1996.

[42] R L Meakin. Composite overset structured grids. In N P Weatherill J F Thomp-
son, B K Soni, editor, Handbook of Grid Generation. CRC Press, Boca Raton,
Florida, 1998.

[43] R J Meyers, T J Tautges, and P M Tuchinsky. The “hex-tet” hex-dominant
meshing algorithm as implemented in CUBIT. Proceedings, 7th International
Meshing Roundtable, pages 151–158, October 1998.

[44] M I Miga, K D Paulsen, F E Kennedy, A Hartov, and D W Roberts. Model-
updated image-guided neurosurgery using the finite element method: Incorpora-
tion of the falx cerebri. Proceedings, Second International Conference on Medical
Image Computing and Computer-Assisted Intervention (MICCAI), pages 900–
909, September 1999.

[45] K Miller and K Chinzei. Modelling of brain tissue mechanical properties: Bi-
phasic versus single-phase approach. Proceedings of the 3rd International Sym-
posium on Computing Methods in Biomechanical and Biomedical Engineering,
1997.

[46] S A Mitchell. A characterization of the quadrilateral meshes of a surface which
admit a compatible hexahedral mesh of the enclosed volume. Proceedings STACS,
1996.

[47] A Mohamed, C Davatzikos, and R Taylor. A combined statistical and biomechan-
ical model for estimation of intra-operative prostate deformation. Proceedings,
Fifth International Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI), pages 452–460, 2002.

[48] L. R. Nackman and S. M. Pizer. Three-dimensional shape description using the
symmetric axis transform I:theory. IEEE Trans. Pattern Analysis and Machine
Intelligence, PAMI-7(2):187–202, 1985.

[49] GH Olivera, EE Fitchard, PJ Reckwerdt, KJ Ruchala, and TR Mackie. Delivery
modification as an alternative to patient repositioning in tomotherapy. Proceed-
ings of the 13th International Conference on Computers in Radiotherapy, pages
297–299, 2000.

[50] J O’Rourke. Computational Geometry in C. Cambridge University Press, 1998.

[51] N Ottosen and H Petersson. Introduction to the Finite Element Method. Prentice
Hall, 1992.

156

[52] X Papademetris, P Shi, DP Dione, AJ Sinusas, RT Constable, and JS Dun-
can. Recovery of soft tissue object deformation from 3D image sequences using
biomechanical models. Information Processing in Medical Imaging, pages 352–
357, 1999.

[53] J Peraire, J Peiro, and K Morgan. Advancing front grid generation. In
N P Weatherill J F Thompson, B K Soni, editor, Handbook of Grid Genera-
tion. CRC Press, Boca Raton, Florida, 1998.

[54] RM Pidaparti, Y Liu, and RA Meiss. A viscoelastic material model to represent
smooth muscle shortening. Journal of Bio-Medical Materials and Engineering,
7:171–177, 1997.

[55] S M Pizer, J Z Chen, P T Fletcher, Y Fridman, D S Fritsch, A G Gash,
J M Glotzer, M R Jiroutek, S Joshi, C Lu, K E Muller, A Thall, G Trac-
ton, P Yushkevich, and E L Chaney. Deformable m-reps for 3D medical image
segmentation. International Journal of Computer Vision, submitted Sept. 2002.
http://midag.cs.unc.edu/pubs/papers/IJCV01-Pizer-mreps.pdf.

[56] S M Pizer, P T Fletcher, Y Friedman, D S Fritsch, A G Gash, J M Glotzer,
S Joshi, A Thall, G Tracton, P Yushkevich, and E L Chaney. Deformable m-
reps for 3D medical image segmentation. Medical Image Analysis.

[57] S M Pizer, D S Fritsch, P Yushkevich, V E Johnson, and E L Chaney. Segmen-
tation, registration, and measurement of shape variation via image object shape.
IEEE Transactions on Medical Imaging, 18(10):851–865, 1996.

[58] S M Pizer, A L Thall, and D T Chen. M-reps: A new object representation for
graphics. ACM Transactions on Graphics, qqq.

[59] W H Press, S A Teukolsky, W T Vetterling, and B P Flannery. Numerical
Recipies in C. Cambridge University Press, New York, 1992.

[60] M A Price and C G Armstrong. Hexahedral mesh generation by medial surface
subdivision: Part II. solides with flat and concave edges. International Journal
for Numerical Methods in Engineering, 40:111–136, 1997.

