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ABSTRACT
SUNGKYU JUNG: Asymptotics for High Dimension, Low Sample Size data

and Analysis of Data on Manifolds.
(Under the direction of Dr. J. S. Marron.)

The dissertation consists of two research topics regarding modern non-standard data an-

alytic situations. In particular, data under the High Dimension, Low Sample Size (HDLSS)

situation and data lying on manifolds are analyzed. These situations are related to the sta-

tistical image and shape analysis.

The first topic is an asymptotic study of the high dimensional covariance matrix. In partic-

ular, the behavior of eigenvalues and eigenvectors of the covariance matrix is analyzed, which

is closely related to the method of Principal Component Analysis (PCA). The asymptotic

behavior of the Principal Component (PC) directions, when the dimension tends to infinity

with the sample size fixed, is investigated. We have found mathematical conditions which

characterize the consistency and the strong inconsistency of the empirical PC direction vec-

tors. Moreover, the conditions where the empirical PC direction vectors are neither consistent

nor strongly inconsistent are revealed, and the limiting distributions of the angle formed by

the empirical PC direction and the population counterpart are presented. These findings help

to understand the use of PCA in the HDLSS context, which is justified when the conditions

for the consistency occur.

The second part of the dissertation studies data analysis methods for data lying in curved

manifolds that are the features from shapes or images. A common goal in statistical shape

analysis is to understand variation of shapes. As a means of dimension reduction and visual-

ization, there is a need to develop PCA-like methods for manifold data. We propose flexible

extensions of PCA to manifold data: Principal Arc Analysis and Analysis of Principal Nested

Spheres. The methods are implemented to two important types of manifolds. The sample

space of the medial representation of shapes, frequently used in image analysis to parame-

terize the shape of human organs, naturally forms curved manifolds, which we characterize

as direct product manifolds. Another type of manifolds we consider is the landmark-based
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shape space, proposed by Kendall. The proposed methods in the dissertation capture major

variations along non-geodesic paths. The benefits of the methods are illustrated by several

data examples from image and shape analysis.
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Chapter 1

Introduction

This dissertation demonstrates development, theoretical study, and implementation of statis-

tical methods for non-standard data, where conventional statistical methods are sometimes

not directly applicable. The non-standard data are increasingly emerging, examples of which

are the data with High Dimension, Low Sample Size (HDLSS, or the large p, small n) and

the data that naturally lie on curved manifolds. Specifically, datasets with those properties

are frequently observed in image and shape analysis, genomics, and functional data. These

application areas together span a new statistical field in which traditional concepts need to be

re-considered and development of new methodologies is required. The dissertation addresses

two important aspects of this broad field: The HDLSS asymptotics, where the limiting opera-

tion has the dimension growing with the sample size fixed, to understand the use of Principal

Component Analysis (PCA) in the HDLSS context; Development of PCA-like methods for

manifold data, where the proposed methods intuitively capture major non-linear variations in

lower dimension.

1.1 Motivations and Problems

The work is mainly motivated by statistical problems arising in image and shape analysis. The

image analysis concerns extraction of information from an image, or set of images, usually in a

digital form. The field of image analysis is broad, where mathematician, computer scientists,

engineers, medical researchers and statisticians have contributed in different aspects of the

area, separately or in collaborative fashion. Statistical image analysis puts a distributional

assumption on images (either on the population of images or an image itself), develops sta-



tistical procedures to obtain meaningful information from the images. A subcategory of the

broad field concerns an object found in images (e.g. human brain from an image of MRI),

where the set of objects is under investigation. The statistical shape analysis focuses on the

object shape in the image.

A shape can be represented by many different methods, examples of which are the me-

dial representations (Siddiqi and Pizer (2008)), a point correspondence model and spherical

harmonic representations (Gerig et al. (2004)), the traditional landmark-based shapes (Book-

stein (1991), Dryden and Mardia (1998)) and a newly developed functional representation

for shapes (Srivastava et al. (2010)). A challenge in shape analysis is that natural sample

spaces of those shape representations are usually not Euclidean spaces but curved manifolds.

In particular, the statistical methods that benefit from Euclidean geometry are not directly

applicable for the manifold-valued objects. This motivates statistical study of manifold-valued

random variables.

Another challenge in the image analysis is that the dimensionality of the representations

is very high. Due to advances in modern technology, obtaining high resolution images became

easier. However, the sample size (i.e. the number of observations) stays low especially in the

medical image analysis because of the high cost in obtaining medical images such as MRI and

CT. Hall et al. (2005) termed the situation as High Dimension, Low Sample Size (HDLSS)

context, which becomes increasingly common and is observed not only in medical imaging but

also in genomics, chemometrics, and functional analysis.

In the broad field of image analysis, we focus on data analyses in the sample space of the

representations, called feature space. Specifically, we wish to give insight into the following

basic statistical tasks:

1. Exploratory statistics and visualization of important structure: Given a random object

or a set of observations of those in a non-Euclidean and multi-dimensional feature space,

the first task for a statistician is to provide exploratory statistics. This includes finding

a central location (mean), measure of variability (variance), and patterns in the data

set.

2. Dimension reduction: When the dimension of the Euclidean feature space is high, we
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wish to find an affine subspace of smaller dimension in a way that we do not lose

important variation. If the feature space is a non-Euclidean curved manifold, we wish

to find a sub-manifold of smaller dimension with great variance contained.

3. Estimation of probability distribution: A probability distribution can be assumed with

fewer parameters if we choose to work with the subspace (or the sub-manifold) found in

the dimension reduction.

The Principal Component Analysis (PCA) plays an important role in all of those problems.

PCA is often used in multivariate analysis for dimension reduction and visualization of

important modes of variation. It is also understood as an estimation of the population princi-

pal components by the sample principal components. PCA is commonly credited to Hotelling

(1933) and its common references are Muirhead (1982) and Jolliffe (2002). The objective of

PCA is to capture most of the variability, of a multidimensional random vector or a set of

observations consisting of a large number of measurements, in a low dimensional subspace.

When the sample space is a Euclidean (linear) space, PCA finds a sequence of affine subspaces

or a set of orthogonal direction vectors. Optimal choice of this sequence can be characterized

in two equivalent ways: maximization of the variance captured by the affine subspace or min-

imization of the variance of the residuals. In the Euclidean space, PCA is usually computed

through the eigen-decomposition of covariance matrices.

We discuss two different views of the PCA, namely the forward and backward stepwise

views, later in Part II of the dissertation. These views are first introduced in Marron et al.

(2010), which stems from the work in this dissertation.

Now, consider using PCA in the image or shape analysis, which in fact is a common routine

for data analysts. While the traditional PCA is well defined for random vectors, we have two

concerns; First of all, the sample size is usually too low but the dimension of the sample space

is very high; Second, the natural sample space of the features of images or shapes is not the

flat Euclidean space, but a curved manifold. A simple application of Euclidean PCA usually

fails in the case. There are two different but related research questions:

1. What is the behavior of PCA in the high dimension low sample size context?

2. How to generalize PCA for manifold-valued objects?

3



Part I and II of the dissertation answer the first and second questions, respectively. A

short summary is given in the next section.

1.2 Summary and Contributions

In Part I of the dissertation, Euclidean PCA is asymptotically studied when the dimension d

grows, while the sample size n is fixed. In particular, we are interested in the situations when

the PCA works in the HDLSS situation and when it fails. The success and failure of PCA are

well described by the consistency of the empirical Principal Component (PC) directions ûi (or

the ith eigenvector of the covariance matrix, see Section 2.1) with its population counterpart

ui, under the limiting operation d → ∞ and n fixed. Since the size of the direction vectors

ui, ûi are increasing as d grows, the discrepancy between directions is measured by the angle

formed by the directions. We say ûi is :

• consistent with ui if Angle(ûi, ui) → 0 as d → ∞;

• strongly inconsistent with ui if Angle(ûi, ui) → π/2 as d → ∞.

While the consistency is the case we desire, the strong inconsistency is somewhat counterin-

tuitive since the angle π/2 is indeed the largest possible value of the angle. In other words,

the estimate ûi of ui loses its connection to the population structure and becomes completely

arbitrary. We see that in HDLSS asymptotics when ûi is not consistent, it is often not just

inconsistent but strongly inconsistent. The mathematical mechanism of these situations is the

main topic of Chapter 2. In short, when the population PC variance is large such as of order

dα, α > 1, the corresponding PC direction estimate is consistent. If not so large, i.e. α < 1,

then the corresponding PC direction estimate is strongly inconsistent.

The distributional assumptions in the study are general and intuitive. Gaussianity is

relaxed into a ρ-mixing under some permutation and a moment condition. While the ρ-

mixing assumption is most appropriate for a time series data set (because of the ordering

of the variables), we relax the assumption by allowing any permutation of variable ordering.

Thus the assumption makes sense for gene expression microarray data and image or shape

data. See Section 2.1.1 for detailed assumptions.

4



We also considered a case where PC directions are not distinguishable, which occurs when

some eigenvalues of the covariance matrix are identical. In Chapter 2, we consider a sub-

space spanned by those indistinguishable PC directions, and develop a notion of subspace

consistency.

A natural question arises after we see that the exponent α in the order of PC variance

dα is the main driver between consistency (α > 1) and strong inconsistency (α < 1). What

can we expect at the boundary between two cases? Chapter 3 discusses topics related to this

question. We find that the angles do not degenerate (either to 0 or π/2) but weakly converge to

distributions with support in (0, π/2). We provide explicit forms of the limiting distributions

in Sections 3.2 and 3.3. We further extend the HDLSS geometric representation (i.e. modulo

rotation, n independent samples converge to vertices of a regular n simplex) found in Hall

et al. (2005) and Ahn et al. (2007) into three different HDLSS representations, which gives an

intuition in understanding a transition between consistency and strong inconsistency.

Part I of the dissertation is concluded with a discussion on open problems and a literature

review; see Chapter 4.

The second part of the dissertation introduces some developments in generalization of

PCA to manifold-valued data. We begin by introducing examples of specific manifolds, that

are feature spaces in image analysis (Section 5.1). This gives a motivation to focus on specific

types of manifolds. We briefly describe some basic Riemannian geometry used in the analysis

and some specific manifolds we focus in Section 5.2. In particular, we focus on spheres and

direct product of those with Euclidean space.

A common goal in analyzing these manifold data is to understand the variability. PCA,

when appropriately modified and implemented for manifolds, provides a very effective means

of analyzing the major modes of variation. The main contribution of Part II is to provide

flexible extensions of PCA to manifold data. Briefly, the main idea in improving PCA is to

make the method adaptive to certain non-linear structures of the data while the desirable

properties of PCA are inherited.

To elaborate the work intuitively, let us assume that the manifold is the usual unit sphere

S2 := {x ∈ R3 : ∥x∥ = 1}. An analogue of a straight line on a sphere is a great circle, also

referred to as a geodesic. A principal component direction on the sphere is represented by

5



a great circle. As in the standard PCA, one may find a mean first then fit a great circle as

the first PC direction. The second and higher PC directions are found among all great circles

orthogonal to the first PC (geodesic). However, we found out that this standard approach may

lead to an ineffective representation of the data, as discussed in Section 6.2. To resolve this

issue, we took a reverse viewpoint in generalizing PCA, called backward approach, where the

dimensionality of approximating subspaces (or submanifolds) is successively reduced. That

is, analogous to the backward variable selection in regression, we remove the least important

component first. This backward approach agrees with the standard PCA in Euclidean space

but not in manifolds. The backward stepwise viewpoint gives a common root in generalization

of PCA to non-linear spaces. In Section 5.4 the two different viewpoints of the usual PCA is

discussed, and we point out that the backward approach is suitable for extension of PCA to

manifold data.

The backward approach not only works well when the standard approach fails, but also

gives a flexibility in capturing variations. The generalized PCA by the backward approach

can be relaxed to find a small circle (e.g. the Tropic of Cancer) of the sphere, adaptive to the

data. The resulting principal arcs capture the variation in the data set more succinctly and

serve as principal components for visualization and dimension reduction.

The two methods proposed in Part II are generalizations of PCA to manifold-valued vari-

ables. Chapter 6 discusses Principal Arc Analysis for direct product manifolds; Chapter

7 discusses Analysis of Principal Nested Spheres for hyperspheres and the shape spaces of

Kendall (1984).

The direct product manifold is a class of specially structured manifolds. The sample

spaces of medial shape representations, diffeomorphisms, point distribution models, points

and normals models and size-and-shapes can all be considered as a special form of direct

product manifolds. We propose to use a transformation of non-Euclidean data into Euclidean

coordinates, then a composite space of Euclidean data and the transformed non-Euclidean

data gives a space suitable for further analysis including non-linear dimension reduction,

visualization, and modeling with fewer parameters. Principal Arc Analysis consists of 1)

estimation of the principal circle, which is the basis for transformations, 2) choices of the

transformations, and 3) ad-hoc tests to suppress overfitting in principal arcs. Chapter 6 also

6



discusses an application of Principal Arc Analysis to medial shape representations data set.

Analysis of Principal Nested Spheres can be viewed as an extension of Principal Arc

Analysis to higher dimensional spheres Sd and Kendall’s shape space. Since the dimension of

the sphere is now higher than the simple 2, the geometry involved is a bit more complicated

than the usual sphere. We define nested spheres, which are in a special form of sub-manifolds of

Sd, as a basis for decomposition of the hypersphere. Geometry of nested spheres are discussed

in depth in Section 7.8. Simply put, Principal Nested Spheres are fitted nested spheres that

capture most of the variances in the data. We discuss application of Analysis of Principal

Nested Spheres to Kendall’s shape space in Section 7.6, as well as several real data examples

in Section 7.7. We exemplify that the proposed method results in a succinct description of

real data set in fewer dimension than alternative methods in literature.
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Part I

PCA in High Dimension, Low
Sample Size Context
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Chapter 2

PCA consistency in HDLSS context

Since traditional tools of multivariate statistical analysis were designed for the n > d case, it

should not be surprising that they often do not work properly for the HDLSS data. However,

the method of PCA has been seen to sometimes be very effective in the HDLSS context, and is

widely used as a dimension reduction technique. In this chapter we investigate the asymptotic

behaviors of PCA when d tends to infinity while n is fixed, which provide the appropriate

analysis to study the HDLSS context. In short, the asymptotics characterizes when Euclidean

PCA works and when it fails. The work presented in this chapter is based on Jung and Marron

(2009).

2.1 Introduction and summary

The High Dimension, Low Sample Size (HDLSS) data situation occurs in many areas of

modern science and the asymptotic studies of this type of data are becoming increasingly

relevant. We will focus on the case that the dimension d increases while the sample size n is

fixed as done in Hall et al. (2005) and Ahn et al. (2007). The d-dimensional covariance matrix

is challenging to analyze in general since the number of parameters is d(d+1)
2 , which increases

even faster than d. Instead of assessing all of the parameter estimates, the covariance matrix

is usually analyzed by Principal Component Analysis (PCA). PCA is often used to visualize

important structure in the data, as shown in Figure 2.1. The data in Figure 1, described in

detail in Bhattacharjee et al. (2001) and Liu et al. (2008), are from a microarray study of lung

cancer. Different symbols correspond to cancer subtypes and Figure 2.1 shows the projections

of the data onto the subspaces generated by PC1 and PC2 (left panel) and PC1 and PC3
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Figure 2.1: Scatterplots of data projected on the first three PC directions. The dataset contains 56
patients with 2530 genes. There are 20 Pulmonary Carcinoid (plotted as +), 13 Colon
Cancer Metastases (∗), 17 Normal Lung (◦), and 6 Small Cell Carcinoma (×). In spite of
the high dimensionality, PCA reveals important structure in the data.

(right panel, respectively) directions. This shows the difference between subtypes is so strong

that it drives the first three principal components. This illustrates common occurrence: the

data have important underlying structure which is revealed by the first few PC directions.

PCA is also used to reduce dimensionality by approximating the data with the first few

principal components.

For both visualization and data reduction, it is critical that the PCA empirical eigenvec-

tors reflect true underlying distributional structure. Hence our focus is on the underlying

mechanism which determines when the sample PC directions converge to their population

counterparts as d → ∞. For example, we quantify situations where the dominant sample

eigenvectors are revealing important underlying structure in the data as in Figure 2.1. In gen-

eral we assume d > n. Since the size of the covariance matrix depends on d, the population

covariance matrix is denoted as Σd and similarly the sample covariance matrix, Sd, so that

their dependency on the dimension is emphasized. PCA is done by eigen-decomposition of a

covariance matrix. The eigen-decomposition of Σd is

Σd = UdΛdU
′
d,
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where Λd is a diagonal matrix of eigenvalues λ1,d > λ2,d > · · · > λd,d and Ud is a matrix of

corresponding eigenvectors so that Ud = [u1,d, u2,d, . . . , ud,d]. Sd is similarly decomposed as

Sd = ÛdΛ̂dÛ
′
d.

Ahn et al. (2007) developed the concept of HDLSS consistency which was the first inves-

tigation of when PCA could be expected to find important structure in HDLSS data. Our

main results are formulated in terms of three related concepts:

1. consistency : The direction ûi,d is consistent with its population counterpart ui,d if

Angle(ui,d, ûi,d) −→ 0 as d → ∞. The growth of dimension can be understood as

adding more variation. The consistency of sample eigenvectors occurs when the added

variation supports the existing structure in the covariance or is small enough to be

ignored.

2. strong inconsistency : In situations where ûi,d is not consistent, a perhaps counter-

intuitive HDLSS phenomenon frequently occurs. In particular, ûi,d is said to be strongly

inconsistent with its population counterpart ui,d in the sense that it tends to be as

far away from ui,d as possible, that is, Angle(ui,d, ûi,d) −→ π
2 as d → ∞. Strong in-

consistency occurs when the added variation obscures the underlying structure of the

population covariance matrix.

3. subspace consistency : When several population eigenvalues indexed by j ∈ J are similar,

the corresponding sample eigenvectors may not be distinguishable. In this case, ûj,d will

not be consistent for uj,d but will tend to lie in the linear span, span{uj,d : j ∈ J}. This

motivates the definition of convergence of a direction ûi,d to a subspace, called subspace

consistency ;

Angle(ûi,d, span{uj,d : j ∈ J}) −→ 0

as d → ∞. This definition essentially comes from the theory of canonical angles dis-

cussed by Gaydos (2008). That theory also gives a notion of convergence of subspaces,

that could be developed here.

In this chapter, a broad and general set of conditions for consistency and strong inconsis-
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tency are provided. Section 2.2 develops conditions that guarantee the non-zero eigenvalues

of the sample covariance matrix tend to a increasing constant, which are much more general

than those of Hall et al. (2005) and Ahn et al. (2007). This asymptotic behavior of the sample

covariance matrix is the basis of the geometric representation of HDLSS data. Our result

gives broad new insight into this representation as discussed in section 2.3. The central issue

of consistency and strong inconsistency is developed in section 2.4, as a series of theorems.

For a fixed number κ, we assume the first κ eigenvalues are much larger than the others. We

show that when κ = 1, the first sample eigenvector is consistent and the others are strongly

inconsistent. We also generalize to the κ > 1 case, featuring two different types of results

(consistency and subspace consistency) according to the asymptotic behaviors of the first κ

eigenvalues. All results are combined and generalized in the main theorem (Theorem 2.5).

Proofs of theorems are given in section 2.5.

Further discussions on the boundary case where the PC directions are neither consistent

nor strongly inconsistent are deferred to Chapter 3. Relevant literatures are reviewed and

discussed later at Chapter 4.

2.1.1 General setting

Suppose we have a d × n data matrix X(d) = [X1,(d), . . . , Xn,(d)] with d > n, where the

d-dimensional random vectors X1,(d), . . . , Xn,(d) are independent and identically distributed.

We assume that each Xi,(d) follows a multivariate distribution (which does not have to be

Gaussian) with mean zero and covariance matrix Σd. Define the sphered data matrix Z(d) =

Λ
−1/2
d U ′

dX(d). Then the components of the d × n matrix Z(d) have unit variances, and are

uncorrelated with each other. We shall regulate the dependency (recall for non-Gaussian data,

uncorrelated variables can still be dependent) of the random variables in Z(d) by a ρ-mixing

condition. This allows serious weakening of the assumptions of Gaussianity while still enabling

the law of large numbers that lie behind the geometric representation results of Hall et al.

(2005).

The concept of ρ-mixing was first developed by Kolmogorov and Rozanov (1960). See

Bradley (2005) for a clear and insightful discussion. For −∞ 6 J 6 L 6 ∞, let FL
J denote

the σ-field of events generated by the random variables (Zi, J 6 i 6 L). For any σ-field A, let

12



L2(A) denote the space of square-integrable, A measurable (real-valued) random variables.

For each m > 1, define the maximal correlation coefficient

ρ(m) := sup |corr(f, g)|, f ∈ L2(F j
−∞), g ∈ L2(F∞

j+m),

where sup is over all f , g and j ∈ Z. The sequence {Zi} is said to be ρ-mixing if ρ(m) → 0

as m → ∞.

While the concept of ρ-mixing is useful as a mild condition for the development of laws of

large numbers, its formulation is critically dependent on the ordering of variables. For many

interesting data types, such as microarray data, there is clear dependence but no natural

ordering of the variables. Hence we assume that there is some permutation of the data which

is ρ-mixing. In particular, let {Zij,(d)}di=1 be the components of the jth column vector of Z(d).

We assume that for each d, there exists a permutation πd : {1, . . . , d} 7−→ {1, . . . , d} so that

the sequence {Zπd(i)j,(d) : i = 1, . . . , d} is ρ-mixing.

In the following, all the quantities depend on d, but the subscript d will be omitted for

the sake of simplicity when it does not cause any confusion. The sample covariance matrix is

defined as S = n−1XX ′. We do not subtract the sample mean vector because the population

mean is assumed to be 0. Since the dimension of the sample covariance matrix S grows, it

is challenging to deal with S directly. A useful approach is to work with the dual of S. The

dual approach switches the role of columns and rows of the data matrix, by replacing X by

X ′. The n× n dual sample covariance matrix is defined as SD = n−1X ′X. An advantage of

this dual approach is that SD and S share non-zero eigenvalues. If we write X as UΛ
1
2Z and

use the fact that U is a unitary matrix,

nSD = (Z ′Λ
1
2U ′)(UΛ

1
2Z) = Z ′ΛZ =

d∑
i=1

λi,dz
′
izi, (2.1)

where the zi’s, i = 1, . . . , d, are the row vectors of the matrix Z. Note that nSD is commonly

referred to as the Gram matrix, consisting of inner products between observations.
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2.2 HDLSS asymptotic behavior of the sample covariance ma-

trix

In this section, we investigate the behavior of the sample covariance matrix S when d → ∞

and n is fixed. Under mild and broad conditions, the eigenvalues of S, or the dual SD, behave

asymptotically as if they are from the identity matrix. That is, the set of sample eigenvectors

tends to be an arbitrary choice. This lies at the heart of the geometric representation results

of Hall et al. (2005) and Ahn et al. (2007) which are studied more deeply in section 2.3. We

will see that this condition readily implies the strong inconsistency of sample eigenvectors, see

Theorem 2.5.

The conditions for the theorem are conveniently formulated in terms of a measure of

sphericity

ϵ ≡ tr2(Σ)

dtr(Σ2)
=

(
∑d

i=1 λi,d)
2

d
∑d

i=1 λ
2
i,d

,

proposed and used by John (1971, 1972) as the basis of a hypothesis test for equality of

eigenvalues. Note that these inequalities always hold:

1

d
6 ϵ 6 1.

Also note that perfect sphericity of the distribution (i.e. equality of eigenvalues) occurs only

when ϵ = 1. The other end of the ϵ range is the most singular case where in the limit as the

first eigenvalue dominates all others.

Ahn et al. (2007) claimed that if ϵ ≫ 1
d , in the sense that ϵ−1 = o(d), then the eigenvalues

of SD tend to be identical in probability as d → ∞. However, they needed an additional

assumption (e.g. a Gaussian assumption on X(d)) to have independence among components

of Z(d), as described in example 2.1. We extend this result to the case of arbitrary distributions

with dependency regulated by the ρ-mixing condition as in section 2.1.1, which is much more

general than either a Gaussian or an independence assumption. We also explore convergence

in the almost sure sense with stronger assumptions. Our results use a measure of sphericity for

part of the eigenvalues for conditions of a.s. convergence and also for later use in section 2.4.
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In particular, define the measure of sphericity for {λk,d, . . . , λd,d} as

ϵk ≡
(
∑d

i=k λi,d)
2

d
∑d

i=k λ
2
i,d

.

For convenience, we name several assumptions used in this chapter made about the measure

of sphericity ϵ:

• The ϵ-condition: ϵ ≫ 1
d , i.e.

(dϵ)−1 =

∑d
i=1 λ

2
i,d

(
∑d

i=1 λi,d)2
→ 0 as d → ∞. (2.2)

• The ϵk-condition: ϵk ≫ 1
d , i.e.

(dϵk)
−1 =

∑d
i=k λ

2
i,d

(
∑d

i=k λi,d)2
→ 0 as d → ∞. (2.3)

• The strong ϵk-condition: For some fixed l > k, ϵl ≫ 1√
d
, i.e.

d−
1
2 ϵ−1

l =
d

1
2
∑d

i=l λ
2
i,d

(
∑d

i=l λi,d)2
→ 0 as d → ∞. (2.4)

Remark 2.1. Note that the ϵk-condition is identical to the ϵ-condition when k = 1. Similarly,

the strong ϵk-condition is also called the strong ϵ-condition when k = 1. The strong ϵk-

condition is stronger than the ϵk condition if the minimum of l’s which satisfy (2.4), lo, is as

small as k. But, if lo > k, then this is not necessarily true. We will use the strong ϵk-condition

combined with the ϵk-condition.

Note that the ϵ-condition is quite broad in the spectrum of possible values of ϵ: It only

avoids the most singular case. The strong ϵ-condition further restricts ϵl to essentially in the

range ( 1√
d
, 1].

The following theorem states that if the (strong) ϵ-condition holds for Σd, then the sample

eigenvalues behave as if they are from a scaled identity matrix. It uses the notation In for the

n× n identity matrix.

15



Theorem 2.1. For a fixed n, let Σd = UdΛdU
′
d, d = n+1, n+2, . . . be a sequence of covariance

matrices. Let X(d) be a d × n data matrix from a d-variate distribution with mean zero and

covariance matrix Σd. Let Sd = ÛdΛ̂dÛ
′
d be the sample covariance matrix estimated from X(d)

for each d and let SD,d be its dual.

(1) Assume that the components of Z(d) = Λ
− 1

2
d U ′

dX(d) have uniformly bounded fourth

moments and are ρ-mixing under some permutation. If (2.2) holds, then

c−1
d SD,d −→ In, (2.5)

in probability as d → ∞, where cd = n−1
∑d

i=1 λi,d.

(2) Assume that the components of Z(d) = Λ
− 1

2
d U ′

dX(d) have uniformly bounded eighth

moments and are independent to each other. If both (2.2) and (2.4) hold, then c−1
d SD,d → In

almost surely as d → ∞.

The (strong) ϵ-condition holds for quite general settings. The strong ϵ-condition combined

with the ϵ-condition holds under;

(a) Null case: All eigenvalues are the same.

(b) Mild spiked model: The first m eigenvalues are moderately larger than the others, for

example, λ1,d = · · · = λm,d = C1 · dα and λm+1,d = · · · = λd,d = C2, where m < d, α < 1

and C1, C2 > 0.

The ϵ-condition fails when;

(c) Singular case: Only the first few eigenvalues are non-zero.

(d) Exponential decrease: λi,d = c−i for some c > 1.

(e) Sharp spiked model: The first m eigenvalues are much larger than the others. One

example is the same as (b) but α > 1.

The polynomially decreasing case, λi,d = i−β , is interesting because it depends on the

power β;

(f-1) The strong ϵ-condition holds when 0 6 β < 3
4 .
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Figure 2.2: The ϵ-condition is satisfied by the mild spike and polynomial decrease case, but is satisfied
by the exponential decrease.

(f-2) The ϵ-condition holds but the strong ϵ-condition fails when 3
4 6 β 6 1.

(f-3) The ϵ-condition fails when β > 1.

Another family of examples that includes all three cases is the spiked model with the

number of spikes increasing, for example, λ1,d = · · · = λm,d = C1 · dα and λm+1,d = · · · =

λd,d = C2, where m = ⌊dβ⌋, 0 < β < 1 and C1, C2 > 0;

(g-1) The strong ϵ-condition holds when 0 6 2α+ β < 3
2 ;

(g-2) The ϵ-condition holds but the strong ϵ-condition fails when 3
2 6 2α+ β < 2;

(g-3) The ϵ-condition fails when 2α+ β > 2.

Figure 2.2 shows some examples depicting when the ϵ-condition holds and fails.

2.3 Geometric representation of HDLSS data

Suppose X ∼ Nd(0, Id). When the dimension d is small, most of the mass of the data lies

near origin. However with a large d, Hall et al. (2005) showed that Euclidean distance of X

to the origin is described as

∥X∥ =
√
d+ op(

√
d). (2.6)
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Moreover the distance between two samples is also rather deterministic, i.e.

∥X1 −X2∥ =
√
2d+ op(

√
d). (2.7)

These results can be derived by the law of large numbers. Hall et al. (2005) generalized those

results under the assumptions that d−1
∑d

i=1Var(Xi) → 1 and {Xi} is ρ-mixing.

Application of part (1) of Theorem 2.1 generalizes these results. Let X1,(d), X2,(d) be

two samples that satisfy the assumptions of Theorem 2.1 part (1). Assume without loss of

generality that limd→∞ d−1
∑d

i=1 λi,d = 1. The scaled squared distance between two data

points is

∥X1,(d) −X2,(d)∥2∑d
i=1 λi,d

=

d∑
i=1

λ̃i,dz
2
i1 +

d∑
i=1

λ̃i,dz
2
i2 − 2

d∑
i=1

λ̃i,dzi1zi2,

where λ̃i,d =
λi,d∑d
i=1 λi,d

. Note that by (2.1), the first two terms are diagonal elements of c−1
d SD,d

in Theorem 2.1 and the third term is an off-diagonal element. Since c−1
d SD,d → In, we have

(2.7). (2.6) is derived similarly.

Remark 2.2. If limd→∞ d−1
∑d

i=1 λi,d = 1, then the conclusion (2.5) of Theorem 2.1 part (1)

holds if and only if the representations (2.6) and (2.7) hold under the same assumptions in

the theorem.

In this representation, the ρ-mixing assumption plays a very important role. The following

example, due to John Kent, shows that some type of mixing condition is important.

Example 2.1 (Strong dependency via a scale mixture of Gaussian). Let X = Y1U+σY2(1−U),

where Y1, Y2 are two independent Nd(0, Id) random variables, U = 0 or 1 with probability 1
2

and independent of Y1, Y2, and σ > 1. Then,

∥X∥ =

 d
1
2 +Op(1) w.p. 1

2

σd
1
2 +Op(1) w.p. 1

2

Thus, (2.6) does not hold. Note that since Cov(X) = 1+σ2

2 Id, the ϵ-condition holds and

the variables are uncorrelated. However, there is strong dependency, i.e. Cov(z2i , z
2
j ) =

(1+σ2

2 )−2Cov(x2i , x
2
j ) = (1−σ2

1+σ2 )
2 for all i ̸= j which implies that ρ(m) > c for some c > 0, for

all m. Thus, the ρ-mixing condition does not hold for all permutation. Note that, however,
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under Gaussian assumption, given any covariance matrix Σ, Z = Σ− 1
2X has independent

components.

Note that in the case X = (X1, . . . , Xd) is a sequence of i.i.d. random variables, the results

(2.6) and (2.7) can be considerably strengthened to ∥X∥ =
√
d + Op(1), and ∥X1 − X2∥ =

√
2d + Op(1). The following example shows that strong results are beyond the reach of

reasonable assumption.

Example 2.2 (Varying sphericity). Let X ∼ Nd(0,Σd), where Σd = diag(dα, 1, . . . , 1) and

α ∈ (0, 1). Define Z = Σ
− 1

2
d X. Then the components of Z, zi’s, are independent standard

Gaussian random variables. We get ∥X∥2 = dαz21+
∑d

i=2 z
2
i . Now for 0 < α < 1

2 , d
− 1

2 (∥X∥2−

d) ⇒ N (0, 1) and for 1
2 < α < 1, d−α(∥X∥2 − d) ⇒ z21 , where ⇒ denotes convergence in

distribution. Thus by the delta-method, we get

∥X∥ =


√
d+Op(1), if 0 < α < 1

2 ,
√
d+Op(d

α− 1
2 ), if 1

2 < α < 1.

In both cases, the representation (2.6) holds.

2.4 Consistency and strong inconsistency of PC directions

In this section, conditions for consistency or strong inconsistency of the sample PC direction

vectors are investigated, in the general setting of section 2.1.1. The generic eigen-structure

of the covariance matrix that we assume is the following. For a fixed number κ, we assume

the first κ eigenvalues are much larger than others. (The precise meaning of large will be

addressed shortly.) The rest of eigenvalues are assumed to satisfy the ϵ-condition, which is

very broad in the range of sphericity. We begin with the case κ = 1 and generalize the result

for κ > 1 in two distinct ways. The main theorem (Theorem 2.5) contains and combines those

previous results and also embraces various cases according to the magnitude of the first κ

eigenvalues. We also investigate the sufficient conditions for a stronger result, i.e. almost sure

convergence, which involves use of the strong ϵ-condition.
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Figure 2.3: Projection of a d-dimensional random variable X onto u1 and Vd−1. If α > 1, then the
subspace Vd−1 becomes negligible compared to u1 when d → ∞

2.4.1 Criteria for consistency or strong inconsistency of the first PC direc-

tion

Consider the simplest case that only the first PC direction of S is of interest. Section 2.3

gives some preliminary indication of this. As an illustration, consider a spiked model as in

Example 2.2 but now let α > 1. Let {ui} be the set of eigenvectors of Σd and Vd−1 be the

subspace of all eigenvectors except the first one. Then the projection of X onto u1 has a

norm ∥Proju1
X∥ = ∥X1∥ = Op(d

α
2 ). The projection of X onto Vd−1 has a norm

√
d+ op(

√
d)

by (2.6). Thus when α > 1, if we scale the whole data space Rd by dividing by d
α
2 , then

ProjVd−1
X becomes negligible compared to Proju1

X. (See Figure 2.3.) Thus for a large d,

Σd ≈ λ1u1u
′
1 and the variation of X is mostly along u1. Therefore the sample eigenvector

corresponding to the largest eigenvalue, û1, will be similar to u1.

To generalize this, suppose the ϵ2 condition holds. The following proposition states that

under the general setting in section 2.1.1, the first sample eigenvector û1 converges to its pop-

ulation counterpart u1 (consistency) or tends to be perpendicular to u1 (strong inconsistency)

according to the magnitude of the first eigenvalue λ1, while all the other sample eigenvectors

are strongly inconsistent regardless of the magnitude λ1.

Proposition 2.2. For a fixed n, let Σd = UdΛdU
′
d, d = n + 1, n + 2, . . . be a sequence of

covariance matrices. Let X(d) be a d× n data matrix from a d-variate distribution with mean

zero and covariance matrix Σd. Let Sd = ÛdΛ̂dÛ
′
d be the sample covariance matrix estimated

from X(d) for each d. Assume the following:
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(a) The components of Z(d) = Λ
− 1

2
d U ′

dX(d) have uniformly bounded fourth moments and are

ρ-mixing for some permutation.

