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iii
AbstratPETER JONATHAN LORENZEN: Multi-Modal Image Registration andAtlas Formation.(Under the diretion of Sarang C. Joshi, D.S..)Medial images of human anatomy an be produed from a wide range of sensortehnologies and imaging tehniques resulting in a diverse array of imaging modalities,suh as magneti resonane and omputed tomography. The physial properties ofthe image aquisition proess for di�erent modalities eliit di�erent tissue strutures.Images from multiple modalities provide omplementary information about underly-ing anatomial struture. Understanding anatomial variability is often important instudying disparate population groups and typially requires robust dense image regis-tration. Traditional image registration methods involve �nding a mapping between twosalar images. Suh methods do not exploit the omplementary information providedby sets of multi-modal images.This dissertation presents a Bayesian framework for generating inter-subjet largedeformation transformations between two multi-modal image sets of the brain. The es-timated transformations are generated using maximal information about the underlyingneuroanatomy present in eah of the di�erent modalities. This modality independentregistration framework is ahieved by jointly estimating the posterior probabilities asso-iated with the multi-modal image sets and the high-dimensional registration transfor-mations relating these posteriors. To maximally use the information present in all themodalities for registration, Kullbak-Leibler divergene between the estimated posteri-ors is minimized. This framework is extended to large deformation multi-lass posterioratlas estimation. The method generates a representative anatomial template from anarbitrary number of topologially similar multi-modal image sets. The generated atlasis the lass posterior that requires the least amount of deformation energy to be trans-formed into every lass posterior (eah haraterizing a multi-modal image set). Thismethod is omputationally pratial in that omputation times grows linearly with thenumber of image sets.The multi-lass posterior atlas formation method is applied to a database of multi-modal images from ninety-�ve adult brains as part of a healthy aging study to produe4D spatiotemporal atlases for the female and male subpopulations. The stability of the



ivatlases is evaluated based on the entropy of their lass posteriors. Global volumetritrends and loal volumetri hange are evaluated. This multi-modal framework haspotential appliations in many natural multi-modal imaging environments.
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Chapter 1Introdution
1.1 MotivationMedial image analysis assists liniians in many tasks, inluding the following:evaluating a patient's disease state, evaluating the e�ay of a presribed treatment,or studying illness through population studies. In their analyses, liniians draw upontheir knowledge of anatomy and their experiene viewing medial images and tissuesdiretly. Historially, anatomists have enoded this prior knowledge of anatomy inthe form of an atlas. Suh an atlas may be a set of drawings rendered by experts,suh as [75℄, or a photographi study as in [83℄. Digital atlases, the subjet of thisdissertation, naturally require omputers. Several types of digital atlases, inludingintensity-based, label-based, and probabilisti, are desribed in [99℄. This dissertationfouses on building atlases from multi-modal images.Brain atlases are often used to study strutural neuroanatomy: for surgial plan-ning (e.g., in the planning of tumor resetion where statistial atlases provide priorprobability models to onstrain segmentation to loalize ritial strutures [55℄); forinstrutional purposes [55℄; for group studies where atlases are used to study struturaldi�erenes between populations (e.g., shizophrenis and normal ontrols [18, 19, 96℄);and to study morphologial hange suh as in generative proesses (e.g., neonatal braindevelopment [78℄) and degenerative proesses (e.g., gray matter loss due to Alzheimer's[97, 96℄).The fundamental impetus driving this dissertation is the desire to inorporate asmuh anatomial information as possible into the problems of medial image registra-tion and atlas formation. Mono-modality images do not apture all the informationrepresenting the underlying tissue struture. The information that is provided by a



2medial image is dependent on the physis and parameterization of the aquisitionproess. For example, in omputed tomographi imaging the attenuation of x-rays ismeasured, resulting in exellent delineation of dense bone struture. Magneti reso-nane imaging relies on the relaxation properties of the dipole moments of hydrogenatoms under the in�uene of magneti �elds. The resulting images are, typially, basedon three basi tissue parameters (proton density, T1 relaxation time, and T2 relax-ation time) as well as �ow harateristis. The proess involves orrelating a series ofradio frequeny signal measurements with spatial loation of the various tissue types.Consequently, magneti resonane images provide good soft tissue segmentation. Thedi�erent imaging modalities of magneti resonane imaging provide omplementary in-formation about pathologial strutures. In the ase of ertain tumors, T1-weightedimages present good fat-tumor ontrast whereas T2-weighted images show good tumor-musle ontrast [59℄. In multiple sleroris, ontrast-enhaned T1-weighted images showthe ative lesions, T2-weighted images show both new and old lesions, and proton den-sity images highlight lesions near the �uid-�lled ventriles [25℄. In this dissertation, toutilize the omplementary information from multi-modal images, a model-based frame-work is de�ned in terms of multi-lass posterior probability maps where the lassesrepresent underlying tissue strutures.This dissertation presents a novel framework for multi-lass atlas formation fromsets of multi-modal images. This framework is extended to the unbiased atlas settingof [49℄. These atlases represent anatomial variation present in populations [69, 32, 94℄.Many images are mapped into a ommon oordinate system to study intra-populationvariability and inter-population di�erenes, to provide voxel-wise mapping of funtionalsites, and to failitate tissue and objet segmentation via registration of anatomiallabels. Atlas formation from a population of medial images is an important problemthat is naturally expressed within the subjet of omputational anatomy.1.2 Computational Anatomy and Atlas FormationComputational anatomy [32℄ is the study of anatomial shape variability. Relatinganatomial shape to biologial growth and funtion has roots in the seminal work ofD'Ary Thompson in 1917 [93℄. Thompson was interested in the omparison of relatedforms through mathematial transformations rather than in the preise de�nition ofeah form. This notion was extended to deformable templates [31℄ in whih the spaeof anatomial imagery is interpreted as the orbit under the group of transformations.



3Spei�ally, omputational anatomy belongs to the disipline of geometry governed bypattern theoreti priniples whose kinematis, that haraterize the transformations, isdesribed in terms of onepts borrowed from ontinuum mehanis.In the framework of omputational anatomy, the atlas represents the ommon in-variant struture in a population and the transformations relating the oordinate spaeof the atlas to the oordinate spaes of the individual members of the population enodethe variability. This variability represents loal struture under deformation or warp-ing. An example of this devision into invariane and variability onsider the healthyhuman brain: in every suh brain there exist preisely two lateral ventriles with notwo pair the same. Therefore, under the omputational anatomial framework, anatlas of healthy human brains should represent preisely two lateral ventriles and ap-ture the variability through mathematial transformations that relate them. The atlasformation method proposed in this dissertation falls within this framework.Understanding anatomial variability requires high-dimensional image registrationwhere the number of parameters used to desribed the transformations are on the or-der of the number of spatial elements desribing the underlying spae of the images.There are many hoies in this regard. In terms of ability to apture anatomi variabil-ity, transformation models an be loosely dihotomized into small deformation models,whih assoiate energy to distane, and large deformation models, whih assoiate en-ergy to veloity on �uid �ows. This dissertation applies the theory of large deformationdi�eomorphisms [22, 70, 68℄ to generate transformations. An important property ofdi�eomorphi transformations is that they preserve topology. That is, these transfor-mations do not fold or tear spae and hene, preserve loal struture.An important omponent of image registration and, hene, atlas formation, is thehoie of image dissimilarity distane funtion. This is typially a salar-valued funtionde�ned on the Cartesian produt X × X where X is the feature spae of the image.The dissimilarity funtion provides a number indiating how far apart two images areand is hosen based on assumptions about the relationship between the features in theimages. When two images are in perfet registration this distane assumes its smallestvalue. The most natural form of a distane funtion is a metri.De�nition 1.1 (Metri). Given a set X, a metri on X is funtion d : X × X → R.For all x, y, z ∈ X, this funtion satis�es the following onditions:1. Non-negativity: d(x, y) ≥ 02. Identity of indisernables: d(x, y) = 0 if and only if x = y.



43. Symmetry: d(x, y) = d(y, x)4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)A simple example of a metri is the Eulidean distane between two points.This dissertation uses multi-modal images where a statistial relationship is assumedbetween image features. This suggests the use of information theoreti distanes basedon Shannon entropy. These distanes are typially not true metris, typially failingproperty (4) and, often, property (3).1.3 Thesis and ContributionsThesis: A sharp unbiased multi-tissue lass atlas an be onstruted from apopulation of multi-modal image sets, omprised of an arbitrary number ofimages per subjet, using a Bayesian framework and large deformation dif-feomorphi registration. Multi-modal image set orrespondene an furtherbe ahieved via omposition of transformations assoiated with the unbiasedatlas.The ontributions of this dissertation are the following:1. A theoretial development showing that minimizing sum-of-Kullbak-Leibler di-vergenes, in either ordering of parameters, maximizes a lower bound on Bayesprobability of error, a measure of indistinguishability between probability distri-butions.2. A novel multi-modal image set registration method is presented. To the author'sknowledge this is the only method that inorporates an arbitrary number of multi-modal images per subjet. An advantageous onsequene of this framework isinverse-invariant (symmetri) registration.3. An extension of the above framework to unbiased multi-lass atlas formation1.4. The use of information theory to evaluate atlas stability.5. An appliation of the atlas formation to an aging study involving multi-modalbrain image data from ninety-�ve subjets.1The work presented in this hapter was done in ollaboration with Dr. Sarang Joshi and BradDavis at the University of North Carolina at Chapel Hill. This work is heavily based on previouspapers [63, 49℄.



51.4 Overview of ChaptersThe remainder of this dissertation is organized as follows:Chapter 2 presents motivates the distanes used to drive the multi-modal imageset registration and the unbiased multi-lass posterior atlas formation. This inludes adisussion of Bayes probability of error and the bounds thereof in terms of the sum-of-Kullbak-Leibler divergenes.Chapter 3 presents the main theoretial ontribution of this dissertation: model-based multi-modal image set registration. The �uid mehanial framework for on-straining the resulting transformations to the spae of di�eomorphisms is desribed.Existing information theoreti tehniques for image registration will be desribed withspeial attention given to multi-variate interpretations of mutual information.In Chapter 4, using information theoreti distanes developed in Chapter 2, theonept of multi-modal image set registration is generalized to unbiased multi-lassposterior atlas formation. Existing unbiased atlas formation methods are also disussed.In Chapter 5, atlas stability, with respet to the number of onstituent subjets, isexplored.In Chapter 6, the method from Chapter 4 is applied to MR images from a databaseof 100 healthy subjets.Chapter 7 onludes with a disussion of the ontributions of this dissertation andpossible future work.Appendix A presents the information theoreti bakground for Chapter 2.Appendix B prodives a disussion on the likelihood of the atual optimum in themulti-modal image set registration ost funtion being ahieved.



Chapter 2Probability Averages
Central to the image registration and atlas formation framework presented in thisdissertation is the reation of the average or most representative probability from agiven olletion of probabilities. In this framework, the average probability distribution

p̂ is de�ned in terms of minimizing a dispersion measure Γ for a set of distributions
{pi}

N
i=1,

p̂ = argmin
p

Γ
(

{pi}
N
i=1, p

)

. (2.1)This dispersion measure takes the form of a sum of individual distanes between p andeah pi,
Γ
(

{pi}
N
i=1, p

)

=

N
∑

i=1

γ ({pi, p}) . (2.2)The distane γ is hosen to be the Kullbak-Leibler divergene, as there exists alower bound on Bayes probability of error Pe between p̂ and the individual pi in termsof Γ. More spei�ally, minimizing the sum-of-Kullbak-Leibler divergenes between
p̂ and eah pi maximizes a lower bound on indistinguishability between the pi. SineKullbak-Leibler divergene is an asymmetri distane, two sum-of-Kullbak-Leiblerdivergenes are onsidered. The two dispersion measures are

D̄
(

{pi}
N
i=1||p

)

=

N
∑

i=1

D(pi||p) (2.3)and



7
D̄
(

p||{pi}
N
i=1

)

=
N
∑

i=1

D(p||pi). (2.4)Kullbak-Leibler divergene D(·||·) and other fundamental information theoreti mea-sures are de�ned in Appendix A.This hapter is organized as follows: Setion 2.1 shows that the generalized average
p̂ = argmin

p

D̄
(

{pi}
N
i=1||p

)is the arithmeti mean and that the generalized average
p̂ = argmin

p

D̄
(

p||{pi}
N
i=1

)is the normalized geometri mean; Setion 2.2 de�nes Bayes probability of error; andSetion 2.3 presents bounds on Bayes probability of error in terms of the dispersionmeasures D̄
(

{pi}
N
i=1||p̂

) and D̄
(

p̂||{pi}
N
i=1

) with their respetive p̂ minimizers.2.1 Averages from Kullbak-Leibler Divergene SumsThis setion presents the sum-of-Kullbak-Leibler divergene minimizers for thedispersion measures in Equation 2.3 and Equation 2.4. These minimizers have beenpresented in the literature, for example in [45℄ for the N = 2 ase. The derivation forthe general ase via the method of Langrange multipliers is inluded for ompleteness.2.1.1 Arithmeti Mean from D̄
(

{pi}
N

i=1
||p
)Theorem 2.1 (D̄({pi}

N
i=1||p) Minimizer). Given a set of probability mass funtions

{pi}
N
i=1, the minimizer

p̂ = argmin
p∈P

D̄
(

{pi}
N
i=1||p

)

,



8where P is spae of probability mass funtions, is the arithmeti mean
p̂(xj) =

1

N

N
∑

i=1

pi(xj).Proof. This an be shown via the method of Lagrange multipliers. First note that theminimization desribed an be equivalently expressed as
p̂ = argmin

p∈P

N
∑

i=1

∑

x∈X

pi(x) ln
pi(x)

p(x)subjet to onstraint ∑xj∈X p̂(xj) = 1.Set up the Lagrange multiplier expression to �nd the minimizer p̂

L(p, λ) =
N
∑

i=1

∑

xj∈X

pi(xj) ln
pi(xj)

p(xj)
− λ

(

∑

xk∈X

p(xk) − 1

)

. (2.5)Solving ∂
∂p(xj)

L(p, λ) = 0 for p in terms of λ, yields
∂

∂p(xj)
L(p, λ) =

N
∑

i=1

∂

∂p(xj)
[pi(xj) ln pi(xj) − pi(xj) ln p(xj)] −

∂

∂p(xj)
λ(p(xj) − 1)

= −
N
∑

i=1

pi(xj)

p(xj)
− λ

⇒
1

p(xj)

N
∑

i=1

pi(xj) = −λ

⇒ p(xj) = −
1

λ

N
∑

i=1

pi(xj). (2.6)As λ is hosen to satisfy the onstraint that p(x) is a probability mass funtion, − 1
λ

= 1
N
.That is,

∑

xj∈X

p(xj) = 1

⇒
∑

xj∈X

N
∑

i=1

pi(xj) = N.



9Therefore,
p(xj) =

1

N

N
∑

i=1

pi(xj).With this minimizer the dispersion in Equation 2.3 an be further spei�ed as
D̄
(

{pi}
N
i=1||p̂

)

=
N
∑

i=1

D

(

pi||
1

N

N
∑

j=1

pj

)

= N · JSπ({pi}
N
i=1) (2.7)where JSπ is the generalized Jensen-Shannon divergene with uniform prior πi = 1

N
.Jensen-Shannon divergene is de�ned in Appendix A.2.1.2 Normalized Geometri Mean from D̄

(

p||{pi}
N

i=1

)Theorem 2.2 (D̄(p||{pi}
N
i=1) Minimizer). Given a set of probability mass funtions

{pi}
N
i=1, the minimizer

p̂ = argmin
p∈P

(

p||{pi}
N
i=1

)

,where P is spae of probability mass funtions, is the normalized geometri mean
p̂(xj) =

(

∏N
i=1 pi(xj)

) 1
N

∑

xk∈X

(

∏N
i=1 pi(xk)

)
1
N

.Proof. This an also be shown via the method of Lagrange multipliers. First note thatthe minimization desribed an be equivalently expressed as
p̂ = argmin

p∈P

N
∑

i=1

∑

x∈X

p(x) ln
p(x)

pi(x)subjet to onstraint ∑xj∈X p̂(xj) = 1. Notie that in this formulation the logarithmused in the de�nition of D(·||·) has been hanged from base two to base e. This refor-mulation plaes the minimization problem in a natural setting for variational analysis.



10Set up the Lagrange multiplier expression to �nd minimizer p̂

L(p, λ) =
N
∑

i=1

p ln
p

pi

− λ

(

∑

xk∈X

p(xk) − 1

)

=
N
∑

i=1

∑

xj∈X

p(xj) ln
p(xj)

pi(xj)
− λ

(

∑

xk∈X

p(xk) − 1

)

. (2.8)Solving ∂
∂p(xj)

L(p, λ) = 0 for p in terms of λ, yields
∂

∂p(xj)
L(p, λ) =

∂

∂p(xj)





N
∑

i=1

∑

xj∈X

p(xj) ln
p(xj)

pi(xj)
− λ

(

∑

xk∈X

p(xk) − 1

)





=

N
∑

i=1

∂

∂p(xj)
p(xj) ln

p(xj)

pi(xj)
−

∂

∂p(xj)
λ(p(xj) − 1)

=

N
∑

i=1

[

ln
p(xj)

pi(xj)
+ p(xj)

pi(xj)

p(xj)

1

pi(xj)

]

− λ

=
N
∑

i=1

ln
p(xj)

pi(xj)
+ (N − λ)

= ln

(

N
∏

i=1

p(xj)

pi(xj)

)

+ (N − λ)

= 0

⇒ ln

(

N
∏

i=1

p(xj)

pi(xj)

)

= (λ − N)

ln

(

N
∏

i=1

p(xj)

)

= (λ − N) + ln

(

N
∏

i=1

pi(xj)

)

⇒ p(xj)
N = e(λ−N)

N
∏

i=1

pi(xj)

⇒ p(xj) = e(
λ
N
−1)

(

N
∏

i=1

pi(xj)

)
1
N

. (2.9)



11Continuing with the Lagrange multiplier method, next let
Γj =

(

N
∏

i=1

pi(xj)

)
1
Nand, hene, p(xj) = e(

λ
N
−1)Γj . Substituting this expression bak into Equation 2.8,yields

L(p, λ) =
N
∑

i=1

∑

xj∈X

e(
λ
N
−1)Γj ln

e(
λ
N
−1)Γj

pi(xj)
− λ

(

∑

xk∈X

e(
λ
N
−1)Γk − 1

)

= e(
λ
N
−1)

N
∑

i=1

∑

xj∈X

Γj ln e(
λ
N
−1) + e(

λ
N
−1)

N
∑

i=1

∑

xj∈X

Γj ln Γj

− e(
λ
N
−1)

N
∑

i=1

∑

xj∈X

Γj ln pi(xj) − λ
∑

xk∈X

e(
λ
N
−1)Γk + λ

=

(

λ

N
− 1

)

e(
λ
N
−1)N

∑

xj∈X

Γj + Ne(
λ
N
−1)

∑

xj∈X

Γj ln Γj

− e(
λ
N
−1)

∑

xj∈X

Γj ln

(

N
∏

i=1

pi(xj)

)

− λe(
λ
N
−1)

∑

xk∈X

Γk + λ.Note that sine
∑

xj∈X

Γj ln

(

N
∏

i=1

pi(xj)

)

=
∑

xj∈X

Γj ln ΓN
j

= N
∑

xj∈X

Γj ln Γjthe above equation simpli�es to
L(p, λ) =

[(

λ

N
− 1

)

N − λ

]

e(
λ
N
−1)

∑

xj∈X

Γj + λ

= −Ne(
λ
N
−1)

∑

xj∈X

Γj + λ

= −Ne(
λ
N
−1)

∑

xj∈X

(

N
∏

i=1

pi(xj)

)
1
N

+ λ



12Taking the variation with respet to λ, note that
∂

∂λ
L(p, λ) =

∂

∂λ



−Ne(
λ
N
−1)

∑

xj∈X

(

N
∏

i=1

pi(xj)

)
1
N

+ λ





= −e(
λ
N
−1)

∑

xj∈X

(

N
∏

i=1

pi(xj)

)
1
N

+ 1.Setting ∂
∂λ

L(p, λ) = 0 implies
e(

λ
N
−1)

∑

xj∈X

(

N
∏

i=1

pi(xj)