[61] Julia A. Schnabel, Chritine Tanner, Andy A. Castellanp-Smith, Andreas Degen-
hard, Martin O. Leach, D. Rodney Hose, Derek L.G. Hill, and David J. Hawkes.
Validation of non-rigid image registration using finite element methods: Appli-
cation to breast MR images. IEEE Transactions on Medical Imaging, 22(1),
January 2003.

[62] R Schneiders. Quadrilateral and hexahedral element meshes. In N P Weatherill
J F Thompson, B K Soni, editor, Handbook of Grid Generation. CRC Press,
Florida, 1998.

157

[63] J Shaw. Hybrid grids. In N P Weatherill J F Thompson, B K Soni, editor,
Handbook of Grid Generation. CRC Press, Boca Raton, Florida, 1998.

[64] A Sheffer, M Etzion, A Rappaport, and M Bercovier. Hexahedral mesh gener-
ation using the embedded voronoi graph. Engineering with Computers, 15:248–
262, 1999.

[65] M S Shephard, H L Decougny, R M O’Bara, and M W Beall. Automatic grid
generation using spatially based trees. In N P Weatherill J F Thompson, B
K Soni, editor, Handbook of Grid Generation. CRC Press, Boca Raton, Florida,
1998.

[66] R E Smith. Transfinite interpolation. In N P Weatherill J F Thompson, B
K Soni, editor, Handbook of Grid Generation. CRC Press, Boca Raton, Florida,
1998.

[67] R W Soutas-Little. Elasticity. Dover Press, Mineola, New York, 1973.

[68] S P Spekreijse. Elliptic generation systems. In N P Weatherill J F Thompson, B
K Soni, editor, Handbook of Grid Generation. CRC Press, Boca Raton, Florida,
1998.

[69] M Styner, G Gerig, S Joshi, and S Pizer. Automatic and robust computation
of 3D medial models incorporating object variability. International Journal of
Computer Vision, to appear spring 2003.

[70] T J Tautges and S Mitchell. Progress report on the whisker weaving all-
hexahedral meshing algorithm. Proc. 5th International Conference on Numerical
Grid Generation in Computational Fluid Simulations, pages 659–670, 1996.

[71] A Thall. Fast C2 interpolating subdivision surfaces using iterative inversion
of stationary subdivision rules. Technical Report TR02-001, UNC-Chapel Hill,
2002.

[72] A Thall. dissertation, UNC-Chapel Hill department of computer science, 2003.

[73] JP Thirion. Non-rigid matching using demons. IEEE Conference on Computer
Vision and Pattern Recoginition, 1996.

[74] D S Thompson and B K Soni. Generation of quad- and hex-dominant, semistruc-
tured meshes using and advancing layer scheme. Proceedings of the 8th Interna-
tional Meshing Roundtable, pages 171–178, October 1999.

[75] J F Thompson, B K Soni, and N P Weatherill. Preface: An elementary intro-
duction. In N P Weatherill J F Thompson, B K Soni, editor, Handbook of Grid
Generation. CRC Press, Boca Raton, Florida, 1998.

158

[76] J F Thompson and N P Weatherill. Fundamental concepts and approaches. In
N P Weatherill J F Thompson, B K Soni, editor, Handbook of Grid Generation.
CRC Press, Boca Raton, Florida, 1998.

[77] S P Timoshenko and J N Goodier. Theory of Elasticity. McGraw Hill, New
York, 3rd edition, 1970.

[78] U Trottenberg, C Oosterlee, and A Schüller. Multigrid. Academic Press, 2001.

[79] M Viceconti, L Bellingeri, L Cristofolini, and A Toni. A comparative study
on different methods of automatic mesh generation of human femurs. Medical
Engineering and Physics, 20:1–10, 1998.

[80] P Wesseling. An Introduction to Multigrid Methods. John Wiley and Sons, 1992.

[81] D R White and P Kinney. Redesign of the paving algorithm: Robustness en-
hancements through element by element meshing. Proceedings, 6th International
Meshing Roundtable, pages 323–335, October 1997.

[82] J Yao and R Taylor. Tetrahedral mesh modeling of density data for anatom-
ical atlases and intensity-based registration. Proceedings, Third International
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pages 531–540, October 2000.

[83] P Yushkevich, P T Fletcher, S Joshi, A Thall, and S M Pizer. Continuous
medial representations for geometric object modeling in 2D and 3D. Proc. 1st.
Generative Model Based Vision Workshop, 2002.

[84] M Zaider, M J Zelefsky, E K Lee, and et al. Treatment planning for prostate
implants using magnetic-resonance spectroscopy imaging. Int J Radiat Oncol
Biol Phys, 47:1085–1096, 2000.

159