For an α1 > 0,

(b)
λ1,d

dα1
−→ c1 for some c1 > 0,

(c) The ϵ2-condition holds and
∑d

i=2 λi,d = O(d).

If α1 > 1, then the first sample eigenvector is consistent and the others are strongly inconsis-

tent in the sense that

Angle(û1, u1)
p−→ 0 as d → ∞,

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = 2, . . . , n.

If α1 ∈ (0, 1), then all sample eigenvectors are strongly inconsistent, i.e.

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = 1, . . . , n.

Note that the gap between consistency and strong inconsistency is very thin, i.e. if we

avoid α1 = 1, then we have either consistency or strong inconsistency. Thus in the HDLSS

context, asymptotic behavior of PC directions is mostly captured by consistency and strong

inconsistency. Now it makes sense to say λ1 is much larger than the others when α1 > 1,

which results in consistency. Also note that if α1 < 1, then the ϵ-condition holds, which is in

fact the condition for Theorem 2.1.

2.4.2 Generalizations

In this section, we generalize Proposition 2.2 to the case that multiple eigenvalues are much

larger than the others. This leads to two different types of result.

First is the case that the first p eigenvectors are each consistent. Consider a covariance

structure with multiple spikes, that is, p eigenvalues, p > 1, which are much larger than the

others. In order to have consistency of the first p eigenvectors, we require that each of p

eigenvalues has a distinct order of magnitude, for example, λ1,d = d3, λ2,d = d2 and sum of

the rest is order of d.
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Proposition 2.3. For a fixed n, let Σd, X(d), and Sd be as before. Assume (a) of Propo-

sition 2.2. Let α1 > α2 > · · · > αp > 1 for some p < n. Suppose the following conditions

hold:

(b)
λi,d

dαi
−→ ci for some ci > 0, ∀i = 1, . . . , p

(c) The ϵp+1-condition holds and
∑d

i=p+1 λi,d = O(d).

Then, the first p sample eigenvectors are consistent and the others are strongly inconsistent

in the sense that

Angle(ûi, ui)
p−→ 0 as d → ∞ ∀i = 1, . . . , p,

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = p+ 1, . . . , n.

Consider now a distribution having a covariance structure with multiple spikes as before.

Let k be the number of spikes. An interesting phenomenon happens when the first k eigenval-

ues are of the same order of magnitude, i.e. limd→∞
λ1,d

λk,d
= c > 1 for some constant c. Then

the first k sample eigenvectors are neither consistent nor strongly inconsistent. However, all

of those random directions converge to the subspace spanned by the first k population eigen-

vectors. Essentially, when eigenvalues are of the same order, the eigen-directions can not be

separated but are subspace consistent with the proper subspace.

Proposition 2.4. For a fixed n, let Σd, X(d), and Sd be as before. Assume (a) of Proposi-

tion 2.2. Let α1 > 1 and k < n. Suppose the following conditions hold:

(b)
λi,d

dα1
−→ ci for some ci > 0, ∀i = 1, . . . , k

(c) The ϵk+1-condition holds and
∑d

i=k+1 λi,d = O(d).

Then, the first k sample eigenvectors are subspace-consistent with the subspace spanned by

the first k population eigenvectors and the others are strongly inconsistent in the sense that

Angle(ûi, span{u1, . . . , uk})
p−→ 0 as d → ∞ ∀i = 1, . . . , k,

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = k + 1, . . . , n.
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2.4.3 Main theorem

Propositions 2.2 - 2.4 are combined and generalized in the main theorem. Consider p groups

of eigenvalues, which grow at the same rate within each group as in Proposition 2.4. Each

group has a finite number of eigenvalues and the number of eigenvalues in all groups, κ, does

not exceed n. Also similar to Proposition 2.3, let the orders of magnitude of the p groups be

different to each other. We require that the ϵκ+1-condition holds. The following theorem states

that a sample eigenvector of a group converges to the subspace of population eigenvectors of

the group.

Theorem 2.5 (Main theorem). For a fixed n, let Σd, X(d), and Sd be as before. Assume (a)

of Proposition 2.2. Let α1, . . . , αp be such that α1 > α2 > · · · > αp > 1 for some p < n. Let

k1, . . . , kp be nonnegative integers such that
∑p

j=1 kj
.
= κ < n. Let k0 = 0 and kp+1 = d − κ.

Let J1, . . . , Jp+1 be sets of indices such that

Jl =


l−1∑
j=0

kj + 1,

l−1∑
j=0

kj + 2, . . . ,

l−1∑
j=0

kj + kl

 , l = 1, . . . , p+ 1.

Suppose the following conditions hold:

(b)
λi,d

dαl
−→ ci for some ci > 0, ∀i ∈ Jl, ∀l = 1, . . . , p

(c) The ϵκ+1-condition holds and
∑

i∈Jp+1
λi,d = O(d).

Then, the sample eigenvectors whose label is in the group Jl, for l = 1, . . . , p, are subspace-

consistent with the space spanned by the population eigenvectors whose labels are in Jl and the

others are strongly inconsistent in the sense that

Angle(ûi, span{uj : j ∈ Jl})
p−→ 0 as d → ∞ ∀i ∈ Jl, ∀l = 1, . . . p, (2.8)

and

Angle(ûi, ui)
p−→ π

2
as d → ∞ ∀i = κ+ 1, . . . , n. (2.9)

Remark 2.3. If the cardinality of Jl, kl, is 1, then (2.8) implies ûi is consistent for i ∈ Jl.

Remark 2.4. The strongly inconsistent eigenvectors whose labels are in Jp+1 can be considered

to be subspace-consistent. Let Γd be the subspace spanned by the population eigenvectors

23



whose labels are in Jp+1 for each d, i.e. Γd = span{uj : j ∈ Jp+1} = span{uκ+1, . . . , ud}.

Then

Angle(ûi,d,Γd)
p−→ 0 as d → ∞,

for all i ∈ Jp+1.

Note that the formulation of the theorem is similar to the spiked covariance model but

much more general. The uniform assumption on the underlying eigenvalues, i.e. λi = 1 for

all i > κ, is relaxed to the ϵ-condition. We also have catalogued a large collection of specific

results according to the various sizes of spikes.

These results are now illustrated for some classes of covariance matrices that are of special

interest. These covariance matrices are easily represented in factor form, i.e. in terms of

Fd = Σ
1
2
d .

Example 2.3. Consider a series of covariance matrices {Σd}d. Let Σd = FdF
′
d, where Fd is a

d× d symmetric matrix such that

Fd = (1− ρd)Id + ρdJd =



1 ρd · · · ρd

ρd 1
. . .

...

...
. . .

. . . ρd

ρd · · · ρd 1


,

where Jd is the d × d matrix of ones and ρd ∈ (0, 1) depends on d. The eigenvalues of

Σd are λ1,d = (dρd + 1 − ρd)
2, λ2,d = · · · = λd,d = (1 − ρd)

2. The first eigenvector is u1 =

1√
d
(1, 1, . . . , 1)′, while {u2, . . . , ud} are any orthogonal sets of direction vectors perpendicular to

u1. Note that
∑d

i=2 λi,d = d(1− ρd)
2 = O(d) and the ϵ2-condition holds. Let Xd ∼ Nd(0,Σd).

By Theorem 2.5, if ρd ∈ (0, 1) is a fixed constant or decreases to 0 slowly so that ρd ≫ d−
1
2 ,

then the first PC direction û1 is consistent. Else if ρd decreases to 0 so quickly that ρd ≪ d−
1
2 ,

then û1 is strongly inconsistent. In both cases all the other sample PC directions are strongly

inconsistent.

Example 2.4. Consider now a 2d × 2d covariance matrix Σd = FdF
′
d, where Fd is a block
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diagonal matrix such that

Fd =

 F1,d O

O F2,d

 ,

where F1,d = (1−ρ1,d)Id+ρ1,dJd and F2,d = (1−ρ2,d)Id+ρ2,dJd. Suppose 0 < ρ2,d 6 ρ1,d < 1.

Note that λ1,d = (dρ1,d + 1 − ρ1,d)
2 , λ2,d = (dρ2,d + 1 − ρ2,d)

2 and the ϵ3-condition holds.

Let X2d ∼ N2d(0,Σd). Application of Theorem 2.5 for various conditions on ρ1,d, ρ2,d is

summarized as follows. Denote, for two non-increasing sequences µd, νd ∈ (0, 1), µd ≫ νd for

νd = o(µd) and µd ≽ νd for limd→∞
µd
νd

= c ∈ [1,∞).

1. ρ1,d ≫ ρ2,d ≫ d−
1
2 : Both û1,û2 consistent.

2. ρ1,d ≽ ρ2,d ≫ d−
1
2 : Both û1,û2 subspace-consistent to span{u1, u2}.

3. ρ1,d ≫ d−
1
2 ≫ ρ2,d : û1 consistent, û2 strongly inconsistent.

4. d−
1
2 ≫ ρ1,d ≫ ρ2,d : Both û1,û2 strongly inconsistent.

2.4.4 Corollaries to the main theorem

The result can be extended for special cases.

First of all, consider constructing X(d) from Zd by X(d) ≡ UdΛ
1
2
dZd where Zd is a truncated

set from an infinite sequence of independent random variables with mean zero and variance

1. This assumption makes it possible to have convergence in the almost sure sense. This is

mainly because the triangular array {Z1i,(d)}i,d becomes the single sequence {Z1i}i.

Corollary 2.6. Suppose all the assumptions in Theorem 2.5, with the assumption (a) replaced

by the following:

(a′) The components of Z(d) = Λ
− 1

2
d U ′

dX(d) have uniformly bounded eighth moments and are

independent to each other. Let Z1i,(d) ≡ Z1i for all i, d.

If the strong ϵκ+1-condition (2.4) holds, then the mode of convergence of (2.8) and (2.9) is

almost sure.

Second, consider the case that both d, n tend to infinity. Under the setting of Theorem 2.5,

we can separate PC directions better when the eigenvalues are distinct. When d → ∞, we
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have subspace consistency of ûi with the proper subspace, which includes ui. Now letting

n → ∞ makes it possible for ûi to be consistent.

Corollary 2.7. Let Σd, X(d), and Sd be as before. Under the assumptions (a), (b) and (c) in

Theorem 2.5, assume further for (b) that the first κ eigenvalues are distinct, i.e. ci > cj for

i > j and i, j ∈ Jl for l = 1, . . . , p. Then for all i 6 κ,

Angle(ûi, ui)
p−→ 0 as d → ∞, n → ∞, (2.10)

where the limits are applied successively.

If the assumption (a) is replaced by the assumption (a′) of Corollary 2.6, then the mode

of convergence of (2.10) is almost sure.

This corollary can be viewed as the case when d, n tend to infinity together, but d increases

at a much faster rate than n, i.e. d ≫ n. When n also increases in the particular setting

of the corollary, the sample eigenvectors, which were only subspace-consistent in the d → ∞

case, tend to be distinguishable and each of the eigenvectors is consistent. We conjecture that

the inconsistent sample eigenvalues are still strongly inconsistent when d, n → ∞ and d ≫ n.

2.4.5 Limiting distributions of corresponding eigenvalues

The study of asymptotic behavior of the sample eigenvalues is an important part in the proof

of Theorem 2.5, and also could be of independent interest. The following lemma states that

the large sample eigenvalues increase at the same speed as their population counterpart and

the relatively small eigenvalues tend to be of order of d as d tends to infinity. Let φi(A)

denote the ith largest eigenvalue of the symmetric matrix A and φi,l(A) = φi∗(A) where

i∗ = i−
∑l−1

j=1 kj .

Lemma 2.8. If the assumptions of Theorem 2.5 hold, and let Zl be a kl × n matrix from

blocks of Z as defined in (2.12), then

λ̂i/d
αl =⇒ ηi as d → ∞ if i ∈ Jl, ∀l = 1, . . . , p,

λ̂i/d
p−→ K as d → ∞ if i = κ+ 1, . . . , n,
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where each ηi is a random variable whose support is (0,∞) almost surely and indeed ηi =

φi,l(n
−1C

1
2
l ZlZ

′
lC

1
2 ) for each i ∈ Jl, where Cl = diag{cj : j ∈ Jl} and K = limd→∞(dn)−1

∑
i∈Jp+1

λi,d.

If the data matrix X(d) is Gaussian, then the first κ sample eigenvalues converge in distri-

bution to some quantities, which have known distributions.

Corollary 2.9. Under all the assumptions of Theorem 2.5, assume further that X(d) ∼

Nd(0,Σd) for each d. Then, for i ∈ Jl, l = 1, . . . p

λ̂i

dαl
=⇒ φi,l(n

−1Wkl(n,Cl)) as d → ∞,

where Wkl(n,Cl) denotes a kl× kl random matrix distributed as the Wishart distribution with

degree of freedom n and covariance Cl.

If kl = 1 for some l, then for i ∈ Jl

λ̂i

λi
=⇒ χ2

n

n
as d → ∞,

where χ2
n denotes a random variable distributed as the χ2 distribution with degree of freedom

n.

This generalizes the results in section 4.2 of Ahn et al. (2007).

2.5 Proofs

This section contains the proofs of theorems in this chapter.

Proof of Theorem 2.1. First we give the proof of part (1). By (2.1), the mth diagonal entry

of nSD can be expressed as
∑d

i=1 λi,dz
2
im,d where zim,d is the (i,m)th entry of the matrix Z(d).

Define the relative eigenvalues λ̃i,d as λ̃i,d ≡ λi,d∑d
i=1 λi,d

. Let πd denote the given permutation

for each d and let Yi = z2πd(i)m,d − 1. Then the Yi’s are ρ-mixing, E(Yi) = 0 and E(Y 2
i ) 6 B

for all i for some B < ∞. Let ρ(m) = sup |corr(Yi, Yi+m)| where the sup is over all i. We shall

use the following lemma.
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Lemma 2.10. For any permutation π∗
d,

lim
d→∞

d∑
i=1

λ̃π∗
d(i),d

ρ(i) = 0.

Proof. For any δ > 0, since limi→∞ ρ(i) = 0, we can choose N such that ρ(i) < δ
2 for all

i > N . Since limd→∞
∑d

i=1 λ̃
2
π∗
d(i),d

= 0, we get limd→∞
∑N

i=1 λ̃π∗
d(i),d

= 0. Thus we can choose

d0 satisfying
∑N

i=1 λ̃π∗
d(i),d

< δ
2 for all d > d0. With the fact

∑d
i=1 λ̃i,d = 1 for all d and

ρ(i) < 1, we get for all d > d0,

d∑
i=1

λ̃π∗
d(i),d

ρ(i) =

N∑
i=1

λ̃π∗
d(i),d

ρ(i) +

d∑
i=N+1

λ̃π∗
d(i),d

ρ(i) < δ.

Now let π−1
d be the inverse permutation of πd. Then by Lemma 2.10 and the ϵ-condition,

there exists a permutation π∗
d such that

E(

d∑
i=1

λ̃π−1
d (i),dYi)

2 =

d∑
i=1

λ̃2
π−1
d (i),d

EY 2
i + 2

d∑
i=1

λ̃π−1
d (i),d

d∑
j=i+1

λ̃π−1
d (j),dEYiYj

6
d∑

i=1

λ̃2
i,dB + 2

d∑
i=1

λ̃i,d

d∑
j=1

λ̃π∗
d(j),d

ρ(j)B2 → 0,

as d → ∞. Then Chebyshev’s inequality gives us, for any τ > 0,

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dz
2
im − 1

∣∣∣∣∣ > τ

]
6

E
(∑d

i=1 λ̃π−1
d (i),dYi

)2
τ2

→ 0,

as d → ∞. Thus we conclude that the diagonal elements of nSD converge to 1 in probability.

The off-diagonal elements of nSD can be expressed as
∑d

i=1 λi,dzimzil. Similar arguments

to those used in the diagonal case, together with the fact that zim and zil are independent,

gives that

E(

d∑
i=1

λ̃i,dzimzil)
2 6

d∑
i=1

λ̃2
i,d + 2

d∑
i=1

λ̃i,d

d∑
j=i+1

λ̃π−1
d (j),dρ

2(j − i) → 0,

as d → ∞. Thus by Chebyshev’s inequality, the off-diagonal elements of nSD converge to 0
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in probability.

Now, we give the proof for part (2). We begin with the mth diagonal entry of nSD,∑d
i=1 λi,dz

2
im. Note that since

∑k−1
i=1 λ̃i,d → 0 by the ϵ-condition, we assume k = 1 in (2.4)

without loss of generality.

Let Yi = z2im − 1. Note that the Yi’s are independent, E(Yi) = 0 and E(Y 4
i ) 6 B for all i

for some B < ∞. Now

E

(
d∑

i=1

λ̃i,dYi

)4

= E

d∑
i,j,k,l=1

λ̃i,dλ̃j,dλ̃k,dλ̃l,dYiYjYkYl. (2.11)

Note that terms in the sum of the form EYiYjYkYl, EY
2
i YjYk, and EY 3

i Yj are 0 if i, j, k, l

are distinct. The only terms that do not vanish are those of the form EY 4
i , EY

2
i Y

2
j , both of

which are bounded by B. Note that λ̃2
i,d’s are non-negative and hence the sum of squares is

less than the square of sum, we have
∑d

i=1 λ̃
4
i,d 6 (

∑d
i=1 λ̃

2
i,d)

2. Also note that by the strong

ϵ-condition,
∑d

i=1 λ̃
2
i,d = (dϵ)−1 = o(d−

1
2 ). Thus (2.11) is bounded as

E

(
d∑

i=1

λ̃i,dYi

)4

6
d∑

i=1

λ̃4
i,dB +

∑
i=j ̸=k=l

λ̃2
i,dλ̃

2
k,dB

6 (

d∑
i=1

λ̃2
i,d)

2B +

(
4

2

)
(

d∑
i=1

λ̃2
i,d)

2B

= o(d−1).

Then Chebyshev’s inequality gives us, for any τ > 0,

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dz
2
im − 1

∣∣∣∣∣ > τ

]
6

E
(∑d

i=1 λ̃i,dYi

)4
τ4

6 o(d−1)

τ4
.

Summing over d gives
∑∞

d=1 P
[∣∣∣∑d

i=1 λ̃i,dz
2
im − 1

∣∣∣ > τ
]
< ∞ and by Borel-Cantelli Lemma,

we conclude that a diagonal element
∑d

i=1 λ̃i,dz
2
ij converges to 1 almost surely.

The off-diagonal elements of nSD can be expressed as
∑d

i=1 λi,dzimzil. Using similar ar-
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guments to those used in the diagonal case, we have

P

[∣∣∣∣∣
d∑

i=1

λ̃i,dzimzil

∣∣∣∣∣ > τ

]
6

E
(∑d

i=1 λ̃i,dzimzil

)4
τ4

6 o(d−1)

τ4
,

and again by the Borel-Cantelli Lemma, the off-diagonal elements converge to 0 almost surely.

The proof of Theorem 2.5 is divided in two parts. Since eigenvectors are associated to eigen-

values, at first, we focus on asymptotic behavior of sample eigenvalues (proof of Lemma 2.8)

and then investigate consistency or strong inconsistency of sample eigenvectors (proof of The-

orem 2.5).

Proof of Lemma 2.8. We summarize a few definitions and lemmas that are useful to prove

this lemma. Let Sm be the set of all m×m real symmetric matrices. Let φ(A) be a vector of

eigenvalues of A for A ∈ Sm arranged in non-increasing order and let φi(A) be the ith largest

eigenvalue of A. Let ∥ • ∥2 be the usual 2-norm of vectors, and ∥ • ∥F be the Frobenius norm

of matrices defined by ∥A∥F = (
∑

i,j A
2
ij)

1/2.

Lemma 2.11 (Wielandt-Hoffman inequality). If A, B ∈ Sm, then

∥φ(A+B)− φ(A)∥2 6 ∥φ(B)∥2 = ∥B∥F .

This inequality is known as Wielandt-Hoffman inequality. See Wilkinson (1988) for de-

tailed discussion and proof.

Corollary 2.12 (Continuity of eigenvalues). The mapping of eigenvalues φ : Sm 7−→ Rm is

uniformly continuous.

Proof. By Lemma 2.11, ∀ϵ > 0, ∀A,B ∈ Sm, ∃δ = ϵ such that ∥A−B∥F 6 δ, then

∥φ(A)− φ(B)∥2 6 ∥φ(A−B)∥2 6 δ = ϵ.

The proof relies heavily on the following lemma.
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Lemma 2.13 (Weyl’s inequality). If A, B are m ×m real symmetric matrices, then for all

k = 1, . . . ,m,

φk(A) + φm(B)

φk+1(A) + φm−1(B)

...

φm(A) + φk(B)


6 φk(A+B) 6



φk(A) + φ1(B)

φk−1(A) + φ2(B)

...

φ1(A) + φk(B)

This inequality is discussed in Rao (1973) and its use on asymptotic studies of eigenvalues

of a random matrix appeared in Eaton and Tyler (1991).

Since S and its dual SD share nonzero eigenvalues, one of the main ideas of the proof is

working with SD. By our decomposition (2.1), nSD = Z ′ΛZ. We also write Z and Λ as block

matrices such that

Z =



Z1

Z2

...

Zp+1


, Λ =



Λ1 O · · · O

O Λ2 · · · O

...
...

. . .
...

O O · · · Λp+1


, (2.12)

where Zl is a kl×n matrix for each l = 1, . . . , p+1 and Λl(≡ Λl,d) is a kl×kl diagonal matrix

for each l = 1, . . . , p + 1 and O denotes a matrix where all elements are zeros. Now we can

write

nSD = Z ′ΛZ =

p+1∑
l=1

Z ′
lΛlZl. (2.13)

Note that Zl depends on d. We will, however, simplify notation Zl for representing for all

d = 1, . . . ,∞.

Note that Theorem 2.1 implies that when the last term in equation (2.13) is divided by d,

it converges to an identity matrix, namely,

d−1Z ′
p+1Λp+1Zp+1

p−→ nK · In, (2.14)
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where K ∈ (0,∞) is such that (dn)−1
∑

i∈Jp+1
λi,d → K. Moreover dividing by dα1 gives us

nd−α1SD = d−α1Z ′
1Λ1Z1 + d−α1

p∑
l=2

Z ′
lΛlZl + d1−α1d−1Z ′

p+1Λp+1Zp+1.

By the assumption (b), the first term on the right hand side converges to Z ′
1C1Z1 where C1

is the k1 × k1 diagonal matrix such that C1 = diag{cj ; j ∈ J1} and the other terms tend to a

zero matrix. Thus, we get

nd−α1SD =⇒ Z ′
1C1Z1 as d → ∞.

Note that the non-zero eigenvalues of Z ′
1C1Z1 are the same as the nonzero eigenvalues of

C
1
2
1 Z1Z

′
1C

1
2
1 which is a k1 × k1 random matrix with full rank almost surely. Since eigenvalues

are continuous, we have for i ∈ J1,

φi(nd
−α1SD) =⇒ φi(Z

′
1C1Z1) as d → ∞

= φi(C
1
2
1 Z1Z

′
1C

1
2
1 ).

Thus, we conclude that for the sample eigenvalues in the group J1, λ̂i/d
α1 = φi(d

−α1SD)

converges in distribution to φi(n
−1C

1
2
1 Z1Z

′
1C

1
2
1 ) for i ∈ J1.

Let us focus on eigenvalues whose indices are in the group J2, . . . , Jp. Suppose we have

λ̂i = Op(d
αj ) for all i ∈ Jj , for j = 1, . . . , l − 1. Pick any i ∈ Jl. We will provide upper and

lower bounds on λ̂i by Weyl’s inequality (Lemma 2.13). Dividing both sides of (2.13) by dαl ,

we get

nd−αlSD = d−αl

l−1∑
j=1

Z ′
jΛjZj + d−αl

p+1∑
j=l

Z ′
jΛjZj

and apply Weyl’s inequality for the upper bound,

φi(nd
−αlSD) 6 φ1+

∑l−1
j=1 kj

(d−αl

l−1∑
j=1

Z ′
jΛjZj) + φi−

∑l−1
j=1 kj

(d−αl

p+1∑
j=l

Z ′
jΛjZj)

= φi−
∑l−1

j=1 kj
(d−αl

p+1∑
j=l

Z ′
jΛjZj). (2.15)

32



Note that the first term vanishes since the rank of d−αl
∑l−1

j=1 Z
′
jΛjZj is at most

∑l−1
j=1 kj . Also

note that the matrix in the upper bound (2.15) converges to a simple form

d−αl

p+1∑
j=l

Z ′
jΛjZj = d−αlZ ′

lΛlZl + d−αl

p+1∑
j=l+1

Z ′
jΛjZj

=⇒ Z ′
lClZl as d → ∞,

where Cl is the kl × kl diagonal matrix such that Cl = diag{cj ; j ∈ Jl}.

In order to have a lower bound of λ̂i, Weyl’s inequality is applied to the expression

d−αl

l∑
j=1

Z ′
jΛjZj + d−αl

p+1∑
j=l+1

Z ′
jΛjZj = nd−αlSD,

so that

φi(d
−αl

l∑
j=1

Z ′
jΛjZj) + φn(d

−αl

p+1∑
j=l+1

Z ′
jΛjZj) 6 φi(nd

−αlSD). (2.16)

It turns out that the first term of the left hand side is not easy to manage, so we again use

Weyl’s inequality to get

φ∑l
j=1 kj

(d−αl

l−1∑
j=1

Z ′
jΛjZj) 6 φi(d

−αl

l∑
j=1

Z ′
jΛjZj) + φ1−i+

∑l−1
j=1 kj

(−d−αlZ ′
lΛlZl), (2.17)

where the left hand side is 0 since the rank of the matrix inside is at most
∑l−1

j=1 kj . Note that

since d−αlZ ′
lΛlZl and d−αlΛ

1
2
l ZlZ

′
lΛ

1
2
l share non-zero eigenvalues, we get

φ1−i+
∑l

j=1 kj
(−d−αlZ ′

lΛlZl) = φ1−i+
∑l

j=1 kj
(−d−αlΛ

1
2
l ZlZ

′
lΛ

1
2
l )

= φkl−i+1+
∑l−1

j=1 kj
(−d−αlΛ

1
2
l ZlZ

′
lΛ

1
2
l )

= −φi−
∑l−1

j=1 kj
(d−αlΛ

1
2
l ZlZ

′
lΛ

1
2
l )

= −φi−
∑l−1

j=1 kj
(d−αlZ ′

lΛlZl). (2.18)

Here we use the fact that for any m × m real symmetric matrix A, φi(A) = −φm−i+1(−A)

for all i = 1, . . . ,m.
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Combining (2.16), (2.17), and (2.18) gives the lower bound

φi−
∑l−1

j=1 kj
(d−αlZ ′

lΛlZl) + φn(d
−αl

p+1∑
j=l+1

Z ′
jΛjZj) 6 φi(nd

−αlSD). (2.19)

Note that the matrix inside of the first term of the lower bound (2.19) converges to Z ′
lClZl

in distribution. The second term converges to 0 since the matrix inside converges to a zero

matrix.

The difference between the upper and lower bounds of φi(nd
−αlSD) converges to 0 since

φi−
∑l−1

j=1 kj
(d−αl

p+1∑
j=l

Z ′
jΛjZj)− φi−

∑l−1
j=1 kj

(d−αlZ ′
lΛlZl) → 0,

as d → ∞. This is because φ is a continuous function and the difference between the two

matrices converges to zero matrix. Therefore φi(nd
−αlSD) converges to the upper or lower

bound as d → ∞.

Now since both upper and lower bound of φi(nd
−αlSD) converge in distribution to same

quantity, we have

φi(nd
−αlSD) =⇒ φi−

∑l−1
j=1 kj

(Z ′
lClZl) as d → ∞.

= φi−
∑l−1

j=1 kj
(C

1
2
l ZlZ

′
lC

1
2
l ). (2.20)

Thus, by induction, we have the scaled ith sample eigenvalue λ̂i/d
αl converges in distribution

to φi−
∑l−1

j=1 kj
(n−1C

1
2
l ZlZ

′
lC

1
2
l ) for i ∈ Jl, l = 1, . . . , p as desired.

Now let us focus on the rest of the sample eigenvalues λ̂i, i = κ+1, . . . , n. For any i, again

by Weyl’s upper bound inequality we get

φi(nd
−1SD) 6 φi−κ(d

−1Z ′
p+1Λp+1Zp+1) + φκ+1(d

−1
p∑

j=1

Z ′
jΛjZj)

= φi−κ(d
−1Z ′

p+1Λp+1Zp+1),

where the second term on the right hand side vanishes since the matrix inside is of rank at
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most κ. Also for lower bound, we have

φi(nd
−1SD) > φi(d

−1Z ′
p+1Λp+1Zp+1) + φn(d

−1
p∑

j=1

Z ′
jΛjZj)

= φi(d
−1Z ′

p+1Λp+1Zp+1),

where the second term vanishes since κ < n. Thus we have complete bounds for φi(nd
−1SD)

such that

φi(d
−1Z ′

p+1Λp+1Zp+1) 6 φi(nd
−1SD) 6 φi−κ(d

−1Z ′
p+1Λp+1Zp+1),

for all i = κ + 1, . . . , n. However, by (2.14), the matrix in both bounds converges to nK · In

in probability. Thus lower and upper bounds of φi(d
−1SD) converge to K in probability for

i = κ+ 1, . . . , n, which completes the proof.

Proof of Theorem 2.5. We begin by defining a standardized version of the sample covariance

matrix, not to be confused with the dual SD, as

S̃ = Λ− 1
2U ′SUΛ− 1

2

= Λ− 1
2U ′(Û Λ̂Û ′)UΛ− 1

2

= Λ− 1
2P Λ̂P ′Λ− 1

2 , (2.21)

where P = U ′Û = {u′iûj}ij ≡ {pij}ij . Note that elements of P are inner products between

population eigenvectors and sample eigenvectors. Since S̃ is standardized, we have by S =

n−1XX ′ and X = UΛ
1
2Z,

S̃ = n−1ZZ ′. (2.22)

Note that the angle between two directions can be formulated as an inner product of the

two direction vectors. Thus we will investigate the behavior of the inner product matrix P as

d → ∞, by showing that ∑
j∈Jl

p2ji
p−→ 1 as d → ∞, (2.23)
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for all i ∈ Jl, l = 1, . . . , p, and

p2ii
p−→ 0 as d → ∞, (2.24)

for all i = κ+ 1, . . . , n.

Suppose for now we have the result of (2.23) and (2.24). Then for any i ∈ Jl, l = 1, . . . , p,

Angle(ûi, span{uj : j ∈ Jl}) = arccos(
û′i[Projspan{uj :j∈Jl}ûi]

∥ûi∥2 · ∥[Projspan{uj :j∈Jl}ûi]∥2
)

= arccos(
û′i(
∑

j∈Jl(u
′
j ûi)uj)

∥ûi∥2 · ∥
∑

j∈Jl(u
′
j ûi)uj∥2

)

= arccos(

∑
j∈Jl(u

′
j ûi)

2

1 · (
∑

j∈Jl(u
′
j ûi)

2)
1
2

)

= arccos((
∑
j∈Jl

p2ji)
1
2 )

p−→ 0 as d → ∞,

by (2.23) and for i = κ+ 1, . . . , n,

Angle(ûi, ui) = arccos(|u′iûi|)

= arccos(|pii|)
p−→ π

2
as d → ∞,

by (2.24), as desired.

Therefore, it is enough to show (2.23) and (2.24). We begin with taking jth diagonal entry

of S̃, s̃jj , from (2.21) and (2.22),

s̃jj = λ−1
j

n∑
i=1

λ̂ip
2
ji = n−1zjz

′
j ,

where zj denotes the jth row vector of Z. Since

λ−1
j λ̂ip

2
ji 6 n−1zjz

′
j , (2.25)
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we have at most

p2ji = Op(
λj

λ̂i

),

for all i = 1, . . . , n, j = 1, . . . , d. Note that by Lemma 2.8, we have for i ∈ Jl1 , j ∈ Jl2 where

1 6 l1 < l2 6 p+ 1,

p2ji = Op(
λj

λ̂i

) =

 Op(d
αl2

−αl1 ), if l2 6 p,

Op(d
1−αl1 ), if l2 = p+ 1,

(2.26)

so that p2ji
p→ 0 as d → ∞ in both cases.

Note that the inner product matrix P is also a unitary matrix. The norm of the ith

column vector of P must be 1 for all d, i.e.
∑d

j=1 p
2
ji = 1. Thus (2.23) is equivalent to∑

j∈{1,...,d}/Jl p
2
ji

p−→ 0 as d → ∞.

Now for any i ∈ J1,

∑
j∈{1,...,d}/J1

p2ji =
∑

j∈J2∪···∪Jp

p2ji +
∑

j∈Jp+1

p2ji.

Since the first term on the right hand side is a finite sum of quantities converging to 0, it

converges to 0 almost surely as d tends to infinity. By (2.25), we have an upper bound for the

second term,

∑
j∈Jp+1

p2ji =
∑

j∈Jp+1

λ−1
j λ̂ip

2
ji

λj

λ̂i

6
∑

j∈Jp+1
n−1zjz

′
jλj

d

d

λ̂i

=

∑n
k=1

∑d
j=κ+1 z

2
j,kλj

nd

d

λ̂i

,

where the zj,k’s are the entries of a row random vector zj . Note that by applying Theorem 2.1

with Σd = diag{λκ+1, . . . , λd}, we have
∑d

j=κ+1 z
2
j,kλj/d

p→ 1 as d → ∞. Also by Lemma 2.8,

the upper bound converges to 0 in probability. Thus we get

∑
j∈{1,...,d}/J1

p2ji
p−→ 0 as d → ∞,
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which is equivalent to ∑
j∈J1

p2ji
p−→ 1 as d → ∞. (2.27)

Let us focus on the group J2, . . . , Jp. For any l = 2, . . . , p, suppose we have
∑

j∈Jm p2ji
p→ 1

as d → ∞ for all i ∈ Jm, m = 1, . . . , l − 1. Note that it implies that for any j ∈ Jm,,

m = 1, . . . , l − 1, ∑
i∈{1,...,d}/Jm

p2ji
p−→ 0 as d → ∞, (2.28)

since ∑
j∈Jm

∑
i∈{1,...,d}/Jm

p2ji =
∑
j∈Jm

d∑
i=1

p2ji −
∑
j∈Jm

∑
i∈Jm

p2ji
p−→
∑
j∈Jm

1−
∑
i∈Jm

1 = 0,

as d → ∞.

Now pick i ∈ Jl. We have

∑
j∈{1,...,d}/Jl

p2ji =
∑

j∈J1∪···∪Jl−1

p2ji +
∑

j∈Jl+1∪···∪Jp

p2ji +
∑

j∈Jp+1

p2ji.

Note that the first term is bounded as

∑
j∈J1∪···∪Jl−1

p2ji 6
∑
i∈Jl

∑
j∈J1∪···∪Jl−1

p2ji 6
l−1∑
m=1

∑
j∈Jm

 ∑
i∈{1,...,d}/Jm

p2ji

 p−→ 0

by (2.28). The second term also converges to 0 by (2.26). The last term is also bounded as

∑
j∈Jp+1

p2ji =
∑

j∈Jp+1

λ−1
j λ̂ip

2
ji

λj

λ̂i

6
∑

j∈Jp+1
n−1zjz

′
jλj

d

d

λ̂i

,

so that it also converges to 0 in probability. Thus, we have
∑

j∈{1,...,d}/Jl p
2
ji

p−→ 0 as d → ∞

which implies that ∑
j∈Jl

p2ji
p−→ 1 as d → ∞.

Thus, by induction, (2.23) is proved.