)
1
N

= 1

⇒ e(
λ
N
−1) =

1

∑

xj∈X

(

∏N

i=1 pi(xj)
)

1
N

.Finally, substituting this expression for e(
λ
N
−1) bak into Equation 2.9 results in

p(xj) = e(
λ
N
−1)

(

N
∏

i=1

pi(xj)

)
1
N

=

(

∏N

i=1 pi(xj)
)

1
N

∑

xk∈X

(

∏N

i=1 pi(xk)
)

1
N

.With this minimizer the dispersion in Equation 2.4 an be further spei�ed as
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D̄
(

p̂||{pi}
N
i=1

)

=
N
∑

i=1

D(p̂||pi)

=
N
∑

i=1

∑

xj∈X

p̂(xj) log
p̂(xj)

pi(xj)

=
∑

xj∈X

p̂(xj)
N
∑

i=1

log
p̂(xj)

pi(xj)

=
∑

xj∈X

p̂(xj) log

(

N
∏

i=1

p̂(xj)

pi(xj)

)

=
∑

xj∈X

p̂(xj) log

(

p̂(xj)
N

N
∏

i=1

1

pi(xj)

)

=
∑

xj∈X

p̂(xj) log











∏N
i=1 pi(xj)

(

∑

xk∈X

(

∏N

i=1 pi(xk)
)

1
N

)N

N
∏

i=1

1

pi(xj)











= −N
∑

xj∈X

p̂(xj) log
∑

xk∈X

(

N
∏

i=1

pi(xk)

)
1
N

=



−N log
∑

xk∈X

(

N
∏

i=1

pi(xk)

)
1
N









∑

xj∈X

p(xj)





= −N log
∑

xk∈X

(

N
∏

i=1

pi(xk)

)
1
N

. (2.10)2.2 Bayes Probability of ErrorThis setion de�nes Bayes probability of error in terms of an N-hypothesis deision-theory problem. In the probability average estimation setting, the hypotheses are theindividual probabilities of a population and their probability average. In the Setion 2.3,bounds on Bayes probability of error in terms of the dispersion measures D̄
(

{pi}
N
i=1||p̂

)and D̄
(

p̂||{pi}
N
i=1

) with their respetive p̂ minimizers is presented.Consider the N-hypothesis deision-theory problem of lassifying an observationas oming from one of N possible hypotheses {Hi}
N
i=1. Let {πi}

N
i=1 denote the prior



14probabilities assoiated with these N hypotheses, and let {p(x|Hi)}
N
i=1 denote the eventonditional probability distributions given the hypotheses. Using Bayes' Rule, for anobserved event, x, the posterior probability of Hi is

p(Hi|x) =
p(x|Hi)πi

p(x)

=
p(x|Hi)πi

∑N

k=1 p(x|Hk)πk

.To minimize the probability of seleting the inorret hypothesis, hoose the hy-pothesis with the largest posterior probability. This has the assoiated onditionalprobability of error
Pe(x|Hi) = 1 − max

i
{p(Hi|x)}.With this notion of onditional probability of error the Bayes probability of error (orindistinguishability) an be de�ned.De�nition 2.1 (Bayes Probability of Error). Bayes probability of error is the expetedonditional probability of error

Pe

(

{pi, πi}
N
i=1

)

= Ep [Pe(x|Hi)]

=
∑

x∈X

p(x)
(

1 − max
i

{p(Hi|x)}
)

=
∑

x∈X

p(x) −
∑

x∈X

p(x) max
i

{

p(x|Hi)πi

p(x)

}

= 1 −
∑

x∈X

max
i

{p(x|Hi)πi}.This error results when one has omplete knowledge of the probability distributionswith whih to onstrut the optimal deision rule, that is, to selet the hypothesis Hi forwhih the posterior p(Hi|x) is maximal. Figure 2.1 graphially shows Bayes probabilityof error for a set of four distributions. In pratie, real distributions are not known so
Pe annot be diretly omputed. Therefore bounds on Pe are desired.
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}
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P(error)

Event xFigure 2.1: Bayes Probability of Error ExampleLet {πi}i=1...4 be the a priori probabilities of hypotheses {Hi}i=1...4 beingtrue and {p(x|Hi)}i=1...4 be the hypothesis-onditional likelihoods for event
x. In this example, the distributions are ontinuous and the prior proba-bilities are taken to be equal. The blue shaded area represents the Bayesprobability of mislassi�ation error. In the ontext of neuroanatomialmathing, Hi ould represent individual subjets, and x ould representtissue strutures suh as grey matter, white matter, and erebrospinal �uid.



16Under the uniform prior πi = 1
N
ondition the Bayes probability of error beomes

Pe

(

{pi, πi}
N
i=1

)

= 1 −
∑

x∈X

max
i

{p(x|Hi)
1

N
}

= 1 −
1

N

∑

x∈X

max
i

{p(x|Hi)}.If the p(x|Hi) are idential, then the probability of error assumes its greatest value at
Pe = N−1

N
. For example, if N = 4, then the probability of seleting p(x|Hj) from theset of idential probabilities {p(x|Hi)}i=1...4 is Pe = 3

4
. In this ase, as N → ∞, Pe → 1.2.3 Bounds on Pe2.3.1 D̄

(

{pi}
N

i=1
||p̂
) Bounds on PeTheorem 2.3 (Jensen Shannon Pe Bounds). Given a set of probability mass funtions

{pi}
N
i=1 and assoiated priors {πi}

N
i=1 with ∑N

i=1 πi = 1,
1

4(N − 1)
J
(

{pi, πi}
N
i=1

)2
≤ Pe

(

{pi, πi}
N
i=1

)

≤
1

2
J
(

{pi, πi}
N
i=1

)where J
(

{pi, πi}
N
i=1

)

= H(π) − JSπ

(

{pi}
N
i=1

) and H(π) = −
∑N

i=1 πi log πi.Proof. See [60℄ for an argument involving onditional entropy bounds on Pe [41℄.It immediately follows from Equation 2.7 and Theorem 2.3 that
1

4(N − 1)

(

H(π) −
1

N
D̄
(

{pi}
N
i=1||p̂

)

)2

≤ Pe

(

{pi, πi}
N
i=1

)

≤
1

2

(

H(π) −
1

N
D̄
(

{pi}
N
i=1||p̂

)

)where
p̂(x) =

1

N

N
∑

i=1

pi(x).



17Therefore, minimizing the sum-of-Kullbak-Leibler divergene, D̄
(

{pi}
N
i=1||p̂

), maxi-mizes (H(π) − 1
N

D̄
(

{pi}
N
i=1||p̂

))2, and, hene, maximizes the lower bound on Pe, orindistinguishability between the pi.Under the uniform prior πi = 1
N
ondition with D̄

(

{pi}
N
i=1||p̂

)

= 0 the lower boundbeomes
1

4(N − 1)

(

H(π) −
1

N
D̄
(

{pi}
N
i=1||p̂

)

)2

=
(log N)2

4(N − 1)
.In this ase,

lim
N→∞

(log N)2

4(N − 1)
= lim

N→∞

log N

2N

= lim
N→∞

1

2N

= 0.Although, for a given N , minimizing D̄
(

{pi}
N
i=1||p̂

) maximizes a lower bound on Pe, as
N → ∞, that lower bound (log N)2

4(N−1)
→ 0. A muh tighter, and more meaningful, boundon Pe an be de�ned using D̄

(

p̂||{pi}
N
i=1

)2.3.2 D̄
(

p̂||{pi}
N

i=1

) Bounds on P̄eTo �nd a lower bound on Bayes probability of error based on D̄
(

p̂||{pi}
N
i=1

) it isonvenient to onsider the average of pair-wise probability of errors between individual
pi. That is, a bound on̄

Pe

(

{pi}
N
i=1

)

=
1

N

N
∑

i=1

Pe({pi, p(i mod N)+1})is desired where Pe({pi, pj}) is the Bayes probability of error when only pi and pj areinvolved. From equation 2.10, note that
D̄ (p̂||{pi, pj}) = D(p̂, pi) + D(p̂, pj)

= −2 log
∑

x∈X

√

pi(x)pj(x)



18where
p̂(x) =

√

pi(x)pj(x)
∑

x′∈X

√

pi(x′)pj(x′)
,the normalized geometri mean of pi and pj.De�ne the sum of pair-wise distanes

D∗
(

{pi}
N
i=1

)

=
N
∑

i=1

D̄(p̂||{pi, p(i mod N)+1})

= −2

N
∑

i=1

log
∑

x∈X

√

pi(x)pi( mod )+1(x).The next setion will show that D∗
(

{pi}
N
i=1

) is bounded above by D̄
(

p̂||{pi}
N
i=1

). Theimpliation is that any optimization problem that minimizes D̄
(

p̂||{pi}
N
i=1

) also min-imizes D∗
(

{pi}
N
i=1

). Additionally, it will be shown that D∗
(

{pi}
N
i=1

) provides boundson P̄e.2.3.2.1 D∗
(

{pi}
N
i=1

)

≤ D̄
(

p̂||{pi}
N
i=1

)Theorem 2.4 (Generalized Hölder's Inequality). Let ri ≥ 1 suh that ∑N
i=1

1
ri

= 1.Then the following inequality holds for fi(x) ≥ 0,
∑

x∈X

N
∏

i=1

fi(x)
1
ri ≤

N
∏

i=1

(

∑

x∈X

fi(x)

)
1
ri

.Proof. For an argument using generalized arithmeti means see [37℄.Proposition 2.1. Let {pi(x)}N
i=1 be a set of probability mass funtions de�ned on ran-dom variable X. Then

∑

x∈X

N
∏

k=1

pk(x)
1
N ≤

(

∑

x∈X

√

pi(x)pj(x)

) 2
Nfor any i, j ∈ {1, . . . , N} where i 6= j.



19Proof. By applying Theorem 2.4,
∑

x∈X

N
∏

k=1

pk(x)
1
N =

∑

x∈X

(

√

pi(x)pj(x)

)
2
N

N
∏

k = 1

k 6= i, j

pk(x)
1
N

≤

(

∑

x∈X

√

pi(x)pj(x)

)
2
N N

∏

k = 1

k 6= i, j

(

∑

x∈X

pk(x)

)
1
N

Using the fat that eah pk(x) sum to one,
∑

x∈X

N
∏

k=1

pk(x)
1
N =

(

∑

x∈X

√

pi(x)pj(x)

)
2
N

.Using the inequality in Proposition 2.1, one an now show that D∗
(

{pi}
N
i=1

)

≤

D̄
(

p̂||{pi}
N
i=1

).Theorem 2.5 (D̄(p̂||{pi}
N
i=1) Lower Bound). Let {pi(x)}N

i=1 be a set of probability massfuntions de�ned on random variable X. Then
D∗
(

{pi}
N
i=1

)

≤ D̄
(

p̂||{pi}
N
i=1

)

.Proof. This immediately follows from Proposition 2.1 and the de�nitions ofD∗
(

{pi}
N
i=1

)and D̄
(

p̂||{pi}
N
i=1

),
∑

x∈X

N
∏

k=1

pk(x)
1
N ≤

(

∑

x∈X

√

pi(x)pj(x)

)
2
N

⇒
∑

x∈X

N
∏

k=1

pk(x)
1
N ≤

(

∑

x∈X

√

pi(x)p(i mod N)+1(x)

) 2
N



20Taking the logarithm of both sides of the above inequality and simplifying yields
N log

∑

x∈X

N
∏

k=1

pk(x)
1
N ≤ 2

N
∑

i=1

log
∑

x∈X

√

pi(x)p(i mod N)+1(x)

⇒ −2

N
∑

i=1

log
∑

x∈X

√

pi(x)p(imodN)+1(x) ≤ −N log
∑

x∈X

N
∏

k=1

pk(x)
1
N

⇒

N
∑

i=1

D̄(p̂||pi, p(imodN)+1) ≤ D̄
(

p̂||{pi}
N
i=1

)

.2.3.2.2 D̄(p̂||pi, p(imodN)+1) Bounds on Pe({pi, pj})De�nition 2.2 (Bhattaharyya Coe�ient). The Bhattaharyya oe�ient for twodensities p(x) and q(x) is de�ned by
ρ(p, q) =

∑

x∈X

√

p(x)q(x).The Bhattaharyya oe�ient is a divergene-type measure whih an be geomet-rially interpreted as the osine of the angle between n-dimensional vetors.Theorem 2.6 (Bhattaharrya Bounds on P (error)). Let p1 and p2 be two probabilitydistributions and ρ = ρ(p1, p2) be the Bhattaharrya oe�ient de�ned by them. Thenthe Bayes probability of error for p1 and p2 is bounded as follows:
1

2

(

1 −
√

1 − ρ2
)

≤ Pe ({p1, p2}) ≤
1

2
ρ.Proof. See [53℄ for an argument involving Kolmogorov variational distane.The D̄(p̂||{pi, pj}) bounds on Pe ({pi, pj}) an now be omputed as

D̄(p̂||{pi, pj}) = −2 log ρ

⇒ e−
1
2
D̄(p̂||{pi,pj}) = ρand, by Theorem 2.6,

1

2

(

1 −
√

1 − e−D̄(p̂||{pi,pj})
)

≤ Pe ({pi, pj}) ≤
1

2
e−

1
2
D̄(p̂||{pi,pj}).



21When D̄(p̂||{pi, pj}) = 0, Pe ({pi, pj}) = 1
2
whih is what is expeted, namely pi(x) =

pj(x) for all x.2.3.2.3 D̄
(

p̂||{pi}
N
i=1

) Bounds on P̄eThe following inequality is useful in providing bounds on P̄e based on D̄
(

p̂||{pi}
N
i=1

).Proposition 2.2 (Bounds on ex). For x ≥ 0,
1 − x ≤ e−x ≤ 1 − x +

1

2
x2.Proof. The proof follows from onsidering the Taylor expansion of e−x.With Proposition 2.2, the following theorem an now be proven.Theorem 2.7 (D̄(p̂||{pi}

N
i=1) Bounds on P̄e). Let {pi(x)}N

i=1 be a set of probability massfuntions on random variable X. Then
1

2
−

1

2N

√

D̄ (p̂||{pi}N
i=1) ≤ P̄e

(

{pi}
N
i=1

)

≤
1

2
+

1

16N
D̄
(

p̂||{pi}
N
i=1

)2where
P̄e

(

{pi}
N
i=1

)

=
1

N

N
∑

i=1

Pe({pi, p(i mod N)+1}),with Pe ({pi, pj}) the Bayes probability of error between pi and pj, and
D̄
(

p̂||{pi}
N
i=1

)

= −N log
∑

xk∈X

(

N
∏

i=1

pi(xk)

)
1
N

.Proof. Lower Bounds:
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1

2

(

1 −
√

1 − e−D̄(p̂||{pi,pj})
)

≤ Pe ({pi, pj})

⇒
1

N

N
∑

i=1

1

2

(

1 −
√

1 − e−D̄(p̂||{pi,p(i mod N)+1})
)

≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

N
∑

i=1

√

1 − e−D̄(p̂||{pi,p(i mod N)+1}) ≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

√

√

√

√

N
∑

i=1

(

1 − e−D̄(p̂||{pi,p(i mod N)+1})
)

≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

√

√

√

√N −
N
∑

i=1

e−D̄(p̂||{pi,p(i mod N)+1}) ≤ P̄e

(

{pi}
N
i=1

)

.Using the seond inequality of Proposition 2.2, note that
1

2
−

1

2N

√

√

√

√N −

N
∑

i=1

(1 − D̄(p̂||{pi, p(i mod N)+1})) ≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

√

D∗ ({pi}N
i=1) ≤ P̄e

(

{pi}
N
i=1

)

⇒
1

2
−

1

2N

√

D̄ (p̂||{pi}N
i=1) ≤ P̄e

(

{pi}
N
i=1

)sine D̄
(

p̂||{pi}
N
i=1

)

≥ D∗
(

{pi}
N
i=1

).The �rst inequality of Proposition 2.2 yields an upper bound on P̄e

(

{pi}
N
i=1

),
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Pe ({pi, pj}) ≤

1

2
e−

1
2
D̄(p̂||{pi,pj})

⇒ P̄e

(

{pi}
N
i=1

)

≤
1

N

N
∑

i=1

1

2
e−

1
2
D̄(p̂||{pi,p(i mod N)+1})

=
1

2N

N
∑

i=1

e−
1
2
D̄(p̂||{pi,p(i mod N)+1})

≤
1

2N

N
∑

i=1

(

1 −
1

2
D̄(p̂||{pi, p(i mod N)+1}) +

1

2

(

1

2
D̄(p̂||{pi, p(i mod N)+1})

)2
)

=
1

2
−

1

4N
D∗
(

{pi}
N
i=1

)

+
1

16N

N
∑

i=1

D̄(p̂||{pi, p(i mod N)+1})
2

≤
1

2
−

1

4N
D∗
(

{pi}
N
i=1

)

+
1

16N

(

N
∑

i=1

D̄(p̂||{pi, p(i mod N)+1})

)2

=
1

2
−

1

4N
D∗
(

{pi}
N
i=1

)

+
1

16N
D∗
(

{pi}
N
i=1

)2

≤
1

2
+

1

16N
D∗
(

{pi}
N
i=1

)2

≤
1

2
+

1

16N
D̄
(

p̂||{pi}
N
i=1

)2sine D∗
(

{pi}
N
i=1

)

≤ D̄
(

p̂||{pi}
N
i=1

).Therefore, minimizing D̄
(

p̂||{pi}
N
i=1

) maximizes the lower bound on P̄e

(

{pi}
N
i=1

),whih, in turn, maximizes the Bhattaharrya lower bound on Pe in Theorem 2.6. When
D̄
(

p̂||{pi}
N
i=1

)

= 0 the lower bound beomes 1
2
, whih is the Bayes probability of errorbetween two equally weighted and idential probabilities. Reall that P̄e is an averageof N pair-wise Bayes probability of errors so this lower bound is tight.



Chapter 3Multi-Modal Image Set Registration1
In this hapter the main methodologial ontribution of this dissertation is pre-sented: a framework for the registration of multi-modal image sets. The hapter be-gins by de�ning multi-modal image sets and motivating their use. The registrationmethod is driven by the sum-of-Kullbak-Leibler divergenes, D̄

(

p̂||{pi}
N
i=1

), intro-dued as De�nition 2.10 in Chapter 2. Although D̄
(

p̂||{pi}
N
i=1

) was de�ned for thegeneral N-observation setting, for larity �rst onsider the N = 2 ase for registrationbetween two sets of multi-modal images. In Chapter 4, this framework is extended togeneral N−way registration for atlas formation.Modern imaging tehniques provide an array of imaging modalities that enablethe aquisition of omplementary information representing an underlying anatomy. Toutilize this information, numerous multi-modal image registration algorithms have beendeveloped. Most of these algorithms �nd a mapping between two salar images. Toutilize multiple salar multi-modal images of a single anatomy, however, de�ne a multi-modal image set, Ī, as a olletion of m o-registered multi-modal images where, for agiven spatial loation x, Ī(x) ∈ R
m. Figure 3.1 is a artoon depiting two image setseah with a di�erent number of onstituent salar multi-modal images. Throughoutthis dissertation, it is assumed that, for a given subjet, the multi-modal images of thatsubjet are o-registered.The problem of multi-modal image set registration is de�ned as follows: �nd amapping between two subjets for eah of whih is de�ned a tuple of multi-modalsalar-valued images, Ī1 and Ī2. More spei�ally, �nd a mapping that best mathesstruture, subjet to ertain penalties, typially smoothness of the transformations.Mathematially, �nd the mappings f : Ω1 → Ω2 and g : Ω2 → Ω1 where Ω1 and Ω21This hapter is an extension of portions of the reent MedIA paper on the topi [63℄.