For i = κ+ 1, . . . , n, We have λ−1
i λ̂ip

2
ii 6 n−1ziz

′
i, and so

p2ii 6 λ̂−1
i λin

−1ziz
′
i = Op(λ̂

−1
i λi),
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which implies (2.24) by the assumption (c) and Lemma 2.8, and the proof is completed.

Proof of Corollary 2.6. The proof follows the same lines as the proof of Theorem 2.5, with

convergence in probability replaced by almost sure convergence.

Proof of Corollary 2.7. From the proof of Theorem 2.5, write the inner product matrix P of

(2.21) as a block matrix such that

P =



P11 · · · P1p P1,p+1

...
. . .

...
...

Pp1 · · · Ppp Pp,p+1

Pp+1,1 · · · Pp+1,p Pp+1,p+1


,

where each Pij is a ki × kj random matrix. In the proof of theorem 2.5 we have shown that

Pii, i = 1, . . . , p, tends to be a unitary matrix and Pij , i ̸= j, tends to be a zero matrix as

d → ∞. Likewise, Λ and Λ̂ can be blocked similarly as Λ = diag{Λi : i = 1, . . . , p + 1} and

Λ̂ = diag{Λ̂i : i = 1, . . . , p+ 1}.

Now pick l ∈ {1, . . . , p}. The lth block diagonal of S̃, S̃ll, is expressed as S̃ll =
∑p+1

j=1 Λ
− 1

2
l PljΛ̂lP

′
ljΛ

− 1
2

l .

Since Pij → 0, i ̸= j, we get

∥S̃ll − Λ
− 1

2
l PllΛ̂lP

′
llΛ

− 1
2

l ∥F
p−→ 0

as d → ∞.

Note that by (2.22), S̃ll can be replaced by n−1ZlZ
′
l . We also have d−αlΛl → Cl by the

assumption (b) and d−αlΛ̂l
p→ diag{φ(n−1C

1
2
l ZlZ

′
lC

1
2
l )} by (2.20). Thus we get

∥n−1ZlZ
′
l − C

− 1
2

l Plldiag{φ(n−1C
1
2
l ZlZ

′
lC

1
2
l )}P

′
llC

− 1
2

l ∥F
p−→ 0

as d → ∞.

Also note that since n−1ZlZ
′
l → Ikl almost surely as n → ∞, we get n−1C

1
2
l ZlZ

′
lC

1
2
l → Cl

and diag{φ(n−1C
1
2
l ZlZ

′
lC

1
2
l )} → Cl almost surely as n → ∞. Using the fact that the Frobenius

norm is unitarily invariant and ∥AB∥F 6 ∥A∥F ∥B∥F for any square matrices A and B, we
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get

∥P ′
llClPll − Cl∥F 6 ∥P ′

llClPll − diag{φ(n−1C
1
2
l ZlZ

′
lC

1
2
l )}∥F + op(1) (2.29)

= ∥Cl − Plldiag{φ(n−1C
1
2
l ZlZ

′
lC

1
2
l )}P

′
ll∥F + op(1)

6 ∥n−1C
1
2
l ZlZ

′
lC

1
2
l − Plldiag{φ(n−1C

1
2
l ZlZ

′
lC

1
2
l )}P

′
ll∥F + op(1)

6 ∥C
1
2
l ∥

2
F ∥n−1ZlZ

′
l − C

− 1
2

l Plldiag{φ(n−1C
1
2
l ZlZ

′
lC

1
2
l )}P

′
llC

− 1
2

l ∥F + op(1)

p−→ 0 as d, n → ∞.

Note that in order to have (2.29), Pll must converge to diag{±1,±1, . . . ,±1} since diagonal

entries of Cl are distinct and a spectral decomposition is unique up to sign changes. Let l = 1

for simplicity. Now suppose for any δ > 0, limd,n P (p2m1 > δ) > 0 for m = 2, . . . , k1. Then for

any m = 2, . . . , k1,

∥P ′
11C1P11 − C1∥F >

k1∑
j=1

(c1 − cj)p
2
j1 > (c1 − cm)p2m1,

which contradicts (2.29) since c1 − cm > 0. Thus p2m1
p→ 0 for all m = 2, . . . , kl which implies

p211
p→ 1 as d, n → ∞. Now by induction, p2ii

p→ 1 for all i ∈ Jl, l = 1, . . . , p. Therefore

Angle(ûi, ui) = arccos(|pii|)
p→ 0 as d, n → ∞.

If the assumptions of Corollary 2.6 also hold, then every convergence in the proof is

replaced by almost sure convergence, which completes the proof.

Proof of Corollary 2.9. With Gaussian assumption, noticing C
1
2
l ZlZ

′
lC

1
2
l ∼ Wkl(n,Cl) gives

the first result. When kl = 1, The assumption (b) and that C
1
2
l ZlZ

′
lC

1
2
l ∼ ciχ

2
n imply that

λ̂i

λi
=

λ̂i

cidαl
· cid

αl

λi
=⇒ χ2

n

n
as d → ∞.
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Chapter 3

Boundary Behavior in HDLSS asymptotics
of PCA

The work presented here is based on a paper Jung, Sen and Marron (2011c).

3.1 Introduction

In this chapter, we continue to answer theoretical questions regarding the principal component

analysis (PCA) in the High Dimension, Low Sample Size (HDLSS) context.

A central question is whether the sample principal components reflect true underlying

distributional structure in the HDLSS context. This is well described in a spiked covariance

model, originally proposed by Johnstone (2001). A simplified version of the framework we

used in the previous chapter falls into this category. A spiked covariance model assumes that

the first few eigenvalues are distinctively larger than the others. We focus on a generalized

version of the spike model, as described in Section 3.3, which is different from that of Johnstone

(2001) and Paul (2007). Let Σ(d) denote the population covariance matrix and S(d) denote the

sample covariance matrix. The eigen-decomposition of Σ(d) is Σ(d) = UdΛdU
′
d, where Λd is a

diagonal matrix of eigenvalues λ1,d > λ2,d > · · · > λd,d in non-increasing order, Ud is a matrix

of corresponding eigenvectors so that Ud = [u1,d, . . . , ud,d], and
′ denotes the transpose of the

preceding matrix. The eigen-decomposition of S(d) is similarly defined as S(d) = ÛdΛ̂dÛ
′
d.

As a simple example of the spiked model, consider λ1,d = σ2dα, λ2,d = · · · = λd,d = τ2, for

α, σ2, τ2 > 0 fixed. The first eigenvector of S(d) corresponding to the largest eigenvalue is of

interest, as it contains the most important variation of the data. The first sample eigenvector

û1,d is assessed with the angle formed by itself and its population counterpart u1,d. The



direction û1,d is said to be consistent with u1,d if Angle(û1,d, u1,d) → 0 as d → ∞. However in

the HDLSS context, a perhaps counter-intuitive phenomenon frequently occurs, where the two

directions tend to be as far away as possible. We say the direction û1,d is strongly inconsistent

with u1,d if Angle(û1,d, u1,d) → π
2 as d → ∞. In the one spike model above, the order of

magnitude α of the first eigenvalue is the key condition for these two limiting phenomena. In

Chapter 2, we have shown that

Angle(û1,d, u1,d) →

 0, α > 1;

π
2 , α < 1,

(3.1)

in probability (or almost surely) under some conditions. Although the gap between consistency

and strong inconsistency is relatively thin, the case α = 1 has not been investigated, and is a

main focus of this chapter.

It is natural to conjecture from (3.1) that when α = 1, the angle does not degenerate

but converges to a random quantity in (0, π2 ). This claim is established in the simple one

spike model in the next section, where we describe a range of limits of the eigenvalues and

eigenvectors, depending on the order of magnitude α of λ1,d. In Section 3.3, the claim is gen-

eralized for multiple spike cases, and is proved in a much more general distributional setting.

In a multiple spike model with m > 1 spikes, where the first m principal components contain

the important signal of the distribution, the sample PCA can be assessed by simultaneously

comparing the first m principal components. In particular, we investigate the limits of dis-

tance between two subspaces: the subspace generated by the first m sample PC directions

û1,d, . . . , ûm,d and the subspace by the first m population PC directions. The distance can

be measured by canonical angles and metrics between subspaces, the limiting distributions of

which will be investigated for the α = 1 case, as well as the cases α ̸= 1, in Section 3.3.2.

The probability density functions of the limiting distributions for α = 1 are also derived and

illustrated under Gaussian assumption, to show the effect of parameters in the distributions.

The HDLSS data set has an interesting geometric representation in the limit d → ∞,

as shown in Section 2.3. In Section 3.4, we extend the result and show that there are three

different geometric representations, which coincide with the range of limits depending on α.

The three different representations may be understood in connection to the phase transition
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phenomenon in random matrix theories (Baik et al. (2005), Nadler (2008) and Rao et al.

(2008)). This is further discussed in Section 3.4.

3.2 Range of limits in the single spike model

Suppose we have a data matrix X(d) = [X1,d, . . . , Xn,d], with d > n, where the d dimensional

random vectors Xi,d are independent and identically distributed. We assume for now that

Xi,d is normally distributed with mean zero and covariance matrix Σ(d), but the Gaussian

assumption will be relaxed in the next section. The population covariance matrix Σ(d) is

assumed to have one spike, that is, the eigenvalues of Σ(d) are λ1,d = σ2dα, λ2,d = · · · =

λd,d = τ2. The corresponding eigenvectors of Σ(d) are denoted by ui,d. The sample covariance

matrix is defined as S(d) =
1
nX(d)X

′
(d) with its ith eigenvalue and eigenvector denoted by λ̂i,d

and ûi,d, respectively.

The following theorem summarizes the spectrum of the limiting distributions of the eigen-

values and eigenvectors of S(d), depending on the different order α of λ1,d. Note that the

angle between the two vectors u, û is represented by the inner product through Angle(u, û) =

cos−1(u′û). We also assume that the eigenvectors ui,d, i > 2, are fixed.

Theorem 3.1. Under the Gaussian assumption and the one spike case above, (i) the limit of

the first eigenvalue depends on α:

λ̂1,d

max(dα, d)
−→


σ2 χ

2
n
n , α > 1;

σ2 χ
2
n
n + τ2

n , α = 1;

τ2

n , α < 1,

as d → ∞, where −→ denotes the convergence in distribution, and χ2
n denotes a random

variable with the χ2 distribution with degree of freedom n. The rest of the eigenvalues converge

to the same quantity when scaled, that is for any α ∈ [0,∞), j = 2, . . . , n,

λ̂j,d

d
→ τ2

n
, as d → ∞,

in probability.
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(ii) The limit of the first eigenvector depends on α:

u′1,dû1,d −→


1 α > 1;(
1 + τ2

σ2χ2
n

)− 1
2

α = 1;

0, α < 1,

as d → ∞. The rest of the eigenvectors are strongly inconsistent with their population coun-

terpart, for any α ∈ [0,∞), j = 2, . . . , n,

u′j,dûj,d → 0, as d → ∞,

in probability.

The case α = 1 bridges the other two cases. In particular, the ratio of the sample and pop-

ulation eigenvalue λ̂1,d/λ1,d is asymptotically unbiased to 1 when α > 1. It is asymptotically

biased when α = 1, and becomes completely deterministic in the case α < 1, where the effect

of σ2 on λ̂1,d becomes negligible. Moreover, the angle Angle(u1,d, û1,d) to the optimal direction

converges to a random quantity which is defined on (0, π/2) and depends on σ2, τ2, and n.

The effect of those parameters on the limiting distribution of Angle(u1,d, û1,d) is illustrated in

Fig. 3.1. The ratio σ2/τ2 can be understood as a signal to noise ratio. A high value of σ2/τ2

means that the major variation along the first PC direction is strong. Therefore, for larger

values of σ2/τ2, Angle(u1,d, û1,d) should be closer to zero than smaller values of the ratio, as

depicted in the upper panel of Fig. 3.1. Moreover, the sample PCA with larger sample size n

should perform better than with smaller sample size. The sample size n becomes the degrees

of freedom of the χ2 distribution in the limit, and the bottom panel of Fig. 3.1 shows that the

ûi,d is closer to ui,d for larger values of n.

The Gaussian assumption in the previous theorem appears as a driver of the limiting χ2

distributions. Under the general non-Gaussian assumption we state in the next section, the χ2

will be replaced by a distribution that depends heavily on the distribution of the population

principal component scores, which may not be Gaussian in general.

Remark 3.1. The results in Theorem 3.1 can be used to estimate the parameters σ2 and τ2 in

the model with α = 1. As a simple example, one can set τ̂2 = n
n−1

∑n
j=2

λ̂j,d

d and σ̂2 = λ̂1,d/d−
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Figure 3.1: Angle densities for the one spike case. The top panel shows an overlay of the densities
with different σ2, with other parameters fixed. The bottom panel shows an overlay of the
densities with different degrees of freedom n of the χ2 distribution. For a larger signal to

noise ratio σ2

τ2 , and for a larger n, the angle to optimal is smaller.

τ̂2/n. Then τ̂2 → τ2 and σ̂2 −→ σ2 χ
2
n
n as d → ∞ by Theorem 1 and Slutsky’s theorem. The

estimator σ̂2 is not consistent but asymptotically unbiased. This can be extended to provide

an asymptotically unbiased prediction of principal component scores. A similar estimation

scheme can be found in a related but different setting where d, n → ∞ together; see for example

Paul (2007) and Lee et al. (2010). These papers do not discuss eigenvector estimation. The

sample eigenvector, û1,d is difficult to improve upon mainly because the direction of deviation

û1,d from u1,d is quite random and difficult to estimate unless a more restrictive assumption

(e.g. sparsity) is made.

3.3 Limits under generalized spiked covariance model

The results in the previous section will be generalized to much broader situations, including a

generalized spiked covariance model and a relaxation of the Gaussian assumption. We focus
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on the α = 1 case, and describe the limiting distributions for eigenvalues and eigenvectors.

We also point out that the subspace generated by the first few principal components is an

important notion for assessing PCA, discuss measures of closeness between two subspaces,

and present limit theory for measures of this type.

3.3.1 Eigenvalues and eigenvectors

In the following, all the quantities depend on the dimension d, but the subscript d is omitted if

it does not cause any confusion. We first describe some elementary facts from matrix algebra,

that are useful throughout this chapter. The dimension of the sample covariance matrix S

increases as d grows, so it is challenging to deal with S directly. A useful approach is to use

the dual of S, defined as the n× n symmetric matrix

SD =
1

n
X ′X,

by switching the role of rows and columns of X. The (i, j)th element of SD is 1
nX

′
iXj . An

advantage of working with SD is that for large d, the finite dimensional matrix SD is positive

definite with probability one, and its n eigenvalues are the same as the non-zero eigenvalues

of S. Moreover, the sample eigenvectors ûi are related to the eigen-decomposition of SD, as

shown next. Let SD = V̂nΛ̂nV̂n, where Λ̂n = diag(λ̂1, . . . , λ̂n) and V̂n is the n× n orthogonal

matrix of eigenvectors v̂i corresponding to λ̂i. Recall S = Û Λ̂Û ′. Since S is at most rank n,

we can write S = ÛnΛ̂nÛ
′
n, where Ûn = [û1, . . . , ûn] consists of the first n columns of Û . The

singular value decomposition of X is given by

X = ÛnΛ̂nV̂
′
n =

n∑
i=1

(nλ̂i)
− 1

2 ûiv̂
′
i.

Then the kth sample principal component direction ûk for k 6 n is proportional to Xv̂k,

ûk = (nλ̂k)
− 1

2Xv̂k. (3.2)

Therefore the asymptotic properties of the eigen-decomposition of S, as d → ∞, can be

studied via those of the finite dimensional matrix SD.
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It is also useful to represent SD in terms of the population principal components. Let Z(d)

be the standardized principal components of X, defined by

Z(d) =


Z ′
1

...

Z ′
d

 = Λ
−1/2
d U ′

dX,

where Z ′
i = (Zi1, . . . , Zin) is the ith row of Z(d), so that

Z ′
i = λ

− 1
2

i u′iX. (3.3)

Under the Gaussian assumption of the previous section, each element of Z(d) is independently

distributed as the standard normal distribution. By X = UdΛ
1/2Z(d),

SD =
1

n
X ′X =

1

n
Z ′
(d)ΛZ(d) =

1

n

d∑
i=1

λiZiZ
′
i.

The Gaussian assumption on X is relaxed as done in the previous chapter. We assume

that each column Xi of X follows a d dimensional multivariate distribution with mean zero

and covariance matrix Σ. Each entry of the standardized principal components, or the sphered

variables Z(d) is assumed to have finite fourth moments, and is uncorrelated but in general

dependent with each other. The dependency of the principal components are regulated by

the ρ-mixing condition under some permutation as done Section 2.1.1. We denote these

distributional assumptions as (c1).

We then define a generalized spiked covariance model, which is a simplified version of the

model used in Chapter 2. Recall that a simple one spike model was defined on the eigenvalues

of the population covariance matrix Σ, for example, λ1 = σ2dα, λ2 = · · · = λd = τ2. This is

generalized by allowing multiple spikes, and by relaxing the uniform eigenvalue assumption

in the tail to a decreasing sequence. The tail eigenvalues are regulated by a measure of

sphericity ϵk in the limit d → ∞. The ϵk condition holds for quite general settings (see

Section 2.2). In the generalized spiked model, the eigenvalues are assumed to be of the form

λ1 = σ2
1d

α, . . . , λm = σ2
mdα, for σ2

1 > · · · > σ2
m > 0 for some m > 1, and the ϵm+1 condition
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holds for λm+1, . . . , λd. Also assume that 1
d

∑d
i=m+1 λi → τ2 as d → ∞. These conditions for

spike models are denoted by (c2).

The following theorem gives the limits of the sample eigenvalues and eigenvectors under

the general assumptions in this section. We use the following notations. Let φ(A) be a vector

of eigenvalues of a real symmetric matrix A arranged in non-increasing order and let φi(A)

be the ith largest eigenvalue of A. Let vi(A) denote the ith eigenvector of the matrix A

corresponding to the eigenvalue φi(A) and vij(A) be the jth loading of vi(A). Also note

that there are many choices of eigenvectors of S including the sign changes. We use the

convention that the sign of ûi will be chosen so that û′iui > 0. Recall that the vector of the ith

standardized principal component scores is Zi = (Z1i, . . . , Zni)
′. Denote the n×m matrix of

the first m principal component scores as W = [σ1Z1, · · · , σmZm]. The limiting distributions

heavily depend on the finite dimensional random matrix W.

Theorem 3.2. Under the assumptions (c1) and (c2) with fixed n > m > 1, if α = 1, then (i)

the sample eigenvalues

d−1nλ̂i,d −→

 φi(W
′W) + τ2, i = 1, . . . ,m;

τ2, i = m+ 1, . . . , n,

as d → ∞ jointly for all i.

(ii) The inner products between the sample and population eigenvectors have limiting dis-

tributions:

û′i,duj,d −→ vij(W
′W)√

1 + τ2/φi(W′W)
as d → ∞ jointly for i, j = 1, . . . ,m.

The rest of eigenvectors are strongly inconsistent with their population counterpart, i.e.

û′i,dui,d → 0 as d → ∞ for i = m+ 1, . . . , n,

in probability.

The theorem shows that the first m eigenvectors are neither consistent nor strongly incon-

sistent to the population counterparts. The limiting distributions of angles Angle(ûi,d, ui,d) to
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optimal directions are supported on (0, π/2) and depend on the magnitude of the noise τ2 and

the distribution of W′W. Note that the m×m symmetric matrix W′W is the scaled covari-

ance matrix of the principal component scores in the first m directions. When the underlying

distribution of X is assumed to be Gaussian, then W′W is the Wishart matrix Wm (n,Λm),

where Λm = diag(σ2
1, . . . , σ

2
m). If m = 1, the matrix becomes a scalar random variable, and is

χ2
n under the Gaussian assumption, which leads to Theorem 3.1.

The limiting distributions of the cases α ̸= 1 can be found in a similar manner, which we

only state the result for the case α > 1 and for the first m components. For more general

results, see Chapter 2. For i, j = 1, . . . ,m, the eigenvalues d−αnλ̂i,d −→ ϕi(W
′W) and the

inner products û′i,duj,d −→ vij(W
′W) as d → ∞. In comparison to the α = 1 case, if we set

τ2 to be zero, the result becomes identical for all α > 1.

Remark 3.2. When the sample size n also grows, consistency of sample eigenvalues and eigen-

vectors can be achieved. In particular, for i = 1, . . . ,m, we have as d grows

λ̂i,d

λi,d
=

d

n

d−1nλ̂i,d

σ2
i d

−→ φi(W
′W/n)

σ2
i

+
τ2

nσ2
i

by Theorem 3.2. Since W′W/n → diag(σ2
1, . . . , σ

2
m) by a law of large numbers, we get

the consistency of eigenvalues, i.e. λ̂i,d/λi,d → 1 as d, n → ∞, where the limits are applied

successively. For the sample eigenvectors, from Theorem 3.2(ii) and because vij(W
TW) → δij

as n → ∞ and φi(W
′W) = O(n), we get û′i,duj,d → 1 if i = j, 0 otherwise as d, n →

∞. Therefore, the sample PC directions are consistent to the corresponding population PC

directions, i.e. Angle(ûi,d, ui,d) → 0 as d, n → ∞, for i 6 m.

Proof of Theorem 3.2. The following lemma shows a version of the law of large numbers for

matrices, that is useful in the proof. Note that the lemma is obtained by rephrasing Theo-

rem 2.1. Recall that Z ′
i ≡ (Z1i, . . . , Zni) is the ith row of Z(d).

Lemma 3.3. If the assumption (c1) and the ϵk-condition holds, then

c−1
d

d∑
i=k

λi,dZiZ
′
i → In, as d → ∞

in probability, where cd = n−1
∑d

i=1 λi,d and In denotes the n×n identity matrix. In particular,
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if d−1
∑d

i=k λi,d → τ2, then

1

d

d∑
i=k

λi,dZiZ
′
i → τ2In, as d → ∞

in probability.

This lemma is used to show that the spectral decomposition of d−1nSD,

d−1nSD = d−1
m∑
i=1

σ2
iZiZ

′
i + d−1

d∑
i=m+1

λiZiZ
′
i,

can be divided into two parts, and the latter converges to a deterministic part. Applying

Lemma 3.3, we have d−1nSD −→ S0 as d → ∞, where

S0 = WW′ + τ2In.

Then since the eigenvalues of a symmetric matrix A are a continuous function of elements of

A, we have

φ(d−1nSD) −→ φ(S0),

as d → ∞. Noticing that for i = 1, . . . ,m,

φi(S0) = φi(WW′) + τ2 = φi(W
′W) + τ2,

and for i = m+ 1, . . . , n, φi(S0) = τ2 gives the result.

For the eigenvectors, note that the eigenvectors v̂i of d
−1nSD can be chosen so that they

are continuous (Acker (1974)). Therefore, we also have that v̂i = vi(d
−1nSD) −→ vi(S0) as

d → ∞, for all i. Also note that vi(S0) = vi(WW′) for i 6 m.

Similar to the dual approach for covariance matrices, the eigenvectors of the n×n matrix

WW′ can be evaluated from the dual of the matrix. In particular, let W = UwΛwV
′
w =∑m

i=1 λiwuiwv
′
iw, where λ2

iw = φi(W
′W) and viw = vi(W

′W). Then

v1(S0) = uiw =
Wviw
λiw

=
Wvi(W

′W)√
φi(W′W)

.
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Now from (3.2),(3.3) and the previous equation, for 1 6 i, j 6 m,

u′j ûi = u′j
Xv̂i√
nλ̂i

=
u′jXv̂i√

nλ̂i

=

√
σ2
jdZ

′
j v̂i√

nλ̂i

=
σjZ

′
j v̂i√

d−1nλ̂i

−→
σjZ

′
jWvi(W

′W)√
φi(W′W) + τ2

√
φi(W′W)

. (3.4)

Note that σjZ
′
jW = [σjσ1Z

′
jZ1 · · ·σjσmZ ′

jZm] is the jth row of W′W and W′Wvi(W
′W) =

φi(W
′W)vi(W

′W). Therefore, the limiting form (3.4) becomes

φi(W
′W)vij(W

′W)√
φi(W′W) + τ2

√
φi(W′W)

.

For i = m+ 1, . . . , n, again from (3.2) and (3.3), we get

u′iûi =

√
λiZ

′
iv̂i√

nλ̂i

= d−
1
2

τZ ′
iv̂i√

nλ̂i/d
= O(d−

1
2 ).

3.3.2 Angles between principal component spaces

Under the generalized spiked covariance model with m > 1, the first m population principal

directions provide a basis of the most important variation. Therefore, it would be more

informative to investigate the deviation of each ûi from the subspace Lm
1 (d) spanned by

{u1,d, . . . , um,d}. Also, denote the subspace spanned by the first m sample principal directions

as L̂m
1 (d) ≡ span{û1,d, . . . , ûm,d}. When performing dimension reduction, it is critical for

the sample PC space L̂m
1 to be close to the population PC space Lm

1 . The closeness of two

subspaces can be measured in terms of canonical angles.

We briefly introduce the notion of canonical angles and metrics between subspaces, detailed

discussions of which can be found in Stewart and Sun (1990) and Gaydos (2008). As a simple

case, the canonical angle between a 1-dimensional subspace and an m-dimensional subspace

is defined as follows. Let L̂i be the 1-dimensional linear space with basis ûi. Infinitely many

angles can be formed between L̂i and Lm
1 with m > 1. The canonical angle, denoted by

Angle(L̂i,Lm
1 ), is defined by the smallest angle formed, that is the angle between ûi and its
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projection ûPi onto Lm
1 . This angle is represented in terms of an inner product as

Angle(L̂i,Lm
1 ) = cos−1

(
û′iû

P
i∥∥ûPi ∥∥ ∥ûi∥

)
. (3.5)

When two multi-dimensional subspaces are considered, multiple canonical angles are defined.

Among angles between L̂m
1 and Lm

1 , the first canonical angle is geometrically defined as

θ1(L̂m
1 ,Lm

1 ) = max
x∈L̂m

1

min
y∈Lm

1

Angle(x,y) for ∥x∥ , ∥y∥ > 0, (3.6)

where Angle(x,y) is the angle formed by the two vectors x, y. One can show that the

second canonical angle is defined by the same geometric relation as above with L̂−x and L−y

for x, y from (3.6), where L̂−x is the orthogonal complement of x in L̂m
1 . In practice, the

canonical angles are found by the singular value decomposition of a matrix. Let Ûm and Um

be orthonormal bases for L̂m
1 , Lm

1 and γi’s be the singular values of Û
′
mUm. Then the canonical

angles are

θi(L̂m
1 ,Lm

1 ) = cos−1(γi)

in descending order.

Distances between two subspaces can be defined using the canonical angles. We point out

two metrics from Chapter II.4 of Stewart and Sun (1990):

1. gap metric ρg(L̂m
1 ,Lm

1 ) = sin(θ1),

2. Euclidean sine metric ρs(L̂m
1 ,Lm

1 ) = {
∑m

i=1 sin
2(θi)}

1
2 .

The gap metric is simple and only involves the largest canonical angle. The Euclidean sine

metric makes use of all canonical angles and thus gives more comprehensive understanding of

the closeness between the two subspaces. We will use both metrics in the following discussion.

At first, we examine the limiting distribution of the angle between the sample PC direction

ûi and Lm
1 .

Theorem 3.4. Under the assumptions (c1) and (c2) with fixed n > m > 1, if α = 1, then for
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i = 1, . . . ,m, the canonical angle converges in distribution:

cos
(
Angle(L̂i,Lm

1 )
)
−→ 1√

1 + τ2/φi(W′W)
as d → ∞.

Proof. Since ûPi =
∑m

j=1(û
′
iuj)uj ,

û′iû
P
i∥∥ûPi ∥∥ ∥ûi∥ =

∥∥ûPi ∥∥ =
√

(û′iu1)
2 + · · ·+ (û′ium)2.

The result follows from (3.5), Theorem 3.2(ii) and the fact that
∑m

j=1 (vij(W
′W))2 = ∥vi(W′W)∥2 =

1.

We then investigate the limiting behavior of the distances between L̂m
1 and Lm

1 , in terms of

either the canonical angles or the distances. From the fact that Ûm = [û1, . . . , ûm] and Um =

[u1, . . . , um] are orthonormal bases of L̂m
1 and Lm

1 respectively, cosines of the canonical angles

are the singular values of Û ′
mUm. Since the (i, j)th element of Û ′

mUm is û′iuj , Theorem 3.2

leads to

Û ′
mUm −→

[
v1(W

′W) · · · vm(W′W)
]

(
1 + τ2

φ1(W′W)

)− 1
2

0

. . .

0
(
1 + τ2

φm(W′W)

)− 1
2

 ,

as d → ∞. Therefore the canonical angles (θ1, . . . , θm) between L̂m
1 and Lm

1 converge to the

arccosines of

(
(
1 + τ2/φm(W′W)

)− 1
2 , . . . ,

(
1 + τ2/φ1(W

′W)
)− 1

2 ), (3.7)

as d → ∞. Notice that these canonical angles between subspaces converge to the same limit

as in Theorem 3.4, except that the order is reversed. In particular, the limiting distribution

of the largest canonical angle θ1 is the same as that of the angle between ûm and Lm
1 , and the

smallest canonical angle θm corresponds to the angle between the first sample PC direction

û1 and the population PC space Lm
1 .

The limiting distributions of the distances between two subspaces are readily derived by
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the discussions so far. When using the gap metric,

ρg(L̂m
1 ,Lm

1 ) −→
(
1 + φm(W′W)/τ2

)− 1
2 as d → ∞.

And by using the Euclidean sine metric,

ρs(L̂m
1 ,Lm

1 ) −→

(
m∑
i=1

1

1 + φi(W′W)/τ2

) 1
2

as d → ∞. (3.8)

Remark 3.3. The convergence of the canonical angles for the case α > 1 has been shown earlier

in the previous chapter. Recall the notion of subspace consistency, where the direction ûi may

not be consistent to ui but will tend to lie in Lm
1 , i.e. Angle(L̂i,Lm

1 ) → 0 as d → ∞, for i 6 m.

In this case, the canonical angles between L̂m
i and Lm

1 and the distances will converge to 0 as

d grows. In that sense, the empirical PC space L̂m
i is consistent to Lm

1 . On the other hand,

when α < 1, all directions ûi tend to behave as if they were from the eigen-decomposition of

the identity matrix. Therefore, all angles tend to be π/2 and the distances will converge to

their largest possible values, leading to the strong inconsistency.

We now focus back on the α = 1 case, and illustrate the limiting distributions of the canon-

ical angles and the Euclidean sine distance, to see the effect of parameters in the distribution.

For simplicity and clear presentation, the results corresponding to m = 2 are presented under

the Gaussian assumption. Note that the limiting distributions depend on the marginal dis-

tributions of the first few principal component scores. Therefore no common distribution is

evaluated in the limit.

Denote σ2 (= σ2
1+σ2

2) for the (scaled) total variance of the first two principal components.

The ratio σ2

τ2
is understood as a signal to noise ratio, similar to the single spike case. Since the

ratio of σ2
1 and σ2

2 affects the limiting distributions, we use (λ1, λ2) with λ1 + λ2 = 1 so that

σ2(λ1, λ2) = (σ2
1, σ

2
2). Note that for W′W ∼ W2(n,diag(σ

2
1, σ

2
2)), φ(W

′W) has the same law

as σ2φ(W2(n, diag(λ1, λ2)).

The joint limiting distribution of the two canonical angles in (3.7), also in Theorem 3.4, is

illustrated in Fig. 3.2, with various values of (σ2/τ2, λ1/λ2) and fixed n. Note that for large

d, the first canonical angle θ1 ≈ Angle(û2,d,Lm
1 ) and θ2 ≈ Angle(û1,d,Lm

1 ), and that θ1 > θ2.
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Figure 3.2: Overlay of contours of densities of canonical angles for the m = 2 case, corresponding to
different (σ2/τ2, λ1/λ2). Larger signal to noise ratios σ2/τ2 lead to the diagonal shift of the
density function, and both canonical angles will have smaller values. For a fixed σ2/τ2, the
ratio λ1/λ2 between the first and second PC variances is a driver for different distributions,
depicted as the vertical shift of the density function.

• The diagonal shift of the joint densities in Fig. 3.2 is driven by different σ2s with other

parameters fixed. Both θ1 and θ2 are smaller for larger signal to noise ratios.

• For fixed σ2/τ2, several values of the ratio between the first and second variances (λ1/λ2)

are considered, and the overlay of densities according to different λ1/λ2 is illustrated as

the vertical shift in Fig. 3.2. When the variation along the first PC direction is much

stronger than that along the second, i.e. when λ1/λ2 is large, θ2 becomes smaller but

θ1 tends to be much larger. In other words, û1 is a reasonable estimate of u1, but û2

becomes a poor estimate of u2.

See (3.15) in the appendix for the probability density function of the canonical angles.

The limiting distribution of the Euclidean sine distance between L̂m
1 and Lm

1 is also de-

picted in Fig. 3.3, again with various values of (σ2, λ1, λ2). It can be checked from the top

panel of Fig. 3.3 that the distance to the optimal subspace is smaller when the signal to noise
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Figure 3.3: Overlay of densities of the distance between the sample and population PC spaces, mea-
sured by ρs for the m = 2 case. The top panel shows a transition of the density function
corresponding to different signal to noise ratios. The bottom panel illustrates the effect of
the ratio λ1/λ2 between the first two eigenvalues. For a larger signal to noise ratio σ2/τ2,
and for a smaller value of λ1/λ2, the Euclidean sine distance is smaller.

ratio is larger. The bottom panel illustrates the densities corresponding to different ratios of

λ1/λ2. The effect of λ1/λ2 is relatively small compared to the effect of different σ2s, unless

λ2 is too small.

3.4 Geometric representations of the HDLSS data

Hall et al. (2005) first showed that the HDLSS data has an interesting geometric representation

in the limit d → ∞. In particular, for large d, the data tend to appear at vertices of a regular

simplex and the variability is contained in the random rotation of the simplex. In the spike

model we consider, this geometric representation of the HDLSS data holds when α < 1, as

shown earlier in Section 2.3. The representation in mathematical terms is

∥Xi∥ = τ
√
d+ op(

√
d), ∥Xi −Xj∥ = τ

√
2d+ op(

√
d), (3.9)
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for d dimensional Xi, i = 1, . . . , n. This simplified representation has been used to show some

high dimensional limit theory for discriminant analysis, see Ahn et al. (2007), Qiao et al.

(2010) and Huang et al. (2010).

Similar types of representation can be derived in the α > 1 case. When α > 1, where

consistency of PC directions happens, we have

∥Xi∥ /dα/2 −→ ∥Yi∥ , ∥Xi −Xj∥ /dα/2 −→ ∥Yi − Yj∥ (3.10)

where Yi = (σ1Z1i, . . . σmZmi)
′s are m-dimensional independent random vectors with mean

zero and covariance matrix diag(σ2
1, . . . , σ

2
m). To understand Yi, let X

P
i be the projection of

Xi onto the true PC space Lm
1 . It can be checked from d−1/2XP

i =
∑m

j=1(σjZji)uj that Yi is

the vector of loadings of the scaled XP
i in the first m principal component coordinates. When

α = 1, a deterministic term is added:

∥Xi∥2 /d1 −→ ∥Yi∥2 + τ2, ∥Xi −Xj∥2 /d −→ ∥Yi − Yj∥2 + 2τ2, (3.11)

These results can be understood geometrically, as summarized and discussed in the following;

α > 1: The variability of samples is restricted to the true PC space Lm
1 for large d, which

coincides with the notion of subspace consistency discussed in Remark 3.3. The d-

dimensional probability distribution degenerates to the m-dimensional subspace Lm
1 .