25are the domains of image sets Ī1 and Ī2 respetively. This arrangement is depited inFigure 3.2. For the registration to be symmetri or inverse-invariant, the transformationompositions f ◦ g and g ◦ f must result in the identity map.The multi-modal image set registration has potential signi�ane in various appli-ations in medial image analysis that rely on the measurement of image sets. Multi-modal MR imaging is standard in the protool for evaluating pathologies suh as tumorsand lesions. In this dissertation, results from T1-weighted, T2-weighted, and MR an-giography are presented. Other, intrinsially multi-modal modal environments suh asombined inter-operative CT/PET aquisitions would provide suh a setting for multi-modal image set registration. Registration between images of individuals presentingpathology and images of healthy subjets is a hallenging task sine spae-oupyinglesions have to be treated di�erently from in�ltrating lesions. Spei�ally, the reg-istration needs to aommodate both loal spatial deformation and loal hange ofimage intensity. Existing registration methods involving salar images based on imagebrightness do not aommodate pathologies. Another potential appliation for imageset registration is the registration of images aquired from sanners of di�erent �eldstrength. Image set registration aross di�erent sanners beomes an inreasingly im-portant omponent in multi-enter studies whih investigate developmental hangesovering multiple years and follow-up studies of diseases with hange of sanner teh-nology. Images aquired from di�erent sanners potentially have di�erent ontrastsand di�erent spatial distortions. In funtional studies, it is often desirable to registerfuntional data with strutural data. Typially, a time series average is registered to ananatomial image of the same subjet. However, in produing the average funtionalimage, some information is lost. Therefore, a multivariate approah is desired [2℄. Theregistration method presented in this dissertation may address these problems as theregistration is based on underlying anatomial struture (e.g., tissue) rather than onimage intensities. These anatomial strutures are modeled as lass-onditional proba-bility maps where, at eah spatial loation, a lass-onditional probability mass funtionis de�ned. In the formation of the lass probabilities, lasses an be expliitly assignedto the various healthy and pathologial tissues. This allows us to potentially model thebehaviors of the di�erent tissues during the registration proess.Before disussing the problem of multi-modal image set registration, ommon meth-ods for multi-modal salar image registration in Setion 3.1 are reviewed. Partiularattention is given to image registration based on mutual information in Setion 3.1.1.Multi-modal image set registration and the impliations of using multivariate mutual



26C TT 2 � M R IT 1 � M R IS F L A S HI 1 P D � M R IT 1 � M R IS p i n E c h oI 2Figure 3.1: Two Sample Image SetsAn image set is a olletion of o-registered multi-modal salar images.information are developed in Setion 3.2. Existing multiple image registration methodsand joint segmentation and registration methods are presented in Setions 3.2.2 and3.2.3 respetively. In Setion 3.2.4, the multi-modal image set registration frameworkis desribed. Finally, in Setion 3.3, results from several 3D multi-modal image setregistration experiments are presented. Next follows a brief overview of informationtheoreti image registration algorithms.3.1 Multi-Modal Image Registration BakgroundMany image registration tehniques for multi-modal images involve informationtheoreti distane measures on the spae of probability distribution funtions. Conse-quently, a probability mass funtion is the typial feature to be mathed during registra-tion. Mutual information is one method that is typially used to register multi-modalimages and will be disussed in Setion 3.1.1.A method that minimizes Kullbak-Leibler divergene between expeted and ob-served joint lass histograms is presented in [13℄. A joint lass histogram between theimage pairs is estimated by assigning eah bin value equal to the total number of our-renes of the orresponding lass label pairs. This tehnique, however, estimates lasslabels as a preproessing step and is used only for rigid registration between salarimages. Another lass-label approah uses joint voxel lass distribution matries thatrepresent loal fuzzy orrespondene of objet lass labels for pairs of orrespondingvoxels is presented in [20℄. This method also uses Kullbak-Leibler divergene as a dis-similarity riterion and is presenting in a non-linear �uid registration framework withGaussian regularization of the estimated transformations. The method presented in
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I 1 I 2f� 1 � 2g

Figure 3.2: Image Set RegistrationRegistration of image sets Ī1 and Ī2: �nding a forward transformation f thatmaps the domain of Ī1 to the domain of Ī2 and a reverse transformation gthat maps the domain of Ī2 to the domain of Ī1.this dissertation is more general in that registration is performed on sets of images, ofarbitrary number, and is not onstrained by an initial lass labeling.3.1.1 Mutual Information-Based Image RegistrationThe appliation of mutual information to image registration involving two salarimages has been well studied. Mutual information, de�ned in Appendix A, measuresthe statistial dependene between two random variables, or the amount of informationone random variable ontains about the other. In the ontext of image registration,the random variables represent image intensities. Multi-modal images of the samesene, e.g., a human brain, represent measurements of di�erent properties of objetsin that sene, e.g., white matter. These image intensities are not typially statistiallyindependent observations of the underlying physial reality. When multi-modal imagesare aligned, measurements from one modality redue the unertainty in others; atalignment, the mutual information between two images is onsidered to be maximal.Rigid image registration by maximizing mutual information was �rst proposed in-dependently by [15℄ and [103℄ and extended to a�ne image registration by [91℄. Mutualinformation-based image registration an generally be de�ned as �nding the transfor-mation that maximizes the mutual information similarity riterion subjet to somegeometri onstraint on that transformation, typially smoothness. For example, on-



28sider the problem of �nding a transformation, h, that maps a moving image Im intothe spae of a �xed image If . Let X and Y be the random variables assoiated withthe image intensities in Im and If respetively. Estimates of the joint and marginaldistributions, pfm(if , im), pf(if ), and pm(im), required by mutual information an beobtained by simply normalizing the joint and marginal histograms of the overlappingparts of both Im and If . These tehniques are, naturally, sensitive to sampling issues.The intensities if and im are related by the transformation h. The mutual informationsimilarity riterion states that If and Im are aligned by the transformation ĥ, for whih
I(X; Y ) is maximal:̂

h = argmin
h

∑

if

∑

im

pf,m(if , im) log
pf,m(if , im)

pf(if )pm(im)
.Multi-modal image registration using mutual information is partiularly attrativein that no image preproessing other than omputing the marginal and joint distri-butions is required and there are no funtional assumptions regarding the relationshipbetween the intensities in both modalities. This suggests an automated approah whereneither segmentation nor landmarks are required. The mutual information similarityriterion does, however, su�er from a few weaknesses: no geometri prior informationis inorporated, no assumptions about the data (e.g., known intensity relationships be-tween modalities for ertain strutures) are inorporated, and there are sampling issuesto be addressed (e.g., probability distributions are derived from disrete histograms,the smaller the sale the less robust the histograms).A omprehensive survey of image registration via mutual information maximizationis given in [76℄. The authors over the major onsiderations: preproessing, similaritymeasure (entropy de�nition hoie, normalization, and whether omputed loally orglobally), transformation group (rigid, a�ne, and non-linear), implementation (proba-bility distribution estimation and optimization tehniques), image dimensionality (e.g.,2D/3D and 3D/3D), number of images, modalities (mono-, multi-, and modality tomodel), and appliations to various human organs. High-dimensional image registra-tion in the ontext of mutual information and other dissimilarity measures has also beenstudied. A thorough investigation of these dissimilarity measures in high-dimensionalimage registration is presented in [42℄.A number of methods have been developed to re�ne the mutual information-basedimage registration further through generalized versions of Shannon entropy, see [77℄ for



29a review. The most ommon extension is based on Rényi-Entropy [81, 113℄. Thesedivergene measures are typially parameterized by a single ontinuous variable whoseoptimization is believed to provide more aurate registration, through ontrol of themeasurement sensitivity of the joint histogram, and faster onvergene than traditionalmutual information [40, 74, 64, 65℄.3.2 Multi-Modal Image Set RegistrationThis subsetion examines two topis diretly related to the multi-modal image setregistration method presented in this dissertation: multiple-image registration methods,beginning with multivariate mutual information, and joint segmentation and registra-tion methods. In the �nal portion of this subsetion, multi-modal image set registrationis presented.3.2.1 Multivariate Mutual Information in Image RegistrationAs traditional mutual information has suessfully been applied to the problem ofsalar multi-modal image registration, it is natural to onsider applying multivariatemutual information, de�ned in Setion ??, to the problem of multi-modal image setregistration. To that end, onsider the redundany interpretation of multivariate mu-tual information, de�ned in Setion A.5.2. The salar multi-modal registration exampleof Setion 3.1.1 is extended as follows: onsider the problem of �nding a transforma-tion h that maps a moving image set Īm into the spae of a �xed image set Īf . Let
X̄ = {Xi}i=1...F and Ȳ = {Yi}i=1...M be the random vetors assoiated with image in-tensities in Īf and Īm respetively. Further let pf (if1, . . . , ifF

), pm (im1 , . . . , imM
), and

pfm (if1 , . . . , ifF
, im1 , . . . , imM

) be the probabilities assoiated with X̄ and Ȳ . The imageintensities {if} and {im} are related by the transformation h. The multivariate mutualinformation (redundany interpretation) riterion states that Īf and Īm are broughtinto register by the transformation ĥ for whih the following is maximized:
ĥ = argmin

h

H (pf (if1 , . . . , ifF
)) + H (pm (im1 , . . . , imM

))

− H (pfm (if1 , . . . , ifF
, im1 , . . . , imM

)) .This image set registration formulation is problemati in that it requires main-taining enormous sparsely populated joint histograms [9℄. Most entries in the joint



30histogram will be populated with a zero or one, resulting in a very �at histogram.Thus, multivariate mutual information should give a onstant value for many transfor-mations, leading to many loal minima in the optimization ost funtion. Consider amulti-modal image set registration involving four twelve-bit DICOM (Digital Imagingand COmmuniations in Mediine) images, an example of whih is provided in Se-tion 3.3.2. Using multivariate mutual information would require the onstrution ofa 24·12 ≈ 2.8 × 1014-bin joint histogram, whih is impratial. The number of spatialelements for eah image is 256 × 256 × 170 ≈ 1.1 × 107 voxels yielding an average binount of 1.1×107 voxels
2.8×1014 bins

≈ 4 × 10−8 voxels/bin. Given these di�ulties, this dissertationintrodues a model-based approah where the registration is performed using underly-ing anatomial strutures. These anatomial strutures are inorporated as a prior in aBayesian framework. Before desribing the proposed framework, several several relatedmethods for multiple image registration are onsidered.3.2.2 Existing Multiple Image Registration MethodsTo address the hallenges posed by extending mutual information to multiple imageregistration, several groups have developed di�erent approahes. An early example ofmultivariate mutual information image registration involves o-registration of a timeseries of PET images illustrating various stages of a radio traer uptake [2℄. This is anexample of the use of dissimilar images within the same imaging modality. The methodsimpli�es the joint histogram problem through data redution via prinipal omponentanalysis to produe eigen-images. Another approah inorporates loal spatial relation-ships by extending mutual information to onsider a neighborhood of pixels around eahpoint in the image spae [85℄. The idea is to use loal spatial information in a tradition-ally global statistial approah. The authors make the simplifying assumptions thatthe intensity distributions are multivariate Gaussians and are independent. The inde-pendene assumption allows for entropy to be summed along eah diretion in featurespae. A reently introdue method uses linear ombinations of onditional entropiesto drive the registration [110, 111℄. Upper bounds on the the onditional entropies aredeveloped based on joint histograms of lower dimensionality. All of these multivariatemethods have been developed in the linear registration setting. The method presentedin this dissertation is unique among these in that it is the only algorithm that performsfully 3D non-rigid multi-modal image set registration and does not require omputingjoint histograms.



313.2.3 Existing Joint Segmentation and Registration MethodsAs the proposed multi-modal image set registration framework, desribed in thenext setion 3.2.4, involves the joint estimation of segmentation and registration, sim-ilar urrent methods are brie�y reviewed. Central to many of these methods is theonsideration of loal struture whih leads to more robust registration and, hene,improved segmentation. A minimax entropy-based registration framework to simulta-neously and iteratively segment 2D portal images and register them to 3D CT data ispresented in [6℄. This method relaxes the independent and identially distributed imagepixel intensity assumption assoiated with mutual information by inorporating orre-lation among neighboring pixels. Another approah involves a geometri, variationalframework that uses ative ontours to simultaneously segment and register multiplefeatures [109℄. Multiple images are segmented by evolving a single ontour as wellas mapping that ontour to eah image. A distintly di�erent approah builds uponthe previous method by using logi models while relaxing the requirement that imagesbe ompletely registered [72℄. Markov random �elds have been applied in Bayesianmaximum aposteriori model segmentation estimation and registration [106℄. A Markovrandom �eld model-based approah that inorporates a pixel attribute vetor based ona pharmaokineti model is presented in [108, 107℄. This method uses a Gaussian datalikelihood model and provides spatial oherene and smoothness through the use of aprior. A framework that ombines segmentation, bias �eld orretion, and registrationinto a generative approah is presented in [3℄. This method also uses a Gaussian datalikelihood model. Iterated onditional modes, introdued by [8℄, is used to minimizetheir mixture objetive funtion where eah iteration involves alternating between es-timating di�erent groups of parameters while holding the others �xed. The methodmost similar to the one proposed in this dissertation inorporates tissue lass infor-mation into non-rigid registration by using Kullbak-Leibler divergene as a similaritymeasure between ideal and atual joint voxel lass distribution matries [20℄. Thesematries represent loal fuzzy orrespondene of objet lass labels for pairs of orre-sponding voxels. The method presented in this dissertation di�ers from most of theseapproahes in that it involves fully 3D non-rigid registration.3.2.4 Multi-Modal Image Set RegistrationGiven the aforementioned di�ulties with using multivariate mutual informationin the image set registration setting, a novel model-based approah is proposed where



32the registration is performed using underlying anatomial strutures. These struturesare inorporated as a geometri prior in a Bayesian framework. From the theory ofpattern lassi�ation [21℄, it is known that the use of a Bayesian lassi�er for deisionmaking is optimal in that it orresponds to minimizing the average probability of errorassoiated with the deision. Thus, Bayesian lassi�ation using a geometri priorprovides a goodJos approah for generating lass-onditional densities that desribethe anatomial strutures.This framework is based on the assumption that human brain anatomy onsists of�nitely enumerable strutures suh as grey matter, white matter, and erebrospinal�uid. These strutures present with varying radiometri intensity values aross dis-parate imaging modalities. Given two multi-modal image sets, the underlying stru-tures are aptured by estimating, for eah image set, the lass-onditional posteriormaps assoiated with eah struture. These lass posteriors are then used to produe aoordinate-independent average posterior by estimating dense di�eomorphi registra-tion maps relating the domains of the two lass posteriors. The sum-of-Kullbak-Leiblerdivergenes D̄
(

p̂||{pi}
N
i=1

) with N = 2 distributions is used as a distane funtion on thespae of probability mass funtions to estimate the transformations. The use of lassposteriors provides an image intensity-independent approah to image registration.Spei�ally, onsider the problem of �nding a mapping between image sets Ī1 and
Ī2 (Figure 3.3). That is, �nd the mappings f : Ω1 → Ω2 and g : Ω2 → Ω1 where Ω1 and
Ω2 are the domains of image sets Ī1 and Ī2 respetively. To failitate the registration, anew domain Ω, independent of Ω1 and Ω2 is introdued. Let transformations h1 and h2map Ω to Ω1 and Ω2 respetively. By onstrution, f = h2 ◦h−1

1 and g = h1 ◦h−1
2 . Thisregistration method is inverse onsistent as f ◦ g = g ◦ f = e, the identity map. Havingdesribed the transformation framework the Bayesian framework for representing theanatomial lass strutures is presented next.3.2.4.1 Bayesian FrameworkThe underlying neuroanatomy, represented in two aquired sets of multi-modal im-ages, is assumed to onsist of a set, C, of separate anatomial struture lasses, cj.From the multi-modal image sets Ī1 and Ī2, for eah lass cj ∈ C jointly estimate theposterior mass funtions p1(x) = p(cj(h1(x))|Ī1) and p2(x) = p(cj(h2(x))|Ī2) along withthe registration maps h1(x) and h2(x), that map the independent domain Ω ⊂ R

3,into the domain of Ī1, Ω1 ⊂ R
3, and Ī2, Ω2 ⊂ R

3, respetively. This method is in-dependent of the number of images omprising eah image set. Optimal inter-subjet
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Figure 3.3: Inverse-Invariant RegistrationRegistration of image sets Ī1 and Ī2 through the unbiased domain Ω.multi-modal image set registration is estimated by an alternating iterative algorithmwhih is motivated by an expetation maximization method used in [80, 102℄. Theproposed algorithm interleaves the estimation of the posteriors assoiated with Ī1 and
Ī2 and the estimation of the registration maps h1 : Ω → Ω1 and h2 : Ω → Ω2. Figure3.4 depits this Bayesian framework.For eah lass cj, the assoiated data likelihoods p(Ī{1,2}(x)|cj(x), µj , Σj), are mod-eled as multivariate normal distributions with means µj , and ovarianes Σj . Giventhe transformations h1 and h2 and the urrent estimates µj and Σj for both image sets,the posteriors of Ī1 and Ī2 are assoiated with the independent oordinate probabilitymass funtion pΩ by using Bayes's Rule with pΩ as the prior for both posteriors p1(x)and p2(x). Having de�ned the posteriors, the parameters µj and Σj are updated bytheir expeted values. An alternative approah is the non-parametri kernel densityestimation desribed in [79℄.3.2.4.2 Large Deformation Di�eomorphi RegistrationWith the model-based Bayesian framework de�ned, now onsider the problem ofestimating a lass posterior average, p̂, from p1 and p2, representing image sets Ī1 and
Ī2 respetively. The average p̂ is neither p1 nor p2. Consider the problem of onstrutinga mapping between p̂ and eah of p1 and p2. That is, estimate the mappings h1 : Ω → Ω1and h1 : Ω → Ω2 where Ω ⊂ R

3, Ω1 ⊂ R
3and Ω2 ⊂ R

3 are the domains of the lassposteriors p̂, p1 and p2 respetively. The domain Ω is hosen to be independent of the
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Figure 3.4: Model-Based Image Set RegistrationRegistration of image sets Ī1 and Ī2 through the unbiased domain Ω.individual subjet lass posterior domains, Ω1 and Ω2. This framework is depited inFigure 3.5.The desired average lass posterior p̂ is the one that requires the minimum amount ofenergy to be deformed into both p1 and p2. More preisely, given a transformation group
S with assoiated metri D : S2 → R, along with a probability density dissimilaritymeasure E(p, q), to �nd the lass posterior map p̂ suh that

{ĥ{1,2}, p̂} = argmin
h{1,2}∈S,p

[

E(p1 ◦ h1, p) + E(p2 ◦ h2, p) + D(e, h1)
2 + D(e, h2)

2
] (3.1)where e(x) = x is the identity transformation.Within the framework of omputational anatomy a ommonly used transformationgroup is the group of di�eomorphisms [48℄. Central to this framework, therefore, is theassumption of homogeneous anatomy between subjets [32℄. As di�eomorphi mapspreserve topology they are ideal for the quantitative study of shape sine they neitherbend nor tear spae. The �uid image registration method used in this dissertation ismotivated by the image mathing problem formulated via �uid �ows introdued by [14℄and posed a ontrol formulation in [22℄. In this formulation, the optimal di�eomorphimath is onstruted to minimize a running smoothness ost on the veloity �eld gen-erating the di�eomorphism, further desribed below, while simultaneously minimizing
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Figure 3.5: Image Registration Through Class PosteriorsAssoiated with eah image set Īi is a lass-onditional probability map piand is related to the unbiased domain Ω through the transformation hi.an image dissimilarity term. A gradient desent approah is taken where a variationalost is measured in terms of a veloity �eld.In this dissertation, the lass-posterior map mathing involves the partiular trans-formation h that maps the spae of a lass-posterior representing a subjet, pi, to thespae of the lass-posterior map representing the average, p̂, pi(hi(x)) = p̂(x). In thelarge deformation setting, a given h is estimated as the end point point of the �owassoiated with a smooth time-dependent vetor �eld. More spei�ally, the approahis to onstrut di�eomorphisms h : Ω ⊂ R
3 ↔ Ω in terms of solutions to the ordinarydi�erential equation de�ned by the nonlinear transport equation

d

dt
h(x, t) = v(h(x, t), t) t ∈ [0, 1] (3.2)with boundary ondition,

h(x, 0) = x x ∈ Ωas presented in [70, 48℄. The boundary ondition orresponds to no deformation. Thesolution to Equation 3.2 is the funtion h(x, t) that satis�es
h(x, t) = h(x, 0) +

∫ t

0

v(h(x, τ), τ)dτ. (3.3)



36The �nal time di�eomorphism h(x, 1) mapping the anatomy is therefore ontrolled viathe veloity �eld v(·, t), x ∈ Ω, t ∈ [0, 1],
h(x, 1) = x +

∫ 1

0

v(h(x, τ), τ)dτ.Before disussing how the di�eomorphi transformations are generated, it is impor-tant to know that they do exist in this setting. In his dissertation, Joshi proves thefollowing theorem.Theorem 3.1 (Di�eomorphism Existene). Let Ω = [0, 1]3 ⊂ R
3 and v : (x, t) ∈

Ω × [0, 1] → v(x, t) ∈ R
3 be a ontinuously di�erentiable vetor �eld with ompatsupport ontained in Ω for eah t ∈ [0.1]. Let h be the solution to the system ofordinary di�erential equations

d

dt
h(x, t) = v(h(x, t), t)with the initial ondition h(0, x) = x. Then for eah t ∈ [0, 1], h(·, t) is a di�eomorphismof Ω ↔ Ω.Proof. See [48℄.The boundary ondition h(x, 0) = x represents the Lagrangian interpretation of�uid �ow. The existene of di�eomorphisms under the Eulerian interpretation of �uid�ow where h(x, 1) = x is shown in [22℄. Conditions are formulated under whih theregularity of v(·, t) imposed by �niteness of the the norm ||v||2 guarantees that theassoiated �ow, h, is supported on the spae of di�eomorphisms. The key issue is thehoie of norm || · ||2.Following [7℄, one hoie to ensure existene of solutions in the spae of di�eo-morphisms in Equation 3.2 has been to onstrut V as the ompletion of the spaeof smooth, ompatly-supported vetor �elds for the inner-produt de�ned through adi�erential operator L given by

〈f, g〉V
.
= 〈Lf, Lg〉2 = 〈L†Lf, g〉2 f, g ∈ V (3.4)where L† denotes the adjoint of L, and 〈·, ·〉2 is the usual L2-produt for square inte-



37grable vetor-�elds on Ω. That is,
∫ 1

0

||v(·, t)||2V dt =

∫ 1

0

||L†Lv(·, t)||22dt.With V de�ned in this way, the �ow v ∈ L1(V, [0, 1]) generates the sub-group of di�eo-morphisms G
.
= {φ ∈ V |φ(h(x, 1), 1), v ∈ L1(V, [0, 1])} [22℄. From these assumptionson V , a ompat self-adjoint operator K : L2(Ω, Rd) → V is uniquely de�ned by

〈x, y〉2 = 〈Kx, y〉V . That is, any smooth vetor �eld f ∈ V an be obtained suh that
K(L†L)f = f.In summary, the norm ||v(·, t)||V generates an inner produt on the spae of ontinuousvetor �elds C∞(Ω)3, and ||v(·, t)||V needs to be �nite to ensure regularity in eahomponent of v. Smoothness in v is indued by adding ||Lv(·, t)||2 as a regularizingost penalty term in the optimization.The hoie of operator L is typially governed by the notion of a prior, in theBayesian sense, on the transformations obtained by driving a �uid or elasti media orby a noise proess. In suh a ase L is determined by the statistis of the noise and theonstitutive laws of the media. Following [14℄, in this dissertation a modi�ed Navier-Stokes operator L = α∇2 + β∇(∇·) + γ is used where pressure gradient and inertialterms are negleted and a low Reynold's number is assumed.A di�erential operator L is ompletely haraterized by its Green's funtion G(x, y)where LG(x, y) = δ(x − y). Under the noise proess model, the indution of priorthrough onstant oe�ient loal (bounded support), positive de�nite (invertible) dif-ferential operator L satisfying Lu(x) = e(x) where e(x) is white noise. Then, as shownin [52℄, u(x) is a zero-mean Gaussian proess with ovariane

K(x, y) =

∫

G(x, u)G(y, u)du.Throughout assume the ompat setting Ω = [0, 1]3 with the operator and boundaryonditions hosen so that the Green's funtion is non-singular and ontinuous in bothvariables so that the matrixK(x, y) = G(x, y)G(x, y)† is positive de�nite as an operator.Having hosen a linear di�erential operator to de�ne the inner-produt 〈·, ·〉V andhaving established the onditions under whih the solution to Equation 3.2 generatesdi�eomorphi transformation, the image registration optimization problem in Equation
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x = φ(y, 1)

y = h(x, 1)

v(x, 0)

ṽ(y, 0)

Figure 3.6: Veloity Fields3.1 is further spei�ed. The transformations hi are generated by integrating veloity�elds forward in time, and h−1
i are generated by integrating veloity �elds bakwardin time. The relationship between spatial loality, veloity �elds, and time is shown inFigure 3.6. The spatial loation y is desribed in terms of the forward integration ofthe veloity �eld v starting from spatial loation x. That is,

y = h(x, 1) = x +

∫ 1

0

v(h(x, τ), τ)dτ.Similarly, x an be desribed in terms of integrating the reverse veloity �eld ṽ startingat y. That is,
x = φ(y, 1) = y +

∫ 1

0

ṽ(φ(y, τ), τ)dτ.From Figure 3.6, note that
v(h(x, t), t) = −ṽ(φ(y, 1− t), 1 − t)and hene

||Lv(x, t)||2 = ||Lṽ(y, 1 − t)||2where
L = α∇2 + β∇(∇·) + γis, again, a modi�ed Navier-Stokes operator.The metri on the spae of di�eomorphisms is indued using a Sobolev norm viathe partial di�erential operator L on the veloity �elds v. Let h be a di�eomorphismisotopi to the identity transformation e. De�ne the squared distane D2(e, h) as
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D2(e, h) = min

v

∫ 1

0

∫

Ω

||Lv(x, t)||2dxdt (3.5)subjet to
h(x) = x +

∫ 1

0

v(h(x, t), t)dt.The distane between any two di�eomorphisms is de�ned by
D(h1, h2) = D(e, h−1

1 ◦ h2).The onstrution of h and h−1, as well as the properties of D, are desribed in [68, 71℄.This distane satis�es all of the properties of a metri. Namely it is non-negative,symmetri, and satis�es the triangle inequality. The distane D is trivially non-negative. Symmetry follows from the fat that h−1 is generated by integrating bak-wards in time the negative of the veloity �eld that generates h. Hene the minimizer isthe same for both h and h−1, implying that D(e, h) = D(e, h−1). A detailed disussionof D, inluding a demonstration of how it satis�es the triangle inequality, is given in[71℄.Having de�ned a metri on the spae of di�eomorphism and a regularization op-erator L, the energy minimization problem desribed in Equation 3.1 is formulatedas
{ĥ{1,2}, p̂} = argmin

h{1,2},p

E(p1 ◦ h1, p) + E(p2 ◦ h2, p)

+

∫ 1

0

∫

Ω

||Lv1(x, t)||2dxdt +

∫ 1

0

∫

Ω

||Lv2(x, t)||2dxdt (3.6)subjet to
hi(x) = x +

∫ 1

0

vi(hi(x, t), t)dt.3.2.4.3 RegistrationAt a given spatial loation x ∈ Ω, the dissimilarity between image sets Ī1(x) and
Ī2(x) is measured by the dissimilarity between the posterior mass funtions modelingthem, p1(x) and p2(x). Minimizing the D̄

(

p̂||{pi}
N
i=1

) between p1 and p2 maximizes alower bound on the Bayes' probability of error and thus renders the probability mass



40funtions more indistinguishable. That is, it brings them loser together. The followingdistane, using Equation 2.10 with N = 2, is used to drive the registration at position
x ∈ Ω:

E(p1(x), p2(x)) = D̄ (p̂(x)||{p1(x), p2(x)})

= −2 log
∑

cj∈C

(

p1(h1(cj(x))|Ī1)p2(h2(cj(x))|Ī2)
)

1
2 .With this result, the minimization problem stated in Equation 3.1 is rewritten asfollows:

v̂1, v̂2 = argmin
v1,v2

∫

Ω

log
∑

cj∈C

(

p1(h1(cj(x))|Ī1)p2(h2(cj(x))|Ī2)
)

1
2 dx

+

∫ 1

0

∫

Ω

||Lv1(x)||2dxdt +

∫ 1

0

∫

Ω

||Lv2(x)||2dxdt.3.2.4.4 ImplementationThe method proposed in this dissertation uses Christensen's greedy algorithm forpropagating templates [14℄. The variation for h1 of the average E(p1(x), p2(x)) term isomputed as
∂

∂h1

1

|Ω|

∫

Ω

D̄ (p̂(x)||{p1(x), p2(x)}) dx = −
2

|Ω|

∂

∂hi

log
∑

cj∈C

(p1(cj(x))p2(cj(x)))
1
2 dx

= −
2

|Ω|
·

∫

Ω

∑

cj∈C
∂

∂h1
(p1(cj(x))p2(cj(x)))

1
2

∑

ck∈C (p1(ck(x))p2(ck(x)))
1
2

dx

= −
1

|Ω|

∫

Ω

∑

cj∈C

(

p2(cj(x))

p1(cj(x))

) 1
2
∇p1|

T
cj(h1(x))

∑

ck∈C (p1(ck(x))p2(ck(x)))
1
2

dx.The variation for h2 is omputed in a similar manner. The veloity �elds v{1,2} at eahiteration are updated by solving the partial di�erential equations
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Lv{1,2}(x, t) =

∂

∂h{1,2}

1

|Ω|

∫

Ω

D̄ (p̂(x)||{p1(x), p2(x)}) dx.The veloity �elds vi are omputed at eah iteration by applying the inverse of the di�er-ential operator L to the body fore funtion fi(x) = ∂
∂hi

1
|Ω|

∫

Ω
D̄ (p̂(x)||{p1(x), p2(x)}) dx,i.e. vi(x) = L−1fi(x) . This omputation is performed in the Fourier domain [50℄ usingthe Fast Fourier transform.The forward and inverse integration are desribed as follows. At time t, the trans-formations hi are desribed as

hi(x, t + δ) = hi(x, t) +

∫ t+δ

t

vi(hi(x, τ), τ)dτ

≈ hi(x, t) + δvi(hi(x, t), t)for small δ. At iteration k of the algorithm, the transformations hi beome the tele-soping ompositions hi = hk
i ◦ hk−1

i ◦ · · · ◦ h1
i . At time t, the inverse transformations

h−1
i are desribed as

h−1
i (y, t) = h−1

i (y −

∫ t−δ

t

vi(y, τ)dτ, t− δ)

≈ h−1
i (y − δvi(y, t), t− δ)for small δ. At iteration k of the algorithm, the transformations h−1

i beome thetelesoping ompositions h−1
i = h−1,1

i ◦ h−1,2
i ◦ · · · ◦ h−1,k

i .Appendix B disusses the likelihood of the atual optimum in the multi-modal imageset registration ost funtion being ahieved.3.3 ResultsTo evaluate the image set registration method, a olletion of image sets of inreasingomplexity was de�ned. For eah image subjet, the image sets were reated using 3Dsalar images from a population of four imaging modalities: MRA, T1-FLASH MR,T1-MPRAGE MR, and T2 MR. The omposition of these image sets is desribed inSetion 3.3.2.1. The individual MR images were aquired at UNC Chapel Hill using



42a Siemens head-only 3-Tesla system (Allegra, Siemens Medial Systems In.) and aSiemens 1.5-Tesla system (Sonata, Siemens Medial Systems In.) with a head oil.Imaging parameters for the T1 and T2 image aquisitions are as follows, for the T1images, a TR of 15mse, a TE of 7mse, a TH of 1mm, and an in-plane resolution of
1×1 mm2 and for the T2 images, a TR of 7730mse, a TE of 80mse, a TH of 1mm, andan in-plane resolution of 1 × 1 mm2. Additionally, a 3D time-of-�ight MRA sequenewas aquired. Veloity ompensation along both the frequeny and the phase enodingdiretion was used to maximize signal de-phasing indued by the �owing spins. Amagnetization transfer pulse was used to suppress signal from brain parenhyma whilemaintaining signal from �owing spins. The aquired voxel spaing for the MRA imageswas 0.5134 × 0.5134 × 0.78 mm3 and 1 × 1 × 1 mm3 for the T1 and T2 images. TheMRA images were resampled to 1 × 1 × 1 mm3.3.3.1 Data PreproessingThe tissue exterior to the brain was removed using a mask generated by a brainsegmentation tool based on the statistial lassi�ation method desribed in [79℄. Thegeometri prior used to initialize the algorithm was also produed using this tool. Mid-axial, mid-oronal, and mid-sagittal slie views for subjets 1 and 2 are presented inFigures 3.7 and 3.8 respetively. These four modalities provide omplementary informa-tion. For example, the T1-FLASH and T1-MPRAGE images have ontrast di�erenes,and the MRA images exhibit missing information due to grey matter/white matterwashout and axial slab e�et. In these examples, the set of strutural lasses is takento be

C = {c1 = grey matter, c2 = white matter, c3 = cerebrospinal fluid, c4 = other}.3.3.2 Registration ExperimentsTo evaluate this image set registration framework, the transformations, f1 and g1,relating the domains of subjet 1 and subjet 2 were estimated by applying the multi-modal image set method to a mono-modal registration. These two transformationswere then used as �ground truth� for the purpose of evaluating an inreasingly om-plex olletion of image set registrations. Inverse-onsisteny error was omputed toquantitatively evaluate the results.
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(a)
(b)
()
(d) Mid-Axial Mid-Coronal Mid-SagittalFigure 3.7: Subjet OneThe orthogonal slie views into the four multi-modal salar images for sub-jet one: MRA (a), T1-FLASH (b), T1-MPRAGE (), and T2 (d).
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(a)
(b)
()
(d) Mid-Axial Mid-Coronal Mid-SagittalFigure 3.8: Subjet TwoThe orthogonal slie views into the four multi-modal salar images for sub-jet two: MRA (a), T1-FLASH (b), T1-MPRAGE (), and T2 (d).



453.3.2.1 SetupThe following eight registration experiments were performed:1. Mono-modal/Mono-modal (ommon): Ī1 = T1-FLASH of subjet 1 and Ī2 =T1-FLASH of subjet 2.2. Mono-modal/Mono-modal (mutually exlusive): Ī1 = T1-FLASH of subjet 1and Ī2 =T2 of subjet 2.3. Bi-modal/Bi-modal (fully ommon): Ī1 = T1-FLASH and T2 of subjet 1 and
Ī2 = T1-FLASH and T2 of subjet 2.4. Bi-modal/Bi-modal (single ommon): Ī1 = T1-FLASH and T2 of subjet 1 and
Ī2 = T1-MPRAGE and T2 of subjet 2.5. Bi-modal/Bi-modal (mutually exlusive): Ī1 = T1-FLASH and T2 of subjet 1and Ī2 = T1-MPRAGE and MRA of subjet 2.6. Bi-modal/Mono-modal (mutually exlusive): Ī1 = T1-FLASH and T2 of subjet1 and Ī2 = MRA of subjet 2.7. Tri-modal/Tri-modal (fully ommon): Ī1 = T1-FLASH, T1-MPRAGE, and T2of subjet 1 and Ī2 = T1-FLASH, T1-MPRAGE, and T2 of subjet 2.8. Quad-modal/Quad-modal (fully ommon): Ī1 = T1-FLASH, T1-MPRAGE, T2,and MRA of subjet 1 and Ī2 = T1-FLASH, T1-MPRAGE, T2, and MRA ofsubjet 2.From eah of these experiments, transformations fi and gi were obtained. The �rstexperiment provides the �ground truth� transformations, f1 and g2. The T1-FLASHmodality was hosen for the �rst experiment due to its relatively good white mat-ter/grey matter ontrast.3.3.2.2 Bi-Modal/Bi-Modal (Mutually Exlusive) RegistrationFor the purposes of brevity, only qualitative results for the most interesting of theseexperiments, the bi-modal/bi-modal mutually exlusive registration are presented. Inthis experiment, Ī1 represents the T1-FLASH and T2 images aquired from subjet oneand Ī2 represents the T1-MPRAGE and MRA images aquired from subjet two. The
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T1-FLASH T2 T1-FLASH T2 T1-FLASH T2

T1-MPRAGE MRA T1-MPRAGE MRA T1-MPRAGE MRAFigure 3.9: Forward MappingThe top row shows mid-axial, mid-oronal, and mid-sagittal views of imageset Ī1. The bottom row shows the same views for the deformed image set
Ī2 ◦ f .estimated forward, f , and inverse, g, transformations are depited, in three orthogonalviews, in Figures 3.9 and 3.10 respetively. In Figure 3.11, a qualitative assessment ofthe registration is made by examining axial slies of Ī1 and Ī2 in greater detail througha hekerboard pattern. The mismath between the image sets is learly evident inthe top row of the �gure. The seond and third rows illustrate the e�etiveness of theregistration under the estimated forward and inverse transformations respetively.3.3.2.3 Inverse-Consistent Image RegistrationA by-produt of using the unbiased domain Ω in the multi-modal image set reg-istration framework is inverse-onsistent (or inverse-invariant) image registration. Aregistration framework is inverse onsistent if image ordering does not a�et the regis-tration result. Many image registration algorithms are not inverse onsistent beausetheir image dissimilarity metris are omputed in the oordinate system of one of theimages being registered. The hoie of suh a referene image an bias the result of theregistration. Inverse onsistent registration is desired when there is no a priori reasonto hoose one image over another as a referene image.In traditional tehniques for image registration, solutions may be systematiallybiased with respet to expanding and ontrating regions in the estimated transforma-tion [12℄. Existing methods for generating inverse onsistent registration approximate
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T1-MPRAGE MRA T1-MPRAGE MRA T1-MPRAGE MRA
T1-FLASH T2 T1-FLASH T2 T1-FLASH T2Figure 3.10: Inverse MappingThe top row shows mid-axial, mid-oronal, and mid-sagittal views of imageset Ī2. The bottom row shows the same views for the deformed image set

Ī1 ◦ g.inverse onsisteny by adding an inverse onsisteny penalty to the optimization ostfuntion. The registration frameworks formulated in these methods are not intrinsiallysymmetri. Methods for approahing this problem, involving algorithms that estimateinremental transformations while approximating inverse onsisteny onstraints oneah inremental transformation, are presented in [34, 66, 39℄. The approah presentedin this dissertation is intrinsially inverse onsistent as the registration problem is for-mulated symmetrially. Therefore, no orretion penalty for onsisteny is required.More spei�ally, a registration, haraterized by a transformation, h, is inverse-onsistent (symmetri) if, for images I1 and I2, the following holds: h(I1, I2) = h−1(I2, I1).A registration for whih this property does not hold is onsidered to be asymmetri.The following is a list of potential soures for asymmetry in non-rigid registration:
• Order non-preservation: Many image registration algorithms are not inverse-onsistent sine their (dis)similarity metris are omputed in the oordinate sys-tem of either one of the images involved in the registration. This leads to or-der non-preservation of energy ost funtions. That is, for an energy funtion

E(I1, I2, h) and two estimates, h1 and h2, for the transformation h, the followingmay hold, E(I1, I2, h1) < E(I1, I2, h2) but E(I2, I1, h
−1
1 ) ≥ E(I2, I1, h

−1
2 ).

• Non-linearity in models: Continuum mehanial methods are used to model de-
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Figure 3.11: Qualitative AssessmentThe top row shows a hekerboard blending of an axial slie of the imagesets Ī1 and Ī2. The middle row shows a blending between Ī1 and Ī2 ◦ f ,the forward mapping, and the bottom row shows a blending between Ī2 and
Ī1 ◦ g, the inverse mapping. The left olumn is omposed of the T1-FLASHof Ī1 and the MRA of Ī2, and the right olumn is omposed of the T2 of Ī1and the T1-MPRAGE of Ī2. The registration has aommodated the loalvariability between the two image sets, espeially in the ortial region (e.g.,point A), and in the ventriular region (e.g., point B).



49formations (e.g., thin-plate splines may be non-linear).
• Non-stable transformation spae: The spae of allowable transformations may notform a group, G, and, hene, may not be stable by inversions. That is, h ∈ Gbut h−1 /∈ G.
• Loal minima: The optimization algorithm used for estimating h may get stukin di�erent loal minima of the energy funtion E when the images I1and I2 areexhanged.The L2 di�erene norm, ||f1(gi(x)) − x||2, was used to evaluate inverse onsistenybetween eah experiment i, and the �rst experiment for eah spatial loation x ∈ Ω.For numerial stability, these inverse-onsisteny errors were omputed via telesopingompositions as desribed in Setion 3.2.4.4. Over all eight experiments, the maximumomputed inverse-onsisteny error was 3.12×10−4 voxels with an average of 5.04×10−5voxels.