α = 1: (3.11) is understood with a help of Pythagorean theorem, that is, the norm of Xi is

asymptotically decomposed into orthogonal random and deterministic parts. Thus, data

tend to be τ
√
d away from Lm

1 , and Xis projected on Lm⊥
1 = span{um+1, . . . , ud}, the

orthogonal complement of Lm
1 , will follow the representation similar to α < 1 case.

α < 1: The geometric representation (3.9) holds.

Note that the case α = 1 smoothly bridges the others.

An example elucidating these ideas is shown in Fig. 3.4. Each panel shows scatter of 10

different samples (shown as different symbols) of n = 3 Gaussian random vectors in dimensions

d = 3, 30, 3000 (shown in respective columns of Fig. 3.4. In the spiked model, we take σ =
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τ = 1 and m = 1 for simplicity and investigate three different orders of magnitude α = 1
2 , 1, 2

of the first eigenvalue λ1 = dα. For each pair of (d, α), each sample Xi is projected onto the

first true PC direction u1, shown as the vertical axis. In the orthogonal d − 1 dimensional

subspace, the 2-dimensional hyperplane that is generated by the data is found, and the data

are projected onto that. Within the hyperplane, variation due to rotation is removed by

optimally rotating the data onto edges of a regular triangle by a Procrustes method, to give

the horizontal axes in each part of Fig. 3.4. These axes are scaled by dividing by max(dα, d)

and the 10 samples give an impression of the various types of convergence as a function of d,

for each α.

The asymptotic geometric representations summarized above can be confirmed by investi-

gation of the figure. For α = 1
2 , it is expected from (3.9) that the data are close to the vertices

of the regular triangle, with edge length
√
2d. The vertices of the triangle (in the horizontal

plane) with vertical rays (representing u1, the first PC direction) are shown as the dashed

lines in the first two rows of Fig. 3.4. Note that for d = 3, in the top row, the points appear to

be quite random, but for d = 30, there already is reasonable convergence to the vertices with

notable variation along u1. The case d = 3000 shows more rigid representation with much

less variation along u1. On the other hand, for the case α = 2 in the last row of Fig. 3.4,

most of the variation in the data is found along u1, shown as the vertical dotted line, and the

variation perpendicular to u1 becomes negligible as d grows, which confirms the degeneracy

to L1
1 in (3.10). From these examples, conditions for consistency and strong inconsistency can

be checked heuristically. The sample eigenvector û1 is consistent with u1 when α > 1, since

the variation along u1 is so strong that û1 should be close to that. û1 is inconsistent with u1

when α < 1, since the variation along u1 becomes negligible so that û1 will not be near u1.

For the α = 1 case, in the middle row of Fig. 3.4, it is expected from (3.11) that each

data point will be asymptotically decomposed into a random and a deterministic part. This

is confirmed by the scatterplots, where the order of variance along u1 remains comparable to

that of horizontal components, as d grows. The convergence to the vertices is noticeable even

for d = 30, which becomes stronger for larger d, while the randomness along u1 remains for

large d. Also observe that the distance from each Xi to the space spanned by u1 becomes

deterministic for large d, supporting the first part of (3.11).
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Figure 3.4: Gaussian toy example, showing the geometric representations of HDLSS data, with n = 3,
for three different choices of α = 1/2, 1, 2 of the spiked model and increasing dimensions
d = 3, 30, 3000. For α ̸= 1, data converge to vertices of a regular 3-simplex (case α < 1)
or to the first PC direction (case α > 1). When α = 1, data are decomposed into the
deterministic part on the horizontal axes and the random part along the vertical axis.

We conclude the discussion by pointing a connection to the phase transition phenomenon

investigated in the random matrix theories. The phase transition phenomenon refers that,

simply put, the eigenvalue and eigenvector of the sample covariance matrix S lose their con-

nection of the population eigen-structure of Σ = ES if the signal variance is not much larger

than the noise variance as d, n → ∞ together. See Baik et al. (2005), Nadler (2008) and Rao

et al. (2008) and references therein. The nature of the difference of the geometric represen-

tations in HDLSS asymptotics is similar to the phase transition in that the true eigenvector
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is drowned by large amount of noises when α 6 1. Although these two different asymptotic

studies share a same message, they do not overlap to each other. For example, Nadler’s result

for the one spike model is that if
√

n
d < τ2

λ1,d
then Angle(û1, u1) degenerates to zero in the

limit. However, putting λ1,d = dα the condition turns to α < 1/2 which does not coincide

with the observation α < 1 in the n fixed results. An inspection of the difference may be an

interesting investigation.

3.5 Derivation of the density functions

The probability density functions of the limiting distributions in (3.7) and (3.8) will be derived

for the case m = 2, under the normal assumption. The argument is readily generalized to all

m, but the normal assumption is essential.

We first recall some necessary notions for treating the Wishart matrix W′W and eigen-

decompositions. Most of the results are adopted from Muirhead (1982). Let A ∼ Wm(n,Σm)

and denote its eigen-decomposition as A = HLH ′ with L = diag(l1, . . . , lm). Assume Σm

is positive definite and n > m so that l1 > l2 > · · · > lm > 0 with probability 1. Denote

O(m) = {Hm×m : H ′H = Im} for the set of orthonormal m × m matrices and (dH) for

H ∈ O(m) as the differential form representing the uniform probability measure on O(m).

The multivariate gamma function is defined as

Γm(a) = πm(m−1)/4
m∏
i=1

Γ

(
a− 1

2
(i− 1)

)
,

where Γ(·) is the usual gamma function. For H ≡ [h1, . . . ,hm] ∈ O(m),

(dH) ≡ 1

Vol(O(m))
(H ′dH) =

Γm(m2 )

2mπm2/2
(H ′dH), (3.12)

where (H ′dH) ≡
∏m

i>j h
′
idhj .

We are now ready to state the density function of φ(W′W) for m = 2. Note that under

the Gaussian assumption W′W is the 2 × 2 Wishart matrix with degree of freedom n and

covariance matrix ΣW = diag(σ2
1, σ

2
2). For simplicity, write (L1, L2) = φ(W′W), and L =

diag(L1, L2). Then the joint density function of L1 and L2 is given by e.g. Theorem 3.2.18 of
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Muirhead (1982) with m = 2, and

fL(l1, l2) =
π2−n(σ2

1σ
2
2)

−n
2

Γ2(
n
2 )

(l1l2)
n−3
2 (l1 − l2)

∫
O(2)

exp

(
tr

(
−1

2
Σ−1
W HLH ′

))
(dH). (3.13)

The integral can not be solved analytically but can be simplified by using the special orthogonal

group SO(2) = {H ∈ O(2) : detH = 1}. We can parameterize H ∈ SO(2) as

H =

 cos θ − sin θ

sin θ cos θ

 = [h1,h2] (0 < θ 6 2π).

Then (H ′dH) = h′
2dh1 = dθ. Moreover the integral in (3.13) over O(2) is twice as large as

the integral over SO(2). This fact and the definition (3.12) together with the parametrization

above give

∫
O(2)

exp

(
tr

(
−1

2
Σ−1
W HLH ′

))
(dH)

=
1

2π

∫
SO(2)

exp

(
tr

(
−1

2
Σ−1
W HLH ′

))
(H ′dH)

=
1

2π

∫ 2π

0
exp

(
−1

2

[
A cos2 θ +B sin2 θ

])
dθ

=
1

2π
e−

A+B
4

∫ 2π

0
exp

(
1

4
(B −A) cos t

)
dt,

= e−
A+B

4 I0

(
1

4
(B −A)

)

where A = l1
σ2
1
+ l2

σ2
2
, B = l2

σ2
1
+ l1

σ2
2
and

I0(x) =
1

2π

∫ 2π

0
exp (x cos t) dt

is the modified Bessel function of the first kind. Note that the integral can also be represented

by the hypergeometric function of matrix arguments (see Section 7.3 of Muirhead (1982)).

We chose to use I0(x) since it is numerically more stable than the hypergeometric function.
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Then (3.13) becomes

fL(l1, l2) =
π2−n(σ2

1σ
2
2)

−n
2

Γ2(
n
2 )

(l1l2)
n−3
2 (l1 − l2)e

−A+B
4 I0

(
1

4
(B −A)

)
. (3.14)

Now the distribution of the canonical angles (in (3.7) and Theorem 3.4) is obtained by applying

the change of variable on the density (3.14). Let Y1, Y2 be the two canonical angles, in the

reverse order. Then from

(Y1, Y2) =
(
cos−1{(1 + τ2/L1)

−1/2}, cos−1{(1 + τ2/L2)
−1/2}

)
=

(
tan−1(

√
τ2/L1), tan

−1(
√

τ2/L2)
)
,

the joint density function of Y1, Y2 becomes

fY1,Y2(y1, y2) = fL(τ
2 cot2 y1, τ

2 cot2 y2) · (2τ2)2
cos y1

sin3 y1

cos y2

sin3 y2
(3.15)

on 0 < y1 < y2 <
π
2 .

The limiting distribution of the distances between the empirical and population principal

subspace, measured by the Euclidean sine metric, ρs(L̂m
1 ,Lm

1 ) in (3.8) is obtained as follows.

Let

Z1 =

√
τ2

τ2 + L1
+

τ2

τ2 + L2
, Z2 =

τ2

τ2 + L2

so that

L1 =
τ2

Z2
1 − Z2

− τ2, L2 =
τ2

Z2
− τ2.

The distribution of Z1 is the limiting distribution of interest. Note that the eigenvalues

(L1, L2) ∼ fL must satisfy 0 < L2 < L1 < ∞. This leads to the support for the joint

distribution of (Z1, Z2):

D = {Z1, Z2 ∈ R : Z2 < Z2
1 , Z

2
1 < 2Z2, Z2 < 1}.
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By the change of variable on fL (3.14), we get

fZ1,Z2(z1, z2) = fL(
τ2

z21 − z2
− τ2,

τ2

z2
− τ2) · 2z1

1

τ4

(
τ2

z2

τ2

z21 − z2

)2

1(z1,z2∈D). (3.16)

The marginal density of Z1 can be obtained by numerical integration of fZ1,Z2 . The support

of the density is then (0,
√
2).
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Chapter 4

Discussions on High Dimensional
Asymptotic Studies

4.1 Different regimes in high-dimensional asymptotics

The high dimension, low sample size data situation or the so called “large p, small n” situation

becomes a common subject in statistics. In recent years substantial work has been done on

the statistical inference in high dimensional sample spaces (or the space of parameters). A

useful framework to organize these works is, using notations d for the dimension and n for the

sample size:

1. Classical: d/n → 0 as n → ∞.

2. Random matrices: d/n → c ∈ (0,∞), as n → ∞.

3. HDLSS: d/n → ∞ as d → ∞.

The classical regime can be sub-divided into 1-i) d fixed, n → ∞ (the classical large sample

theory), and 1-ii) d, n → ∞, d/n → 0. (e.g. d(n) ≍ log n.) Likewise, the HDLSS situations

can also be further categorized into 3-i) d, n → ∞, d/n → ∞ (e.g. n(d) ≍ log d), and 3-ii)

d → ∞ while n is fixed (the HDLSS asymptotics).

We view all of these as informative. Which is most informative will depend on the partic-

ular data analytic setting, in the same way that either the Normal or Poisson approximation

can be most informative about the Binomial distribution. The theoretical findings and mes-

sages from different categories sometimes overlap with each other, but many times the results



are completely different. Our focus is on the HDLSS asymptotics, which gives mathematical

convenience and also is relatively easy to interpret the message.

The term “HDLSS” was first coined by the seminal paper of Hall et al. (2005), which

introduced the geometric representation of the HDLSS data (cf. Section 3.4). The asymp-

totic direction was first studied a couple of decades back in a different context; Casella and

Hwang (1982) studied the Stein estimator of a mean vector with d growing and n fixed. Con-

tinued from the Hall et al. (2005), Ahn et al. (2007) explored general conditions which give

the geometric representation of HDLSS data, as well as strong inconsistency of eigenvectors.

Discussions in Chapters 2–3 can be seen as an improvement of the theory glimpsed in Ahn

et al. (2007). Similar sets of problems concerning estimation of PCA and covariance ma-

trices are also studied by Yata and Aoshima (2009, 2010a), whose work can be categorized

into the HDLSS asymptotics. The classification or discriminant analysis is also often under

investigation along the HDLSS asymptotic directions (Hall et al. (2005), Lee (2007), Huang

et al. (2010) and Qiao et al. (2010)). In Pesarin and Salmaso (2010a) and Chapter 4.5 of

Pesarin and Salmaso (2010b) interesting HDLSS works on nonparametric permutation tests

are discussed.

Some researchers have considered the situations that d, n both grow but d grows much

faster than n (i.e. the category 3-i). For example, Bickel and Levina (2004) showed that Fisher

linear discriminant analysis performs poorly when d/n → ∞. Variable selection problems in

high dimensional space are widely investigated and we refer to Fan and Lv (2010) who reviewed

recent advances in the area.

In the random matrix theory, substantial work has been done on the asymptotic behavior

of eigenvalues of the sample covariance matrix in the limit n, d → ∞ together, see Baik et al.

(2005), Johnstone (2001) and Paul (2007) for Gaussian assumptions and Baik and Silverstein

(2006) for non-Gaussian results when n
d → c > 0. See also Nadler (2008), Lee et al. (2010)

and references therein for more recent advances. Majority of results are well described in a

spiked covariance model, proposed by Johnstone (2001). An exception we point out is a work

by El Karoui (2008), where he proposed to estimate the spectral distribution of eigenvalues

without assuming a spike model.

65



4.2 Open problems

The theoretical work in the previous chapters is a foundation of further study. Some future

research directions are following:

1. Extension of the results for generalized assumptions on covariance structures: For ex-

ample, exponential or polynomial decays of eigenvalues may be more realistic. The

basic covariance model in Chapters 2 and 3 is not so much different than a simple spike

covariance model where the first eigenvalue is of order dα and all the other eigenval-

ues are 1. If we assume that the sequence of the tail eigenvalues {λ2, . . . , λd} decrease

exponentially, then the ϵ-condition does not hold anymore. However, it is natural to

conjecture that a large first eigenvalue will make the estimation of the first eigenvector

more accurate. Measuring how accurate the estimate is an important question, but is

not yet investigated .

2. The study of eigen-analysis for covariance estimates which are not the standard sample

covariance matrix. There are many regularized covariance estimates proposed in litera-

ture to avoid singularity of the matrix, but there is no unified framework for analyzing

eigen-decomposition of such estimates. We suggest to use theories of matrix perturba-

tion (Stewart and Sun (1990)), by which we achieve bounds on the discrepancy between

eigenvalues (and eigenvectors) of the estimated and population covariance matrices.

3. Time-varying PCA. High dimensional data set is frequently observed along different time

points (or on the space) longitudinally or cross-sectionally. Examples of such situations

include time course gene expression data (see for example Storey et al. (2005), who

analyzed in a variable by variable fashion), and brain MRI data taken longitudinally

(Thambisetty et al. (2010)). While a nonparametric estimation of the mean function

of time can be done by a standard technique, changes in the second moments (i.e. the

covariance matrix function) are not investigated. Instead of estimating all elements of

covariance matrix, one can pursue to estimate PCs smoothly that vary along time.

4. Estimation of the number of important components, or the intrinsic dimensionality.

When reducing the dimensionality in practice, determining the number of components

66



is an important issue. Moreover, in HDLSS situation, this can be used to determine an

appropriate sample size. This problem is heavily investigated in the machine learning

community. We refer to Levina and Bickel (2005) who tackled this in the statistical side.

Yata and Aoshima (2010b) investigated this issue in the view of the HDLSS context.
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Part II

Statistics on Manifold
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Chapter 5

Data on manifolds

In this chapter we introduce special forms of data, which lie in curved manifolds. Direct

application of traditional statistics based on Euclidean space often fails to have legitimate

answers. As a simple illustration, the arithmetic mean of the angles 2◦, 4◦, 356◦, and 358◦,

as numbers, is 180◦ which is the opposite point of the intuitive notion of center which is 0◦.

The latter is easily justified by considering the angles as points on the unit circle, which is a

1-dimensional curved manifold in R2.

We begin with a list of interesting manifold data types (Section 5.1). Some preliminary

mathematical background that is essential in dealing with the manifold data is provided in

Section 5.2. We then discuss some exploratory statistics on manifolds in Section 5.3 as well

as a general idea in extensions of principal component analysis to manifolds.

5.1 Manifolds of interest

A growing number of data types are non-Euclidean. In terms of object oriented data analysis,

proposed byWang and Marron (2007), there is a useful distinction between mildly and strongly

non-Euclidean data, depending on the existence of approximating Euclidean spaces for the

data space. The term strongly non-Euclidean refers mostly to tree-structured data (see e.g.

Billera et al. (2001) for phylogenetic trees, Bullitt and Aylward (2002) for blood vessel trees,

and Tschirren et al. (2002) for lung airway trees), where development of appropriate statistical

methods is more challenging (see e.g. Aydin et al. (2009)). We focus on the mildly non-

Euclidean data, which are also referred to as manifold data, as in that context, the data



objects are on the surface of a curved manifold forming a feature space.

Although there are infinitely many manifolds with different topological features, we are

only interested in certain types of manifolds that form sample spaces of real objects. This

section contains a brief (not complete) list of those manifolds of interest, first labeled by their

application area then by their geometric features.

Data on curved manifolds have long been investigated. Among these the following are

best studied;

Directional data 2-D or 3-D directions lie in the unit circle or the unit sphere (or a hemi-

sphere), which include wind or ocean current directions, orientation of cracks on rocks,

and directions from the earth to celestial objects. A substantial amount of literature

can be found in the area of circular, angular or directional statistics, see Fisher (1993),

Fisher et al. (1993), and Mardia and Jupp (2000) for a good introduction and further

discussion of this topic.

Landmark-based shape spaces A landmark based shape analysis analyzes data lying on

special manifolds. A shape is defined as an equivalence class under translation and rota-

tion, scaling in many cases and sometimes reflection. Thus, shape spaces are constructed

by removing the translation, scale, and rotation from the set of landmarks, as proposed

and investigated by both Kendall (1984; 1999) and Bookstein (1986; 1991). A clear and

detailed introduction can be found in Dryden and Mardia (1998).

Due to advances in technology, a demand to analyze different types of manifold data is

growing. These modern data are mostly from medical imaging and include

Medial shape representations Shapes of 2-D or 3-D objects are represented in a para-

metric model, called m-reps in short, including directions and angles as parameters.

The data space here is a manifold that is a direct product of Euclidean space and unit

spheres. This type of data intrigued the research presented in Chapter 6, and thus we

illustrate the m-reps in more detail, later in Section 6.5. A complete discussion on the

subject can be found in Siddiqi and Pizer (2008).

DTI Diffusion Tensor Magnetic Resonance Imaging (Basser et al. (1994), Pennec et al.

(2006)) is a recently developed and widely studied MRI technique that measures the
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diffusion of water molecules in a biological object. Random motion of water molecules

in 3-D for each voxel of an image is represented by a 3-D tensor, i.e. a symmetric pos-

itive definite 3 × 3 matrix. Similar to a variance-covariance matrix, each tensor lies in

a lower dimensional sub-manifold of R9 since it has to be symmetric positive definite.

DTI data, consisting of multiple tensors, thus naturally lie in a manifold.

Diffeomorphisms A common methodology for comparing shapes in image analysis is to

use diffeomorphisms (Joshi and Miller (2000), Joshi et al. (2004)), i.e. smooth space

warping functions. This method delivers a new approach to shape analysis. A shape is

considered as a distortion (i.e. diffeomorphism) of some template. Thus a set of shapes

is represented as a set of diffeomorphisms and the variation in the population of diffeo-

morphisms can be studied to understand variation in shapes. The set of diffeomorphisms

forms a very high dimensional manifold.

Shapes of curves A modern approach to analyze space curves, outlines of objects, and

surfaces is to consider shapes of those, invariant to similarity transformations and re-

parametrization of the curves. The space of these invariant shapes form an infinite

dimensional manifold that can be thought of as an extension of the landmark-based

shape spaces. See e.g. Srivastava et al. (2010).

The list provided here contains most common manifolds of interest. To develop statistical

methods on these different manifolds, it is helpful to classify the manifolds of interest by their

topological features, as follows.

1. Hyperspheres are related to many types of manifolds yet easy to work on. For example,

the shape space of landmarks or curves is a quotient space of hyperspheres under some

actions of groups. A widely used technique in shape analysis is to lift (i.e. approximate)

samples in shape space to its corresponding hypersphere and to work on the much

simpler manifold, the sphere.

2. Direct product manifolds are identified with direct (Cartesian) products of other simple

manifolds. For example, a torus can be understood as a direct product of two circles

(S1 × S1). Interesting data types are found in forms of generalized tori and direct

71



products of spheres and Euclidean spaces. The space of m-reps and the size-and-shape

space (see Ch. 8 of Dryden and Mardia (1998)) belong to the class of direct product

manifolds.

3. Space of Symmetric Positive Definite matrices is topologically a cone, and thus has

different characteristics than spheres. Loosely speaking, the space is a generalization

of the positive real line. The sample spaces of the diffusion tensors and the covariance

matrices (as observed samples) belong to this category.

4. Implicitly defined manifolds. Some manifolds are only defined implicitly (i.e. through

tangent spaces and metrics), an example of which is the space of diffeomorphisms.

Distances and geodesics (an analog of lines) between two objects are found only through

heavy optimization processes.

Throughout the discussion in the dissertation, we focus on direct product manifolds and

spheres (and quotient spaces of those), in Chapters 6 and 7, respectively. Implementation

of the proposed methods to other types of manifolds would be interesting and useful future

work.

As an aside, Chikuse (2003) contains a detailed introduction to the statistics on special

manifolds, including the Stiefel and Grassmann manifolds.

5.2 Mathematical background

5.2.1 Riemannian manifold

We begin with introducing well-known definitions and facts from differential geometry. Precise

definitions and geometric discussions on the manifold can be found in Boothby (1986); Lee

(1997); Helgason (2001).

A d-dimensional manifold can be thought of as a curved surface embedded in a Euclidean

space of higher dimension d′ (> d). The manifold is required to be smooth, i.e. infinitely

differentiable, so that a sufficiently small neighborhood of any point on the manifold can be

well approximated by a linear space. The tangent space at a point p of a manifold M , TpM ,
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is defined as a linear space of dimension d which is tangent to M at p. The notion of distance

on manifolds is handled by a Riemmanian metric, which is a metric of tangent spaces.

Definition 5.1. A Riemmanian metric on a manifold M is a function that smoothly assigns

to each point p ∈ M an inner product ⟨·, ·⟩ defined on the tangent space TpM . A Riemmanian

manifold is a smooth manifold equipped with such a Riemmanian metric.

Given a smooth curve segment γ : [a, b] −→ M , the length of γ can be defined by the

Riemmanian metric as

L(γ) =

∫ b

a

∥∥γ′(t)∥∥ dt,
where γ′(t) lies in the tangent space at γ(t) and ∥·∥ =

√
⟨·, ·⟩. In contrast to the Euclidean

space, the shortest path between two points is in general not a line segment but a curve. The

shortest path is closely related to the concept of geodesics, whose trajectory is (locally) the

shortest path between two points. Geodesics are formally defined as follows.

Definition 5.2. A geodesic is a constant-velocity curve γ that locally minimizes L(γ) among

curves whose endpoints are fixed.

Note that a geodesic between two points may not be unique. Furthermore a geodesic may

not be the same as the global shortest path. A natural metric on manifolds, the geodesic

distance function ρ(p, q), is the length of shortest geodesic segment between two points. In

case there exists no such geodesic, ρ is defined by the infimum of lengths of all paths from p

to q. The geodesic distance is formally defined as follows.

Definition 5.3. The geodesic distance function ρ(p, q) is defined as the infimum of the lengths

of all smooth curves γ between p and q, i.e. ρ(p, q) = infγ L(γ).

A geodesic γ is said to be a minimal geodesic if L(γ) = ρ(p, q). Minimal geodesics are

guaranteed to exists under certain conditions as stated in the following (Theorem 7.7 and

Lemma 7.8 of Boothby (1986))).

Theorem 5.1 (Hopf-Rinow). For a manifold M , The following are equivalent;

(i) Any geodesic γ : [a, b] −→ M can be extended to a geodesic from R to M .

(ii) With the metric ρ(p, q), (M,ρ) is a complete metric space.
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Furthermore, if (i) or (ii) is true, any point p of M can be joined to q ∈ M by a minimal

geodesic (whose length is necessarily ρ(p, q)).

In what follows we assume that our manifold M is a complete Riemmanian manifold with

a metric ρ. Since the formulation of the Riemmanian manifold (and its metric) is closely

related to its tangent spaces, mappings between the manifold and a tangent space are useful.

For any p ∈ M and v ∈ TpM , there exists a unique geodesic γ whose initial location is p

with initial direction v, i.e. γ(0) = p and γ′(0) = v (Thoerem 5.8 of Boothby (1986)). If (M,ρ)

is complete, then the geodesic γ is defined for all of R. Now we can define the exponential

map Expp, a mapping from TpM to M , as

Expp(v) = γ(1),

where γ is the unique geodesic defined by v. The exponential map is carefully chosen so that

a geodesic in M through p is an image of a straight line in TpM through the origin of TpM .

The exponential map Expp is a diffeomorphism (a smooth bijective function whose inverse is

also smooth) in some neighborhood U ∈ TpM (Theorem 6.9 of Boothby (1986)). Thus Expp

has an inverse at least in some neighborhood of Expp(U). Denote the inverse exponential

map as Logp : Expp(U) −→ TpM , sometimes called the log map.

The geodesic distance ρ of M can be formulated as the norm of a tangent vector by use

of the exponential map.

Theorem 5.2. For any two points p, q of a complete Riemmanian manifold M , there exists

a tangent vector v of TpM such that Expp(v) = q and

ρ(p, q) = ∥v∥ .

Proof. Since M is complete, there exists a minimal geodesic γ between p and q which can

be parametrized as γ(0) = p and γ(1) = q. Let v = γ′(0) ∈ TpM . By the definition of the

exponential map, Expp(v) = q. Noting that ∥γ′(t)∥ = ∥γ′(0)∥ for all t ∈ R because of its
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constant-velocity property, we have

ρ(p, q) = L(γ) =

∫ 1

0

∥∥γ′(t)∥∥ dt = ∫ 1

0
∥v∥ dt = ∥v∥ .

Remark 5.1. For the tangent vector v in Theorem 5.2, the unique geodesic γ defined by v is

minimal.

Note that by the theorem, if q is in the domain of Logp, then Logpq = v so that ρ(p, q) =∥∥Logpq∥∥ .
Remark 5.2. In many practical applications, a manifold can be represented as a Lie group

or a quotient space of a Lie group. In this case, the exponential map is easily found by Lie

algebra. We do not restate general Lie theory, but mention earlier work: Boothby (1986) and

Fletcher (2004).

5.2.2 Direct Product manifold

Simple manifolds include some low dimensional manifolds such as S1, S2, R+, and R. A direct

product manifold, consisting of the direct product of simple manifolds, can be thought of as a

metric space. In this section, a geodesic distance, an appropriate metric for the direct product

manifold, is established.

In this section a direct product manifold is defined as a complete metric space with the

geodesic distance as its metric. We begin by illustrating the main idea using simple manifolds,

since they form a basis for direct product manifolds.

[S1] The unit circle S1 is a complete 1-dimensional manifold embedded in R2. The geodesic

distance is defined by the length of the shortest arc. Let θ ∈ R denote an element of TpS
1

where p is set to be (1, 0) ∈ S1. Then the exponential map is defined as

Expp(θ) = (cos θ, sin θ).

The corresponding log map of x = (x1, x2), Logp(x) = sign(x2) · arccos(x1), is defined on

S1/{−p}.

Note that S1 can be thought of as a manifold embedded in a complex plane. Then the
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exponential map at p = 1 + 0i is just a complex exponential, i.e. Expp(θ) = eiθ.

[S2] The unit sphere S2 is a complete 2-dimensional manifold embedded in R3. The

geodesics at the north pole p = (0, 0, 1) are the great circles passing through p. The geodesic

distance between p and q ∈ S2, ρ(p, q) is the length of the shortest great circle segment and

is computed by

ρ(p, q) = arccos(< p, q >),

where <,> is the Euclidean inner product. Let v = (v1, v2) denote a tangent vector in TpS
2.

Then the exponential map Expp : TpS
2 −→ S2 is defined by

Expp(v) =

(
v1
∥v∥

sin ∥v∥, v2
∥v∥

sin ∥v∥, cos ∥v∥
)
.

This equation can be understood as a rotation of the base point p to the direction of v with

angle ∥v∥. The corresponding log map for a point x = (x1, x2, x3) ∈ S2 is given by

Logp(x) =

(
x1

θ

sin θ
, x2

θ

sin θ

)
,

where θ = arccos(x3) is the geodesic distance from p to x. Note that the antipodal point of p

is not in the domain of the log map, i.e. the domain of Logp is S2/{−p}.

[R+] The set of positive real numbers R+ needs special treatment. In many practical

applications, R+ represents a space of scale parameters. A desirable property for a metric on

scale parameters is the scale invariance, ρ(rx, ry) = ρ(x, y) for any x, y, r ∈ R+. This can be

achieved by differencing the logs, i.e.

ρ(x, y) =

∣∣∣∣log x

y

∣∣∣∣ , for x, y ∈ R+. (5.1)

It can be checked that the metric ρ is a complete geodesic distance function. Let geodesics

of R+ be of the form γ(t) = aebt, for a ∈ R+, b ∈ R so that it can be extended for all

t ∈ R. The geodesic distance (5.1) is given by a Riemmanian metric at p ∈ R+, ⟨v, w⟩p = v·w
p2

.

One may verify that a minimal geodesic between x, y ∈ R+ is γ(t) = xet log
y
x . Then L(γ) =∫ 1

0 ∥γ′(t)∥γ(t) dt =
∫ 1
0

∣∣log y
x

∣∣ dt implies (5.1). The geodesic distance ρ is a complete metric by

Theorem 5.1.
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Note that another metric d(x, y) = |x− y| on R+ is possible but is neither scale invariant

nor complete. The exponential map of R+ is defined by the standard real exponential function.

The domain of the inverse exponential map, the log map, is R+ itself.

[R] The real line is a linear space. The exponential map on R is the identity map. The

geodesic distance on R is the same as the Euclidean distance.

Note that the result of Theorem 5.2 can be applied to each of four simple manifolds.

However, its major use for our development is on direct product manifolds, which will be

stated shortly.

The direct product manifold is defined by the direct product of simple manifolds. Let

M = ⊗m
i=1Mi be a d (> m) dimensional manifold, where ⊗ denotes the direct product

of spaces. Let each Mi be one of the simple manifolds, that is, Mi = S1, S2, R+, or R.

The tangent space at p = (p1, . . . , pm) of M , TpM is the d-dimensional vector space. Let

v = (v1, . . . , vm), w = (w1, . . . , wm) be tangent vectors of TpM . Define the Riemmanian

metric at p by the inner product

⟨v, w⟩p = ⟨v1, w1⟩p1 + · · ·+ ⟨vm, wm⟩pm , (5.2)

where each ⟨·, ·⟩pi is the Riemmanian metric at pi of Mi.

Then geodesics between x, y ∈ M are denoted as γ(t) = (γ1(t), · · · , γm(t)) where each γi(t)

is the geodesic between xi and yi. Since each γi(t) is defined for all R, γ(t) is also defined for

all R, and thus by Theorem 5.1, M with the geodesic distance ρ is complete. The exponential

map at p ∈ M is defined by the exponential maps of each component, i.e.

Expp(v) = (Expp1(v1), . . . ,Exppm(vm)), v ∈ TpM.

Likewise, the log map is defined as Logp(x) = (Logp1(x1), . . . ,Logpm(xm)), for x in the domain

of Logp, D = D1 × · · · ×Dd, where Di is the domain of the log map of Mi, Logpi .

By Theorem 5.2 and (5.2), for any x, y ∈ M , there exists a tangent vector v ∈ TxM such

that Expx(v) = y and

ρ(x, y) = ∥v∥x =

(
m∑
i=1

∥vi∥2xi

)1/2

, (5.3)
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where the norm ∥·∥xi
on Mi is defined by the Riemmanian metric ⟨·, ·⟩xi . Moreover, there

exists a minimal geodesic γ = (γi, . . . , γm) associated with v. By using the constant-velocity

property of geodesics, one may prove that each γi is also minimal. By a similar argument to

the proof of Theorem 5.2, the geodesic distance between xi, yi of Mi is

ρi(xi, yi) = L(γi) =

∫ 1

0

∥∥γ′i(t)∥∥ dt = ∫ 1

0
∥vi∥xi

dt = ∥vi∥xi
. (5.4)

Using (5.4), the geodesic distance on M , defined by (5.3), can be written as

ρ(x, y) =

(
m∑
i=1

ρ2i (xi, yi)

)1/2

, x, y ∈ M, (5.5)

where each ρi is the geodesic distance function of Mi. The direct product manifold M with

the metric ρ is a complete metric space.

5.3 Exploratory Statistics on manifolds

5.3.1 Extrinsic and Intrinsic means

Finding a center point that best represents the data is a natural starting point of a statistical

analysis. In general there are two different notions of mean on manifolds. One of these is

popular in directional statistics, which treats Sd−1 as a subset of Rd (See e.g. Fisher et al.

(1993), Mardia and Jupp (2000)). As an illustration, a set of angles {θ1, . . . , θn} is represented

as a set of vectors of length 1, i.e. θ⃗ = (cos θ, sin θ). The mean of these angles is defined by

the direction of the addition of the vectors, i.e.

θ̃ =

∑n
i=1 θ⃗i∥∥∥∑n
i=1 θ⃗i

∥∥∥ . (5.6)

Note that the arithmetic mean of these vectors, 1
n

∑n
i=1 θ⃗i , may not lie on the unit circle.

So it is divided by its length to project back to the unit circle. This notion of mean can be

generalized for general manifolds as follows. Given a d-dimensional manifold M , let Rd0 be

the d0-dimensional Euclidean space in which M is embedded. Define a distance function ρ0

on M as ρ0(x, y) := ∥x− y∥, where ∥·∥ is the usual norm of Rd0 . This definition of distance
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Figure 5.1: Illustration of the extrinsic and intrinsic means of the angular data (depicted as blue xs).
The means may be the same as shown in the left panel, but in general different as shown
in the right panel. It also shows that the simple average (black circle) leads to a point that
is not on the circle, but the projection of the average onto the manifold is the extrinsic
mean (red circle). The intrinsic mean is the green circle.

is extrinsic to M , that is, it depends on the choice of embedding space. Then, define the

extrinsic mean of a set of points x1, . . . , xn ∈ M as

x̃ = argmin
x∈M

n∑
i=1

ρ20(x, xi). (5.7)

The extrinsic mean can also be obtained by finding the arithmetic mean of the embedded

points (in Rd0) and then projecting this mean onto the manifold M (Srivastava and Klassen

(2002)). Specifically, when the manifold is taken to be S1, this definition is the same as (5.6).

A more natural choice of mean is obtained by using the geodesic distance ρ which is

intrinsic to M . Define the geodesic mean of x1, . . . , xn ∈ M as the minimizer in M of the sum

of squared geodesic distances to the data. Thus the geodesic mean is defined as

x̄ = argmin
x∈M

n∑
i=1

ρ2(x, xi), (5.8)

which is often called the intrinsic mean.

The idea of intrinsic mean comes from that of the Fréchet mean (Fréchet (1944), Fréchet

(1948), Karcher (1977), Le and Kume (2000), Bhattacharya and Patrangenaru (2003)), named

after the famous mathematician Maurice Fréchet. The Fréchet mean generalizes the notion

of the arithmetic mean of a vector space, preserving the property of minimizing the sum

79



of squared distances to data. In a vector space, the Fréchet mean with the usual Euclidean

distance is the same as the arithmetic mean. In a manifold, the Fréchet mean with its distance

as the geodesic distance ρ is the geodesic mean. The existence and uniqueness of the geodesic

mean is not in general guaranteed. However, Karcher (1977) showed that the geodesic mean

exists and is unique when the given data are contained in a sufficiently small region of M . In

case there are multiple geodesic means, the set of those will be called a geodesic mean set.

Note that those definitions of extrinsic and intrinsic means apply only to finite samples.

We can also define extrinsic and intrinsic means of a distribution by substituting the sum by

integration from (5.7) and (5.8), i.e. the extrinsic mean

µE = argmin
p∈M

∫
M

ρ20(p, x)dF (x),

where F denotes a distribution function on M , and the intrinsic mean

µI = argmin
p∈M

∫
M

ρ2(p, x)dF (x).

The extrinsic mean and the intrinsic mean are not in general the same, an example of

which can be found in Srivastava and Klassen (2002). Bhattacharya and Patrangenaru (2003,

2005) studied the asymptotic properties of the sample means (5.7) and (5.8) when the sample

size tends to infinity, including consistency and limiting distributions.

The extrinsic mean is easier and faster to compute and sometimes is used as an approxi-

mation of the intrinsic mean in practice (Bhattacharya and Patrangenaru (2003); Srivastava

and Klassen (2002)). On the other hand, the intrinsic mean is widely used in the field of

image analysis since any embedding is thought of as unnatural choice.

Figure 5.1 exemplifies the extrinsic and intrinsic means of angular data. A detailed inves-

tigation on the intrinsic mean is presented next.

5.3.2 Examples: Geodesic Means on Various Manifolds

Evaluating the geodesic mean on a manifold is an optimization problem, and usually there is

no closed form solution. In this section aspects of evaluating geodesic means are discussed in

the case of the direct product manifold. Evaluating geodesic means of data in S1 or S2, i.e.
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directional data, are illustrated at first.

Geodesic mean of directional data

We begin with investigating geodesic means of directional data, particularly in S1 or S2.

These manifolds are considered as spaces of angles, 2-D or 3-D directions.

The unit circle S1 can be considered as a wrapping of the real line such that θ and θ+2π ∈ R

are wrapped to the same location of the unit circle. The wrapping of the real line coincides

with the exponential map from the tangent space as defined in section 5.2.2. Conversely

for a given set of data points on S1, it is possible to unwrap the unit circle to the real line

so that there are infinitely many periodic copies of the data points. Figure 5.2 illustrates

the procedure of finding the geodesic mean set via the wrapping approach. The top panel

illustrates the unit circle, or S1 embedded in R2, together with data points {x1, . . . , x4} ⊂ S1

as blue crosses. The unwrapped circle and data points (with replications) are described in

the bottom panel. The bottom panel also shows the squared geodesic distances to each of the

data points, ρ2(x, xi), as green curves and the sum of squared distances
∑4

i=1 ρ
2(x, xi) as a red

curve. By (5.8) the geodesic mean set (red dots) is found where the red curve is minimized.

Figure 5.2a shows a particular example with multiple geodesic means. Figure 5.2b shows a

particular example with a local minima of the object function, i.e. the red curve, that we

want to minimize. It is clear that iterative algorithms to find geodesic means may fail because

of these two cases.

A direct calculation for a geodesic mean set of angles, first developed by Moakher (2002)

as an example of the geodesic mean of rotation matrices, can be used as a remedy for these

problems. He showed that for a set of angles {θ1, . . . , θn} the geodesic mean set is contained

in the candidate set {θ̄j}n−1
j=0 where

θ̄j =

∑n
i=1 θi + 2jπ

n
, j = 0, . . . , n− 1. (5.9)

A simple proof of this can be found at Lu and Kulkarni (2008). Moreover, all local minima

of the object function are found at the candidate set.

The movie Geodmean2d.avi at Jung (2008) describes aspects of the geodesic mean set

with four data points moving around the circle.
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(a) Not unique geodesic mean (b) local minima

Figure 5.2: Geodesic mean set on S1. Four blue crosses (+) represent data points. The red curve in
the bottom panel shows the sum of squared distances to the data. A geodesic mean set
(shown as red dots) is found where the red curve is minimized. Examples are chosen to
show (a) multiple geodesic means and (b) local minima of the object function.

Let us move on to geodesic means on S2. One way to parameterize S2 is by a spherical co-

ordinate system using the longitude θ and the latitude ϕ. That is, a point on S2 is represented

by (θ, ϕ) ∈ [0, 2π)× [π2 ,−
π
2 ]. Note that in this parametrization, the poles are each represented

by infinitely many points, e.g. the north pole is represented by (θ, π2 ) for any θ ∈ [0, 2π).

Similar to the wrapping approach in the S1 case, consider unwrapping S2 transversely (i.e.,

along the equator) so that (θ, ϕ) and (θ+ 2π, ϕ) are located at the same point on the sphere.

These ideas are used to illustrate the procedure of finding a geodesic mean set on S2 as in

Figure 5.3. The top left and right show a sphere with its equator and three data points as

red dots, viewed from the front and back sides. The bottom panel illustrates a part of the

transversely unwrapped sphere with the longitude-latitude parameters. Note that a geodesic

of S2 is still a curve (not a line) in the parameter space. Thus a geodesic distance is not the

same as the Euclidean distance in the parameter space. This parameter space does not agree

with the tangent space defined in Section 5.2.2. Nevertheless, the sum of squared distances

to the data,
∑

ρ2(xi, x), can be evaluated and illustrated based on the parameters. Contours

of the object function (i.e.
∑

ρ2(xi, x)) together with a heat map (high as red, low as blue)

are plotted in the bottom panel. The geodesic mean set is found where the object function is

minimized. The middle panel shows the sphere colored by the heat map of the object function.

For more examples, movies at Jung (2008) illustrate various aspects of geodesic means of S2.

Finding a geodesic mean set is an optimization problem. Similar to the S1 case, a geodesic
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(a) Not unique geodesic mean (b) local minima

Figure 5.3: Geodesic mean set on S2. Three red points represent the location of data on the unit
sphere. The heat map and contours of the object function evaluated on the latitude-
longitude parameter space are illustrated in the bottom panel. The geodesic mean set
(shown as yellow dots) is found where the object function is minimized. Examples are
chosen to show (a) multiple geodesic means and (b) local minima of the object function.

mean of S2 may not be unique (Figure 5.3a). Moreover, it is possible to have infinitely many

geodesic means. For example, the geodesic mean set of two points in the north and south

poles is the whole equator. Also, the object function that we want to minimize might have

local minima (Figure 5.3b), which suggests that iterative algorithms may fail to find geodesic

means.

Remark 5.3 (Uniqueness of geodesic mean in S1 and S2). As mentioned earlier, the uniqueness

of a geodesic mean on manifolds is guaranteed when the support of data is sufficiently small.

Specifically, Theorem 7.3 of Kendall (1990), also found in Karcher (1977) and Le (2001),

applied to the case S1 and S2 gives the following. When the data in S1 are contained in an

arc which is a strict subset of the half circle, a geodesic mean is unique and found in the arc.

Similarly, if the data in S2 are contained in a geodesic ball B(p, δ) = {x ∈ S2 : ρ(x, p) 6 δ},

for some δ < π
2 so that B(p, δ) is strictly contained in a hemisphere, then there exists a unique

geodesic mean of the data, contained in B(p, δ).

Extension to direct product manifolds

In the previous section we have focused on rather simple cases, S1 and S2. These special

cases in fact form a fundamental basis for direct product manifolds. Finding a geodesic mean

set on the direct product manifolds heavily relies on the geodesic mean set of each of the
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simple manifolds.

We begin by illustrating this idea on a 2-dimensional manifold S1 × S1. For x ∈ S1 × S1,

denote x = (x1, x2), where x1, x2 ∈ S1. Let ρ1 be the geodesic distance function defined on

S1. Then from the result of Section 5.2.2 the geodesic distance function on S1×S1 is defined

as

ρ(x, y) =
√

ρ21(x
1, y1) + ρ21(x

2, y2), x, y ∈ S1 × S1.

Now consider finding a geodesic mean set of x1, . . . , xn ∈ S1 × S1, where xi = (x1i , x
2
i ),

i = 1, . . . , n. Let A1, A2 be the component-wise geodesic mean sets, i.e. the geodesic mean

sets of {x11, . . . , x1n} and {x21, . . . , x2n} respectively. Then the geodesic mean set of x1, . . . , xn ∈

S1 × S1, say A, will be the direct product of the component-wise mean sets, i.e.

A = {argmin
x∈(S1)2

n∑
i=1

ρ2(x, xi)} = A1 ×A2.

Figure 5.4 depicts a particular example of a geodesic mean set on S1 × S1 with two data

points

x1 =

0

π

 , x2 =

π

π
2

 ∈ S1 × S1,

where each component of S1 is parametrized by the angle from the positive x-axis. The

geodesic mean sets of the first and second components are A1 = {π
2 ,

3
2π}, A2 = {3

4π} respec-

tively. The geodesic mean set A = {(π2 ,
3
4π), (

3
2π,

3
4π)} ⊂ S1×S1 can be found via minimizing

the sum of squared distances, which is in fact the same as the set A1 ×A2.

Noting that S2 is also a 2-dimensional manifold, we may hope that we could break further

down the geodesic mean set of S2 as done in S1 × S1. However, the component-wise mean

of points on S2 does not in general give the geodesic mean. As an illustration, consider data

points along the equator as in Figure 5.5. If we parameterize S2 with the longitude-latitude

parameters as done in previous section, then the component-wise mean of latitude angles is

near zero. However, the geodesic mean is located near the north pole, which implies that the

latitude angle of the geodesic mean is near π
2 (far from zero).

The component-wise mean idea illustrated, in Figure 5.4, on S1×S1 is in fact generalizable

for more complicated direct product spaces. The following proposition shows that the geodesic
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Figure 5.4: Geodesic mean set on S1 × S1. Two data points are depicted as blue cross(+) and blue
diamond (⋄) signs, respectively. The left and middle panels show the component-wise
geodesic mean sets A1 and A2 (red circles) as well as the data for each component. The
right panel is a part of the parametrization of S1×S1 via unwrapping and shows replicated
data points and two geodesic means. It is easily seen that A = A1 ×A2.

Figure 5.5: Plot of 10 points (red dots) along the equator with random perturbation and the geodesic
mean (black dot) near the north pole illustrates that geodesic means on S2 can not be
calculated in the component-wise fashion, and that the geodesic mean may be located far
from all data points.
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mean set of data in a direct product manifold is the same as the direct product of component-

wise geodesic means.

Proposition 5.3. Let M = ⊗m
i=1Mi be a d(> m) dimensional manifold. Let each Mi be a

simple manifold as defined in Section 5.2.2. Let {x1, . . . xn} be n points in M , where xj =

(x1j , . . . , x
m
j ) for each j = 1, . . . , n. Suppose Ai is the component-wise geodesic mean set of

xi1, . . . , x
i
n ∈ Mi for each i. Then the geodesic mean set of x1, . . . xn ∈ M , say A, is the same

as the direct product of component-wise geodesic means, i.e.

A = ⊗m
i=1Ai.

Proof. Let ρi be the geodesic distance function defined on Mi respectively. Then from the

result of Section 5.2.2 the geodesic distance function ρM on M is defined as

ρM (x1, x2) =

(
m∑
i=1

ρ2i (x
i
1, x

i
2)

)1/2

, x1, x2 ∈ M. (5.10)

For any x̄ = (x̄1, . . . , x̄m) ∈ A, we have by definition of the geodesic mean,

∑
j

ρ2M (x̄, xj) 6
∑
j

ρ2M (y, xj), ∀y ∈ M.

Plugging in (5.10) on both sides, we get for all y1 ∈ M1,

∑
j

ρ21(x̄
1, xj) +

∑
i>1

∑
j

ρ2i (x̄
i, xj) 6

∑
j

ρ21(y
1, xj) +

∑
i>1

∑
j

ρ2i (x̄
i, xj),

which shows that x̄1 ∈ A1. Since this is true for all x̄i, we get A ⊂ ⊗m
i=1Ai. It can be proved

similarly that A ⊃ ⊗m
i=1Ai.

Remark 5.4. The uniqueness of a geodesic mean on M is guaranteed by the uniqueness of

every component-wise geodesic mean of Mi. Thus sufficiently small support of a data set in

each Mi will give a unique geodesic mean. Note that a geodesic mean for R or R+ is always

unique. For S1 and S2, see Remark 5.3. If there exist multiple geodesic means for each simple

manifolds Mi, then the cardinality of the geodesic mean set of M grows exponentially.
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5.4 Backward Generalization of PCA on manifolds

The rest of the dissertation is devoted to generalize Principal Component Analysis (PCA) to

some types of manifold data. A main idea in generalization is to take a reverse viewpoint in

understanding Euclidean PCA.

In Euclidean space, or simply a vector space of dimension d, let X1, . . . , Xn be column vec-

tors that are inputs for Classical (Euclidean) PCA. The data matrix is formed by aggregating

the data vectors: X = [X1, , . . . , Xn]. Euclidean PCA can be understood as an operation of

finding affine subspaces ASi, where i = 1, . . . , d represents the dimension of ASi.

A traditional forward stepwise view to Euclidean PCA is understood by increasing the

dimension i of ASi, starting from the empirical mean X̄ ≡ AS0. In particular, given ASi, the

direction u⃗i+1 of great variance is added to ASi, resulting in ASi+1. Therefore, we have

AS0 ⊂ AS1 ⊂ AS2 ⊂ · · · ⊂ ASd,

where each ASi is the best fit containing ASi−1 in the whole space ASd. A simple example of

the forward operation in depicted in Figure 5.6. In 3-space, X̄ is plotted as a black dot with

the AS1 drawn as a line segment. AS2 is found by adding an orthogonal direction to AS1,

resulting in an affine plane AS2 plotted in the right panel.

The viewpoint that seems more useful for generalization of PCA to manifold data is the

backward stepwise view. In backward PCA, principal components are found in reverse order,

i.e., ASis are fitted from the largest dimension, which leads to

Rd = ASd ⊃ ASd−1 ⊃ · · · ⊃ AS1 ⊃ AS0.

In particular, ASd−1 is found from ASd by removing the direction u⃗d of least variance from all

of the data points. Successively, ASi is the best fit in ASi+1 (not in ASd). In the toy example

in Figure 5.6, the backward operation can be understood by viewing the plots from right to

left. From R3, AS2 is fitted by removing a direction u⃗3, the direction of least variance. Then

a line (AS1) is found within AS2 in the same fashion, and so on.

In Euclidean space the forward and backward approaches are equivalent. In practice, the
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Figure 5.6: Sample points in 3-space with mean and PC1 direction, and the affine subspace formed by
PC1–2 directions.

basis of ASi is formed by the eigenvectors u⃗j , j = 1, . . . , i, of the sample covariance matrix

S = 1
n−1(X− X̄)(X− X̄)T or the left singular vectors of the centered data matrix (X− X̄).

However, in non-Euclidean spaces the choice of viewpoint affects the generalizations of

PCA, discussed next.

In curved manifolds we need to generalize important notions such as the sample mean and

straight lines (or directions) as they are not defined in general manifolds. A useful notion for

generalization of mean is the Fréchet mean or the geodesic mean (5.8). The Fréchet mean is

widely applicable, since it only requires a metric on the manifold. In Euclidean space, the

sample mean is the Fréchet mean with the usual metric ρ(x, y) = ∥x− y∥.

A widely used approach to manifold PCA, called Principal Geodesic Analysis (PGA,

Fletcher et al. (2004)), generalizes PCA in a forward stepwise manner. The first step in

PGA is to find a center point for the manifold data. Having the geodesic mean as the center

point in PGA, the second step is to find a geodesic (instead of a line) that best represents

the data, among all geodesics that pass through the geodesic mean. The higher order compo-

nents are again geodesics that are orthogonal to the lower order geodesics. In practice, these

geodesic components are computed through a projection of the data onto the tangent space at

the geodesic mean. PGA and similarly defined forward approaches are developed for various

types of data; see e.g. Fletcher et al. (2004) for m-reps data, Fletcher and Joshi (2007) for

DTI data, and Dryden and Mardia (1998) for landmark shape data.

However, there has been a concern that the geodesic mean and tangent space approxima-

tion can be very poor. As a simple example, consider the usual unit sphere S2 and the data

distributed uniformly along the equator of the sphere as illustrated in Figure 5.5. In this case,
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the equator itself is the geodesic that best represents the data. However, the geodesic mean is

located near the north or the south pole, far from any data. PGA, as a forward method, finds

principal geodesics through this geodesic mean, which fail to effectively describe the variation

in the data.

This observation motivated Huckemann et al. (2010) to propose Geodesic PCA (GPCA).

In GPCA, the geodesic mean or any pre-determined mean is no longer used; instead it finds

the best approximating geodesic among all possible candidates. A center point of the data

is then found in the first geodesic component, and all other components must be geodesics

through the center point. In the equator example above, GPCA finds the equator as the

first component. GPCA can be viewed as a backward approach, particularly when applied

to S2, since the center point is found last. In higher dimensional manifolds, for example in

hyperspheres Sp with p > 2 and Kendall’s shape spaces Dryden and Mardia (1998), GPCA

is not fully backward, since the method is built by considering lower dimensional components

first, only with an exception for center point. Nevertheless, the advantage of the method

indeed comes from the backward viewpoint, i.e., from reversing the order of the first two

steps.

Another method that can be viewed as the backward stepwise approach is Principal Arc

Analysis (PAA), presented in Chapter 6, which is a non-geodesic generalization of PCA. PAA

is motivated by data distributed along a small circle on S2. Since the major variation is no

longer along a geodesic, no geodesic based methods including PGA and GPCA capture the

variation effectively. PAA begins with the full sphere S2 and finds the small circle as the best

fitting 1-d approximation of the data, followed by a center point contained in the small circle.

PAA was shown to provide just this type of effective data approximation in S2 and also in

m-reps data.

In generalizations of PCA for higher dimensional manifolds, including hyperspheres Sp and

Kendall’s shape spaces, the backward stepwise principle led to a fully backward generalization

of PCA: Principal Nested Spheres (PNS, see Chapter 7). In taking the backward approach,

it inherits the advantages of GPCA. Moreover, this allows the successive submanifolds to be

non-geodesic. PNS has been shown to provide more representative description of the data

(compared to other forward stepwise approaches) in a number of standard examples.
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Many kernel PCA (Schlkopf et al. (1998)) methods can also be used for dimension reduction

and feature extraction, but the nature of these methodologies is quite different from PCA

extensions for manifold data. Kernel PCA maps the data implicitly into a Hilbert space,

then PCA is applied to the mapped data. While this approach gives a wide possibility of

non-linear feature extraction, the interpretation of the result is difficult and reconstruction of

components in the original space is impossible.
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Chapter 6

Principal Arc Analysis on direct product
manifold

The work presented in this chapter is based on and contained in Jung et al. (2011b).

6.1 Introduction

Principal Component Analysis (PCA) has been frequently used as a method of dimension

reduction and data visualization for high dimensional data. For data that naturally lie in

a curved manifold, application of PCA is not straightforward since the sample space is not

linear. Nevertheless, the need for PCA-like methods is growing as more manifold data sets

are encountered and as the dimensions of the manifolds increase.

In this chapter, we introduce a new approach for an extension of PCA on a special class

of manifold data. We focus on direct products of simple manifolds, in particular, of the unit

circle S1, the unit sphere S2, R+ and Rp, as defined in the previous chapter. Many types of

statistical sample spaces are special cases of the direct product manifold. A widely known

example is the sample space for directional data (Fisher (1993), Fisher et al. (1993) and

Mardia and Jupp (2000)), and their direct products. Applications include analysis of wind

directions, orientations of cracks, magnetic field directions and directions from the earth to

celestial objects. For example, when we consider multiple 3-D directions simultaneously, the

sample space is S2 ⊗ · · · ⊗ S2, which is a direct product manifold. Another example is the

medial representation of shapes (m-reps, Siddiqi and Pizer (2008)) that provides a powerful

parametrization of 3-D shapes of human organs and has been extensively studied in the image



analysis field. The space of m-reps is usually a high-dimensional direct product manifold; see

Section 6.5.

Our approach to a manifold version of PCA builds upon earlier work, especially the prin-

cipal geodesic analysis proposed by Fletcher (2004) and the geodesic PCA proposed by Huck-

emann and Ziezold (2006) and Huckemann et al. (2010). A detailed catalogue of current

methodologies can be found in Huckemann et al. (2010). An important approach among

these is to approximate the manifold by a linear space. Fletcher et al. (2004) take the tangent

space of the manifold at the geodesic mean as the linear space, and work with appropriate

mappings between the manifold and the tangent space. This results in finding the best fitting

geodesics among those passing through the geodesic mean. This was improved in an impor-

tant way by Huckemann, who found the best fit over the set of all geodesics. Huckemann

went on to propose a new notion of center point, the PCmean, which is an intersection of

the first two principal geodesics. This approach gives significant advantages especially when

the curvature of the manifold makes the geodesic mean inadequate, an example of which is

depicted in Figure 6.2b.

Our method inherits advantages of these methods and improves further by effectively

capturing more complex non-geodesic modes of variation. Note that the curvature of direct

product manifolds is mainly due to the spherical part, which motivates careful investigation of

S2-valued variables. We point out that (small) circles in S2, including geodesics, can be used

to capture the non-geodesic variation. We introduce the principal circles and principal circle

mean, analogous to, yet more flexible than, the geodesic principal component and PCmean

of Huckemann et al.. These become principal arcs when the manifold is indeed S2. For more

complex direct product manifolds, we suggest transforming the data points in S2 into a linear

space by a special mapping utilizing the principal circles. For the other components of the

manifold, the tangent space mappings can be used to map the data into a linear space as done

in Fletcher et al. (2004). Once manifold-valued data are mapped onto the linear space, then

the classical linear PCA can be applied to find principal components in the transformed linear

space. The estimated principal components in the linear space can be back-transformed to

the manifold, which leads to principal arcs.

We illustrate the potential of our method by an example of m-rep data in Figure 6.1. Here,
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Figure 6.1: S2-valued samples (n = 60) of the prostate m-reps with 15 medial atoms. One sample
in this figure is represented by a 30-tuple of 3-D directions (two directions at each atom),
which lies in the manifold ⊗15

i=1(S
2 ⊗ S2). Small and great circles are fitted and plotted in

the rightmost atoms to emphasize the sample variation along small circles.

m-reps with 15 sample points called atoms model the prostate gland (an organ in the male

reproductive system) and come from the simulator developed and analyzed in Jeong et al.

(2008). Figure 6.1 shows that the S2 components of the data tend to be distributed along

small circles, which frequently are not geodesics. We emphasize the curvature of variation

along each sphere by fitting a great circle and a small circle (by the method discussed in

Section 6.2). Our method is adapted to capture this nonlinear (non-geodesic) variation of the

data. A potential application of our method is to improve accuracy of segmentation of objects

from CT images. Detailed description of the data and results of our analysis can be found in

Section 6.5.

Note that the previous approaches (Fletcher et al. (2004), Huckemann and Ziezold (2006))

are defined for general manifolds, while our method focuses on these particular direct product

manifolds. Although the method is not applicable for general manifolds, it is useful for this

common class of manifolds that is often found in applications. Our results inform our belief

that focusing on specific types of manifolds allow more precise and informative statistical

modeling than methods that attempt to be fully universal. This happens through using

special properties (e.g. presence of small circles) that are not available for all other manifolds.

The rest of the chapter is organized as follows. We begin by introducing a circle class
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on S2 as an alternative to the set of geodesics. Section 6.2 discusses principal circles in S2,

which will be the basis of the special transformation. The first principal circle is defined by

the least-squares circle, minimizing the sum of squared residuals. In Section 6.3, we introduce

a data-driven method to decide whether the least-squares circle is appropriate. A recipe for

principal arc analysis on direct product manifolds is proposed in Section 6.4 with discussion

on the transformations. A detailed introduction of the space of m-reps, and the results from

applying the proposed method follow. A novel computational algorithm for the least-squares

circles is presented in Section 6.6.

6.2 Circle class for non-geodesic variation on S2

Consider a set of points in R2. Numerous methods for understanding population properties

of dataset in linear space have been proposed and successfully applied, which include rigid

methods such as linear regression and principal components and very flexible methods such

as scatterplot smoothing and principal curves (Hastie and Stuetzle (1989)). We make use of a

parametric class of circles, including small and great circles, which allows much more flexibility

than either methods of Fletcher (2004) or Huckemann et al. (2010), but less flexibility than

a principal curve approach. Although this idea was motivated by examples such as those in

Figure 6.1, there are more advantages gained from using the class of circles;

(i) The circle class includes the simple geodesic case.

(ii) Each circle can be parameterized, which leads to an easy interpretation.

(iii) There is an orthogonal complement of each circle, which gives two important advantages:

(a) Two orthogonal circles can be used as a basis of a further extension to principal

arc analysis.

(b) Building a sensible notion of principal components on S2 alone is easily done by

utilizing the circles.

The idea (iii-b) will be discussed in detail after introducing a method of circle fitting. A

circle on S2 is conveniently parameterized by center c ∈ S2 and geodesic radius r, and denoted
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by δ(c, r) = {x ∈ S2|ρ(c,x) = r}. It is a geodesic when r = π/2. Otherwise it is a small

circle.

A circle that best fits the points x1, . . . ,xn ∈ S2 is found by minimizing the sum of squared

residuals. The residual of xi is defined as the signed geodesic distance from xi to the circle

δ(c, r). Then the least-squares circle is obtained by

min
c,r

n∑
i=1

(ρ(xi, c)− r)2 (6.1)

subject to c ∈ S2, r ∈ (0, π),

Note that there are always multiple solutions of (6.1). In particular, whenever (c, r) is a

solution, (−c, π − r) also solves the problem as δ(c, r) = δ(−c, π − r). This ambiguity does

not affect any essential result. Our convention is to use the circle with smaller geodesic radius.

The optimization task (6.1) is a constrained nonlinear least squares problem. We propose

an algorithm to solve the problem that features a simplified optimization task and approxi-

mation of S2 by tangent planes. The algorithm works in a doubly iterative fashion, which has

been shown by experience to be stable and fast. Section 6.6 contains a detailed illustration of

the algorithm.

Analogous to principal geodesics in S2, we can define principal circles in S2 by utilizing

the least-squares circle. The principal circles are two orthogonal circles in S2 that best fit the

data. We require the first principal circle to minimize the variance of the residuals, so it is

the least-squares circle (6.1). The second principal circle is a geodesic which passes through

the center of the first circle and thus is orthogonal at the points of intersection. Moreover, the

second principal circle is chosen so that one intersection point is the intrinsic mean (defined

in (6.2) later) of the projections of the data onto the first principal circle.

Based on a belief that the intrinsic (or extrinsic) mean defined on a curved manifold may

not be a useful notion of center point of the data (see e.g. Huckemann et al. (2010). and

Figure 6.2b), the principal circles do not use the pre-determined means. To develop a better

notion of center point, we locate the best 0-dimensional representation of the data in a data-

driven manner. Inspired by the PCmean idea of Huckemann et al., given the first principal
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circle δ1, the principal circle mean u ∈ δ1 is defined (in intrinsic way) as

u = argmin
u∈δ1

n∑
i=1

ρ2(u, Pδ1xi), (6.2)

where Pδ1x is the projection of x onto δ1, that is the point on δ1 of the shortest geodesic

distance to x. Then

Pδ1(c,r)x =
x sin(r) + c sin(ρ(x, c)− r)

sin(ρ(x, c))
, (6.3)

as in Eq. (3.3) of Mardia and Gadsden (1977). We assume that c is the north pole e3, without

losing generality since otherwise the sphere can be rotated. Then

ρ(u, Pδ1x) = sin(r)ρS1

(
(u1, u2)√
1− u23

,
(x1, x2)√
1− x23

)
, (6.4)

where u = (u1, u2, u3)
′, x = (x1, x2, x3)

′ and ρS1 is the geodesic (angular) distance function

on S1. The optimization problem (6.2) is equivalent to finding the geodesic mean in S1. See

Eq. (5.9) for computation of the geodesic mean in S1.

The second principal circle δ2 is then the geodesic passing through the principal circle

mean u and the center c of δ1. Denote δ̄ ≡ δ̄(x1, . . . ,xn) as a combined representation of

(δ1,u) or equivalently (δ1, δ2).

As a special case, we can force the principal circles to be great circles. The best fitting

geodesic is obtained as a solution of the problem (6.1) with r = π/2 and becomes the first

principal circle. The optimization algorithm for this case is slightly modified from the original

algorithm for the varying r case, by simply setting r = π/2. The principal circle mean u

and the δ2 for this case are defined in the same way as in the small circle case. Note that

the principal circles with r = π/2 are essentially the same as the method of Huckemann and

Ziezold (2006).

Figure 6.2 illustrates the advantages of using the circle class to efficiently summarize

variation. On four different sets of toy data, the first principal circle δ1 is plotted with

principal circle mean u. The first principal geodesics from the methods of Fletcher and

Huckemann are also plotted with their corresponding mean. Figure 6.2a illustrates the case

where the data were indeed stretched along a geodesic. The solutions from the three methods
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(a) (b)

(c) (d)

Figure 6.2: Toy examples on S2 with n = 30 points showing the first principal circle (red) as a small
circle and the first geodesic principal component (dotted green) by Huckemann, and the
first principal geodesic (black) by Fletcher. Also plotted are the geodesic mean, PCmean
and principal circle mean of the data as black, green and red diamonds, respectively. (a)
The three methods give similar satisfactory answers when the data are stretched along
a geodesic. (b) When the data are stretched along a great circle, covering almost all of
it, the principal geodesic (black circle) and geodesic mean (black diamond) fail to find a
reasonable representation of the data, while the principal circle and Huckemann’s geodesic
give sensible answers. (c) Only the principal circle fits well when the data are not along a
geodesic. (d) For a small cluster without principal modes of variation, the principal circle
gets too small. See Section 6.3 for discussion of this phenomenon.
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are similar to one another. The advantage of Huckemann’s method over Fletcher’s can be

found in Figure 6.2b. The geodesic mean is found far from the data, which leads to poor

performance of the principal geodesic analysis, because it considers only great circles passing

through the geodesic mean. Meanwhile, the principal circle and Huckemann’s method, which

do not utilize the geodesic mean, work well. The case where geodesic mean and any geodesic

do not fit the data well is illustrated in Figure 6.2c, which is analogous to the Euclidean

case, where a non-linear fitting may do a better job of capturing the variation than PCA. To

this data set, the principal circle fits best, and our definition of mean is more sensible than

the geodesic mean and the PCmean. The points in Figure 6.2d are generated from the von

Mises–Fisher distribution with κ = 10, thus having no principal mode of variation. In this

case the first principal circle δ1 follows a contour of the apparent density of the points. We

shall discuss this phenomenon in detail in the following section.

Fitting a (small) circle to data on a sphere has been investigated for some time, especially

in statistical applications in geology. Those approaches can be distinguished in three different

ways, where our choice fits into the first category.

1. Least-squares of intrinsic residuals: Gray et al. (1980) formulated the same problem as

in (6.1), finding a circle that minimizes sum of squared residuals, where residuals are

defined in a geodesic sense.

2. Least-squares of extrinsic residuals: A different measure of residual was chosen by Mardia

and Gadsden (1977) and Rivest (1999), where the residual of x from δ(c, r) is defined

by the shortest Euclidean distance between x and δ(c, r). Their objective is to find

argmin
δ

n∑
i=1

∥xi − Pδxi∥2 = argmin
δ

n∑
i=1

−x′
iPδxi = argmin

δ

n∑
i=1

− cos(ξi),

where ξi denotes the intrinsic residual. This type of approach can be numerically close

to the intrinsic method as cos(ξi) = 1− ξ2i /2 +O(ξ4i ).

3. Distributional approach: Mardia and Gadsden (1977) and Bingham and Mardia (1978)

proposed appropriate distributions to model S2-valued data that cluster near a small

circle. These models essentially depend on the quantity cos(ξ), which is easily interpreted
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in the extrinsic sense, but not in the intrinsic sense.

Remark 6.1. The principal circle and principal circle mean always exist. This is because the

objective function (6.1) is a continuous function of c, with the compact domain S2. The

minimizer r has a closed-form solution (see Section 6.6). A similar argument can be made

for the existence of u. On the other hand, the uniqueness of the solution is not guaranteed.

We conjecture that if the manifold is approximately linear or equivalently the data set is

well-approximated by a linear space, then the principal circle will be unique. However, this

does not lead to the uniqueness of u, whose sufficient condition is that the projected data on

δ1 is strictly contained in a half-circle (Karcher (1977)). Note that a sufficient condition for

the uniqueness of the principal circle is not clear even in Euclidean case (Chernov (2010)).

6.3 Suppressing small least-squares circles

When the first principal circle δ1 has a small radius, sometimes it is observed that δ1 does

not fit the data in a manner that gives useful decomposition, as shown in Figure 6.2d. This

phenomenon has been also observed for the related Principal curve fitting method of Hastie

and Stuetzle (1989). We view this as unwanted overfitting, which is indeed a side effect caused

by using the full class of circles with free radius parameter instead a class of great circles. In

this section, a data-driven method to flag this overfitting is discussed. In essence, the fitted

small circle is replaced by the best fitting geodesics when the data do not cluster along the

circle but instead tend to cluster near the center of the circle.

We first formulate the problem and solution in R2. This is for the sake of clear presen-

tation and also because the result on R2 can be easily extended to S2 using a tangent plane

approximation.

Let fX be a spherically symmetric density function of a continuous distribution defined on

R2. Whether the density is high along some circle is of interest. By the symmetry assumption,

density height along a circle can be found by inspecting a section of fX along a ray from

the origin (the point of symmetry). A section of fX coincides with the conditional density

fX1|X2
(x1|x2 = 0) = κ−1fX(x1, 0). A random variable corresponding to the pdf fX1|X2=0 is

not directly observable. Instead, the radial distance R = ∥X∥ from the origin can be observed.
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For the polar coordinates (R,Θ) such that X = (X1, X2) = (R cosΘ, R sinΘ), the marginal

pdf of R is fR(r) = 2πrfX(r, 0) as fX is spherically symmetric. A section of fX is related

to the observable density fR as fR(r) ∝ rfX1|X2=0(r), for r > 0. This relation is called the

length-biased sampling problem (Cox (1969)). The relation can be understood intuitively by

observing that a value r of R can be observed at any point on a circle of radius r, circumference

of which is proportional to r. Thus sampling of R from the density fX1|X2=0 is proportional

to its size.

The problem of suppressing a small circle can be paraphrased as “how to determine whether

a nonzero point is a mode of the function fX1|X2=0, when observing only a length-biased

sample.”