Chapter 4Multi-Class Posterior AtlasFormation1
This hapter extends the framework for multi-modal image set registration fromChapter 3 to multi-lass posterior atlas formation. Consider the important problem inomputational anatomy introdued in Setion 1.2, the onstrution of an exemplar atlasfrom a population of medial images. Suh atlases represent the anatomial variationpresent in populations [69, 32, 94℄. Many images are mapped into a ommon oordi-nate system to study intra-population variability and inter-population di�erenes, toprovide voxel-wise mapping of funtional sites, and to failitate tissue and objet seg-mentation via registration of anatomial labels. Common tehniques for reating atlasesoften inlude hoosing a template image, whih inherently produes a bias. Motivatedby the atlas onstrution framework presented in [49℄, unbiased multi-lass atlases areonstruted from populations of anatomial lass posteriors using large deformation dif-feomorphi registration. When applied to two image sets, this atlas formation methodyields the inverse-onsistent image set registration of Chapter 3.Digital atlases of humans are prominent in image segmentation algorithms. Forexample, a method for automatially segmenting images of normal healthy humanbrains, based on statistial lassi�ation theory [21℄, is presented in [102, 101℄. Anextension to human brains with pathology is desribed in [80℄. These methods rely onmulti-modal images that have been a�nely registered to the oordinate spae of thehosen atlas. The registration pre-proessing step uses mutual information, desribed1The work presented in this hapter was done in ollaboration with Dr. Sarang Joshi and BradDavis at the University of North Carolina at Chapel Hill. This hapter is heavily based on previouspapers [63, 49℄.



51in [16℄, as a similarity measure for omputing distanes between probability mass fun-tions representing joint and marginal produt distributions of image intensities. Globaltransformations, suh as a�ne transformations, are insu�ient to aommodate theloal variability that exists in any population of human brains. For example, althoughall humans possess a erebellum and ortial grey matter enlosing white matter, theloation and manner of ortial and erebellar folding are highly variable aross a pop-ulation.Most digital atlases involve features that are single numbers (e.g., Houns�eld unitsin omputed tomography (CT) images). Unbiased atlas formation from suh salarimages, using the squared-error image dissimilarity measure, is desribed in [49℄. Thishapter fouses on multi-lass posterior atlas formation from multi-modal image sets.Spei�ally, the Bayesian framework from Setion 3.2.4.1 is applied to a olletion of im-age sets. From a population of N multi-modal image sets {Īi}
N
i=1, for eah lass cj ∈ C,estimate the lass posterior mass funtions pi(cj(x)|Īi) for eah image set i where cj(x)is the lass assoiated with the voxel at spatial position x ∈ Ω ⊂ R

3. This method isindependent of the number of images omprising eah image set. These lass poste-riors are produed using the expetation maximization method desribed in [80, 102℄.Following [102℄, for eah lass cj the assoiated data likelihood, p(Īi(x)|cj(x), µj , Σj), ismodeled as a normal distribution with mean, µj, and ovariane, Σj .This hapter reviews existing atlas onstrution methods in Setion 4.1. Using thelarge deformation di�eomorphi framework requires a more general notion of averagingtransformations. This generalized notion of averaging to metri spaes is disussed inSetion 4.2. The multi-lass atlas onstrution method is then presented in Setion 4.3with a some results omparing a�ne and di�eomorphi averaging in 4.4.4.1 Atlas Formation: a ReviewSine Brodmann, nearly a entury ago, began mapping areas of the erebral ortexbased on ytoarhitetural boundaries [11℄, the onstrution of brain atlases has beenentral to understanding the variability of brain anatomy. More reently, sine theadvent of modern omputing and digital imaging tehniques, intense researh has beendireted towards the development of digital three-dimensional atlases of the brain.Most digital brain atlases so far are based on a single subjet's anatomy [43, 104℄.Although these atlases provide a standard oordinate system, they are limited beausea single anatomy annot represent faithfully the omplex strutural variability between



52individuals. A major fous of omputational anatomy has been the development ofimage mapping algorithms [29, 68, 84, 98℄ that an map and transform a single brainatlas onto a population. In this paradigm, the atlas serves as a deformable template [31℄.The deformable template an projet detailed atlas data suh as strutural, biohemial,funtional, and vasular information onto the individual or an entire population of brainimages. The transformations enode the variability of the population under study. Astatistial analysis of the transformations an also be used to haraterize di�erentpopulations [18, 44, 92℄. For a detailed review of deformable atlas mapping and thegeneral framework for omputational anatomy, see [98, 32℄. One of the fundamentallimitations of using a single anatomy as a template is the introdution of bias, as theseleted group member may not well speify the population as a whole.The unbiased atlas represents an average anatomial on�guration of a population.Unbiased atlas onstrution is an ative area of researh in image registration. Thomp-son and Toga [97℄ very elegantly address the bias problem by mapping a new data setonto every san in a brain image database. This approah addresses bias by forgoingthe formal onstrution of a representative template image. Although this frameworkis mathematially elegant and powerful, it results in a omputationally prohibitive ap-proah in whih eah new san has to be mapped independently to all datasets in adatabase. This is analogous to omparing eah subjet under study to every previouslyanalyzed image. As brain image databases grow, the atlas formation problem growsombinatorially.Previous work in atlas formation has foused on the small deformation setting inwhih arithmeti averaging of displaement �elds is well de�ned, e.g., in [9℄. Studholmeminimizes an energy funtional involving unertainty in joint histograms of intensities,elasti deformation, and sum of displaements [90℄. Kovaevi et al. present a multi-resolution method that is initialized by averaging pairwise a�ne transformations and�nalized by entering based on averaging estimated non-linear transformations to thisa�ne average [57℄. An iterative averaging algorithm to redue the bias has been de-veloped by [34℄. In the latest work of [9℄, expliit onstraints requiring that the sumof the displaement �elds add to zero are enfored in the proposed atlas onstrutionmethodology. These small deformation approahes are based on the assumption thattransformations of the form h(x) = x + u(x), parameterized via a displaement �eld,
u(x), are lose enough to the identity transformation suh that the omposition of any



53two transformations an be approximated via the addition of their displaement �elds:
(h1 ◦ h2) (x) ≈ x + u1(x) + u2(x).Using a hidden probabilisti model of the ommon spatial distribution of anatomi-al tissues, De Craene et al. reate atlases of probability distributions using STAPLE[17℄. The Simultaneous Truth and Performane Level Estimation (STAPLE) method,developed by War�eld and Zou [104, 112℄, alulates a omposite gold standard esti-mate from multiple manual segmentations. Given a set of binary segmentations of thesame objet, STAPLE alulates the maximum likelihood estimate of the omposite�gold standard� or the best estimate of the unknown gold standard. The STAPLEalgorithm alulates the spei�ity and sensitivity of eah segmentation in an iterativeway. In the work of De Craene et al., a generalized expetation maximization method isused where, in the expetion step, atlas labels (hidden data) are estimated given �xedtransformations and, in the in the maximization step, transformations that maximizea similarity riterion are estimated.In a more reent and related work, Avants and Gee [5℄ develop an algorithm inthe large deformation di�eomorphi setting by averaging veloity �elds and evolvingmean geodesi �ows. The fous of this hapter is on the development of a methodologythat simultaneously estimates the transformations and an unbiased template, in thelarge deformation setting. This method does not assume the above approximationand, thus, is apable of building atlases of populations with large geometri variability.The method proposed in this dissertation is intrinsially unbiased in that it involves nopenalty terms in the optimization proess. The method is also omputationally e�ientin that it sales linearly with the number of images. Before formally de�ning the atlasformation problem, this hapter explores averaging large deformation di�eomorphitransformations.4.2 Averaging Di�eomorphismsGiven a olletion of anatomial images, a natural problem is the onstrution ofa statistial representative of the population. If the data assoiated with the popula-tion under study an be easily parameterized by a Eulidean spae, lassial statistialmethods of simple averaging an be applied to generate suh a representative. An im-age under the Gaussian noise assumption an itself be easily represented as a member



54of a �at spae. The image an be represented as a member of a very large dimensionalEulidean spae R
N , where N is the number of voxels in the image. Alternatively, usingappropriate interpolation assumptions the image an be assumed to be a square inte-grable funtion, that is a member of the Hilbert spae L2(Ω) where Ω is the underlyingoordinate spae, usually a ompat subset of R

3.The geometri variability of the anatomy itself usually annot be represented byelements of a �at spae. If the geometry of the underlying anatomy an be adequatelyrepresented by a �nite number of landmarks, representative template landmark on�g-uration an be estimated using the Prorustes method pioneered by Kendal [54℄ andhampioned by Bookstein [10℄. The study of anatomial shape is inherently relatedto the onstrution of transformations of the underlying oordinate spae that mapone anatomy to another. Various transformation groups of R
3 have been studied forunderstanding anatomial geometry. These groups vary in dimensionality from simpleglobal translations, R

3, and rigid rotations, SO(3), to the in�nite dimensional group ofdi�eomorphisms, H, [71℄.In this hapter, the problem of building an anatomial template is posed as a sta-tistial estimation problem. For anatomial representations in whih the underlyinggeometry is parameterized as a Eulidean vetor spae, training data an be repre-sented as a set of vetors, e.g., {xi}
N
i=1 in a vetor spae V .In the small deformation elasti image mapping setting, this is assumed to be true,as the deformations are assumed to be lose enough to the identity mapping. Underthis assumption, the displaement vetor �elds parameterizing the transformations anbe assumed to be elements of the Hilbert spae of square integrable funtions L2(Ω).In a vetor spae, with addition and salar multipliation well de�ned, the averagerepresentation of the training set is the linear average

x̄Linear =
1

N

N
∑

i=1

xi. (4.1)In terms of omputing statistis, the group of di�eomorphi transformations presentsa hallenge. Linear averaging annot be diretly applied to the large deformationsetting, as under the large deformation model the spae of transformations is not avetor spae but rather the in�nite dimensional group H of di�eomorphisms of theunderlying domain Ω.In the group of di�eomorphisms, the addition of two di�eomorphisms is not generally



55a di�eomorphism and hene a template based on linear averaging of transformationsis not well de�ned. To address this di�ulty, the notion of averaging is extended togeneral metri spaes �rst proposed by Fréhet [27℄. For a general metri spae M,with a distane d : M × M → R, the intrinsi mean for a olletion of data points
xi an be de�ned as the minimizer of the sum-of-squared distanes to eah of the datapoints. That is

x̄Frechet = argmin
x∈M

N
∑

i=1

d(x, xi)
2. (4.2)In previous work at UNC Chapel Hill, these onepts have been used to extend �rstand seond order statistial analysis to �nite dimensional Riemannian Manifolds forstatistial analysis of medial representations of objets [26℄. This hapter applies thisapproah to the onstrution of large deformation di�eomorphi templates. The workhere builds heavily on the mathematial metri theory of di�eomorphisms developedby Miller and Younes [68℄.Given a metri on a group of transformations, the atlas onstrution problem an bestated: estimate a lass probability p̂ that requires the minimum amount of deformationenergy to be transformed into every member of the population of lass posteriors, pi.More preisely, given a transformation group S with assoiated metri D : S ×S → R,along with a probability dissimilarity metri E(p1, p2), to �nd the probability p̂ suhthat

{ĥi, p̂} = argmin
hi∈S,p

[

N
∑

i=1

E(pi ◦ hi, p) + D(e, hi)
2

] (4.3)where e is the identity transformation and D(e, h) is measure of how far from theidentity transformation h is as desibed in Chapter 3.This hapter addresses the problem of anatomial template onstrution as thejoint the estimation of the most representative, average, image and, as enoded intransformations, the assoiated anatomial geometry given a database of brain images.4.3 Large Deformation Di�eomorphi Atlas Estima-tionGiven the generalized notion of averages for di�eomorphi transformations, thelass-onditional atlas estimation is de�ned as the probability mass funtion that min-imizes an image dissimilarity measure and requires the least amount of energy, based
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Figure 4.1: Atlas FormationUnbiased atlas onstruted as the intrinsi mean of a population of lassposteriors.on a metri on di�eomorphisms, to deform into the eah member of the population.Spei�ally, onsider the problem of estimating an atlas lass posterior p̂ that is thebest representative for a population of N lass posteriors, {pi}
N
i=1 , representing the Nindividual image sets {Īi}

N
i=1. The atlas p̂ is not a member of the set {pi}. To this end,onsider the problem of onstruting a mapping between p̂ and eah lass posterior inthe set {pi}. That is, estimate the mappings hi : Ω → Ωi where Ω ⊂ R

3 and Ωi ⊂ R
3are the domains of the lass posteriors p̂ and pi respetively. The domain Ω is ho-sen to be independent of the individual population lass posterior domains, Ωi. Thisframework is depited in Figure 4.1.Using the metri on the spae of di�eomorphisms with regularization operator Lde�ned in Equation 3.5, the minimum energy atlas estimation problem expressed inEquation 4.3 is formulated as

{ĥi, p̂} = argmin
hi,p

[

N
∑

i=1

E(pi ◦ hi, p) +

∫ 1

0

∫

Ω

||Lvi(x, t)||2dxdt

] (4.4)



57subjet to
hi(x) = x +

∫ 1

0

vi(hi(x, t), t)dt.Note that the solution to this minimization problem is independent of the orderingof the N images. This atlas onstrution framework produes transformations ĥi suhthat ĥi : Ω → Ωi. Sine eah ĥi is a di�eomorphism, its inverse ĥ−1
i : Ωi → Ωexists and an be alulated by integrating the negative veloity �elds bakwards intime, see Figure 3.6. Image to image orrespondenes an be omputed from thesetransformations using the omposition rule

ĥi,j = ĥj ◦ ĥ−1
i : Ωi → Ωj . (4.5)4.3.1 Dispersion Funtions on the Spae of Probability MassFuntionsThe argminp

∑N

i=1 E(pi ◦ hi, p) term in Equation 4.4 represents the dispersion be-tween the lass-posteriors {pi ◦ hi}i=1...N . Consider three suh dispersion terms on thespae of probability mass funtions. Two of these are information distanes presentedin Chapter 2 and one is an extension of a well-known metri.1. Sum-of-Kullbak-Leibler Divergenes I
D̄
(

p̂(x)||{pi(hi(x))}N
i=1

)

=

N
∑

i=1

D(p̂(x)||pi(hi(x)))where p̂ is the normalized geometri mean of {pi}
N
i=1.2. Sum-of-Kullbak-Leibler Divergenes II

D̄
(

{pi(hi(x))}N
i=1||p̂(x)

)

=

N
∑

j=1

D(pi(hi(x))||p̂(x))where p̂ is the arithmeti mean of {pi}
N
i=1



583. Sum-over-Class Squared Error
DSE({pi(hi(x))}N

i=1) =
∑

c∈C

N
∑

i=1

(pi(hi(c(x))) − p(c(x)))2The �rst two dispersions are sum-of-Kullbak-Leibler divergenes de�ned in Chapter 2.Minimizing either D̄
(

p̂(x)||{pi(hi(x))}N
i=1

) or D̄
(

{pi(hi(x))}N
i=1||p̂(x)

) between {pi}
N

i=1, maximizes a lower bound on Bayes' probability of error Pe and thus renders the prob-ability mass funtions more indistinguishable. That is, it brings them loser together.The third dispersion is the extension of the squared error dissimilarity measure used forsalar images used in [49℄ to probability mass funtions. Although the author has notfound a relationship between DSE and Pe, one an see that when DSE = 0, Pe = N−1
Nand is maximal. Moreover, DSE is a true metri.4.3.2 RegistrationWith these results, the minimization problem stated in Equation 4.4 an be furtherspei�ed in one of three ways orresponding to the hoie of distane funtion.1. Sum-of-Kullbak-Leibler Divergene I

v̂i = argmin
vi

[

∫

Ω

N
∑

i=1

D(p(x)||pi(hi(x)))dx +

∫ 1

0

∫

Ω

||Lvi(x, t)||2dxdt

] (4.6)subjet to hi(x) = x +
∫ 1

0
vi(hi(x, t))dt.2. Sum-of-Kullbak-Leibler Divergene II

v̂i = argmin
vi

[

∫

Ω

N
∑

j=1

D(pi(hi(x))||p(x))dx +

∫ 1

0

∫

Ω

||Lvi(x, t)||2dxdt

] (4.7)subjet to hi(x) = x +
∫ 1

0
vi(hi(x, t))dt.3. Sum-over-Class Squared Error

v̂i =

∫

Ω

∑

c∈C

N
∑

i=1

(pi(hi(c(x))) − p(c(x)))2 dx +

∫ 1

0

∫

Ω

||Lvi(x, t)||2dxdt (4.8)subjet to hi(x) = x +
∫ 1

0
vi(hi(x, t))dt.



59Note that the solution to any of these three minimization problem is independent ofthe ordering of the N image sets and inreases linearly as image sets are added, thus,making the algorithm salable.4.3.3 Variation of Dispersion With Respet to TransformationsA gradient desent approah to optimizing the estimation problems in Setion 4.3.2is used. To that end, the variation of the dispersion funtion with respet to thetransformation hi an be omputed as follows:1. Sum-of-Kullbak-Leibler Divergenes I
∂

∂hi

D̄
(

p̂(x)||{pj(hj(x))}N
i=1

)

=
∂

∂hi

N
∑

j=1

D(p(x)||pj(hj(x)))

=
∂

∂hi

∑

c∈C

p(c(x)) log
p(c(x))

pi(hi(c(x)))

= −
∑

c∈C

p(c(x))

pi(hi(c(x)))
∇pi|

T
hi(c(x)).2. Sum-of-Kullbak-Leibler Divergenes II

∂

∂hi

D̄
(

{pj(hj(x))}N
j=1||p̂(x)

)

=
∂

∂hi

N
∑

j=1

D(pj(hj(x))||p(x))

=
∂

∂hi

∑

c∈C

pi(hi(c(x))) log
pi(hi(c(x)))

p(c(x))

=
∑

c∈C

[

log
pi(hi(c(x)))

p(c(x))
+ 1

]

∇pi|
T
hi(c(x)).3. Sum-over-Class Squared Error

∂

∂hi

DSD({pj(hj(x))}N
j=1) =

∂

∂hi

∑

c∈C

N
∑

j=1

(pj(hj(c(x))) − p(c(x)))2

=
∑

c∈C

∂

∂hi

(pi(hi(c(x))) − p(c(x)))2

= 2
∑

c∈C

(pi(hi(c(x))) − p(c(x)))∇pi|
T
hi(c(x)).