The spectrum from the circle-clustered case (mode at a nonzero point) to the center-

clustered case (mode at origin), can be modeled as

data = signal + error, (6.5)

where the signal is along a circle with radius µ, and the error accounts for the perpendicular

deviation from the circle. (see Figure 6.3) Then, in polar coordinates (R,Θ), Θ is uniformly

distributed on (0, 2π] and R is a positive random variable with mean µ. First assume that

R follows a truncated Normal distribution with standard deviation σ, with the marginal pdf

proportional to

fR(r) ∝ ϕ

(
r − µ

σ

)
, for r > 0, (6.6)

where ϕ is the standard Normal density function. The conditional density fX1|X2=0 is then

fX1|X2=0(r) ∝
1

r
fR(r) ∝

1

rσ
exp

(
−(r − µ)2

σ2

)
, for r > 0.

Non-zero local extrema of fX1|X2=0 can be characterized as a function of (µ, σ) in terms of

r+, r− = {µ±
√

(µ− 2σ)(µ+ 2σ)}/2 as follows:

• When µ > 2σ, fX1|X2=0 has a local maximum at r+, minimum at r−.

• When µ = 2σ, r+ = r− = µ
2 .
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error

signal

c

 small st.dev.

 large st.dev

Figure 6.3: Illustration of the conceptual model (6.5) on R2, which can also be understood as a local
approximation of S2. The signal is along the circle centered at c and radius µ. The error is
perpendicular to the signal. When the deviation σ is large, it is possible that the amount
of error is even greater than the radius µ. This is incorporated in the wrapping approach
(6.7).

• When µ < 2σ, fX1|X2=0 is strictly decreasing, for r > 0.

Therefore, whenever the ratio µ/σ > 2, fX1|X2=0 has a mode at r+.

This idea can be applied for circles in S2 with some modification, shown next. We point out

that the model (6.5) is useful for understanding the small circle fitting: signal as a circle with

radius µ, and error as the deviation along geodesics perpendicular to the circle. Moreover,

a spherically symmetric distribution centered at c on S2 can be mapped to a spherically

symmetric distribution on the tangent space at c, preserving the radial distances by the log

map (defined in the Appendix). A modification need to be made on the truncated density fR.

It is more natural to let the error be so large that the deviation from the great circle is greater

than µ. Then the observed value may be found near the opposite side of true signal, which is

illustrated in Figure 6.3 as the large deviation case. To incorporate this case, we consider a

wrapping approach. The distribution of errors (on the real line) is wrapped around the sphere

along a great circle through c, and the marginal pdf fR in (6.6) is modified to

fw
R (r) ∝

∞∑
k=0

[
ϕ

(
r + 2πk − µ

σ

)
+ ϕ

(
r − 2πk + µ

σ

)]
, for r ∈ [0, π]. (6.7)

The corresponding conditional pdf, fw
X1|X2=0, is similar to fX1|X2=0 and a numerical calculation

shows that fw
X1|X2=0 has a mode at some nonzero point whenever µ/σ > 2.0534, for µ < π/2.
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Figure 6.4: (left) Graph of fw
X1|X2=0(r) for µ/σ = 1, 2, 3, 4. The density is high at a non-zero point

when µ/σ > 2.0534. (center, right) Spherically symmetric distributions f corresponding
to µ/σ = 2, 3. The ratio µ/σ > 2 roughly leads to a high density along a circle.

In other words, we use the small circle when µ/σ is large. Note that in what follows, we only

consider the first term (k = 0) of (6.7) since other terms are negligible in most situations. We

have plotted fw
X1|X2=0 for some selected values of µ and σ in Figure 6.4.

With a data set on S2, we need to estimate µ and σ, or the ratio µ/σ. Let x1, . . . ,xn ∈ S2

and let ĉ be the samples and the center of the fitted circle, respectively. Denote ξi for the

errors of the model (6.5) such that ξi ∼ N(0, σ2). Then ri ≡ ρ(xi, ĉ) = |µ+ ξi|, which has the

folded normal distribution (Leone et al. (1961)). Estimation of µ and σ based on unsigned ri

is not straightforward. We present two different approaches to this problem.

Robust approach The observations r1, . . . , rn can be thought of as a set of positive

numbers contaminated by the folded negative numbers. Therefore the left half (near zero) of

the data are more contaminated than the right half. We only use the right half of the data,

which are less contaminated than the other half. We propose to estimate µ and σ by

µ̂ = med(rn1 ), σ̂ = (Q3(r
n
1 )−med(rn1 ))/Q3(Φ), (6.8)

where Q3(Φ) is the third quantile of the standard normal distribution. The ratio can be

estimated by µ̂/σ̂.

Likelihood approach via EM algorithm The problem may also be solved by a like-

lihood approach. Early solutions can be found in Leone et al., Elandt (1961) and Johnson
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(1962), in which the MLEs were given by numerically solving nonlinear equations based on

the sample moments. As those methods were very complicated, we present a simpler approach

based on the EM algorithm. Consider unobserved binary variables si with values −1 and +1

so that siri ∼ N(µ, σ2). The idea of the EM algorithm is that if we have observed si, then the

maximum likelihood estimator of ϑ = (µ, σ2) would be easily obtained. The EM algorithm

is an iterative algorithm consisting of two steps. Suppose that the kth iteration produced an

estimate ϑ̂k of ϑ. The E-step is to impute si based on ri and ϑ̂k by forming a conditional

expectation of log-likelihood for ϑ,

Q(ϑ) = E

[
log

n∏
i=1

f(ri, si|ϑ)
∣∣∣ri, ϑ̂k

]

=

n∑
i=1

[
log f(ri|si = +1, ϑ)P (si = +1|ri, ϑ̂k) + log f(ri|si = −1, ϑ)P (si = −1|ri, ϑ̂k)

]
=

n∑
i=1

[
log ϕ(ri|ϑ)pi(k) + log ϕ(−ri|ϑ)(1− pi(k))

]
,

where f is understood as an appropriate density function, and pi(k) is easily computed as

pi(k) = P (si = +1|ri, ϑ̂k) =
ϕ(ri|ϑ̂k)

ϕ(ri|ϑ̂k) + ϕ(−ri|ϑ̂k)
.

The M-step is to maximize Q(ϑ) whose solution becomes the next estimator ϑ̂k+1. Now the

k + 1th estimates are calculated by a simple differentiation and given by;

Q(ϑ) = Q(µ, σ2) =
n∑

i=1

[
1

2
log 2πσ2 +

(ri − µ)2pi(k)

2σ2

(ri + µ)2(1− pi(k))

2σ2

]

∂Q(ϑ)

∂µ
= 0 ⇐⇒ µ̂k+1 =

1

n

n∑
i=1

(2pi(k) − 1)ri

∂Q(ϑ)

∂σ2
= 0 ⇐⇒ σ̂2

k+1 =
1

n

n∑
i=1

(ri − µ̂k+1)
2pi(k) + (ri + µ̂k+1)

2(1− pi(k))

=
1

n

n∑
i=1

(
r2i − µ̂2

k+1

)
.
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With the sample mean and variance of r1, . . . , rn as an initial estimator ϑ̂0, the algorithm

iterates E-steps and M-steps until the iteration changes the estimates less than a pre-defined

criteria (e.g. 10−10). µ/σ is estimated by the ratio of the solutions.

Comparison Performance of these estimators are now examined by a simulation study.

Normal random samples are generated with ratios µ/σ being 0, 1, 2, or 3, representing the

transition from the center-clustered to circle-clustered case. For each ratio, n = 50 samples

are generated, from which µ̂/σ̂ is estimated. These steps are repeated 1000 times to obtain

the sampling variation of the estimates. We also study n = 1000 case in order to investigate

the consistency of the estimators. The results are summarized in Figure 6.5 and Table. 6.1.

The distribution of estimators are shown for n = 50, 1000 in Figure 6.5 and the proportion

of estimators greater than 2 is summarized in Table. 6.1. When n = 1000, both estimators are

good in terms of the proportion of correct answers. In the following, the proportions of correct

answers are corresponding to n = 50 case. The top left panel in Figure 6.5 illustrates the

circle-centered case with ratio 3. The estimated ratios from the robust approach give correct

solutions (greater than 2) 95% of the time (98.5% for likelihood approach). For the borderline

case (ratio 2, top right), the small circle will be used about half the time. The center-clustered

case is demonstrated with the true ratio 1, that also gives a reasonable answer (proportion of

correct answers 95.3% and 94.8% for the robust and likelihood answers respectively). It can be

observed that when the true ratio is zero, the robust estimates are far from 0 (the bottom right

in Figure 6.5). However, this is expected to occur because the proportion of uncontaminated

data is low when the ratio is too small. However, those ‘inaccurate’ estimates are around 1

and less than 2 most of the time, which leads to ‘correct’ answers. The likelihood approach

looks somewhat better with more hits near zero, but an asymptotic study (Johnson (1962))

showed that the variance of the maximum likelihood estimator converges to infinity when the

ratio tends to zero, as glimpsed in the long right tail of the simulated distribution.

In summary, we recommend use of the robust estimators (6.8), which are computationally

light, straightforward and stable for all cases.

In addition we point out that Gray et al. (1980) and Rivest (1999) proposed to use a

goodness of fit statistic to test whether the small circle fit is better than a geodesic fit. Let rg

and rc be the sums of squares of the residuals from great and small circle fits. They claimed
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Figure 6.5: Simulation results of the proposed estimators for the ratio µ/σ. Different ratios represent
different underlying distributions. For example, estimators in the top left are based on
random samples from a folded Normal distribution with mean µ = 3, standard deviation
σ = 1. Curves are smooth histograms of estimates from 1000 repetitions. The thick black
curve represents the distribution of the robust estimator from n = 50 samples. Likewise,
the thick red curve is for the MLE with n = 50, the dotted black curve is for the robust
estimator with n = 1000, and the dotted red curve is for the MLE with n = 1000. The
smaller sample size represents a usual data analytic situation, while n = 1000 case shows
an asymptotic situation.

Method µ/σ = 3 µ/σ = 2 µ/σ = 1 µ/σ = 0

MLE, n = 50 98.5 55.2 5.2 6.8
Robust, n = 50 95.0 50.5 4.7 1.4
MLE, n = 1000 100 51.9 0 0
Robust, n = 1000 100 50.5 0 0

Table 6.1: Proportion of estimates greater than 2 from the data illustrated in Figure 6.5. For µ/σ = 3,
shown are proportions of correct answers from each estimator. For µ/σ = 1 or 0, shown are
proportions of incorrect answers.
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that V = (n− 3)(rg − rc)/rc is approximately distributed as F1,n−3 for a large n if the great

circle was true. However this test does not detect the case depicted in Figure 6.2d. The

following numerical example shows the distinction between our approach and the goodness of

fit approach.

Example 6.1. Consider the sets of data depicted in Figure 6.2. The goodness of fit test gives

p-values of 0.51, 0.11359, 0, and 0.0008 for (a)-(d), respectively. The estimated ratios µ/σ are

14.92, 16.89 , 14.52 and 1.55. Note that for (d), when the least-squares circle is too small, our

method suggests to use a geodesic fit over a small circle while the goodness of fit test gives

significance of the small circle. The goodness of fit method is not adequate to suppress the

overfitting small circle in a way we desire.

Remark 6.2. Note that the transition of the principal circle between great circle and small

circle is not continuous. Specifically, when the data set is perturbed so that the principal circle

becomes too small, then the principal circle and principal circle mean are abruptly replaced

by a great circle and geodesic mean. As an example, we have generated a toy data set spread

along a circle with some radial perturbation. The perturbation is continuously inflated, so that

with large inflation, the data are no longer circle-clustered. In Figure 6.6, the µ̂/σ changes

smoothly, but once the estimate hits 2 (our criterion), there is a sharp transition between small

and great circles. Sharp transitions do naturally occur in the statistics of manifold data. For

example, even the simple geodesic mean can exhibit a major discontinuous transition resulting

from an arbitrarily small perturbation of the data. However, the discontinuity between small

and great circles does seem more arbitrary and thus may be worth addressing. An interesting

open problem is to develop a blended version of our two solutions, for values of µ̂/σ near 2,

which could be done by fitting circles with radii that are smoothly blended between the small

circle radius and π/2.

6.4 Principal Arc Analysis on direct product manifolds

The discussions of the principal circles in S2 play an important role in defining the principal

arcs for data in a direct product manifold M = M1 ⊗M2 ⊗ · · · ⊗Md, where each Mi is one of

the simple manifolds S1, S2, R+, and R. We emphasize again that the curvature of the direct
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Figure 6.6: (left) The estimate µ̂/σ decreases smoothly as the perturbation is inflated. (center, right)
Snapshots of the toy data on a sphere. A very small perturbation of the data set leads to
a sharp transition between small circle (center) and great circle (right).

product manifold M is mainly due to the spherical components.

Consider a dataset x1, . . . , xn ∈ M , where xi ≡ (x1i , . . . , x
d
i ) such that xji ∈ Mj . Denote

d0 > d for the intrinsic dimension ofM . The geodesic mean x̄ of the data is defined component-

wise for each simple manifold Mj . Similarly, the tangent plane at x̄, Tx̄M , is also defined

marginally, i.e. Tx̄M is a direct product of tangent spaces of the simple manifolds. This

tangent space gives a way of applying Euclidean space-based statistical methods, by mapping

the data onto Tx̄M . We can manipulate this approximation of the data component-wise. In

particular, the marginal data on the S2 components can be represented in a linear space by

a transformation hδ̄, depending on the principal circles, that differs from the tangent space

approximation.

Since the principal circles δ̄ capture the non-geodesic directions of variation, we use the

principal circles as axes, which can be thought of as flattening the quadratic form of variation.

In principle, we require a mapping hδ̄ : S2 → R2 to have the following properties: For

δ̄ = (δ1, δ2) = ((δ1(c, r),u),

• u is mapped to the origin,

• δ1 is mapped onto the x-axis, and

• δ2 is mapped onto the y-axis.

Two reasonable choices of the mapping hδ̄ will be discussed in Section 6.4.1, in detail.

The mapping hδ̄ and the tangent space projection together give a linear space represen-
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tation of the data, where the Euclidean PCA is applicable. The line segments corresponding

to the sample principal component direction of the transformed data can be mapped back to

M , and become the principal arcs.

A procedure for principal arc analysis is as follows:

(1) For each j such that Mj is S2, compute principal circles δ̄ = δ̄(xj1, . . . , x
j
2) and the ratio

µ̂/σ. If the ratio is greater than the pre-determined value ϵ = 2, then δ̄ is adjusted to

be great circles as explained in Section 6.2.

(2) Let h : M → Rd0 be a transformation h(x) = (h1(x
1), . . . , hd(x

d)). Each component of

h is defined as

hj(x
j) =

 hδ̄(x
j) for Mj = S2,

Logx̄j (xj) otherwise,

where Logx̄j and hδ̄ are defined in the Appendix and Section 6.4.1, respectively.

(3) Observe that h(x1), . . . ,h(xn) ∈ Rd0 always have their mean at the origin. Thus, the

singular value decomposition of the d0 × n data matrix X ≡ [h(x1) · · ·h(xn)] can be

used for computation of the PCA. Let v1,v2, . . .vm be the left singular vectors of X

corresponding to the largest m singular values.

(4) The kth principal arc is obtained by mapping the direction vectors vk onto M by the

inverse of h, which can be computed component-wise.

The principal arcs on M are not, in general, geodesics. Nor are they necessarily circles, in

the original marginal S2. This is because hδ̄ and its inverse h−1
δ̄

are nonlinear transformations

and thus a line on R2 may not be mapped to a circle in S2. This is consistent with the fact

that the principal components on a subset of variables are different from projections of the

principal components from the whole variables.

Principal arc analysis for data on direct product manifolds often results in a concise sum-

mary of the data. When we observe a significant variation along a small circle of a marginal

S2, that is most likely not a random artifact but, instead, the result of a signal driving the

circular variation. Non-geodesic variation of this type is well captured by our method.

Principal arcs can be used to reduce the intrinsic dimensionality of M . Suppose we want

to reduce the dimension by k, where k can be chosen by inspection of the scree plot. Then
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each data point x is projected to a k-dimensional submanifold M0 of M in such a way that

h−1

(
k∑

i=1

viv
′
ih(x)

)
∈ M0,

where the vi’s are the principal direction vectors in Rd0 , found by Step 3 above. Moreover,

the manifold M0 can be parameterized by the k principal components z1, . . . , zk such that

M0(z1, . . . , zk) = h−1(
∑k

i=1 zivi)

6.4.1 Choice of the transformation hδ̄

The transformation hδ̄ : S2 → R2 leads to an alternative representation of the data, which

differs from the tangent space projection. The hδ̄ transforms non-geodesic scatters along δ1

to scatters along the x-axis, which makes a linear method like the PCA applicable. Among

many choices of transformations that satisfy the three principles we stated, two methods are

discussed here. Recall that δ̄ = (δ1, δ2) = (δ1(c, r),u).

Projection The first approach is based on the projection of x onto δ1, defined in (6.3),

and a residual ξ. The signed distance from u to Pδ1x, whose unsigned version is defined in

(6.4), becomes the x-coordinate, while the residual ξ becomes the y-coordinate. This approach

has the same spirit as the model for the circle class (6.5), since the direction of the signal is

mapped to the x-axis, with the perpendicular axis for errors.

The projection hδ̄(x) that we define here is closely related to the spherical coordinate

system. Assume c = e3, and u is at the Prime meridian (i.e. on the x− z plane). For x and

its spherical coordinates (ϕ, θ) such that x = (x1, x2, x3) = (cosϕ sin θ, cosϕ sin θ, cos θ),

hδ̄(x) = (sin(r)ϕ, θ − θu), (6.9)

where θu = cos−1(u3) is the latitude of u. The set of hδ̄(xi) has mean zero because the

principal circle mean u has been subtracted.

Conformal map A conformal map is a function which preserves angles. We point out

two conformal maps that can be combined to serve our purpose. See Chapter 9 of Churchill

and Brown (1984) and Krantz (1999) for detailed discussions of conformal maps. A conformal
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map is usually defined in terms of complex numbers. Denote the extended complex plane

C ∪ {∞} as C∗. Let ϕc : S2 → C∗ be the stereographic projection of the unit sphere when

the point antipodal from c is the projection point. Then ϕc is a bijective conformal mapping

defined for all S2 that maps δ1 as a circle centered at the origin in C∗. The linear fractional

transformation, sometimes called Möbius transformation, is a rational function of complex

numbers, that can be used to map a circle to a line in C∗. In particular, we define a linear

fractional transformation fu∗ : C∗ → C∗ as

fu∗(z) =


αi(z−u∗)
−z−u∗ if z ̸= −u∗

∞ if z = −u∗,
(6.10)

where u∗ = ϕc(u), and α is a constant scalar. Then the image of δ1 under fu∗ ◦ ϕc is the

real axis, while the image of δ2 is the imaginary axis. The mapping hδ̄ : S2 → R2 is defined

by fu∗ ◦ ϕc with the resulting complex numbers understood as members of R2. Note that

orthogonality of any two curves in S2 is preserved by the hδ̄ but the distances are not. Thus

we use the scale parameter α of the function fu∗ to match the resulting total variance of hδ̄(xi)

to the geodesic variance of xi.

In many cases, both projection and conformal hδ̄ give better representations than just

using the tangent space. Figure 6.7 illustrates the image of hδ̄ with the toy data set depicted

in Figure 6.2c. The tangent space mapping is also plotted for comparison. The tangent space

mapping leaves the curvy form of variation, while both hδ̄s capture the variation and leads to

an elliptical distribution of the transformed data.

The choice between the projection and conformal mappings is a matter of philosophy. The

image of the projection hδ̄ is not all of R2, while the image of the conformal hδ̄ is all of R2.

However, in order to cover R2 completely, the conformal hδ̄ can grossly distorts the covariance

structure of the data. In particular, the data points that are far from u are sometimes

overly diffused when the conformal hδ̄ is used, as can be seen in the left tail of the conformal

mapped image in Figure 6.7. The projection hδ̄ does not suffer from this problem. Moreover,

the interpretation of projection hδ̄ is closely related to the circle class model. Therefore we

recommend the projection hδ̄, which is used in the following data analysis.
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Figure 6.7: Illustration of projection hδ̄ (left, Eq. (6.9)) and conformal hδ̄ (center, Eq. (6.10)) com-
pared to a tangent plane projection at the geodesic mean (right) of the data in Figure 6.2c.
The hδ̄ maps the variation along δ1 to the variation along the x-axis, while the tangent
plane mapping fails to do.

6.5 Application to m-rep data

In this section, an application of Principal Arc Analysis to the medial representation (m-rep)

data is described.

6.5.1 The Medial Representation of prostate

The m-rep gives an efficient way of representing 2 or 3-dimensional objects. The m-rep

consists of medial atoms. A medial atom consists of the location of the atom combined with

two equal-length spokes, defined as a 4-tuple:

• location in R3

• spoke direction 1, in S2

• spoke direction 2, in S2

• common spoke length in R+

as shown in Figure 6.8. The size of the regular lattice is fixed for each object in practice. For

example, the shape of a prostate is usually described by a 3× 5 grid of medial atoms, across

all samples. The collection of the medial atoms is called the medial representation (m-rep).

An m-rep corresponds to a particular shape of prostate, and is a point in the m-rep space M.
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Figure 6.8: (left) An m-rep model with 3× 5 grids of medial atoms. Each atom has its location (R3),
and two equal-length spokes (R+⊗S2⊗S2) (right) The implied surface of the m-rep model,
showing a prostate shape.

The space of prostate m-reps is then M = (R3⊗R+⊗S2⊗S2)15, which is a 120-dimensional

direct product manifold with 60 components. The m-rep model provides a useful framework

for describing shape variability in intuitive terms. See Siddiqi and Pizer (2008) and Pizer

et al. (2003) for detailed introduction to and discussion of this subject.

An important topic in medical imaging is developing segmentation methods of 3D objects

from CT images, see Cootes and Taylor (2001) and Pizer et al. (2007). A popular approach

is similar to a Bayesian estimation scheme, where the knowledge of anatomic geometries is

used (as a prior) together with a measure of how the segmentation matches the image (as a

likelihood). A prior probability distribution is modeled using m-reps as a means of measuring

geometric atypicality of a segmented object. PCA-like methods (including PAA) can be used

to reduce the dimensionality of such a model. A detailed description can be found in Pizer

et al. (2007).

6.5.2 Simulated m-rep object

The data set partly plotted in Figure 6.1 is from the generator discussed in Jeong et al. (2008).

It generates random samples of objects whose shape changes and motions are physically mod-

eled (with some randomness) by anatomical knowledge of the bladder, prostate and rectum in

the male pelvis. Jeong et al. have proposed and used the generator to estimate the probability

distribution model of shapes of human organs.

In the dataset of 60 samples of prostate m-reps we studied, the major motion of prostate

is a rotation. In some S2 components, the variation corresponding to the rotation is along a
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small circle. Therefore, PAA should fit better for this type of data than principal geodesics.

To make this advantage more clear, we also show results from a dataset by removing the

location and the spoke length information from the m-reps, the sample space of which is then

{S2}30.

We have applied PAA as described in the previous section. The ratios µ/σ, estimated for

the 30 S2 components, are in general large (with minimum 21.2, median 44.1, and maximum

118), which suggests use of small circles to capture the variation.

Figure 6.9 shows the proportion of the cumulative variances, as a function of number

of components, from the Principal Geodesic Analysis (PGA) of Fletcher et al. (2004) and

PAA. In both cases, the first principal arc leaves smaller residuals than the first principal

geodesic. What is more important is illustrated in the scatterplots of the data projected onto

the first two principal components. The quadratic form of variation that requires two PGA

components is captured by a single PAA component.

In Figure 6.10, the first principal arc is plotted in some marginal components of the m-rep

space M. Note that for the first and third S2s (Figs 6.10a and 6.10c), the first principal arc

fits the data very well, while the first principal geodesic does not. When the radius of the

principal circle is close to π/2 (Figure 6.10b), two methods give similar results.

The probability distribution model estimated by principal geodesics is qualitatively dif-

ferent from the distribution estimated by PAA. Although the difference in the proportion of

variance captured is small, the resulting distribution from PAA is no longer elliptical. In this

sense, PAA gives a convenient way to describe a non-elliptical distribution by e.g. a Normal

density.

6.5.3 Prostate m-reps from real patients

We also have applied PAA to a prostate m-rep data set from real CT images. Our data

consist of five patients’ image sets each of which is a series of CT scans containing prostate

taken during a series of radiotherapy treatments. (Merck et al. (2008)) The prostate in each

image is manually segmented by experts and an m-rep model is fitted. The patients, coded

as 3106, 3107, 3109, 3112, and 3115, have different numbers of CT scans (17, 12, 18, 16, and

15 respectively). We have in total 78 m-reps.
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Figure 6.9: (Top) The proportion of variances captured by the first few components of PAA are com-
pared to those from PGA for the simulated prostate m-reps. (Bottom) Scatter plots of
the data on {S2}30 show that the major variation is explained more concisely by the first
principal arc.

The proportion of variation captured in the first principal arc is 40.89%, slightly higher

than the 40.53% of the first principal geodesic. Also note that the estimated probability dis-

tribution model from PAA is different from that of PGA. In particular, PAA gives a better

separation of patients in the first two components, as depicted in the scatter plots (Fig-

ure 6.11).

6.6 Doubly iterative algorithm to find the least-squares small

circle

We propose an algorithm to fit the least-squares small circle (6.1), which is a constrained non-

linear minimization problem. This algorithm is best understood in two iterative steps: The

outer loop approximates the sphere by a tangent space; The inner loop solves an optimization

problem in the linear space, which is much easier than solving (6.1) directly. In more detail,

114



(a) (b) (c)

Figure 6.10: The first principal arc projected on the 5, 10, 15th S2-components of the simulated
prostate m-reps. Each sphere is magnified. The principal arc (more curved) is plot-
ted from −2 to +2 standard deviation passing through the principal circle mean. The
principal geodesic also covers ±2 standard deviations.
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Figure 6.11: The scatter plots of the real prostate m-rep data. Different symbols represent different
patients. PAA (right) gives a better separation of different patients in the first two
components compared to PGA (left).
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the k + 1th iteration works as follows. The sphere is approximated by a tangent plane at

ck, the kth solution of the center of the small circle. For the points on the tangent plane,

any iterative algorithm to find a least-squares circle can be applied as an inner loop. The

solution of the inner iteration is mapped back to the sphere and becomes the k + 1th input

of the outer loop operation. One advantage of this algorithm lies in the reduced difficulty of

the optimization task. The inner loop problem is much simpler than (6.1) and the outer loop

is calculated by a closed-form equation, which leads to a stable and fast algorithm. Another

advantage can be obtained by using the exponential map and log map (6.12) for the tangent

projection, since they preserve the distance from the point of tangency to the others, i.e.

ρ(x, c) = ||Logc(x)|| for any x ∈ S2. This is also true for radii of circles. The exponential

map transforms a circle in R2 centered at the origin with radius r to δ(c, r). Thus whenever

(6.1) reaches its minimum, the algorithm does not alter the solution.

We first illustrate necessary building blocks of the algorithm. A tangent plane Tc at c can

be defined for any c in S2, and an appropriate coordinate system of Tc is obtained as follows.

Basically, any two orthogonal complements of the direction c can be used as coordinates of

Tc. For example, when c = (0, 0, 1)′ ≡ e3, a coordinate system is given by e1 and e2. For a

general c, let qc be a rotation operator on R3 that maps c to e3. Then a coordinate system

for Tc is given by the inverse of qc applied to e1 and e2, which is equivalent to applying qc to

each point of S2 and using e1, e2 as coordinates.

The rotation operator qc can be represented by a rotation matrix For c = (cx, cy, cz)
′,

the rotation qc is equivalent to rotation through the angle θ = cos−1(cz) about the axis

u = (cy,−cx, 0)
′/
√

1− c2z, whenever c ̸= ±e3. When c = ±e3, u is set to be e1. It is

well known that a rotation matrix with axis u = (ux, uy, uz)
′ and angle θ in radians is, for

c = cos(θ), s = sin(θ) and v = 1− cos(θ),

Rc =


c+ u2xv uxuyv − uzs uxuzv + uys

uxuyv + uzs c+ u2yv uyuzv − uxs

uxuzv − uys uyuzv + uxs c+ u2zv

 , (6.11)

so that qc(x) = Rcx, for x ∈ R3.

With the coordinate system for Tc, we shall define the exponential map Expc, a mapping
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from Tc to S2, and the log map Logc = Exp−1
c . These are defined for v = (v1, v2) ∈ R2 and

x = (x1, x2, x3)
′ ∈ S2, as

Expc(v) = qc ◦ Expe3(v),Logc(x) = Loge3 ◦ qc(x), (6.12)

for θ = cos−1(x3). See Section 5.2.2 for Expe3 and Loge3 . Note that Logc(c) = 0 and Logc is

not defined for the antipodal point of c.

Once we have approximated each xi by Logc(xi) ≡ x̃i, the inner loop finds the minimizer

(v, r) of

min
n∑

i=1

(||x̃i − v|| − r)2 , (6.13)

which is to find the least-squares circle centered at v with radius r. The general circle fitting

problem is discussed in e.g. Umbach and Jones (2003) and Chernov (2010). This problem is

much simpler than (6.1) because it is an unconstrained problem and the number of parameters

to optimize is decreased by 1. Moreover, optimal solution of r is easily found as

r̂ =
1

n

n∑
i=1

||x̃i − v||, (6.14)

when v is given. Note that for great circle fitting, we can simply put r̂ = π/2. Although the

problem is still nonlinear, one can use any optimization method that solves non-linear least

squares problems. We use the Levenberg-Marquardt algorithm, modified by Fletcher (1971)

(see Chapter 4 of Scales (1985) and Chapter 3 of Bates and Watts (1988)), to minimize (6.13)

with r replaced by r̂. One can always use v = 0 as an initial guess since 0 = Logc(c) is the

solution from the previous (outer) iteration.

The algorithm is now summarized as follows.

1. Given {x1, . . . ,xn}, c0 = x1.

2. Given ck, find a minimizer v of (6.13) with r replaced by (6.14), with inputs x̃i =

Logck(xi).

3. If ∥v∥ < ϵ, then iteration stops with the solution ĉ = ck, r = r̂ as in (6.14). Otherwise,

ck+1 = Expck(v) and go to step 2.

117



Note that the radius of the fitted circle in Tc is the same as the radius of the resulting small

circle. There could be many variations of this algorithm: as an instance, one can elaborate

the initial value selection by using the eigenvector of the sample covariance matrix of xi’s,

corresponding to the smallest eigenvalue as done in Gray et al. (1980). Experience has shown

that the proposed algorithm is stable and speedy enough. Gray et al. proposed to solve (6.1)

directly, which seems to be unstable in some cases.

The idea of the doubly iterative algorithm can be applied to other optimization problem

on manifolds. For example, the geodesic mean is also a solution of a nonlinear minimization,

where the nonlinearity comes from the use of the geodesic distance. This can be easily solved

by an iterative approximation of the manifold to a linear space (See Chapter 4 of Fletcher

(2004)), which is the same as the gradient descent algorithms (Pennec (1999), Le (2001)).

Note that the proposed algorithm, like other iterative algorithms, only finds one solution even

if there are multiple solutions.
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Chapter 7

Analysis of Principal Nested Spheres

The work presented in this chapter is based on and contained in Jung et al. (2011a).

7.1 Introduction

A general framework for a novel decomposition of hypersphere is introduced.The hypersphere

is the sample space of directions (Fisher et al. (1993), Fisher (1993), Mardia and Jupp (2000))

and pre-shapes in Kendall’s statistical theory of landmark shapes (Kendall (1984), Dryden

and Mardia (1998)). The proposed decomposition method, Principal Nested Spheres (PNS),

is a flexible extension of Principal Component Analysis (PCA) for curved manifolds. PCA

provides an effective means of analyzing the main modes of variation of the dataset and also

gives a basis for dimension reduction. There have been a number of extensions of PCA to

manifold-valued data, most of which find principal geodesics (Fletcher (2004), Huckemann

and Ziezold (2006), Huckemann et al. (2010), Kenobi et al. (2010)).

There has been a concern that when non-geodesic variation is major and apparent, the

geodesic based PCA does not give a fully effective decomposition of the space. As an exam-

ple, a dataset of shapes representing human movements, discussed later in Section 7.7 and

introduced in Kume et al. (2007), is plotted in Figure 7.1, using the first two principal com-

ponent directions. In this dataset and many other interesting real data sets, the major one

dimensional variation of the data curves through at least two components, and thus at least

two dimensions are needed to explain the major variation. PNS decomposes the data space

in a way that the major one dimensional variation is linearly represented, as shown in the



bottom of Figure 7.1.

For a unit d-sphere Sd, which is the set of unit vectors in Rd+1, PNS gives a decomposition

of Sd that captures the non-geodesic variation in a lower dimensional sub-manifold. The

decomposition sequentially provides the best k-dimensional approximation Ak of the data for

each k = 0, 1, . . . , d − 1. Ak is called the k-dimensional PNS, since it is essentially a sphere

and is nested within (i.e. a sub-manifold of) the higher dimensional PNS. The sequence of

PNS is then

A0 ⊂ A1 ⊂ · · · ⊂ Ad−1 ⊂ Sd.

Since the preshape space of two dimensional landmark based shapes is also a hypersphere,

the method can be readily applied to shape data, with some modifications (see Section 7.6).

The analysis of PNS provides intuitive approximations of the directional or shape data for

every dimension, captures the non-geodesic variation, and provides intuitive visualization of

the major variability in terms of shape changes.

The procedure of fitting PNS involves iterative reduction of the dimensionality of the

data. We first fit a d− 1 dimensional subsphere Ad−1 of Sd that best approximates the data.

This subsphere is not necessarily a great sphere (i.e. a sphere with radius 1, analogous to

the great circle for S2), which makes the resulting decomposition non-geodesic. Nevertheless,

Ad−1 can be treated as if it was the unit (d− 1)-sphere by some geometric facts discussed in

Section 7.2.1 and in Appendix 7.8 in greater detail. Each data point has an associated residual,

which is the geodesic distance to its projection on Ad−1. Then for the data projected onto

the subsphere, we continue to search for the best fitting d− 2 dimensional subsphere. These

steps are iterated to find lower dimensional PNS. A detailed discussion of the procedure is in

Section 7.2. For visualization and further analysis, we obtain an Euclidean-type representation

of the data, essentially consisting of the residuals of each level. The first two coordinates of this

representation, related to the one and two dimensional PNS, applied to the human movement

data are plotted in Figure 7.1.

In Figure 7.1, PNS (bottom panel) has less curving variation. The proportion of variance

in the 1-d PNS is almost the proportion of the sum of the first two geodesic component

variances. That is, the variation explained by two geodesic components is attained in only

120



Figure 7.1: Human movement data: (top) Scatter plot of two major geodesic components, where the
different symbols represent different tasks, and samples for each task are interpolated.
(bottom) Scatter plot of the first two PNS. The number% is the percent variance explained.
The first PNS captures more of the interesting variation.

one component of the PNS. Moreover, the graph in the top panel is indeed obtained by a

special case of PNS analysis, which is similar to the geodesic-based PCA, as discussed in

Section 7.2.6.

In Section 7.3, a visualization of a particular sphere is presented to give a way of under-

standing the decomposition. The procedure of PNS tends to find smaller spheres than the

great sphere. Since this may cause an overfitting of the data, we developed a test procedure

that can be applied to each layer to prevent the overfitting (see Section 7.4). A computational

scheme for fitting PNS is proposed in Section 7.5. Necessary considerations and modifications

for planar shape data are discussed in Section 7.6. In Section 7.7, we describe applications of

the method to several interesting real datasets. We conclude with some geometric background

to help define PNS, and proofs of the theorems.
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7.2 Principal Nested Spheres

In this section, we provide a detailed procedure for fitting PNS to data on Sd, and discuss

a Euclidean-type representation and principal arcs by PNS. Moreover, an important special

case of PNS, Principal Nested Great spheres, is discussed.

7.2.1 Geometry of Nested Spheres

We begin with describing essential geometric background for nested spheres. More detailed

discussion of the arguments in this section can be found in Section 7.8.

For a unit sphere Sd, a geodesic joining any two points is a great circle joining the two

points. A natural distance function on Sd is the Riemannian (geodesic) distance function

ρd(·, ·) defined as the length of the shortest great circle segment joining x,y ∈ Sd, ρd(x,y) =

cos−1(xTy).

A sequence of nested spheres of Sd is roughly a set of lower dimensional submanifolds that

are essentially spheres. In the following, the precise form of nested spheres is introduced. We

first define a subsphere of Sd, which induces the nested spheres.

Definition 7.1. A subsphere Ad−1 of Sd is defined by an orthogonal axis v ∈ Sd and a

distance r ∈ (0, π/2], as follows:

Ad−1(v, r) = {x ∈ Sd : ρd(v,x) = r},

where ρd(·, ·) is the geodesic distance function on Sd, d > 2.

The subsphere Ad−1 can be viewed as an intersection of Sd ⊂ Rd+1 and an affine d

dimensional hyperplane, {x ∈ Rd+1 : vTx − cos(r) = 0}. In other words, Ad−1 is identified

with a “slicing” of Sd with the affine hyperplane, an example of which is illustrated as a

shaded plane in Fig 7.2. A subsphere Ad−1 is indeed a d− 1 dimensional nested sphere Ad−1

of Sd.

The subsphere Ad−1 is isomorphic to Sd−1, as shown in Proposition 7.7, so we can treat

the subsphere as a unit sphere Sd−1. This is done by an isomorphism f1 : Ad−1 → Sd−1 and

its inverse f−1
1 , defined in Eq. 7.1 below and also depicted in Figure 7.2. Now a subsphere
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Figure 7.2: The subsphere Ad−1(v1, r1) in Sd and its relation to Sd−1, through the isomorphism f1.
Recursively, Ad−2(v2, r2) is found in Sd−1, and is isomorphic to Sd−2 with the isomorphism
f2.

Ad−2 of Sd−1 can be obtained by applying Def. 7.1 with dimension d reduced by 1. For

a general subsphere Ad−k of Sd−k+1, where k = 1, . . . , d − 1 , we also use the isomorphic

transformation fk : Ad−k → Sd−k and its inverse f−1
k . Let m = d−k+1, so that the subsphere

Ad−k ∈ Sm ⊂ Rm+1. The transformations are defined by vk ∈ Sm and rk ∈ (0, π/2] as

fk(x) =
1

sin(rk)
R−(vk)x, x ∈ Ad−k,

f−1
k (x†) = RT (vk)

 sin(rk) · x†

cos(rk)

 , x† ∈ Sd−k,
(7.1)

where R(vk) is the (m + 1) × (m + 1) rotation matrix that moves vk to the north pole (see

Appendix 7.8), and R−(vk) is the m× (m+1) matrix consisting of the first m rows of R(vk).

The subspheres Ad−k are defined in different spaces (in Sd−k+1 for each k). A nested

sphere is defined by the subsphere located in the original space Sd.

Definition 7.2. A d− k dimensional nested sphere Ad−k of Sd is defined as

Ad−k =

 f−1
1 ◦ · · · ◦ f−1

k−1(Ad−k) if k = 2, . . . , d− 1

Ad−1 if k = 1

A d − k dimensional nested sphere Ad−k is indeed identified with a slicing of Sd by a

d − k + 1 dimensional affine hyperplane. Note that, however, we work with each Sd−k, as it

is logically simple in terms of dimensionality reduction as described in Section 7.2.3.
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7.2.2 The Best Fitting Subsphere

Let x1, . . . ,xn be samples in Sd, d > 2. We first define the residual ξ of x from a subsphere

Ad−1(v1, r1) of Sd as the signed length of the minimal geodesic that joins x to Ad−1. Then

ξ = ρd(x,v1) − r1. The sign of ξ is negative if x is in the interior of the geodesic ball

corresponding to Ad−1, and is positive if x is in the exterior.

The best fitting subsphere Âd−1 ≡ Ad−1(v̂1, r̂1) is found by minimizing the sum of squares

of residuals of the data points to Âd−1. In other words, v̂1 and r̂1 minimize

n∑
i=1

ξi(v1, r1)
2 =

n∑
i=1

{ρd(xi,v1)− r1}2, (7.2)

among all v1 ∈ Sd, r1 ∈ (0, π/2].

Note that the method can be extended using other objective functions, e.g. sum of absolute

deviations for more robust fitting.

Each xi can be projected on Âd−1 along the minimal geodesic that joins x to Âd−1. The

projection of x onto Ad−1 is defined as

P (x;Ad−1(v, r)) =
sin(r)x+ sin(ρd(x,v)− r)v

sin{ρd(x,v)}
. (7.3)

Denote xP = P (x; Âd−1) ∈ Âd−1 for the projected x. We use the isomorphism f̂1 ≡

f(v̂1, r̂1), as defined in Eq. (7.1), to transform Âd−1 to Sd−1 so that f̂1(x
P
i ) ∈ Sd−1.

7.2.3 The sequence of Principal Nested Spheres

The sequence of PNS are fully meaningful when they are in the same space. On the other

hand, utilizing the isomorphic spaces of the nested spheres, i.e. the unit spheres, makes the

process simpler. Therefore the procedure to find the sample PNS consists of iteratively finding

the best fitting subsphere and mapping to the original space.

The d−1 dimensional sample PNS Âd−1 is the same as the best fitting subsphereAd−1(v̂1, r̂1)

because both are in the original space Sd. The second layer, the d − 2 dimensional sample

PNS, is obtained from the subsphere that best fits f̂1(x
P
i ) ∈ Sd−1. The best fitting subsphere

Ad−2(v̂2, r̂2) is then mapped to Sd by the relevant isomorphism f−1
1 and becomes Âd−2.
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In general, we recursively find the sequence of best fitting subspheres from the projected

and transformed samples, i.e. x 7→ f̂k(P (x; Âd−k)). In the ‘kth level’, where we fit a subsphere

from Sd−k+1, we denote the best fitting subsphere as Âd−k ≡ Ad−k(v̂k, r̂k) and keep residuals

ξi ≡ ξi,d−k, i = 1, . . . , n, for later use as analogs of principal component scores.

The lowest level best fitting subsphere Â1 is then a small circle isomorphic to S1. No further

sphere or circle can be used to reduce the dimensionality. Instead, we find the Fréchet mean

(Fréchet (1944, 1948) and Karcher (1977)) Â0 of x†
1, . . . ,x

†
n (the projected and transformed

samples in S1) which can be thought of as a best 0-dimensional representation of the data

in the framework of PNS. The Fréchet mean Â0 is defined as the minimizer of the squared

distances to the x†
i s, i.e.

Â0 = argmin
x∈S1

n∑
i=1

ρ1(x,x
†
i )

2.

The Fréchet mean is unique when the support of x†
i is a proper subset of a half circle in S1,

which is often satisfied in practice. If there are multiple Fréchet means, then careful inspection

of the data must be followed. A typical case for having multiple means is that the data are

uniformly distributed on the circle. If this is the case, then Â0 can be chosen to be any solution

of the above criterion, and since it does not summarize the data well we may not lay much

emphasis on Â0.

The sequence of best fitting subspheres including the Â0 can be located in the original

space Sd, as follows.

Definition 7.3. The sequence of sample Principal Nested Spheres in Sd is then {Â0, Â1, . . . , Âd−1},

where

Âd−k =

 f̂−1
1 ◦ · · · ◦ f̂−1

k−1(Âd−k) if k = 2, . . . , d,

Âd−1 if k = 1.

We call Â0 the PNSmean.

7.2.4 Euclidean-type representation

We wish to represent the data in an Euclidean space for visualization and further analysis.

Recall that in the kth level of the procedure, we have collected the signed residuals which

we denote by ξi,d−k, i = 1, . . . , n. These were measured by the metric ρd−k in a space different

from Sd. Therefore we scale these residuals by multiplying
∏k−1

i=1 sin(r̂i) which makes the
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magnitude of residuals commensurate (see Proposition 7.9). We put the scaled residuals in a

row vector

Ξ(d− k)1×n
.
=

k−1∏
i=1

sin(r̂i)[ξ1,d−k, . . . , ξn,d−k].

We further define ξi,0 as the ith sample’s signed deviation from Â0 measured by ρ1. Similar

to before, rescale the deviations and let

Ξ(0)1×n
.
=

d−1∏
i=1

sin(r̂i)[ξ1,0, . . . , ξn,0].

These commensurate residuals are combined into a d× n data matrix

X̂PNS =



Ξ(0)

Ξ(1)

...

Ξ(d− 1)


,

where each column is the corresponding sample’s coordinates in terms of the sample PNS.

Each entry in row k works like the kth principal component score.

The data matrix X̂PNS can be used to visualize the structure of the data. For example,

the graph in Figure 7.1 is a scatterplot of Ξ(0) and Ξ(1). The variance of each component is

defined by the variance of the corresponding residuals. Moreover, conventional multivariate

statistics based on Euclidean space can be applied to X̂PNS for further analysis (e.g. PCA

and classification methods).

7.2.5 Principal Arcs

In analogy to the principal component directions in Euclidean space, or the manifold extension

principal geodesics, the principal arcs that represent the direction of major variations are

defined by PNS. These arcs are space curves lying in the manifold Sd, which frequently are

not equivalent to any geodesic.

Given a sequence of PNS {Â0, Â1, . . . , Âd − 1}, the first principal arc coincides with the

1-d PNS Â1. This arc may be parameterized by the signed distance from the PNSmean Â0.
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In the space of the Euclidean-type representation X̂PNS , the first principal arc coincides with

the direction e1 = (1, 0, . . . , 0)T .

The second principal arc lies in Â2 and is orthogonal to the first principal arc at all points

in common. The first and second arcs cross at Â0 and also at the farthest point from Â0 on

Â1. The second arc is in general a small cirle in Sd but is identified with a great circle in S2,

the isomorphic space of Â2. The second principal arc in S2 must pass through the axis vd−1

in order to be orthogonal to the first. This arc may be parameterized by the signed distance

from Â0, and coincides with the direction e2 in the space of X̂PNS .

The higher order principal arcs are defined in the same manner. The kth principal arc

can be defined and identified with the direction ek in the space of X̂PNS . The kth arc is then

orthogonal to the principal arcs of order 1, . . . , k − 1, and passes through the PNSmean.

In addition, a space curve in Sd may be parameterized by the coordinates of the Euclidean-

type representation. Fitting a space curve that further smooths the data is a separate issue.

7.2.6 Principal Nested Spheres restricted to Great Spheres

An important special case of the PNS is obtained by setting r = π/2 for each subsphere

fitting. This restriction leads to the nested spheres being great spheres, and the principal arcs

become geodesics. In all data sets we tested, the resulting principal geodesics are similar to

the previous geodesic-based PCA methods. In the following, we indicate this special case as

Principal Nested Great spheres (PNG).

We conjecture that the principal geodesics, found by PNG, are more similar to the Geodesic

Principal Component of Huckemann et al. (2010) than the usual tangent space projection

methods. This is mainly because any pre-determined mean (either geodesic mean or Pro-

crustes mean) is not used in PNG nor Huckemann’s. The PNSmean in this special case is

similar to the notion of mean of Huckemann, and is identical when the sphere has dimension

d = 2. Although we have not yet found a significant difference of PNG than previous meth-

ods, we point out that the PCA extension approach of PNG (and PNS) is different from those

methods.

127



7.3 Visualization of nested spheres of S3

In this section, a visualization of nested spheres of S3 is used to give insight into the meaning

of fitting A2 from S3 in a non-geodesic way, i.e. r < π/2. This gives a low dimensional answer

to a central question: what is the meaning of Ad−k(v, r) with r < π/2? Note that it is difficult

to visualize a space with dimension greater than 3.

A stereographic projection can be used for visualization of the 3-sphere S3. Specifically, to

visualize the nested spheres of S3, we use the stereographic projection with projection point

p as the antipodal point from the PNSmean. With p = (0, 0, 0,−1) ∈ S3, the stereographic

coordinates of x = (x1, x2, x3, x4) ∈ S3 are given by

1

1 + x4
(x1, x2, x3).

Note that one can move the PNSmean (and all other points) to the north pole without losing

any information, which is done by the rotation operator R(p) defined in Section 7.8. The

stereographic projection defined above maps the PNSmean at the north pole to the origin of

the new coordinates. Moreover, any geodesic (great circle) passing through the PNSmean is

mapped to a straight line, and any great sphere containing the PNSmean is mapped to a flat

plane through the origin. On the other hand, a small sphere or small circle passing through

the PNSmean is mapped to a sphere or circle.

Decomposition of S3 by PNS is a sequential reduction of dimensionality. We first find

a two dimensional PNS A2. When the underlying variation of the data is along a surface

with more curvature than great spheres, then PNS shall use a small sphere for A2. This

corresponds to the projected images in Figure 7.3, cases c and d, where the meshed surface is

the image of A2. Likewise, when fitting A1 from A2, whether to use a geodesic or small circle

depends on the underlying variation. The one dimensional PNS A1 is depicted as a line or

arc in Figure 7.3.

There are four different possible situations for the PNS decomposition of S3. Recall that

from S3, r1 determines the radius of the two dimensional nested sphere A2 (2-sphere), and

r2 together with r1 determines the radius of the A1 (circle). The image of A1 (⊂ A2) by

f1 is A1, which is the fitted subsphere in S2, the isomorphic space of A2. The four possible
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Figure 7.3: Stereographic projection of S3, with four different decompositions by PNS. The two di-
mensional PNS A2 is depicted as the meshed surface. The one dimensional PNS A1 is
nested in A2 and is illustrated as a line or arc. In the first level of PNS fitting, where we fit
A2 from S3, the cases a and b correspond to A2 with r = π/2 (great sphere), while cases
c and d correspond to A2 being a small sphere. Furthermore, in the level of fitting A1, as
part of the PNS fitting we test whether the major variation A1 is along a geodesic in A2

(cases a and c), or along a small circle (cases b and d).

decompositions are characterized as:

(a) r1 = π/2 (A2 great sphere), r2 = π/2 (A1 great circle).

(b) r1 = π/2 (A2 great sphere), r2 < π/2 (A1 small circle).

(c) r1 < π/2 (A2 small sphere), r2 = π/2 (A1 great circle).

(d) r1 < π/2 (A2 small sphere), r2 < π/2 (A1 small circle).

These four cases are illustrated in Figure 7.3 with ri = π/3 for the small sphere/circle

case. Case (a) corresponds to PNG, i.e. major variation in any dimension is along a geodesic

or a great sphere. Case (b) is when the best two dimensional approximation is a great sphere,

but the best one dimensional approximation is not a geodesic. A2 being small sphere (cases

c and d) can be understood as the major two dimensional variation is along a small 2-sphere

with more curvature than the great sphere. Once we reduce the dimensionality to two by A2,

we find either a geodesic of A2 (case c) or a small circle of A2 (case d) as A1, according to

the curvature of underlying variation.

Similar understanding follows for Sd with any d, when fitting Ad−1. In particular, when

the underlying variation in Sd is best captured by a (d− 1) dimensional curved sub-manifold
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(with more curvature than a great sphere), we then use Ad−1 with r < π/2.

7.4 Prevention of overfitting by sequential tests

In this section, the significance of small spheres against the great sphere is discussed. We

propose a test procedure consisting of two different tests for each level of subsphere fitting.

Similar to the backward regression procedure, sequentially testing small spheres at each layer

may prevent overfitting.

There are two cases where a great sphere provides more appropriate fit to the data, yet

the sum of squared residuals is minimized by a small sphere. The first case is where a true

major variation is along a great sphere, an example of which on S2 is illustrated in Fig 7.4a.

The second case is when the underlying distribution is isotropic with a single mode, so that

there is no major variation along any direction. An example of such a distribution is N(0, Ik)

(in linear space), or the von Mises–Fisher distribution on Sd (Fisher (1953), Mardia and Jupp

(2000)), as illustrated in Fig 7.4b. In this situation, small spheres centered at the point of

isotropy are frequently obtained, which do not give a useful decomposition.

We have developed two different tests to handle these cases. The first is a likelihood ratio

test (LRT) for the detection of the first case above (Fig 7.4a), which tests the significance

of the reduction of residual variances. The second is a parametric bootstrap test aimed at

the second case above(Fig 7.4b), which tests the isotropy of the underlying distribution. A

detailed description of the tests is given in the following subsections. A procedure to apply

these tests to PNS fitting is then discussed in Section 7.4.3.

7.4.1 Likelihood ratio test

We define a likelihood ratio statistic for each level to sequentially test the significance of small

sphere fitting against the great sphere.

For the kth level of the procedure, where Ad−k is fitted to x1, . . . ,xn ∈ Sd−k+1, we assume

that the deviations of the samples xi from the subsphere Ad−k(v, r) are independent N(0, σ2).

It makes more sense when a truncated Normal distribution on a range [−π/2, π/2] is assumed.

However unless the data spread too widely (e.g. Uniform on the sphere), the distribution will
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(a) (b) (c)

Figure 7.4: Simulated data examples on S2 projected by an equal area projection, and the fitted best
small (solid) and great (dotted) spheres, which are arcs in this two dimensional case. (a)
The LRT gives the p-value 0.338, while p-value of the bootstrap test is 0. The LRT detects
the overfitting. (b) The LRT leads to p-value ≈ 0), and the bootstrap p-value is 0.3.
The bootstrap test detects the overfitting. (c) When the fitted small sphere (circle) is not
overfitted, both tests give very small p-values (≈ 0). This assures that the small sphere is
not overly fitted.

be approximately Normal. Thus we use the approximate likelihood function of (v, r, σ2), given

by

L(v, r, σ2|xn
1 ) =

1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(ρ(xi,v)− r)2

)
,

where ρ is the geodesic distance function on Sd−k+1. The approximate maximum likelihood

estimator (m.l.e.) of (v, r) coincides with (v̂, r̂), the solution of Eq. (7.2), and the approximate

m.l.e. of σ2 is given by σ̂2 = n−1
∑n

i=1 ξi(v̂, r̂)
2, which is obtained by differentiating the log-

likelihood function and setting the derivative equal to zero.

We can test H0a : r = π/2 (i.e. the great sphere), versus H1a : r < π/2 (i.e. some

small sphere), using a likelihood ratio test. The m.l.e. of (v, r, σ2) under H0a is given by

(v̂0, π/2, σ̂2
0), where v̂0 minimizes the sum of squared residuals of Eq. (7.2) with r = π/2,

and σ̂2
0 = n−1

∑n
i=1 ξi(v̂

0, π/2)2. The log-likelihood ratio is (σ̂2/σ̂2
0)

−n/2. Then using Wilks’

theorem, for large samples n log(σ̂2/σ̂2
0) ≈ χ2

1 under H0a, and the test rejects H0a in favor of

H1a for large values of n log(σ̂2/σ̂2
0).

7.4.2 Parametric bootstrap test

For each level of PNS fitting, suppose X ∈ Sm has a distribution function FX. We wish to

test for the underlying distribution FX, H0b : FX is an isotropic distribution with a single

mode, versus H1b : not H0b (i.e. anisotropic). We develop a parametric bootstrap test with
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an assumption of the von Mises-Fisher distribution. The von Mises-Fisher distribution is

an analogue of Normal distribution on the unit sphere with concentration parameter κ and

directional parameter µ, denoted as vMF(µ, κ).

We build a test statistic that is large when FX is neither isotropic nor having a single mode.

For this purpose, we derive the following test statistic. Given x1, . . . ,xn ∈ Sm, estimate the

best fitting subsphere A(v̂, r̂) as done in Eq. (7.2). Let ζi = ρd(xi, v̂) = cos−1(xT
i v̂) be the

radial distances from the axis of the subsphere. Then the test statistic to use is the coefficient

of variation of ζ,

Z = Z(x1, . . . ,xn) =
ζ̄

std(ζ)
=

1
n

∑n
i=1 ζi√

1
n−1

∑n
i=1(ζi − ζ̄)2

.

The next step is to estimate a null distribution of this statistic. We have assumed that

under H0b, FX is vMF(µ, κ). The unknown parameters are estimated from the data. µ is

estimated by a standard likelihood approach, see Mardia and Jupp (2000). For an estimate

of κ, Banerjee et al. (2005) empirically derived an approximation of the m.l.e. of κ. The

estimates are

µ̂MLE =
r

∥r∥
=

∑n
i=1 xi

∥
∑n

i=1 xi∥
, κ̂MLE ≈ r̄(d+ 1)− r̄3

1− r̄2
,

where r̄ = ∥r∥
n . Then we generate B > 100 random samples of size n from vMF(µ̂MLE , κ̂MLE)

and calculate Z1, . . . , ZB. The test rejects H0b with a significance level α if

1

B

B∑
i=1

1{Zi>Z} < α.

7.4.3 Application procedure

As discussed in section 7.2.3, a sequence of sample PNS is obtained by iterative fitting of

subspheres. In each layer of subsphere fitting, both of the tests developed in this section will

be used, due to the observation in Figure 7.4. We first illustrate how these tests are applied

to the examples in Figure 7.4, then propose a procedure to apply the tests to the PNS fitting

procedure.

Some typical data examples on the 2-sphere and the results of the two tests are illustrated
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in Figure 7.4. When the true major variation is along a great circle, as in Figure 7.4a, the

LRT works well and accepts H0a (great sphere) but the bootstrap test rejects H0b. On the

other hand, when the underlying distribution is von Mises–Fisher, the LRT rejects H0a in

favor of H1a: small sphere. However, the best fitting small sphere is frequently inappropriate,

as shown in Figure 7.4b. The bootstrap test accepts H0b and thus can be used to detect

such a case. Therefore, in order to prevent an overfitting, we proposed to sequentially apply

both tests in each level of subsphere fitting. In a case where a true variation is along a small

sphere, both tests reject the null hypotheses, and we assure that the small subsphere is not

overfitting.

In each level of subsphere fitting, we use the following testing procedure to test the signif-

icance of “small” subsphere fitting.

1. Test H0a versus H1a by the likelihood ratio test. If H0a is accepted, then fit a great

sphere with r = π/2 and proceed to the next layer.

2. If H0a is rejected, then test the isotropy of the distribution by the parametric bootstrap

test. If H0b is accepted, then use great spheres for ‘all’ further subsphere fittings.

3. If both tests do not reject the null hypotheses, then use the fitted small sphere for

decomposition.

Note that in step 2, when H0b is accepted, we use great sphere fitting not only for the level,

but also for all further levels with smaller dimensions. This is because once H0b is accepted,

the underlying distribution at the level is assumed to be a von Mises-Fisher. An analogy in

Euclidean space is N(0, Ik) where a non-linear mode of variation is meaningless. Therefore,

great spheres are used for all further nested spheres, without further application of tests.

Note that for Sd, we test at most 2(d − 1) hypotheses. This brings us a multiple testing

problem, i.e. using significance level α = 0.05 for every test may result in a larger overall

type I error. This phenomenon can be treated by, for example, using Bonferroni’s correction.

Deeper discussion of more advanced treatments, such as False Discovery Rate, might be an

interesting open problem.
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7.5 Computational Algorithm

The computation of sample PNS involves iterative applications of minimization, projection

and transformation. We have given explicit formulas for the projection (Eq. 7.3) and the

transformation (Eq. 7.1). The least squares problem (Eq. 7.2) is a constrained non-linear

minimization problem. It can be solved by the doubly iterative algorithm described in Sec-

tion 6.6 with some modifications. The algorithm is best understood in two iterative steps:

The outer loop finds the point of tangency to approximate Sd by a tangent space; the inner

loop solves an optimization problem in the linear space.

We make use of the exponential map and its inverse for mappings between the manifold

and tangent spaces (see Helgason (2001) and Buss and Fillmore (2001)). A tangent space at

p ∈ Sm, TpS
m, is an affine m-dimensional vector space and can be identified by Rm. Without

loss of generality set the point of tangency p = em+1 = (0, . . . , 0, 1), because one can use

the rotation operator R(p) to transform p to em+1 while preserving all data structure. The

exponential map Expp : TpS
m −→ Sm is defined for z ∈ Rm ∼= TpS

m,

Expp(z) =

(
sin(∥z∥)

∥z∥
zT , cos(∥z∥)

)T

∈ Sm.

The inverse exponential map (log map) Logp : Sm −→ TpS
m is defined for x = (x1, . . . , xm+1)

T ∈

Sm,

Logp(x) =
θ

sin(θ)
(x1, . . . , xm)T ∈ Rm,

where cos(θ) = xm+1. These mappings preserve the distances to the point of tangency. By

using the exponential mapping and its inverse, a hypersphere with radius r in the tangent

space corresponds to a subsphere in Sm with distance r. In particular, Am−1(v, r) is equivalent

to the image of {x ∈ Rm : ∥x∥ = r} by Expv.

The algorithm finds a suitable point of tangency v, which is also the center of the fitted

subsphere. Given a candidate v0, the data are mapped to the tangent space Tv0S
m by the

log map. Write x†
i = Logv0

(xi), then the inner loop finds the minimizer of

min
v†,r

n∑
i=1

(∥x†
i − v†∥ − r)2,
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which is a non-linear least-squares problem and can be solved numerically by e.g. the

Levenberg-Marquardt algorithm (see e.g. Ch.4 of Scales (1985)). The solution v† is then

mapped to Sm by the exponential map, and becomes the v1. This procedure is repeated until

v converges.

A main advantage of this approach is the reduced difficulty of the optimization task. The

inner loop solves an unconstrained problem in a vector space, which is much simpler than the

original constrained problem on manifolds. Experience has shown that with a carefully chosen

initial value, the algorithm has worked well in a wide range of simulated and real applications.

It becomes increasingly common in modern applied problems that the sample size is less

than the dimension of the manifold, i.e. x1, . . . ,xn ∈ Sd with n 6 d, which is frequently

referred to as the high dimension, low sample size situation (Hall et al. (2005), Dryden (2005)).

In Euclidean space, the dimensionality of the data can be reduced to n without losing any

information. Likewise, the intrinsic dimensionality of the data on the hypersphere can be

reduced to n − 1, where additional reduction of 1 occurs because there is no ‘origin’ in Sd.

For the simplest yet intuitive example, let n = 2. Then there is a geodesic joining the two

points, which is the sub-manifold containing all information. A generalization of this fact can

be made for any n > 2, by the following theorem.

Theorem 7.1. There exists an n − 1 dimensional nested sphere An−1 of Sd satisfying xi ∈

An−1 for all i = 1, . . . , n. Moreover, there exist Ad−1 ⊃ · · · ⊃ An−1, all of which are great

spheres (i.e. with radius 1).

As can be seen in the proof of the theorem in the Appendix, the singular value decompo-

sition of the data matrix [x1 · · ·xn] gives the appropriate An−1. Let Ln
1 be the vector space

of dimension n that all data points span. Then, the intersection of Ln
1 and Sd is the n − 1

dimensional manifold An−1.

For a faster computation (when n < d), we reduce the dimensionality to An−1 by the

singular value decomposition, and use the proposed algorithm to fit An−2, and so on.
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7.6 Application to Shape space

The shape of an object is what is left after removing location, scale, and rotation. The

classical approach in shape analysis (see e.g. Dryden and Mardia (1998)) is to work with

(biological) landmarks of the objects. Each shape determined by a set of landmarks can be

represented by a point in Kendall’s (1984) shape space. A useful approach to understanding

the non-Euclidean shape space is through preshape space, which is a high dimensional sphere.

In this section, we discuss necessary considerations to apply PNS to shape space through the

preshape space.

7.6.1 Planar shape space

Consider a set of k > 2 landmarks in R2 and the corresponding configuration matrix X, which

is a k× 2 matrix of Cartesian coordinates of landmarks. The preshape of the configuration X

is invariant under translation and scale, which is given by Z = HX/ ∥HX∥, where H is the

(k − 1)× k Helmert sub-matrix with elements

hij =


−1/

√
i(i+ 1), 1 6 i 6 j

1/
√

i(i+ 1), i = j + 1

0, i > j + 1.

Provided that ∥HX∥ > 0, Z ∈ S2(k−1)−1. The unit sphere S2(k−1)−1 in R2(k−1) is the space

of all possible preshapes, and is called the preshape space. Conversely, a configuration matrix

corresponding to a preshape Z is given by HTZ since HTH = Ik − 1
k1k1

′
k, often referred to

as the centering matrix.

The shape of a configuration matrix X can be represented by the equivalence set under

rotation, [Z] = {ZΓ : Γ ∈ SO(2)}, where SO(2) is the set of all 2 × 2 rotation matrices.

The space of all possible shapes is then a non-Euclidean space called the shape space and is

denoted by Σk
2.

We also write the preshape Z as a vectorized version z = vec(ZT ), where vec(A) is obtain

by stacking the columns of the matrix A on top of one another. Then the following facts are

well-known (see e.g. Kume et al. (2007) and Dryden and Mardia (1998)).
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Suppose that v,w ∈ S2(k−1)−1 are preshapes satisfying vTw > 0 and vTMw = 0, where

M is the 2(k − 1)× 2(k − 1) skew-symmetric matrix consisting of k − 1 diagonal blocks

 0 −1

1 0

 .

Then

M =



0 −1 0 0 · · · 0 0

1 0 0 0 · · · 0 0

0 0 0 −1 · · · 0 0

0 0 1 0 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 −1

0 0 0 0 · · · 1 0



.

Then the geodesic that joins v to w, Q(v → w, θ)v, θ ∈ [0, π/2] is said to be a horizontal

geodesic, and the Riemannian distance between v,w is the same as the Riemannian distance

between the corresponding shapes [v] and [w] in Σk
2.

For the preshapes w, z1, z2, . . . , zn, as long as the shapes of those are of interest, we assume

without loss of generality that wTvi > 0 and wTMvi = 0.

7.6.2 Principal Nested Spheres for planar shapes

The intrinsic dimension of the shape space is 2k− 4, since the degrees of freedom are reduced

from 2k (of the set of landmarks) by 2 for translation, 1 for scale, and 1 for rotation. This

is less than the dimension of the preshape space d = 2k − 3. It is thus desired that the

d− 1 dimensional PNS of Sd leaves no residuals. This is achieved by the theory and practical

modifications in this section. In short, Procrustes fit of configurations or preshapes to a

common alignment base (e.g. the Procrustes mean) results in the desired decomposition of

the shape space.

Theorem 7.2. Suppose the preshapes w, z1, z2, . . . , zn ∈ Sd satisfy wTzi > 0 and wTMzi = 0

for all i = 1, . . . , n. Let w∗ = Mw for M defined above. Then w, zi ∈ Ad−1(w
∗, π/2).
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Moreover, define hAd−1 = {z ∈ Ad−1 : zTw > 0} as a hyper-hemisphere. Then w, zi ∈

hAd−1(w
∗, π/2).

We have the following comments:

• The dimension of preshape space can be reduced by 1 without loss of any shape infor-

mation.

• For the nested hemisphere hAd−1,

1. the intrinsic distance ρ∗d−1(w, z) defined on hAd−1 (see Proposition 7.7(b) in Ap-

pendix 7.8) is the same as the Riemannian distance ρ([w], [z]) in Σk
2 for any

z ∈ hAd−1.

2. the tangent space of hAd−1 at w is in fact identical to the horizontal subspace of

the tangent space of Sd at w.

• The hAd−1 is closely related to Σk
2, but is not identical.

When k = 3, the preshape space has dimension d = 2(k − 1)− 1 = 3. The corresponding

shape space of planar triangles Σ3
2 is S2(12). hA2 obtained from some w ∈ S3 is isometric to

a unit hemisphere in R3. A geodesic in Σ3
2 may or not be identified with a geodesic in hA2.

A geodesic in Σ3
2 through [w] is identified with a geodesic in hA2 through w. On the other

hand, a set of points in distance π/4 from [w] in Σ3
2 is a geodesic, but is identified with a

small circle with center w and radius π/4 in hA2.

The choice of the alignment base w is an important issue because the Riemannian distance

in hAd−1 is the same as the Riemannian distance in the shape space Σk
2 when compared to

w, i.e.

ρd(w, z) = ρΣ([w], [z]), for z ∈ hAd−1.

Moreover, ρd(z1, z2) for z1, z2 ∈ hAd−1 is closer to ρΣ([z1], [z2]) when z1, z2 are close to w.

In general, we wish to set the alignment base w as a center of the data. Among many

reasonable options of w, we recommend to use the preshape of the Procrustes mean of the

data. Other reasonable candidates for w are the geodesic mean and the PNSmean. We have

tested these options to a number of real and simulation datasets. Setting w as the PNSmean
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or the geodesic mean usually takes longer computation time than using the full Procrustes

mean, and the resulting decompositions are virtually the same in most cases.

In the following, we describe all candidates of w in more detail, giving the advantages and

disadvantages of each option.

We have first considered use of the PNSmean A0 as the alignment base. A0 is identified

with the origin of the coordinate system for the Euclidean representation of data X̂PNS . Since

the PNSmean is estimated from the data, we begin with the preshape of the full Procrustes

mean as an initial guess for A0 and recursively update Â0 on which preshapes are aligned.

The algorithm consists of the following steps.

1. Initialize w as the preshape of the Procrustes mean of zi.

2. Align z1, . . . , zn to w and compute the sample PNSmean Â0 of aligned zi.

3. If ρd(w, Â0) < ϵ, then set w = Â0 and stop. Otherwise update w = Â0 and go to Step

2.

Note that in practice, there is no guarantee that this algorithm should converge.

Other candidates of w are the full Procrustes mean preshape and the geodesic mean of the

preshapes. These are relevant to the Fréchet mean, where the geodesic mean is the Fréchet

mean with the intrinsic (Riemannian) distance and the Procrustes mean is using the full

Procrustes distance which is extrinsic to Sd. Recently, it has been observed that the curvature

of the manifold Sd sometimes makes the Fréchet mean inadequate, see e.g. Huckemann et al.

(2010). When the Fréchet mean is indeed a useful representation of the data, the PNSmean

is usually found at a point close to the Fréchet mean. Note that even if the Fréchet mean is

far from the data, the PNSmean is nevertheless located at the appropriate center of the data.

We have also considered v†
d−1, which is relevant to the axis for the 1-dimensional subsphere

A1(vd−1, rd−1) and defined in Lemma 7.8. Since v†
d−1 is in the same distance to any points

in A1, where the most important variation will be captured, choosing v†
d−1 for w makes

the criteria for the PNS adequate in the sense that residual distance in Sd is the same as

the distance in the shape space. However, there is a substantial drawback that if {zi} were

aligned to v†
d−1, then the fitted A1 is not a great circle in Sd even though the shapes of {zi}

are along a geodesic in Σk
2.

We have tried these options to a number of real and simulation datasets. Setting w as
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the PNSmean or the geodesic mean usually takes longer computation time than using the

full Procrustes mean, and the resulting decompositions are virtually the same in most cases.

Therefore, we recommend to use the full Procrustes mean as the alignment base.

Finally, the tests for overfitting discussed in Section 7.4 can be applied for the planar

shapes case too, as the residuals are all obtained after optimal procrustes rotation.

7.6.3 Principal Nested Spheres for spaces of m > 2 dimensional shapes

Shapes in three or more dimensional space can also be analyzed PNS, with a similar treatment

as in the planar case.