604.3.4 ImplementationGiven one of the three minimization problems, the iterative greedy �uid algorithmof propagation templated desribed in [14℄ is used to approximate the solution. At eahiteration k, the updated transformation hk+1
i , for eah lass-onditional probability pi,is omputed using the update rule hk+1

i = hk
i

(

x + εvk
i (x)

). hk
i and vk

i are the urrentestimated transformation and veloity for the ith probability, and ε is the step size.In other words, eah �nal transformation hi is built up from the omposition of ktransformations.The veloity vk
i for eah iteration k is omputed as follows. First, ompute theupdated template estimate. For the optimization in Equation 4.6, this is normalizedgeometri mean,

p̂k(c(x)) =

(

∏N

i=1 pi(h
k
i (c(x)))

)
1
N

∑

c′∈C

(

∏N

i=1 pi(hk
i (c

′(x)))
)

1
N

,for eah lass omponent c. For the optimizations in Equations 4.7 and 4.8, this isthe arithmeti mean,
p̂n(c(x)) =

1

N

N
∑

i=1

pi(h
n
i (c(c))),for eah lass omponent c. Next, de�ne the body fore funtions as the variation ofthe lass posterior dispersion terms with respet to the transformation hi.1. Sum-of-Kullbak-Leibler Divergenes I

F k
i (x) = −

∑

c∈C

p(c(x))

pi(hk
i (c(x)))

∇pi|
T
hi(c(x)).2. Sum-of-Kullbak-Leibler Divergenes II

F k
i (x) =

∑

c∈C

[

log
pi(h

k
i (c(x)))

p(c(x))
+ 1

]

∇pi|
T
hk

i (c(x)).3. Sum-over-Class Squared Error
F k

i (x) = 2
∑

c∈C

(

pi(h
k
i (c(x))) − p(c(x))

)

∇pi|
T
hk

i (c(x))



61The veloity �elds are estimation and integrated to produe subsequent forwardand inverse transformations as before. The veloity �eld vk
i is omputed at eah iter-ation by applying the inverse of the di�erential operator L to the fore funtion, i.e.

vk
i (x) = L−1F k

i (x), where L = α∇2 + β∇(∇·) + γ is the Navier-Stokes operator. Thisomputation is arried out in the Fourier domain [51℄.For eah iteration the dominating omputation is the Fast Fourier Transform. Thus,the order of the algorithm is MNn log n where M is the number of iterations, N is thenumber of images to be registered, and n is the number of voxels in eah image. Theomplexity inreases only linearly as images are added, making the algorithm extremelysalable. Satisfatory orrespondene is typially ahieved after 100-200 iterations. Inpratie, a multi sale approah that initializes the �ne (voxel) sale registration is usedwith the up-sampled orrespondene omputed at a oarser sale level. The �ner salelevels only need to aount for residue from oarser sale levels and thus require farfewer iterations to onverge.4.4 A�ne and Di�eomorphi Atlas ResultsTo evaluate the performane of the atlas formation method, the algorithm, withsum-over-lass squared error distane in Equation 4.8, was applied to a set of ten lass-posterior mass funtion maps the database of healthy normal adult brains desribed inChapter 6. A mid-axial slie from eah lass-posterior is shown in Figure 4.2. There isnotieable variation between these anatomies, espeially in the ventriular region.Figure 4.3 shows the arithmeti mean of the lass posterior population followinga�ne alignment and the �nal large deformation di�eomorphi average atlas estimate.The arithmeti mean is blurry sine it is an �average� of the varying individual neu-roanatomies. Ghosting is evident around the lateral ventriles and near the boundaryof the brain. In the �nal estimate of non-linear atlas, these variations have been a-ommodated by the high-dimensional di�eomorphi registration.
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Figure 4.2: Sample Class Posterior PopulationAxial views of ten lass-posteriors. These images learly indiate large inter-subjet variability, espeially in the ventriular system.
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(a) A�ne Average

(b) Large Deformation Di�eomorphi AverageFigure 4.3: A�ne and Di�eomorphi AtlasesAxial views of the simple linear averaging of ten lass-posteriors (a) andlarge deformation di�eomorphi averaging of the same ten lass-posteriors.The di�eomorphi averaging produes a sharper atlas.



Chapter 5Atlas Stability1
An important question to ask of the atlas formation method in Chapter 4 is thefollowing: how many subjets are required to represent a population? That is, howmany images are neessary to form a stable atlas? For a given population of imagesand orresponding atlas, there are a number of ways to determine if an additional imagewould result in a su�iently di�erent atlas. In this dissertation, entropy and varianeof salar �elds, e.g. image intensities in T1-weighted MR images and the white matterlass in a multi-lass posterior map, is used to assess the stability of atlases. Thishapter fouses primarily on the entropy of salar intensity images. For atlas stability,it is the entropy introdued by the atlas reation method that is of interest rather thanthe intrinsi entropy assoiated with images of individual brain anatomy.Entropy, de�ned in Appendix A, has often been proposed as a good measure ofimage quality [33, 4℄ where sharp images have relatively low entropy. A distribution

psingle(i) = {1} for a single event random variable, e.g. an image with onstant intensity,has minimal entropy, H (psingle) = 0. The uniform distribution punif(i) =
{

1
N

, · · · , 1
N

},for a random variable with at least two events, orresponding to an image with multipleintensities ourring with equal frequeny, maximizes entropy, H (punif) = log N [16℄.That is, a blurry image, with a relatively �at histogram, will have greater entropy thana sharp image. Using multiple permutations of images from a database of images, thestability of atlases produed by proposed atlas formation method is studied by buildingatlases of inreasing population size. An atlas is onsidered stable when the entropyof its intensities or lass-posterior maps is stable with respetive to the number ofonstituent images.The remainder of this hapter is organized as follows. For illustrative purposes, the1This hapter is an extension of portions of the reent MICCAI paper [61℄.



65entropy omputation for a simple intensity image is provided in Setion 5.1. Imageintensity entropy is explored in terms of interpolation and sale in Setion 5.2. InSetion 5.3, a random permutation test is used to study atlas stability with respetto the number of images used in the atlas formation. The hapter onludes with asummary in Setion 5.4.5.1 Simple Intensity ExampleConsider the square 2D intensity image involving twenty-�ve voxels and assoiatedheight �eld interpretation shown in Figure 5.1. As a random variable, this image has�ve events orresponding to the image intensities, E = {50, 100, 150, 200, 250}. Theprobability mass funtion assoiated with this random variable is omputed as thenormalized histogram of the image intensities. For the intensities of this simple image,the normalized histogram is shown in Figure 5.2. The entropy of image intensities isomputed from the probability mass funtion p = {0.48, 0.32, 0.04, 0.08, 0.08} as
H(p) = −

5
∑

i=1

p(i) log p(i)

≈ 1.8 bits/event.That is, on average, the minimum number of bits to represent an intensity value in thissimple image is ⌈H(p)⌉ = 2.5.2 Entropy: Interpolation and Sale E�etsThis setion fouses on quantifying the e�ets on entropy of both the hoie of inter-polation method for image resampling and viewing images through various aperturesor at sale. In this, and subsequent results in this hapter, 256 histogram bins wereused to de�ne the probability mass funtions. Therefore, log2 256 = 8 bits is the upperlimit for the entropy omputation in these experiments.To examine the e�ets of interpolation on entropy, a simple binary image was on-struted and translated over a range of distanes using four di�erent interpolationmethods during the resampling. After eah resampling, the entropy of image intensi-ties was omputed. The simple image was hosen to be a uniformly white disk on auniformly blak bakground. To redue bias in the entropy omputation, the areas of
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Figure 5.1: Simple Intensity ImageA simple 5× 5 image with �ve distint intensities and orresponding salarheight �eld interpretation are shown on the left and right respetively.
Event (Intensity) Count Frequeny50 12 0.48100 8 0.32150 1 0.04200 2 0.08250 2 0.08Figure 5.2: Image Intensity HistogramThe �ve intensities in the image, the assoiated histogram, and normal-ized (to unity) histogram are shown in the left, middle, and right olumnsrespetively.
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Figure 5.3: Translated Disk EntropyEntropy plots for the disk image translated over a range of forty distanes,uniformly spaed over four voxels, using four interpolation methods: nearestneighbor, linear, ubi, and spline.the disk and bakground were onstruted to be equal. The results of translating thisdisk are shown in Figure 5.3. The higher order interpolation methods indue greaterentropy. Any evaluation of entropy for image quality will, therefore, have to onsiderthe method of interpolation used during image resampling.To examine the e�ets on entropy of viewing an image at sale, the same binarydisk image was low-pass �ltered with �fteen Gaussian kernels of inreasing sale. Theoriginal image and the �fteen blurred versions thereof are shown in Figure 5.4. Theentropy of the original and blurred disks is presented in Figure 5.5. For this example,entropy grows linearly with sale σ. The slope of the line is approximately 0.2 bits/σ.The entropy of the base image is appropriately one bit. That is, a pixel is either whiteor blak in equal proportions.
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Figure 5.4: Disk at SaleThe original disk, 256 × 256 voxels, (upper right) and the �fteen blurredversions produed by onvolution with a Gaussian �lter with sale param-eters σ = 1 . . . 15 pixels. The kernel width was de�ned to be 2σ + 1 pixelswide.
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Figure 5.5: Disk at Sale Entropy5.3 Random Permutation TestTo address the question of how many images are required to onstrut a stable atlasrandom permutation tests involving 2D salar T1-weighted images were investigated.In that work [61℄, rigid-based and di�eomorphi-based atlases were ompared in termsof stability through entropy of image intensities and variane in image intensities. Theresults from that prior work are reprodued in this setion.5.3.1 Atlas FormationAtlases were reated from an image database ontaining fourteen brain images pro-vided by the UNC Chapel Hill autism image analysis group. These images were inten-sity normalized and rigidly aligned. Due to the high memory demands of the imple-mentation, the algorithm was applied to 2D mid-axial slies. This database of imagesis shown in Figure 5.6. There is notieable large deformation variation between theseanatomies, espeially in lateral ventriles.
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Figure 5.6: 2D Population Data2D mid-axial slies from MR images of fourteen subjets.



71To quantify the stability of the estimated atlases, eleven atlas ohorts, {Ci}
12
i=2, weregenerated eah with twenty atlases derived from i images randomly seleted from theoriginal database of fourteen images. Two mutually exlusive atlases from C7 are shownin Figure 5.7 for both simple averaging and with the large deformation di�eomorphisms.The rigidly aligned atlases are blurry sine they are arithmeti averages of varyingindividual neuroanatomies. Ghosting is evident around the lateral ventriles and nearthe boundary of the brain. In the �nal di�eomorphi atlases, these regions appear muhsharper.
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Atlas of 7 images Atlas of 7 imagesFigure 5.7: Mutually Exlusive AtlasesBoth olumns represents an individual atlas onstruted by both arithmeti-ally averaging rigidly aligned images (top row) and estimating a di�eomor-phi atlas after 100 iterations (bottom row). These two atlases were formedfrom ompletely separate sets of images.
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Figure 5.8: Translated T1 Image EntropyEntropy plots for the fourteen images in the database over a range of fortydistanes, uniformly spaed over four voxels, using linear interpolation.5.3.2 Interpolation and Sale E�ets on EntropyAs in Setion 5.2, the e�ets on entropy of both interpolation, as used in imageresampling, and viewing images at sale are onsidered.To examine the e�ets of interpolation on entropy, eah of the fourteen images inthe database were a translated over a range of distanes using linear interpolation.After eah resampling, the entropy of image intensities was omputed. The mean andstandard deviation of entropy of these fourteen images over the range of distanes isshown in Figure 5.8. The fourteen images were intensity normalized and from subjetsof similar age whih may explain the rather tight variane observed in the entropyomputation.To examine the e�ets on entropy of viewing an image at sale, a single image takenfrom the database was low-pass �ltered with �fteen Gaussian kernels of inreasing sale.The original image and the �fteen blurred versions thereof are shown in Figure 5.9. Theentropy of the original and blurred images is presented in Figure 5.10. As with the diskexample, entropy grows linearly with sale σ, but after σ = 1 voxel. The slope of theline is approximately 0.1 bits/σ, half that of the disk example. It is interesting to notethat, for this image, using linear interpolation inreases the entropy to approximately
4.43 bits of entropy whih is similar to the 4.59 bits observed by blurring the image



74with σ = 1 voxels.
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Figure 5.9: T1 Image at Sale
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Figure 5.10: T1 Image at Sale Entropy5.3.3 Atlas StabilityTo evaluate the robustness and stability of the atlases, the mean and standarddeviation of the entropies of the original fourteen images were �rst omputed. To thisend, the mean and standard deviation of the atlas ohort entropies reated both bysimple arithmeti averaging of the rigidly aligned images and those produed by thedi�eomorphi method were ompared. These results are summarized in Figure 5.11.From this plot, one an notie that as atlas size inreases, the average atlas entropyinreases for atlases formed by simple intensity averaging, whereas the average entropydereases for atlases reated via di�eomorphism. The atlases also beome more stablewith respet to entropy as the standard deviation dereases with atlas size. After ohort
C10, the atlas entropy means appear to onverge. Note that the entropy of the largedeformation di�eomorphi atlases onverges to about 4.5 bits, approximately sameentropy of any of the shifted original images in the database. That is, to within thehoie of interpolation method, the large deformation di�eomorphi atlases are sharp.Another measure of atlas stability is the variane in image intensities. For eahatlas ohort, point-wise intensity mean and variane images were reated. For a givenohort Cs representing the N = 20 atlases {As

i (x)}N
i=1 of size s, the mean and varianeimages were omputed as follows

Ms(x) =
1

N

N
∑

i=1

As
i (x)
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Figure 5.11: Cohort Average EntropyFor omparison, the average entropy of the original fourteen images is 3.91bits with standard deviation 0.08 bits. The error bars represent one stan-dard deviation from the mean.



78and
Vs(x) =

1

N − 1

N
∑

i=1

(As
i (x) − Ms(x))2 .Cohort variane images for the large deformation di�eomorphi average and rigid av-erage atlases are shown in Figures 5.12 and 5.13 respetively. These images showredution of image intensity variation with the inrease in the number of subjets peratlas. This redution an be quantitatively observed through the relative variane sum

Vs

V2
, where

Vs =
∑

x∈Ω

Vs(x).This measure was omputed for both averaging methods and is shown in Figure 5.14.Both methods show onvergene in variane, whih, as with the entropy measure,indiate atlas stability is ahieved with about ten subjets for this dataset. That is,given these fourteen subjets, about ten images are needed to reate a stable, withrespet to the entropy and variane measures, atlas representing neuroanatomy.5.4 SummaryIn this hapter, entropy of image intensities was used to quantify atlas sharpness.A blurry image will exhibit greater entropy of intensities than a sharper image. Usingthis measure, it was shown that resampling an image using linear interpolation addsentropy to the image omparable to that of blurring the image with Gaussian kernelwith a width σ = 1 voxels. For atlas formation, entropy and image intensity varianewas used to address the question of how many subjets are required to produe a stableatlas. Random permutation tests were onduted to study atlas entropy and intensityvariane as a funtion of the number of images used to produe an atlas. It was shownthat, within the hoie of interpolation method, the large deformation di�eomorphiatlases were sharp after the inlusion of ten or more subjets. This number is ertainlydependent on the partiular population used. Atlas stability for larger and more varieddatabases may require more subjets. The results in this hapter exemplify the atlasstability methodology rather than provide an answer for all image databases.
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Chapter 6Aging Study via Atlases of NormalHealthy Brains
An important area of medial image analysis is the development of methods forautomated omputer-assisted assessment of disease. For example, methods for ana-lyzing loal strutural brain hange over time an provide markers for understandingdisease progression (e.g., Alzheimer's disease and shizophrenia). Early detetion ofdisease-spei� brain hanges is important for therapeuti response. This requires theestablishment of healthy norms to whih test subjets an be ompared. These normstypially take the form of a digital atlas onstruted from data derived from manyhealthy subjets generally from a wide age range. Healthy aging, however, induesstrutural hanges in the brain [67, 36℄. In young, healthy adults [35℄ and in non-demented older persons [82℄, analysis demonstrates that the aging proess is a ontin-uum with hanges evident before senesene. A omprehensive disussion of tehniquesused to examine the temporal dynamis of brain anatomy is provided in [100℄. Be-fore analyzing atlas-based brain hange studies, the onstrution of brain databases isreviewed.The design of brain databases an be ategorized into two main types: longitudinaldesign and ross-setional design. In longitudinal studies, the same subjets are sannedover time, typially with intersan intervals of one year. Cross-setional studies, byontrast, involve sanning many subjets of di�erent ages only one. While these studiesapture brain hanges of longer time periods, underlying brain hanges are harder todetet. This is a result of intersubjet variability. Multivariate modeling is often usedin ross-setional studies to partition variane observed in the database into spei�e�ets suh as age and sex. To aount fully for these e�ets, the Computer-Assisted



83Surgery and Imaging Laboratory (CASILab) at UNC Chapel Hill has onstruted anage-grouped MR image database of healthy subjets [73℄. A potentially diseased subjetan then be appropriately age- and sex-mathed to the image database.Temporal brain hange has been studied using a number of methods. An approahthat models brain deformation in Alzheimer's disease is presented in [28℄. This methoduses longitudinal data with one-year intervals. Pair-wise, in time, 3D non-linear im-age registration was performed for nine ontrol subjets and nine Alzheimer's patients.Warping images from one time point to the next provides some measure of tempo-ral smoothing. Another longitudinal method that analyzes transformations betweenortial maps of adolesent subjets using elasti image registration is desribed in [95℄.A voxel-based morphometri analysis of white matter, grey matter, and erebrospinal�uid volume hange using a large, 465-adult-subjet ross-setional database is pre-sented in [30℄. This method involves mapping eah subjet's anatomy to a templatefollowed by performing statistis on the resulting volumetri hanges. The hoie of asingle referene template may introdue a bias. Although four times larger and over-ing a similar age range to the UNC database, this database is skewed to a young adultpopulation in their twenties and thirties.The above 3D methods may be sensitive to noisy longitudinal measurements. Toaddress this issue, a fully 4D approah that simultaneously estimates longitudinal or-respondene (intra-subjet) and inter-subjet orrespondene between template andsubjet is presented in [89℄. The method is a generalization of the 3D method thatuses image intensity, edge, and geometri moment information as a feature vetor pro-posed by the authors in [88℄. A 4D math is obtained by mapping a set of �ative�points. A �distintiveness� measure is used to selet these �ative� points. During theregistration, a hierarhial approah is taken beginning with a smaller number of moredistint points and progressing to a larger number of less distint points. This methodwas applied to nine subjets taken from the Baltimore Longitudinal Study of Aging[82℄ where eah subjet was sanned one a year for �ve years.An age-ontinuous 4D spatiotemporal atlas would address the need for su�ienttemporal resolution. In this hapter, the multi-lass posterior atlas formation methoddeveloped in Chapter 4 is used to produe time sequenes by age of atlases, resultingin 4D spatiotemporal atlases. These disrete 4D atlases provide a step toward buildingage-ontinuous 4D spatiotemporal atlases. A ontinuous 4D spatiotemporal atlas wouldprovide the ideal age-based math for a new subjet. By examining the Jaobian mapsof dense transformations relating the spae of the �rst atlas in the sequene to the



84spae of eah subsequent atlas, loal volumetri hange through time an be studied.For this purpose, a program alled PMFAtlasBuilder was written using C++ librariesdeveloped at the radiation onology department at UNC Chapel Hill.The rest of this hapter is organized as follows. In Setion 6.1, the database ofmulti-modal MR brain images is detailed. The reation of the lass-onditional pos-terior maps representing the anatomial strutures in the MR database is desribedin Setion 6.2. The onstrution of individual spatial atlases is detailed in Setion 6.3with spatiotemporal atlas results presented in Setion 6.4. The hapter onludes witha summary in Setion 6.5.6.1 Brain MR Image DatabaseFor this dissertation, MR image data from the CASILab Healthy Subjet Database1was used. The database has 100 subjets, with twenty subjets in eah of �ve age ranges:19-29, 30-39, 40-49, 50-59, and 60+ years of age. The subjets are evenly split betweenfemales and males. Age distribution of the female and male subjets are shown in Figure6.1. All subjets were sreened for the presene of disease. Additionally, handednessand rae were also reorded. For eah subjet, several 3-Tesla 3D MR images wereaquired: a T1-weighted image (FLASH or MPRAGE or both), a T2-weighted image,a magneti resonane angiogram (MRA), and a di�usion tensor image (DTI). The voxelspaing and dimensions of this data is presented in Figure 6.2. The image aquisitiondetails an be found in Setion 3.3.The multi-modal nature of this database is depited in Figure 6.3 where the mid-axial slies of the youngest and oldest subjets of both sexes are shown. It is importantto note the ross-setional nature of this data. A spatiotemporal atlas onstruted fromthis database represents many subjets at di�erent ages rather than a single subjetat many ages. Therefore, any assessment of volumetri hange over time may have theonfound of inter-subjet variability.1The CASILab Healthy Subjet Database was produed by Dr. Elizabeth Bullitt, head of CASILabat UNC Chapel Hill. The work was funded by NIBIB-NIH grant R01 EB000219, 3D Cerebral VesselLoation for Surgial Planning.
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Figure 6.1: Database Subjet AgesAge distribution for the (a) female and (b) male subjets in the database.
Voxel Spaing (mm) Dimensions (voxels)T1-FLASH 1 × 1 × 1 176 × 256 × 176T1-MPRAGE 1 × 1 × 1 208 × 256 × 128T2 1 × 1 × 1 192 × 256 × 128MRA 0.5 × 0.5 × 0.8 448 × 448 × 128Figure 6.2: Image SizeInterior image size (voxel spaing) and exterior image size (dimensions).
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(a) T1-FLASH T2 MRA
(b) T1-FLASH T1-MPRAGE T2 MRA
() T1-FLASH T2 MRA
(d) T1-FLASH T1-MPRAGE T2 MRAFigure 6.3: Image Database SamplesMid-axial slies from the (a) youngest (20 year old) subjet, (b) the oldest(68 year old) female subjet, () the youngest (22 year old) male subjet,and (d) the oldest (79 year old) male subjet.