Consider a set of k landmarks in Rm, m > 2, and the corresponding configuration matrix

X, which is a k × m matrix of Cartesian coordinates of landmarks. The preshape of the

configuration X is invariant under translation and scale. The preshape Z of X is obtained

by centering HX, where H is the (k − 1) × k Helmert sub-matrix, and then scaling Z =

HX/ ∥HX∥. All such Z form the unit sphere Sm(k−1)−1 embedded in Rm(k−1), which we call

the preshape space.

The shape of a configuration matrix X can be represented by the equivalence set under

rotation, [Z] = {ZΓ : Γ ∈ SO(m)}, where SO(m) is the set of all m ×m rotation matrices.

The space of all possible shapes is then a non-Euclidean space called the shape space and is

denoted by Σk
m. Since the dimension of the set SO(m) is m(m−1)

2 , the intrinsic dimensionality

of Σk
m is

d = m(k − 1)− 1− m(m− 1)

2
.

Therefore, we wish to find the d dimensional PNS Ad of Sm(k−1)−1 without losing any

information. Similar to the m = 2 case, this is achieved by the Procrustes fit of configura-

tions or preshapes to a common alignment base W. In the following theorem, preshapes are

represented by (k − 1)×m matrices. These are understood as a member of Rm(k−1) without

vectorizing the matrix.

Theorem 7.3. Suppose the preshapes W,Z1, . . . ,Zn ∈ Sm(k−1)−1 satisfy the following:

(a) tr(WTZi) > 0,

(b) WTZi = ZT
i W,
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(c) W has rank at least m− 1,

(d) k > m+ 1.

Then, there exists the d dimensional PNS Ad of Sm(k−1)−1 such that W,Zi ∈ Ad. Moreover,

define hAd = {Z ∈ Ad : tr(ZTW) > 0 as a hyper-hemisphere. Then W,Zi ∈ hAd.

The theorem tells that when preshapes Z1, . . . ,Zn are aligned to a common preshape W

(i.e. satisfying (a-b)), then the dimension of preshape space can be reduced by m(m− 1)/2.

As long as the shape is of interest, the Procrustes fit of Zi to W results in (a-b), without

losing any shape information.

The assumptions (c) and (d) are very reasonable in practice. For example, when m = 3

and the rank of W is 1, the corresponding landmarks do not form a legitimate shape, since

they are aligned in a line. Similarly, k 6 3 landmarks do not span the 3-space.

The hyper-hemisphere hAd is similar to the horizontal tangent space of Sm(k−1)−1 in the

sense that the distance ρd(W,Z) is the same as the Riemannian distance ρ([W], [Z]) in Σk
m

for any Z ∈ hAd and the tangent space of hAd at W is identical to the horizontal tangent

space of Sm(k−1)−1 at W.

Similar to the m = 2 case, for general m, we recommend to set the alignment base W as

the Procrustes mean of the data.

7.7 Real Data Analysis

Four datasets are analyzed by the proposed method. The first two are spherical data, i.e. on

Sd, and the latter two are shape data. For those shape datasets, we have used Procrustes

mean as the alignment base w.

Migration path of an elephant seal: As a simplest example, consider a dataset on the

usual sphere S2. The dataset consists of n = 73 daily location measurements of a migrating

female elephant seal, presented in Brillinger and Stewart (1998) and also discussed in Rivest

(1999). The seal migrates from the southern California coast to the eastern mid-north Pacific

Ocean. Of interest is to investigate whether the seal migrates along a great circle path, i.e.

the shortest distance path. Note that Brillinger and Stewart (1998) and Rivest (1999) have
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Figure 7.5: Daily observations of migration path of an elephant seal, in the latitude-longitude coordi-
nates, and the great circle and small circle fit of the data.

analyzed this dataset in greater detail. We briefly re-analyze this data set with our hypothesis

test.

Figure 7.5 shows the path of the migration, including both forward journey and return

trip. Since the dataset in the latitude-longitude coordinates can be converted to points on

the unit sphere, it is viewed as a set of points on S2 and we fitted PNS, with only one nested

sphere (circle in this case). We fit the best fitting great circle and small circle with fitted

distance r̂ = 75.45◦. The likelihood ratio test developed in Section 7.4.1 results in p-value

0.0851 (with H0a : r = 90◦, the great circle). Therefore, the migration is not significantly

different at the level α = 0.05 from a great circle path, which is consistent with the results

from Brillinger and Stewart (1998) and Rivest (1999).

River and sea sand grains: We consider sand grain outlines that can be parameterized

as a set of points in a hypersphere. The dataset was originally analyzed in Kent et al. (2000),

and consists of outlines of sand grains in two dimensional view. There are n1 = 25 river and

n2 = 24 sea sand grains. We illustrate an application of PNS, and use of the Euclidean-type

representation to test for group mean difference.

The outline of each sand grain is represented in polar coordinates (r1, . . . , rk) at each

equally spaced angle (θ1, . . . , θk), with k = 20. The scale is removed so that
∑k

i=1 r
2
i = 1. The

origin for each sand grain is its center of gravity, and we keep the grains fixed in the orientation
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that they were recorded. With θi fixed throughout the samples (as θi = (i − 1)2π/k), r =

(r1, . . . , rk) on the unit (k − 1)-sphere represents the shape of sand grain. Note that the size

of river sand grains are typically larger than that of sea sand (see Kent et al. (2000)), but this

analysis focuses on the variability in the scale invariant profiles of sand grains.

To the 49 (= n1 + n2) data points on the 19-sphere, we have applied the procedure of

sample PNS, with significance level α = 0.05 for every test applied. The small sphere is

significant for only three layers of the procedure, when fitting A18, A17 and A11, with both p-

values less than 0.05. The smallest dimension nested sphere A1 has radius 0.8738, suggesting

that the captured principal variation is not so much curved than geodesics. The PNS leads

to the Euclidean-type representation XPNS of the dataset, in a way that the curved principal

arcs are flattened. The first three coordinates in XPNS are used for visualization of major

variation as in Figure 7.6.

To test the group mean difference between river and sea sand grains, we can use any

Euclidean space based test procedure applied to XPNS . Since we do not have any prior

information on the underlying distribution, it makes sense to use a nonparametric permutation

test. In particular, we use the DiProPerm test (Direction-Projection-Permutation), described

in Wichers et al. (2007). The test finds a direction vector pointing from one group to the other,

and computes a t-statistic of the projected values onto the direction. The null distribution

of the t-statistic is found by permutation of group labels. We have used the DiProPerm test

with the Distance Weighted Discrimination (DWD) direction (Marron et al. (2007)). The

DWD is a classification tool that separates two groups with more generalizability than e.g.

the popular SVM (Vapnik (1995)). The subspace found by the DWD direction and first three

coordinates of XPNS is illustrated as a scatterplot matrix in Figure 7.6. Although the first

three coordinates of XPNS do not give a visual separation between the groups, XPNS turns

out to be a useful Euclidean space for linear classification methods such as DWD.

DiProPerm tests the null hypothesis of equal group means. In our analysis, the test with

1000 permutations rejects the null hypothesis with p-value 0.0292. The difference of shapes

in the overlay of the outlines of sand grains (Figure 7.7) is statistically significant.

Human movement: A human movement dataset, introduced in Kume et al. (2007),

contains 50 samples of k = 4 landmarks (lower back, shoulder, wrist, and index finger). The
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Figure 7.6: Scatterplot matrix of sand grain data set, by the DWD direction and the first three coordi-
nates of XPNS . (+: river sand grains, ◦: sea sand grains) Diagonal entries are jitter plots
of one dimensional projections with kernel density estimates for each group. The DWD
direction separating the two groups is found in the Euclidean space, XPNS .
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Group means of River and Sea sand grain

Figure 7.7: Overlaid outlines of 25 river sand grains (+) and 24 sea sand grains (◦) with the group
means (thick outlines) identified with the geodesic mean of each group. The DiProPerm
test rejects a null hypothesis of equal group means with p-value 0.0292

144



Human data overlay PNS: 1st mode of variation PNG: 1st mode of variation

Figure 7.8: (left) Procrusted fitted human data, (center) The first principal mode of variation by
PNS, showing ±2 standard deviation from PNSmean. (right) The first principal mode of
variation by Principal Nested Great sphere (PNG). PNS allows to capture curving variation.
In particular, the variation in the bottom left landmark is more precisely captured in PNS
than PNG.

dataset consists of shape configurations in the plane of a table, of one person performing

five different tasks, each observed at ten different time points. The raw data are plotted in

Figure 7.8.

In the left panel of Figure 7.8, overlaid are 50 quadrilaterals, each of which is a shape

configuration. Vertices of the quadrilateral are the locations of the landmarks. These 50

samples are Procrustes fitted to each other, i.e. translated, scaled, and rotated to each other

so that they are as close as possible.

We have applied PNG and PNS. The fitted nested spheres of PNS have radii 1, 0.7019,

0.3967, and 0.2473 (from the 4-sphere to the 1-sphere, respectively). Note that since the

dimension of the corresponding shape space is 4, the 4-d PNS is a great sphere and leaves

no residuals, as expected. P-values of the sequential LRT are at most 0.0013, supporting the

significance of the fitted PNS. The quadratic form of variation in the PNG coordinates is

captured by the 1-d PNS, as illustrated in Figure 7.1. The principal mode of variation found

by PNS is plotted in Figure 7.8, where the four bold dots together represent the shape of the

PNSmean, and the curves through the PNSmean illustrate the shape change captured in the

first PNS. The curvy form of variation apparent in the raw data are well captured.

Each task can be modeled as a 1-d arc, by applying PNS to the samples corresponding to

each task. The results are plotted in Figure 7.9. Each task is curving through at least three

geodesic components, and is well approximated by the separately fitted PNS.

Rat skull growth: The shape and size changes of rat skulls are described in Bookstein

(1991) and studied by several other authors including Kenobi et al. (2010). The data are eight
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Figure 7.9: Human movement data—fitted curves (solid curves) for different tasks labeled a, b, c, d,
and e, plotted in PNG coordinates.

landmark locations for skulls of 21 laboratory rats observed at eight ages (days 7, 14, 21, 30,

40, 60, 90, and 150). We discard 4 missing samples, and analyze the remaining 164 samples.

A non-geodesic variation curving through three geodesic components, in Figure 7.10(a-b),

is captured in the 2-d PNS (Figure 7.10(c)). The first two principal arcs are plotted in PNG co-

ordinates, showing the non-geodesic variation captured by PNS. The PNS coordinates capture

more interesting variability in fewer components and give concise and useful representation

of the data. In particular, the shape change due to the growth of the rat is well captured by

the first PNS, which can be checked by inspecting the relation to the size of the rat skulls

(Figure 7.10(d)). The skull size is naturally larger for older rats. The first PNS coordinates

are strongly associated with the size with the sample correlation coefficient 0.9705.

The shape change due to the first PNS is illustrated in Figure 7.11. The two extreme

shape configurations are also overlaid, which shows a typical effect of age.
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Figure 7.10: Rat skull growth: (a-b) data plotted by PNG coordinates. (—) represents the first princi-
pal arc, and (· · · ) represents the second principal arc. (c) data plotted by PNS coordinates.
(d) scatterplot with centroid size and the regression line.

Figure 7.11: Rat skull growth: the first principal mode of variation by PNS, (· · · ) represents the shape
of a typical young skull (at −2 s.d.), and (—) represents the shape of a typical old rat
skull (at +2 s.d.).
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7.8 Geometry of Nested Spheres

Geometric properties of nested spheres are discussed in this section. Initially it will be nec-

essary to introduce a particular type of transformation on the sphere in order to help define

PNS. Specifically, we describe a rotation matrix for moving a dataset on a sphere along a

particular minimal geodesic which retains the interpoint geodesic distances after the trans-

formation. We then describe the subsphere and the sequence of nested spheres as defined in

section 7.2.1, and discuss the geometric properties of these.

7.8.1 Preliminary Transformations: Rotation matrices

Suppose that a and b are unit vectors in Rm and we wish to “move b to a along the geodesic

path on the unit sphere in Rm which connects b to a.” Amaral et al. (2007) showed that a

rotation matrix is determined in a natural way.

Define c = {b − a(aTb)}/
∥∥b− a(aTb)

∥∥, where ∥·∥ denotes the Euclidean norm on Rm.

Provided that |aTb| < 1, c is well defined. Let A = acT − caT . The following lemma is

proved in Amaral et al. (2007).

Lemma 7.4. Assume that a,b ∈ Rm are unit vectors such that |aTb| < 1, and let A and c

be defined as earlier. Then for θ ∈ (0, π], the matrix

Q(θ) = exp(θA) = Id +

∞∑
j=1

θj

j!
Aj

has the following properties:

(a) Q(θ) is an m×m rotation matrix,

(b) Q(θ) can be written as

Q(θ) = Id + sin(θ)A+ (cos(θ)− 1)(aaT + ccT ),

(c) Q(α)b = a for α = cos−1(aTb) and

(d) for any z ∈ Rm such that aTz = 0 and bTz = 0, we have Qz = z.
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The path of minimum length on the surface of the unit sphere in Rm connecting b to a is

given by {x(θ) = Q(θ)b : θ ∈ [0, cos−1(aTb)}. We write this Q(θ) as Q(b → a, θ) and denote

Q(b → a)
.
= Q(b → a, cos−1(aTb)) for the rotation matrix that moves b to a. The path

defined here is indeed a minimal geodesic on the sphere. If b and a were orthogonal, then

Q(θ)b = cos(θ)b+ sin(θ)a, −π/2 < θ 6 π/2, (7.4)

which corresponds to a definition of the unit speed geodesic (Kendall et al. (1999)).

We also define R(v), for v ∈ Rm, as a rotation matrix that rotates v to the north pole

em = (0, . . . , 0, 1)T , i.e.

R(v) = Q(v → em).

Note that the last row of R(v) is vT . If v = em, then R(v) = Im.

Lemma 7.5. Assume that a,b ∈ Rm are unit vectors such that |aTb| < 1, and let θ ∈ (0, 2π].

(a) Let R be an m × m rotation matrix. Then, Q(Rb → Ra, θ) = RQ(b → a, θ)RT .

Equivalently, Q(RTb → RTa, θ) = RTQ(b → a, θ)R.

(b) Let a′ = (aT , 0)T , b′ = (bT , 0)T . Then the (m + 1) × (m + 1) rotation matrix that

moves b′ to a′ is given by

Q(b′ → a′, θ) =

 Q(b → a, θ) 0m×1

01×m 1

 ,

where 0m×n is the m× n matrix of zeros.

7.8.2 Geometry of Subsphere

The nested spheres of Sd are lower dimensional submanifolds of Sd, each of which is isomorphic

to the unit spheres in different dimensions. We first define a subsphere of Sm, m > 2 and

discuss the relevant geometry, which induces the nested spheres.

Definition (7.1). A subsphere Am−1 of Sm is defined by an orthogonal axis v ∈ Sm and a
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distance r ∈ (0, π/2], as follows:

Am−1(v, r) = {x ∈ Sm : ρm(v,x) = r},

where ρm(·, ·) is the great circle distance function on Sm.

Note that Am−1(v, r) is the boundary of the geodesic ball in Sm with center v and radius

r. The v is said to be orthogonal to Am−1 in a sense of the following lemma.

Lemma 7.6. (a) For any x,y ∈ Am−1, (x− y)Tv = 0.

(b) x ∈ Am−1 if and only if vT (x− cos(r)v) = 0 and ∥x∥ = 1.

A subsphere Am−1 of Sm is essentially an (m − 1) dimensional sphere. The following

properties of subspheres give the mathematical background to treat Am−1 as Sm−1.

Proposition 7.7. Let Am−1(v, r) be a subsphere in Sm. Then

(a) (Am−1, ρm) is isomorphic to (Sm−1, ρm−1) with an isomorphism f : Am−1 −→ Sm−1

defined by

f(x) =
1

sin(r)
R−(v)x, x ∈ Am−1

with inverse

f−1(x†) = RT (v)

 sin(r) · x†

cos(r)

 , x† ∈ Sm−1,

where R(v) is the (m + 1) × (m + 1) rotation matrix that moves v to the north pole,

R−(v) is the m× (m+ 1) matrix consisting of the first m rows of R(v).

(b) Let ρ∗m−1(x,y) = sin(r)ρm−1(f(x), f(y)). Then ρ∗m−1 is a metric on Am−1.

(c) (Am−1, ρ
∗
m−1) is isometric to (Sm−1, sin(r)ρm−1).

(d) The two metrics ρm and ρ∗m−1 are equivalent, in a sense that the following inequalities

ρm(x,y) 6 ρ∗m−1(x,y) 6
π sin(r)

2r
ρm(x,y)

hold for all x,y ∈ Am−1 and both equalities hold if and only if r = π/2 or x = y.
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(e) ρ∗m−1(x,y)− ρm(x,y) 6 π sin(r)− 2r for all x,y ∈ Am−1.

The ρ∗m−1(x,y) can be interpreted as the length of a minimal arc in Am−1 that joins x,y.

Precisely, the minimal arc is the image by f−1 of the minimal geodesic segment joining f(x)

and f(y). Let x† = f(x), y† = f(y). Then the geodesic segment is given by

Γ = {γ(θ) = Q(x† → y†, θ)x† : θ ∈ [0, cos−1(x†Ty†)]}.

By Lemma 7.5, we have for any θ ∈ [0, cos−1(x†Ty†)],

f−1(γ(θ)) = R(v)T

 sin(r)Q(x† → y†, θ)x†

cos(r)


= R(v)T

 Q(x† → y†, θ) 01×m

0m×1 1

R(v)R(v)T

 sin(r)x†

cos(r)


= Q(xp → yp, θ)x,

where

xp = R(v)T

 x†

0

 =
x− cos(r)v

sin(r)
,

and yp is defined similarly. One can check that ρm(xp,yp) = ρm−1(x
†,y†) and Q(xp →

yp)x = y. Thus the arc {Q(xp → yp, θ)x : θ ∈ [0, cos−1(xT
p yp)]} joins x to y and is minimal

in Am−1 because it is isomorphic to the minimal geodesic Γ. Note that Lemma 7.4(d) leads

to Q(xp → yp, θ)v = v for all x, y ∈ Am−1, θ.

The difference between ρm and ρ∗m−1 is due to the fact that the minimal arc for ρ∗m−1 is

not a geodesic in Sm. If r < π/2, then the geodesic segment joining x,y is always shorter

than the minimal arc in Am−1. Since the difference is relatively small for close points (by

Proposition 7.7(d-e)), this difference does not obscure much the underlying structure of the

points in Sm.
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7.8.3 Geometry of Nested Spheres

We now define a sequence of nested spheres {Ad−1,Ad−2, . . . ,A1} of Sd, d > 2, with decreas-

ing intrinsic dimensions. We first introduce a sequence of subspheres Ad−1, Ad−2, . . . , A1 of

Sd, which are in different spaces. The d − 1 dimensional subsphere Ad−1 of Sd, defined in

Definition 7.1, is in Sd ∈ Rd+1. The second subsphere Ad−2 is defined from the isomorphic

space Sd−1 of Ad−1. Similarly, the lower dimensional subspheres are defined recursively.

Definition 7.4. A sequence {Ad−1, Ad−2, . . . , A1} of subspheres is defined recursively as fol-

lows:

(i) Ad−1 is defined as the subsphere with v1 ∈ Rd+1, r ∈ (0, π/2] by Definition 7.1.

(ii) For each k = 2, . . . , d− 1, Ad−k is the subsphere defined with vk ∈ Rd−k+2, rk ∈ (0, π/2]

from Sd−k+1, which is isomorphic to Ad−k+1.

We also define transformations fk : Ad−k −→ Sd−k with (vk, rk), for k = 1, . . . , d − 1, as

done in Proposition 7.7, i.e.

fk(x) =
1

sin(rk)
R−(vk)x, x ∈ Ad−k,

f−1
k (x†) = RT (vk)

 sin(rk) · x†

cos(rk)

 , x† ∈ Sd−k.

Definition (7.2). A d− k dimensional nested sphere Ad−k of Sd is defined as

Ad−k =

 f−1
1 ◦ · · · ◦ f−1

k−1(Ad−k) if k = 2, . . . , d− 1

Ad−1 if k = 1

The geometric interpretation and hierarchical structure of the nested spheres are illustrated

in Figure 7.2 and 7.12. The nested sphere Ad−k can be understood as a shifted (d−k)-sphere,

which is orthogonal to k orthogonal directions in the sense of Lemma 7.8. The following

properties summarize some geometric facts of the nested spheres. xp,k in the lemma can be

understood as the projection of x onto the subspace that is orthogonal to v∗
1, . . . ,v

∗
d−k.

Lemma 7.8. Let Ad−1, . . . ,A1 be nested spheres of Sd from a sequence of subspheres Ad−k(vk, rk).

Then, there exists an orthogonal basis v∗
1, . . . ,v

∗
d−1 ∈ Rd+1 such that for each k = 1, . . . , d−1,
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Figure 7.12: Hierarchical structure of the sequence of nested spheres of the 3-sphere.

(a) (x− y)Tv∗
i = 0 for all i = 1, . . . , k, x,y ∈ Ad−k,

(b) x ∈ Ad−k if and only if xT
p,kv

∗
j = 0, for all j = 1, . . . , k, and ∥xp,k∥ =

∏k
i=1 sin(ri) where

xp,k = x− cos(r1)v
∗
1 − sin(r1) cos(r2)v

∗
2 − · · · −

k−1∏
i=1

sin(ri) cos(rk)v
∗
k.

Moreover, an explicit expression for v∗
j can be obtained from v1, . . . ,vj as

v†
j = f−1

1 ◦ · · · ◦ f−1
j−1(vj) ∈ Ad−j+1, (7.5)

v∗
j =

j−1∏
i=1

sin−1(ri){v†
j − cos(r1)v

∗
1 − sin(r1) cos(r2)v

∗
2 − · · · −

j−2∏
i=1

sin(ri) cos(rj−1)v
∗
j−1}(7.6)

A direct consequence of this lemma is that for any nested sphere Ad−k of Sd can be

understood as the intersection of a hyperplane Hk and Sd. The hyperplane Hk is a d − k

dimensional affine subspace that is orthogonal to v∗
1, . . . ,v

∗
d−k.

Proposition 7.9. Let Ad−1, . . . ,A1 be nested spheres of Sd from subspheres Ad−k(vk, rk).

Then,

(a) A1 ( A2 ( · · · ( Ad−1 ( Sd, where A ( B means that A is a proper subset of B,

(b) Let ρ∗d−k(x,y) =
∏k

i=1 sin(ri)ρd−k(x
′,y′), where x′ = fk ◦ · · · ◦ f1(x). Then ρ∗d−k is a

metric on Ad−k.

(c) (Ad−k, ρ
∗
d−k) is isometric to (Sd−k,

∏k
i=1 sin(ri)ρd−k).

The ρd and ρ∗d−k are indeed equivalent metrics. Moreover, one can show that ρ∗d−k(x,y)

is the length of a minimal arc in Ad−k that joins x and y.
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7.9 Proofs and Additional Lemmas

Proofs for Appendix 7.8 will be given first. We then return to give proofs for the main results.

Proof of Lemma 7.5. (a) Let a0 = Ra, b0 = Rb and c0 = {b0−a0(a
T
0 b0)}/

∥∥b0 − a0(a
T
0 b0)

∥∥.
Then c0 = Rc, where c = {b− a(aTb)}/

∥∥b− a(aTb)
∥∥, since RRT = RTR = Im. Then,

Q(Rb → Ra, θ) = R{Id+sin(θ)(acT−caT )+(cos(θ)−1)(aaT+ccT )}RT = RQ(b → a, θ)RT .

(b) Let c′ be defined similarly for a′, b′. We have

a′a′T =

 a

0

[ aT 0

]
=

 aaT 0m×1

01×m 0

 ,

and c′c′T ,a′c′T and c′a′T can be expressed in a similar fashion. Then the expression of Q in

Lemma 1(b) gives the desired result.

Proof of Lemma 7.6. For x ∈ Rm such that ∥x∥ = 1, x ∈ Am−1 if and only if ρm(v,x) =

cos−1(vTx) = r. This is equivalent to vTx− cos(r)vTv = 0 since vTv = 1. This proves (b).

Write x− y = (x− cos(r)v)− (y − cos(r)v), then the result (a) follows from (b).

Proof of Proposition 7.7. We first show that f is a well-defined bijective function. Proofs for

(b-e) will follow. (a) is then given by (c) and (d).

First note that since sin(r) > 0, f is well defined. For any x ∈ Am−1, let x
† = f(x). Then

x† ∈ Rm, and since R−(v)TR−(v) = Im+1 − vvT , we get

∥∥∥x†
∥∥∥2 = 1

sin2(r)

∥∥R−(v)x
∥∥2 = 1

sin2(r)
{xTx− (xTv)2} =

1

sin2(r)
{1− cos2(r)} = 1

Thus, x† ∈ Sm−1. Conversely, for any x† ∈ Sm−1, let x = f−1(x†). Then ∥x∥ = 1 and

vTx = (R(v)v)T

 sin(r)x†

cos(r)

 = cos(r).

By Lemma 7.6(b), x ∈ Am−1. One can easily show that f ◦ f−1(x†) = x†, f−1 ◦ f(x) = x.
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Therefore, f is a well defined bijective function.

Since ρm−1 is a metric and sin(r) > 0, the metric ρ∗m−1 is nonnegative and symmetric, and

the triangle inequality holds. In addition, since f is bijective, we have ρ∗m−1(x,y) = 0 if and

only if x = y. This proves (b). With the metric ρ∗m−1, f is an isometry and (c) follows.

To prove (d) and (e), the difference between two metrics for a fixed r ∈ (0, π/2] is given

by

ρ∗m−1(x,y)− ρm(x,y) = sin(r) cos−1

(
cos(ρm(x,y))− cos2(r)

sin2(r)

)
− ρm(x,y) := hr{ρm(x,y)},

for any x,y ∈ Am−1. Note that maxx,y ρm(x,y) = 2r. Then hr is a strictly increasing function

on [0, 2r] with minimum hr(0) = 0 and the maximum hr(2r) = π sin(r)− 2r. This proves (e)

and leads to the first inequality of (d). The second inequality is obtained from observing that

π sin(r)

2r
ρm(x,y)− ρ∗m−1(x,y)

is nonnegative and is zero if and only if ρm(x,y) = 0 or 2r.

The following lemmas are useful to prove Lemma 7.8 and also could be of independent

interest.

Lemma 7.10. Let v†
j and v∗

j be as defined in (7.5-7.6). For any x ∈ Sd and k = 1, . . . , d−1,

the following are equivalent:

(i) x ∈ Ad−k.

(ii) vT
k [fk ◦ · · · ◦ f1(x)] = cos(rk).

(iii) For all j = 1, . . . , k,

xTv†
j =

j−1∏
i=1

sin2(ri) cos(rj) +

j−2∏
i=1

sin2(ri) cos
2(rj−1) + · · ·+ cos2(r1).

(iv) For all j = 1, . . . , k,

xTv∗
j =

j−1∏
i=1

sin(ri) cos(rj).
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Proof of Lemma 7.10. [(i) ⇔ (ii)] By Definition 7.2 and since each fi is bijective, x ∈ Ad−k

is equivalent to fk ◦ · · · ◦ f1(x) ∈ Ad−k. By Lemma 7.6(b), this is also equivalent to (ii).

[(i) ⇔ (iii)] First note that for any k = 1, . . . , d− 1, for y ∈ Sd−k,

f−1
1 ◦ · · · ◦ f−1

k (y) = RT (v1)

 sin(r1){f−1
2 ◦ · · · ◦ f−1

k (y)}

cos(r1)



= [R(v1, . . . ,vk)]
T



∏k
i=1 sin(ri)y∏k−1

i=1 sin(ri) cos(rk−1)

...

cos(r1)


,

where R(v1, . . . ,vk) is a rotation matrix defined as

R(v1, . . . ,vk)
T = RT (v1)

 RT (v2) 0d×1

01×d 1

 · · ·

 RT (vk) 0(d+2−k)×1

01×(d+2−k) 1

 .

Then

xTv†
j =

(
f−1
1 ◦ · · · ◦ f−1

j−1{fj−1 ◦ · · · ◦ f1(x)}
)T

f−1
1 ◦ · · · ◦ f−1

j−1(vj)

=

j−1∏
i=1

sin2(ri){fj−1 ◦ · · · ◦ f1(x)}Tvj +

j−2∏
i=1

sin2(ri) cos
2(rj−1) + · · ·+ cos2(r1)

and the result follows from (ii).

[(i) ⇒ (iv)] Since x ∈ Ad−k, we have xTv∗
1 = cos(r1) by definition. Suppose xTv∗

ȷ =∏ȷ−1
i=1 sin(ri) cos(rȷ) for all ȷ = 1, . . . , j − 1, then (iii) and canceling terms give

xTv∗
j = xT

(
v†
j − cos(r1)v

∗
1 − · · · −

j−2∏
i=1

sin(r1) cos(rj−1)v
∗
j−1

)
j−1∏
i=1

sin−1(ri)

=

j−1∏
i=1

sin(r1) cos(rj).

Thus by induction, (iv) holds.
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[(iv) ⇒ (iii)] Suppose (iv) holds, then for j = 1, . . . , k,

xTv∗
j −

j−1∏
i=1

sin(ri) cos(rj)

=

j−1∏
i=1

sin−1(ri)

(
xTv†

j − cos2(r1)− · · · −
j−2∏
i=1

sin2(ri) cos
2(rj−1)−

j−1∏
i=1

sin2(ri) cos(rj)

)
,

which equals to zero if and only if (iii) holds.

Proof of Lemma 7.8. We first show that {v∗
i ; i = 1, . . . , d− 1} is an orthonormal basis. Note

that v∗
1 = v1, and v∗

2 = sin−1(r1){v†
2− cos(r1)v

∗
1}. Since v

†
2 ∈ Ad−1, by Lemma 7.10, we have

v∗T
2 v1 = sin−1(r1){v†T

2 v1 − cos(r1)} = 0,

and

v∗T
2 v∗

2 = sin−1(r1)v
∗T
2 v†

2 = sin−1(r1){v†T
2 v†

2 − cos(r1)v
†
2v

∗
1} = 1.

Suppose v∗T
i v∗

j = 0 and ∥v∗
i ∥ = ∥v∗

i ∥ = 1 for 1 6 i < j 6 k − 1. Since v†
k ∈ Ad−k+1, by

Lemma 7.10, we have

v∗T
j v∗

k =

k−1∏
i=1

sin−1(ri)v
∗T
j {v†

k −
j−1∏
i=1

sin(ri) cos(rj)v
∗
j } = 0,

and

∥v∗
k∥ =

k−1∏
i=1

sin−1(ri)v
∗T
k v†

k

=

k−1∏
i=1

sin−2(ri)v
†T
k {v†

k − cos(r1)v
∗
1 − · · · −

k−2∏
i=1

sin(ri) cos(rk−1)v
∗
k−1} = 1.

Thus, by induction, v∗
i , i = 1, . . . , d− 1, are orthonormal.

Now for (b), suppose first that x ∈ Ad−k. Then by Lemma 7.10, we get for all j = 1, . . . , k

xT
p,kv

∗
j = xTv†

j −
j−1∏
i=1

sin(ri) cos(rj) = 0
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and

∥xp,k∥2 = xTxp,k = xT {x− cos(r1)v
∗
1 − · · · −

k−1∏
i=1

sin(ri) cos(rk)v
∗
k}

= 1− cos2(r1)− · · · −
k−1∏
i=1

sin2(ri) cos
2(rk).

Thus by rearranging terms, ∥xp,k∥ =
∏k

i=1 sin(ri).

Conversely, suppose that xT
p,kv

∗
j = 0 for all j = 1, . . . , k and ∥xp,k∥ =

∏k
i=1 sin(ri). Then

since xp,k,v
∗
1, . . . ,v

∗
k are orthogonal to each other,

∥x∥2 =

∥∥∥∥∥xp,k + cos(r1)v
∗
1 + · · ·+

k−1∏
i=1

sin(ri) cos(rk)v
∗
k

∥∥∥∥∥
2

= xT
p,kxp,k + cos2(r1) + · · ·+

k−1∏
i=1

sin2(ri) cos
2(rk) = 1.

One can check that for all j = 1, . . . , k

xTv∗
j = {xp,k +

j−1∏
i=1

sin(ri) cos(rj)v
∗
j}Tv∗

j =

j−1∏
i=1

sin(ri) cos(rj),

and again by Lemma 7.10, the result follows. (a) is directly obtained from (b).

Proof of Proposition 7.9. (a) is readily derived by either Lemma 7.8 or the fact that Am−1 (

Sm for all m = 2, . . . , d.

For (b) and (c), it can be easily checked that fk ◦ · · · ◦ f1 : Ad−k −→ Sd−k is a well defined

bijective function. Since ρd−k is a metric and sin(ri) > 0, the metric ρd−k is nonnegative and

symmetric, and the triangle inequality holds. In addition, since f is a bijection, ρ∗d−k(x, y) = 0

if and only if x = y. This proves (b). Then by the definition of ρ∗d−k, fk ◦· · ·◦f1 is an isometry

and (c) follows.

Proof of Theorem 7.1. Let the singular value decomposition of the (d + 1) × n data matrix

X = [x1 · · ·xn] be

X =

n∑
i=1

λiuiv
T
i ,

where λis are the singular values, V = [v1 · · ·vn] is such that VTV = VVT = In, and U =
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[u1 · · ·unun+1 · · ·ud+1] is such that UTU = UUT = Id+1. Then U = {un+1, . . . ,ud+1} is a an

orthogonal basis set that complements {u1, . . . ,un}. For any u ∈ U , uTX = [uTx1 · · ·uTxn] =

0. Therefore, ρ(u, xi) = cos−1(uxi ) = π/2 for all i = 1, . . . , n. Write the orthogonal basis U

as {v∗1, . . . , v∗d−n+1} and let r1 = · · · = rd−n+1 = π/2. Then by Lemma 7.8(b), there exist

Ad−1 ⊃ · · · ⊃ An−1 such that xi ∈ An−1.

Proof of Theorem 7.2. Note that wTw∗ = wTMw = 0, and for all z ∈ Sd such that wTz > 0

and wTMz = 0, zTw∗ = zTMw = wTMz = 0. Thus ρd(w,w∗) = cos−1(wTw∗) = π/2 and

ρd(z,w
∗) = π/2. Moreover, since wTz > 0, we have w, z ∈ hAd−1.

Proof of Theorem 7.3. Let VW = {WΛ : ΛT = −Λ}, which is known as the vertical subspace

of W (Kendall et al., 1999, p. 109), where such Λ is the m × m skew-symmetric matrix.

Observe that the assumption (b) is equivalent to

tr(ZT
i WΛ) = 0, for all Λ s.t. ΛT = −Λ.

Then for any X ∈ VW, tr(ZT
i X) = tr(ZT

i WΛ) = 0, i.e. VW is orthogonal to any Zi. The

assumptions (c-d) assure that VW is m(m−1)
2 dimensional subspace of Rm(k−1) (Kendall et al.,

1999, p. 109).

Let v∗
1, . . . ,v

∗
m(m−1)/2 be a basis set of VW, and let r1 = · · · = rm(m−1)/2 = π/2. Then by

Lemma 7.8(b), there exists Ad = Ak(m−1)−1−m(m−1)/2 such that Zi ∈ Ad. By checking that

W is also orthogonal to VW, W ∈ Ad. It is clear by the assumption (a) thatW,Zi ∈ hAd.
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