876.2 Class-Conditional Posterior MapsTo provide diret input to the PMFAtlasBuilder tool, lass-onditional posteriormaps were reated from the T1-weighted and T2-weighted images from the databasedesribed in Setion 6.1, following a protool similar to the one presented in a previousstudy [73℄ using the same database. Three tissue lasses (white matter, gray matter,and erebrospinal �uid) were de�ned using an expetation-maximization segmentationmethod2 based on an algorithm developed by van Leemput et al. [102, 101℄. In additionto the T1 and T2 images, a spatial probabilisti brain atlas [24℄ representing expertprior knowledge about brain strutures was used to drive the segmentation.Eah segmentation was produed in the spae of the T1 image resulting in prob-ability maps. For ease of algorithm implementation, an additional bakground tissuelass was added, resulting in four total lasses. The lass-onditional posterior mapsare represented mathematially as
pi(cj(x)|Īi)where the subsript i indiates the subjet number, c the tissue lass, and Ī the multi-modal image set. For the results presented in this hapter, c = {gray matter, whitematter, erebrospinal �uid, and bakground}, and Ī = {T1 image, T2 image}. Floatingpoint numbers were used to represent the data. Therefore, eah posterior map omprises

number of voxels × number of classes × data type size = 176 × 256 × 176 × 4 × 4 Bytes

= 126, 877, 696 Bytes

= 121 MBytes.6.3 Atlas FormationThis setion details the preproessing of the images in the Healthy Subjet Databaseof Setion 6.1 and provides algorithmi analysis of PMFAtlasBuilder. PMFAtlasBuilderwas run using the sum-over-lass squared error distane desribed in Setion 4.3.1. Allpreproessing and experiments desribed in Setion 6.4 were performed in the Neuro-Image Analysis Laboratories (NIAL) at UNC Chapel Hill using a SunFire V40z with2The expetion maximization segmention method used to produed the multi-lass posteriors wasdeveloped by Marel Prastawa et al. at the University of North Carolina at Chapel Hill [79℄.



88four AMD Opteron CPUs, 16GB of memory, and two 76GB hard drives.The �rst step in preproessing the data involved seleting a oordinate system towhih all the lass posteriors (produed in Setion 6.2) were a�nely normalized. Forthis purpose, a salar T1-atlas produed from �ve healthy adult subjets3 using theunbiased salar atlas formation method presented in [49℄ was used. As with the rawT1 and T2 images, this �ve-subjet atlas has isotropi 1mm spaing with dimensionsof 160 × 208 × 163 voxels.Using a program, alled areg, for a�ne registration of multi-modal images, we regis-tered intensity normalized T1 images from eah subjet to the spae of the �ve-subjetT1-atlas. This program was developed by Daniel Ruekert and Julia Shnabel at Impe-rial College London for their Image Registration Toolkit [86℄. This registration tool usesnormalized mutual information as the similarity riterion. Cubi spline interpolationwas used to resample the resulting images.The a�ne transformation parameters from the above registrations were then appliedto the lass posteriors from Setion 6.2, again using ubi spline interpolation. Theseimages were onverted from their original unsigned short data type format to single�oating point format for onveniene in the algorithm implementation, resulting inlass posterior maps of the size
PMF Data Size = Number of Voxels × Number of Classes × Data Type Size

= 160 × 208 × 163 × 4 × 4 bytes

= 86, 794, 240 bytes

≈ 82.8 MBytes.6.4 ResultsSpatiotemporal atlases were reated for both the female and male populations usingthe PMFAtlasBuilder tool. While preproessing the database, the segmentation toolfailed to produe lass-onditional probability maps for one female subjet and fourmale subjets. This appears to be a result of registration failure between the spatialprior used in the segmentation proess and the individual subjets. This is most likelydue to the a�ne registration failing to aommodate widely disparate skull shapes.For eah sex, the lass-onditional probability maps were ordered by subjet age.3These subjets partiipated in the Shizophrenia First Episode Study at UNC Chapel Hill.



89For the female population, this resulted in the set {pfemale
i (c|x)}i=1...49 where pfemale

1 and
pfemale

49 represent the youngest and oldest female subjets respetively. Similarly, forthe male population, the ordering resulted in the set {pmale
i (c|x)}i=1...46 where pmale

1 and
pmale

46 represent the youngest and oldest male subjets respetively. The spatiotemporalatlases were then reated by building a sequene of atlases, eah derived from a �xednumber of subjets in that ordering. The number of subjets used to build one of theindividual atlases is alled the atlas window width w. The jth atlas in the sequene isgenerated from the sub-population {pj(c|x)}j=i...i+w−1.Due to time onstraints atlas stability analysis for this database was not onduted.In the absene of that analysis, spatiotemporal atlases were reated using windowwidths of w = 10 and w = 15. PMFAtlasBuilder was run for 100 iterations to buildeah individual atlas. The female and male spatiotemporal atlases for window width
w = 10 are presented in Figure 6.4 and Figure 6.5 respetively. Similarly, the femaleand male spatiotemporal atlases for window width w = 15 are presented in Figure 6.6and Figure 6.7 respetively. Greater detail of the youngest and oldest individual femaleatlases for window widths of w = 10 and w = 15 are shown in Figures 6.8, 6.9, 6.10,and 6.11. Similarly, greater detail of the youngest and oldest individual male atlases isshown in Figures 6.12, 6.13, 6.14, and 6.15.The average age of the sub-populations used to reate eah individual atlas wasomputed to gain an understanding of how well-spaed in time the 4D spatiotemporalatlases are. These atlas ages and orresponding age di�erentials are presented in Figure6.16 and Figure 6.17 for window widths of ten and �fteen subjets respetively.6.4.1 Spatiotemporal Atlas StabilityTo measure spatiotemporal intra atlas stability aross onstituent individual 3Dspatial atlases, the sharpness and population variane of eah individual spatial atlaswas measured. Using the approah desribed in Chapter 5, entropy was omputed foreah lass-posterior map using 256 bins. The inter-time entropy trends are shown forfemale and male spatiotemporal atlases for window widths of w = 10 and w = 15in Figures 6.18 and 6.19 respetively. These trends indiate stability with respet toindividual atlas sharpness. Individual atlas sub-population variane was measured byonsidering the distane on the transformations relating eah onstituent member ofthe sub-population to the atlas. This distane is the veloity norm in Equation 3.5.These trends for window widths of w = 10 and w = 15 are presented in Figures 6.20



90and 6.21 respetively.6.4.2 Volumetri AnalysisWhen viewed as a time sequene of 3D spatial atlases, spatiotemporal atlases provideinformation regarding volumetri hange over time. To analyze this hange, per-lassvolumes were omputed for eah tissue lass using two methods. In the �rst method,the per-hannel volume V1 of a lass c was omputed as the sum of lass-posterior valuesover the whole spatial volume Ω,
V1(c) =

∑

x∈Ω

p(c|x).This approah assumes partial voluming of tissue lasses in eah voxel. In the seondmethod, the per-hannel volume V2 of a lass c was omputed as the sum of maximuma posteriori labels,
V2(c) =

∑

x∈Ω

l(c(x))where
l(c(x)) =

{

1 where c = argminc′∈{WM,GM,CSF,Background} p(c′|x)

0 otherwiseThis approah assumes a voxel is omprised of a single tissue lass. Volume trends usingboth V1 and V2 are presented for female and male atlases of width w = 10 subjets inFigures 6.22 and 6.23 respetively. Similarly, volume trends for the atlases of width
w = 15 are shown in Figures 6.24 and 6.25.The volume trends show a loss of grey matter and an inrease in erebrospinal �uidover time. The global loss of grey matter with age is well doumented, for examplein aforementioned 465-adult-subjet ross-setional study presented in [30℄. In theGood et al. study, the authors report no signi�ant global derease in white mattervolume with age. While this appears to be true for the female data presented in thisdissertation it holds for only the younger half of the male data. For the older half ofthe male population there is a notieable derease in white matter volume. There alsoappears to be a general derease in the total intraranial volume with age for the entire



91male population. Additionally, Good et al. report a steeper deline in grey mattervolume in males than in females whereas, in this dissertation, the grey matter lossappears to be similar for the female and male populations. One possible explanationfor the greater than expeted white matter loss and lower than expeted grey matterloss for seond half of the male population is the progressively poorer ontrast overtime between grey matter and white matter. For example, onsider oipital region inthe T1-FLASH and T2 images for the oldest male in Figure 6.3.There is agreement between the white matter volume of the individual atlases andthe average white matter volume of the sub-populations from whih those atlases wherereated. While this onsisteny holds for the gray matter lass, it does not hold for theerebrospinal �uid lass. The omputed erebrospinal �uid volumes for the individualatlases fall well below their orresponding sub-population averages. This is due to thethinning and, in plaes, destrution of ortial erebrospinal �uid voxels during thelinear interpolation used to resample the images during the registration proess. Sinemuh of the erebrospinal �uid is ortial, this e�et is quite pronouned. The e�etof linear interpolation on atlas volumes an be studied by omputing the volume of asingle lass-posterior map at sale. The lass-posterior map representing the youngestfemale subjet was blurred with a Gaussian kernel with σ = 0.5 and σ = 1.0 voxels.The lass volumes of these two blurred lass-posterior maps are ompared with thelass volumes of the original lass-posterior maps in Figure 6.26. As the lass-posteriormaps are blurred, the erebrospinal �uid volume dereases.Loal volumetri hange an be studied by analyzing the logarithm of Jaobian mapsderived from the transformation relating the youngest and oldest spatial atlases withina given spatiotemporal atlas. Figures 6.27 and 6.28 show these log-Jaobian maps forthe female and male populations for window widths w = 10 and w = 15 respetively.In these images, blue represents a volumetri ontration, green no hange, and redvolumetri expansion.6.5 SummaryIn this hapter, the multi-lass posterior atlas formation method was applied toa database of multi-modal images from ninety-�ve adult brains as part of a healthyaging study. In this study, 4D spatiotemporal atlases were reated for the male andfemale populations. This work is unique in that Fréhet mean atlases were reatedfor a number of time points. These mean atlases suggest an approximation for the



92line of best �t lass posteriors over time. Based on the results in Chapter 5, slidingwindows of ten and �fteen subjets were used to ensure temporal smoothness. All ofthis was failitated by the good age distribution of the subjets in the database used.Volumetri analysis of white-matter, grey-matter, and erebrospinal �uid hange overtime were onsistent with results from previous studies involving large databases. Theuse of sharp spatiotemporal atlases provides an opportunity to analyze loal volumetrihange over time.
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Figure 6.4: Female Spatiotemporal Atlas, w = 10Mid-axial slie view of the forty individual female atlases generated using awindow width of ten subjets.
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Figure 6.5: Male Spatiotemporal Atlas, w = 10Mid-axial slie view of the thirty-seven individual male atlases generatedusing a window width of ten subjets.
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Figure 6.6: Female Spatiotemporal Atlas, w = 15Mid-axial slie view of the thirty-�ve individual female atlases generatedusing a window width of �fteen subjets.
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Figure 6.7: Male Spatiotemporal Atlas, w = 15Mid-axial slie view of the thirty-two individual male atlases generated usinga window width of �fteen subjets.
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(a) Mid-Axial Slie
(b) Mid-Coronal Slie
() Mid-Sagittal SlieFigure 6.8: Youngest Female Atlas, w = 10The mid-axial (a), mid-oronal (b), and mid-sagittal () slies of the atlasbuilt from the lass posteriors representing the ten youngest females in thedatabase.
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(a) Mid-Axial Slie
(b) Mid-Coronal Slie
() Mid-Sagittal SlieFigure 6.9: Oldest Female Atlas, w = 10The mid-axial (a), mid-oronal (b), and mid-sagittal () slies of the atlasbuilt from the lass posteriors representing the ten oldest females in thedatabase.
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(a) Mid-Axial Slie
(b) Mid-Coronal Slie
() Mid-Sagittal SlieFigure 6.10: Youngest Female Atlas, w = 15The mid-axial (a), mid-oronal (b), and mid-sagittal () slies of the atlasbuilt from the lass posteriors representing the ten youngest females in thedatabase.
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(a) Mid-Axial Slie
(b) Mid-Coronal Slie
() Mid-Sagittal SlieFigure 6.11: Oldest Female Atlas, w = 15The mid-axial (a), mid-oronal (b), and mid-sagittal () slies of the atlasbuilt from the lass posteriors representing the ten oldest females in thedatabase.
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(a) Mid-Axial Slie
(b) Mid-Coronal Slie
() Mid-Sagittal SlieFigure 6.12: Youngest Male Atlas, w = 10The mid-axial (a), mid-oronal (b), and mid-sagittal () slies of the atlasbuilt from the lass posteriors representing the ten youngest males in thedatabase.



102

(a) Mid-Axial Slie
(b) Mid-Coronal Slie
() Mid-Sagittal SlieFigure 6.13: Oldest Male Atlas, w = 10The mid-axial (a), mid-oronal (b), and mid-sagittal () slies of the at-las built from the lass posteriors representing the ten oldest males in thedatabase.
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(a) Mid-Axial Slie
(b) Mid-Coronal Slie
() Mid-Sagittal SlieFigure 6.14: Youngest Male Atlas, w = 15The mid-axial (a), mid-oronal (b), and mid-sagittal () slies of the atlasbuilt from the lass posteriors representing the ten youngest males in thedatabase.
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(a) Mid-Axial Slie
(b) Mid-Coronal Slie
() Mid-Sagittal SlieFigure 6.15: Oldest Male Atlas, w = 15The mid-axial (a), mid-oronal (b), and mid-sagittal () slies of the at-las built from the lass posteriors representing the ten oldest males in thedatabase.
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() Female Atlas Age Di�erentials (d) Male Atlas Age Di�erentialsFigure 6.16: Atlas Age Trends, w = 10Average age of subjets used to reate the (a) female atlases and the (b)male atlases. Di�erential age for plots (a) and (b) is shown in () and (d)respetively.
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Figure 6.18: Entropy Trends, w = 10Class-posterior entropy trends for the female (a) and male (b) atlases.
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Figure 6.19: Entropy Trends, w = 15Class-posterior entropy trends for the female (a) and male (b) atlases.
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Figure 6.20: Veloity Norm Trends, w = 10Veloity norm trends for the female (a) and male (b) atlases.
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Figure 6.22: Female Volume Trends, w = 10Volume trends for (1a-1d) V1 and (2a-2d) V2 for the female atlases of widthof ten subjets for (1a&2a) white matter, (1b&2b) grey matter, (1&2)erebrospinal �uid, and (1d&2d) total brain volume.
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Figure 6.23: Male Volume Trends, w = 10Volume trends for (1a-1d) V1 and (2a-2d) V2 for the male atlases of widthof ten subjets for (1a&2a) white matter, (1b&2b) grey matter, (1&2)erebrospinal �uid, and (1d&2d) total brain volume.
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Figure 6.24: Female Volume Trends, w = 15Volume trends for (1a-1d) V1 and (2a-2d) V2 for the female atlases of widthof �fteen subjets for (1a&2a) white matter, (1b&2b) grey matter, (1&2)erebrospinal �uid, and (1d&2d) total brain volume.
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Figure 6.25: Male Volume Trends, w = 15Volume trends for (1a-1d) V1 and (2a-2d) V2 for the female atlases of widthof �fteen subjets for (1a&2a) white matter, (1b&2b) grey matter, (1&2)erebrospinal �uid, and (1d&2d) total brain volume.
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Figure 6.26: Volume at SaleClass volumes for the youngest female and two blurred versions of the same.
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(a)

(b) Figure 6.27: Log-Jaobian Map: Oldest to Youngest, w = 10Log-Jaobian maps of the transformation relating the oordinate spaes ofthe (a) oldest to youngest female and (b) oldest to youngest male. The olorin these �gures represents volumetri hange, with respet to the original,of 32% or less for blue, 100% for green, 316% or more for red.
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(a)

(b) Figure 6.28: Log Jaobian Map: Oldest to Youngest, w = 15Log-Jaobian maps of the transformation relating the oordinate spaes ofthe (a) oldest to youngest female and (b) oldest to youngest male. The olorin these �gures represents volumetri hange, with respet to the original,of 32% or less for blue, 100% for green, 316% or more for red.



Chapter 7Conlusion
This hapter reviews and disusses the ontributions of this dissertation and presentsfuture work possibilities. The ontributions are revisited and disussed in Setion 7.1and a disussion of future researh goals and new appliation areas is presented inSetion 7.2. This hapter onludes with a summary in Setion 7.3.7.1 Review of ContributionsThis setion summarizes the ontributions of this dissertation. The ontributionsare restated in the order presented in the dissertation along with a disussion of howthey were aomplished.1. A theoretial development showing that minimizing sum-of-Kullbak-Leibler di-vergenes, in either ordering of parameters, maximizes a lower bound on Bayesprobability of error, a measure of indistinguishability between probability distribu-tions.Multi-lass onditional posteriors were the model hosen to represent underly-ing tissue struture for the multi-modal image set registration and atlas forma-tion. Chapter 2 investigated two methods for produing probability distribu-tion averages via minimizing sum-of-Kullbak-Leibler divergenes. It was shownthat p̂ = argminp D̄

(

{pi}
N
i=1||p

) produed the arithmeti mean and that p̂ =

argminp D̄
(

p||{pi}
N
i=1

) produed the normalized geometri mean. Both averagingmethods were determined via the method of Lagrange multipliers.



117Using the arithmeti mean, the sum-of-Kullbak-Leibler dispersion D̄
(

{pi}
N
i=1||p̂

)was diretly related to generalized Jensen-Shannon divergene. Existing Bayeserror bounds on Jensen-Shannon divergene presented in [60℄ therefore providedBayes error bounds on the population-entri dispersion measure. Minimizing
D̄
(

{pi}
N
i=1||p̂

) maximizes a lower bound on Bayes probability of indistinguisha-bility error.Using the normalized geometri mean, the sum-of-Kullbak-Leibler dispersion
D̄
(

p̂||{pi}
N
i=1

) was found to provide an upper bound to a dispersion funtion forinterpreting pair-wise Bayes error. Spei�ally, bounds on Bayes error in terms ofthe Bhattaharrya oe�ient were used to show that minimizing D̄
(

p̂||{pi}
N
i=1

)also maximizes a lower bound on Bayes probability of indistinguishability error.2. A novel multi-modal image set registration method is presented. To the author'sknowledge this is the only method that inorporates an arbitrary number of multi-modal images per subjet. An advantageous onsequene of this framework isinverse-invariant (symmetri) registration.A Bayesian framework for generating inter-subjet large deformation transforma-tions between two multi-modal sets of images was presented in Chapter 3. Fun-damental to this method was the assumption that human brain anatomy onsistsof �nitely enumerable strutures. These strutures are aptured by estimatinga lass-onditional posterior map for eah struture. The modality independentregistration framework was ahieved by jointly estimating the posterior prob-abilities assoiated with the multi-modal image sets and the high-dimensionalregistration transformations mapping the posteriors. To drive the registration,relative entropy between eah of the posteriors and an evolving posterior average,in an independent oordinate spae, was minimized. Using the posterior averageprovided an intrinsially inverse-invariant registration framework. The registra-tion framework was based on the mathing problem formulated via �uid �owsintrodued by [14℄.3. An extension of the above framework to unbiased multi-lass atlas formation.The multi-modal image set registration framework was extended to large defor-mation multi-lass posterior atlas estimation in Chapter 4. The method generates



118a representative anatomial template from an arbitrary number of topologiallysimilar multi-modal image sets. The de�nition of the average atlas follows fromthe notion of Fréhet means. The generated atlas is the lass posterior that re-quires the least amount of deformation energy to be deformed into every lassposterior. The method is omputationally pratial in that omputation timegrows linearly with the number of image sets. To the author's knowledge thisis �rst unbiased atlas building method that is based on a population of sets ofmulti-modal images. Construting suh an atlas provides pair-wise orrespon-dene between any two image sets via transformations through said atlas.4. The use of information theory to evaluate atlas stability.Entropy of image intensities was used to quantify atlas sharpness in Chapter5. A blurry image will exhibit greater entropy of intensities than a sharper im-age. Using this measure, it was shown that resampling an image using linearinterpolation adds entropy to the image omparable to that of blurring the imagewith Gaussian kernel with a width σ = 1 voxels. For atlas formation, entropywas used to address the question of how many subjets are required to produe astable atlas. Random permutation tests were onduted to study atlas entropy asa funtion of the number of images used to produe an atlas. It was shown that,within the hoie of interpolation method, the large deformation di�eomorphiatlases were sharp after the inlusion of ten or more subjets. This number isertainly dependent on the partiular population used.5. An appliation of the atlas formation to an aging study involving multi-modalbrain image data from ninety-�ve subjets.In Chapter 6, the multi-lass posterior atlas formation method was applied to adatabase of multi-modal images from ninety-�ve adult brains as part of a healthyaging study. In this study, 4D spatiotemporal atlases were reated for the maleand female populations. This work is unique in that Fréhet mean atlases werereated for a number of time points. These mean atlases suggest an approxi-mation for the line of best �t lass posteriors over time. Based on the resultsin Chapter 5, sliding windows of ten and �fteen subjets were used to ensuretemporal smoothness. All of this was failitated by the good age distributionof the subjets in the database used. Volumetri analysis of white-matter, grey-



119matter, and erebrospinal �uid hange over time were onsistent with results fromprevious studies involving large databases.7.2 Future WorkThis setion presents several extensions to this dissertation and disusses areas forfuture researh. This setion is divided into three setions: Setion 7.2.1 desribes thereation of ontinuous 4D spatiotemporal atlases, Setion 7.2.2 proposes the extensionof multi-modal image set registration to images of subjets with pathology, and Setion7.2.3 desribes the appliation of multi-modal image set registration to multi-enterstudies were MR images are aquired from sanners of di�erent �eld-strength.7.2.1 Continuous 4D Spatiotemporal AtlasCan regression methods be applied to the 3D spatial atlases at disrete time points?What notion of distane, and subsequently interpolation (partiularly temporal), areappropriate in this setting? This dissertation has attempted to provide an approximatesolution by moving average windows. The main idea is to overome the limitations ofviewing data as belonging to age groups by approximating a ontinuous proess.7.2.2 Registration of Images Involving PathologiesThe multi-modal image set registration as presented here might be potentially sig-ni�ant in various appliations whih rely on the measurement of image sets. Forexample, multi-modal imaging is standard in the imaging of pathologies suh as tu-mors and lesions. Registration between images presenting pathology and images ofhealthy subjets is a hallenging task sine spae-oupying lesions have to be treateddi�erently from in�ltrating lesions. Spei�ally, the registration needs to aommodateboth loal spatial deformation and loal hange of image intensity. Existing registra-tion method involving salar images based on image brightness do not aommodatepathologies. In the formation of the lass posteriors, one an expliitly assign lassesto the various healthy and pathologial tissues.



1207.2.3 Multi-Center StudiesAnother potential appliation for this method is the registration of images aquiredfrom sanners of di�erent �eld-strength. Image set registration aross di�erent sannersbeomes an inreasingly important omponent in multi-enter studies. For example,in studies of developmental hanges overing multiple years, and in follow-up studiesof diseases with hange of sanner tehnology. Images aquired from di�erent sannerspotentially have di�erent ontrasts and di�erent spatial distortions. The method pre-sented in this dissertation may help address these problems as the registration would bebased on underlying anatomial strutures rather than simply image intensities. Thisassumes a robust segmentation method apable of handling the output from sannersof di�erent �eld strength.7.3 SummaryThis dissertation presented a Bayesian framework for generating large deformationtransformations between multi-modal image sets. An image set may be omprisedof an arbitrary number of multi-modal images. To the author's knowledge, this isthe �rst suh method apable of exploiting the omplementary information providedby multi-modal image sets. This modality independent registration framework wasahieved by jointly estimating the multi-lass posterior probability maps assoiatedwith the multi-modalmodal image sets and large deformation di�eomorphisms mappingthese posterior maps. This framework was extended to large deformation multi-lassposterior map atlas estimation. The method generates an unbiased sharp representativeanatomial template from an arbitrary number of topologially similar multi-modalimage sets. This method was applied to an aging study involving ninety-�ve subjetsto study global and loal volumetri hange. This researh shows promise for futurework in building 4D spatiotemporal atlases, image registration involving subjets withpathologies, and multi-enter studies.



121Appendix AInformation Theoreti Measures
In this appendix, the basi quantities of information theory: entropy, relative en-tropy, and mutual information, are presented in their disrete form. These measures arefuntionals of probability distributions and, hene, are not dependent on atual valuesassumed by random variables. Additionally, a more reent measure, Jensen-Shannondivergene, is also presented. This measure is used in Chapter 2 to de�ne inequalitiesinvolving Bayes probability of error Pe. In the medial image analysis ontext, imageintensities an be interpreted as random variables whose behavior an be haraterizedin terms of probability distributions upon whih the basi quantities of informationtheory an be applied. This dissertation fouses on tissue lass-onditional probabilitymass funtion maps.A.1 EntropyThe onept of entropy was �rst developed in the �eld of thermodynamis as itsseond law whih states that the entropy of an isolated system is non-dereasing. Insearhing for a quantity whih measures how muh, or at what rate, information isprodued by a proess, Shannon [87℄, building on the work of Hartley [38℄, developedthe onept of entropy to measure the average unertainty of a random variable.De�nition A.1 (Unertainty). The unertainty, U , of a random variable X is givenby

U(x) = − log p(x)where the probability p(x) is the probability distribution haraterizing X .
U(x) is monotoni in p(x) and positive for all values of p(x), sine 0 ≤ p(x) ≤ 1.Both of these properties are desirable features of a measure. Also, the least and greatestunertainty our when p(x) = 1 and p(x) = 0 respetively. This presents an intuitiveunderstanding for the measure, sine if X = x happens with probability 1 then one isertain of X and, hene, have the least unertainty.



122De�nition A.2 (Entropy). The entropy of a random variable X, H(X), is de�ned asthe average unertainty over all possible values X may assume:
H(X) = Ep[U(x)]

= Ep[− log p(x)]

= −
∑

x∈X

p(x) log p(x).Entropy is typially measured in bits, nats, and Hartleys for logarithms of bases two,
e, and ten respetively. Unless otherwise stated, entropies stated in this dissertationwill be measured in bits. For an axiomati derivation of entropy see [87℄.There are several important properties of entropy noted below:

• Non-negativity : H(X) ≥ 0.
• Upper bound : H(X) ≤ log(N). Entropy is maximum when all probabilities areequally likely; equivalently, when the average unertainty is greatest.
• Chain rule: H(X, Y ) = H(X) + H(X|Y ).
• Conditioning redues entropy : H(X|Y ) ≤ H(X).
• Conavity : H({p(xi)}) is onave in p.The notion of entropy an be extended to multiple random variables as shown below.De�nition A.3 (Joint Entropy). The joint entropy, H(X, Y ), of a pair of disreterandom variables X and Y with joint distribution p(x, y) is de�ned by

H(X, Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log p(x, y).De�nition A.4 (Conditional Entropy). Let X and Y be disrete random variableswith joint distribution p(x, y) and onditional distribution p(x|y). Then the entropyonditioned on a single event is de�ned by
H(X|Y = y) = −

∑

x∈X

p(x|y) log p(x|y).



123The onditional entropy, or equivoation, is then de�ned by
H(X|Y ) =

∑

y∈Y

p(y)H(X|Y = y)

= −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y)

= −
∑

x∈X

∑

y∈Y

p(x, y) log p(x|y).A.2 Kullbak-Leibler DivergeneWith this well-de�ned notion of entropy, Kullbak and Leibler [58℄ de�ne a distanemeasure between two distributions.De�nition A.5 (Kullbak-Leibler Divergene). The Kullbak-Leibler divergene (orrelative entropy) between two probability distributions p and q over the same disreterandom variable X is de�ned by the expeted logarithm of likelihood ratio of p to q

D(p||q) = Ep

[

log
p(x)

q(x)

]

=
∑

x∈X

p(x) log
p(x)

q(x)
.In a signal model, this measure an be interpreted as the ine�ieny of assum-ing that q is true when p is true. That is, given a model expressed as a probabilitydistribution p, one an then measure how far an observation, also expressed by a prob-ability distribution, q, deviates from p using relative entropy. Additionally, D(p||q)an be viewed as the average number of bits that are wasted by enoding events fromdistribution p with a ode based on distribution q.The Information Inequality theorem provides the basi properties of Kullbak-Leibler divergene.Theorem A.1 (Information Inequality). Let p(x) and q(x) be two probability massfuntions assoiated with random variable X. Then DKL(p||q) ≥ 0 with equality if andonly if p(x) = q(x) for all x ∈ X.Proof. See [16℄, page 26, for an argument based on Jensen's Inequality and fat thatthe funtion − log is onvex.



124Although a useful distane funtion, Kullbak-Leibler divergene is not a metri. ByTheorem A.1, D(·||·) satis�es the non-negativity and identity of indisernables prop-erties of a metri, De�nition 1.1. D(·||·), however, is not a metri sine it does notobey the symmetry and triangle inequality properties. Consider the following simpleounterexample.Example A.1 (Kullbak-Leibler divergene is not a metri.). Consider the followingthree probability mass funtions,
p(x) =

{

1

2
,
1

2

}

q(x) =

{

3

4
,
1

4

}

r(x) =

{

7

8
,
1

8

}

.In omputing Kullbak-Leibler divergenes between these probability mass funtions,note that
D(p||q) =

∑

x

p(x) log
p(x)

q(x)

=
1

2
log

(

1

2
·
4

3

)

+
1

2
log

(

1

2
·
4

1

)

=
1

2
log

(

2

3

)

+
1

2
log 2

=
1

2
−

1

2
log 3 +

1

2

= 1 −
1

2
log 3and

D(q||p) =
∑

x

q(x) log
q(x)

p(x)

=
3

4
log

(

3

4
·
2

1

)

+
1

4
log

(

1

4
·
2

1

)

=
3

4
log

3

2
+

1

4
log

1

2

=
3

4
log 3 −

3

4
−

1

4

=
3

4
log 3 − 1.That is, D(p||q) > D(q||p), and, hene, D(·||·) is not symmetri. In omputing two



125more Kullbak-Leibler divergenes, one �nds that
D(q||r) =

∑

x

q(x) log
r(x)

q(x)

=
3

4
log

(

3

4
·
8

7

)

+
1

4
log

(

1

4
·
8

1

)

=
3

4
log

6

7
+

1

4
log 2

=
3

4
log 2 +

3

4
log 3 −

3

4
log 7 +

1

4

= 1 +
3

4
log 3 −

3

4
log 7and

D(p||r) =
∑

x

p(x) log
p(x)

r(x)

=
1

2
log

(

1

2
·
8

7

)

+
1

2
log

(

1

2
·
8

1

)

=
1

2
log

4

7
+

1

2
log 4

=
1

2
log 4 −

1

2
log 7 + 1

= 2 −
1

2
log 7.Now onsider the expression

D(p||q) + D(q||r) − D(p||r) = 1 −
1

2
log 3 + 1 +

3

4
log 3 −

3

4
log 7 − 2 +

1

2
log 7

=
1

4
(log 3 − log 7)

< 0

⇒ D(p||q) + D(q||r) < D(p||r).That is, D(·||·) does not obey the triangle inequality.A.3 Jensen-Shannon DivergeneA generalized notion of Kullbak-Leibler divergene, Jensen-Shannon divergene,will be used in Chapter 2 to provide bounds on Bayes probability of error. The



126Kullbak-Leibler divergene is always non-negative, but an be unbounded (e.g., when
p1(x) 6= 0 and p2(x), D(p1||p2) = ∞) and is, as noted above, not symmetri. A morereent measure between two probability distributions is the Jensen-Shannon divergeneintrodued by [60℄ whih is both bounded and symmetri.De�nition A.6 (Jensen-Shannon Divergene). Let π = {π1, π2} with π1, π2 ≥ 0 and
π1 + π2 = 1 be prior probabilities on two probability distributions p1(x) and p2(x). TheJensen-Shannon divergene between p1 and p2 de�ned by

JSπ(p1||p2) = H(π1p1 + π2p2) − π1H(p1) − π2H(p2)

= π1D(p1||Mπ) + π2D(p2||Mπ)where Mπ = π1p1 + π2p2 is alled the mutual soure of p1 and p2 [23℄.De�nition A.7 (Generalized Jensen-Shannon Divergene). The Jensen-Shannon di-vergene an be generalized to measure the distane between any �nite number of prob-ability distributions as
JSπ({pi}

N
i=1) = H

(

N
∑

i=1

πipi

)

−

N
∑

i=1

πiH(pi)

= −
∑

x∈X

(

N
∑

i=1

πipi(x)

)

log

(

N
∑

j=1

πjpj(x)

)

+
N
∑

i=1

πi

∑

x∈X

pi(x) log pi(x)

=
N
∑

i=1

∑

x∈X

πipi(x)

[

− log

(

N
∑

j=1

πjpj(x)

)

+ log pi(x)

]

=

N
∑

i=1

∑

x∈X

πipi(x) log
pi(x)

∑N

j=1 πjpj(x)

=

N
∑

i=1

πiD(pi||Mπ)where Mπ =
∑N

j=1 πjpj with πi ≥ 0 and ∑N

i=1 πi = 1.Although not used in the framework proposed by this dissertation, for ompleteness,this setion onludes with the de�nition of the last of three fundamental informationtheoreti measures, mutual information. Mutual information will be disussed later inthe ontext of related work.



127A.4 Mutual InformationThe last of the three basi information theoreti measures is mutual information:the measure of the amount of information one random variable X has about another
Y .De�nition A.8 (Mutual Information). Mutual information is de�ned as the relativeentropy between the joint distribution and the produt of two probability mass funtions:

I(X; Y ) = D(p(x, y)||p(x)p(y))

=
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.Mutual information measures the dependene of random variables X and Y . When

X and Y are independent p(x, y) = p(x)p(y) and I(X; Y ) = 0. Mutual informationan also be expressed in terms of entropy as follows:
I(X; Y ) = H(X) − H(X|Y ) (A.1)

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X, Y ).In equation A.1, mutual information is viewed as the redution in the unertaintyof X due to the knowledge of Y . There are several important properties of mutualinformation noted below:
• Non-negativity : I(X; Y ) ≥ 0.
• Symmetry : I(X; Y ) = I(Y ; X).
• Self-information: I(X; X) = H(X).
• Independene: I(X; Y ) = 0 ⇐⇒ X ⊥ Y .
• Information explanation:I(X; Y ) ≤ H(X) and I(Y ; X) ≤ H(Y ).A.5 Multivariate Mutual InformationThe two notions of mutual information in Setion A.4 an be extended to the mul-tivariate setting.



128A.5.1 Entropy RedutionThe �rst extension follows the �entropy redution� idea espoused by [1℄ whih is ageneralization of Equation A.1,
I(X1; . . . ; XN) =

N
∑

k=1

∑

{i1,...,ik}⊆{1,...,N}

(−1)k+1H(pi1 , . . . , pik).In this ontext, multivariate mutual information amount N ≥ 2 random variables anbe interpreted as the measure of their simultaneous interation [105, 56℄. It an beequivalently interpreted as a multi-way similarity measure among random variables.If the value is zero, the N random variables do not simultaneously interat. Thisgeneralization of mutual information an result in negative values. As an example,onsider the three random variable ase, {Xi}
3
i=1,

I(X1, X2, X3) = H(X1) + H(X2) + H(X3)

− H(X1, X2) − H(X1, X3) − H(X2, X3)

+ H(X1, X2, X3).Note that the symmetry property still holds.A.5.2 Redundany MeasureThe generalization of mutual information based on De�nition A.8 preserves thenon-negativity property. This is the approah of [105℄ where they extend the relativeentropy onept to a �redundany measure�
R(X1, . . . , XN) = D

(

p(x1, . . . , xN )||
N
∏

k=1

p(xk)

)

=

N
∑

k=1

H (p(xk)) − H (p(x1, . . . , xN)) .By the Information Inequality Theorem, TheoremA.1, this measure is non-negativeand equal to zero if the Xi are stohastially independent. The higher the redundanyamong the random variables, the stronger their funtional dependeny [46, 47℄



129Appendix BStudy of Convergene
B.1 IntrodutionHow likely is it that the atual optimum in the multi-modal image set registrationost funtion is ahieved? It is impossible to know for real data, sine there is no wayto know the true orrespondene. For syntheti transformations and syntheti imageintensities, the algorithm omes lose to the global minimum of the ost funtion. Usingsyntheti data, this doument presents a qualitative evaluation of the registration and aquantitative evaluation of the data likelihood estimation under the multi-variate normaldistribution model.B.2 Syntheti Data Example1To evaluate the performane of the algorithm, a syntheti 2D dataset was gener-ated. Spei�ally, a geometri prior, a known transformation, and two syntheti imageswhose radiometri harateristis are statistially similar to atual T1- and T2-weightedMR images were de�ned. A four-lass atlas prior omprised of onentri ellipses wasgenerated using Matlab. The subsequent omposite label image was generated by thesuperposition of the individual lasses. Both the atlas and omposite label image areshown in Figure B.1. Additionally, a transformation was onstruted using sinusoidaldisplaements, whih was then applied to the omposite label image to produe thefoundation for the syntheti image set. The multi-modal syntheti image set was re-ated from two images that were simulated by sampling from a multi-variate Gaussiandistribution with di�erent means and ovarianes for eah of the lasses in the deformedlabel image. The deformed label image and the orresponding multi-modal images areshown in Figure B.2. The algorithm was run for �fty iterations with ten steps of thelarge deformation di�eomorphi registration per iteration. The �nal segmentation anddeformation estimates are also shown in Figure B.3.1This setion represents portions of the WBIR 2003 paper [62℄.
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(a) (b) () (d) (e)Figure B.1: Geometri Atlas PriorThe manually generated geometri four-lass atlas prior (a-d) and the or-responding omposite labeled image (e).

(a) (b) ()Figure B.2: Syntheti Image SetThe deformed label image (a), the syntheti image derived from T1 samples(b), and the syntheti image derived from T2 samples ().



131

(a) (b)Figure B.3: Estimated DeformationThe estimated deformation expressed as a warped regular grid (a) and theestimated segmentation (b) following �fty iterations of the algorithm.To evaluate the registration the algorithm was run, again with �fty iterations, hold-ing the transformation �xed to the identity map. With the transformation �xed tothe identity map, the expetation maximization provided the maximum likelihood so-lution. The �nal estimated segmentation was then ompared to the registration-basedsegmentation, with results shown in Figure B.4. By examining the regions where thetwo segmentations di�er from the ground truth label image, it is lear the registrationhas improved the segmentation.In both invoations of the algorithm, the lass means and ovarianes were olletedand ompared. Figure B.5 shows the �nal relative norms for the estimated and atualmeans and ovarianes at the �nal iteration. For all lasses, the registration has im-proved estimates for both the means and ovarianes. The onvergene of the meanand ovariane estimates using registration is shown in Figure B.6. This �gure showsthat the estimates of the means and ovarianes have onverged quikly when the trans-formation is �xed to the identity map. When registration is added, the estimates ofthe means and ovarianes ontinue to improve as the estimation of the transformationbetween the atlas and the subjet onverges. This exempli�es the e�etiveness of thealternating nature of the algorithm. These results show that the registration improvesthe segmentation by aommodating loal variability.
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(a) (b) ()

(d) (e)Figure B.4: Final SegmentationThe top row shows the ground truth label image (a), the �nal segmentationestimation using registration (b), and the regions where this segmentationdi�ers from the ground truth (). The bottom row shows the �nal seg-mentation estimation without using registration (d), and regions where thissegmentation di�ers from the ground truth (e).
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Class ||µ̂ci
−µci

||

||µci
||

w/ reg. ||µ̂ci
−µci

||

||µci
||

w/o reg. ||Σ̂ci
−Σci

||F
||Σci

||F
w/ reg. ||Σ̂ci

−Σci
||F

||Σci
||F

w/o reg.
c1 0.0047 0.1216 0.0450 7.0588
c2 0.0152 0.1168 0.2104 1.8164
c3 0.0960 0.0939 0.0206 0.0811
c4 0.0046 0.0046 0.0081 0.0266Figure B.5: Relative Norm StatistisThe �rst two olumns of numbers are the means at the �nal iteration µ̂cirelative to the atual means µci

using registration and �xed identity map.The last two olumns show the same for the relative ovarianes using theFrobenius norm, ||A||F =
√

tr (AAT ).
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Figure B.6: ConvergeneThe left olumn shows the onvergene of means and ovarianes usingregistration. The right olumn shows the same using the �xed identitytransformation.
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