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ABSTRACT

YI HONG: IMAGE AND SHAPE ANALYSIS FOR SPATIOTEMPORAL
DATA.

(Under the direction of Marc Niethammer.)

In analyzing brain development or identifying disease it is important to understand

anatomical age-related changes and shape differences. Data for these studies is frequently

spatiotemporal and collected from normal and/or abnormal subjects. However, images and

shapes over time often have complex structures and are best treated as elements of non-

Euclidean spaces. This dissertation tackles problems of uncovering time-varying changes

and statistical group differences in image or shape time-series.

There are three major contributions: 1) a framework of parametric regression models on

manifolds to capture time-varying changes. These include a metamorphic geodesic regres-

sion approach for image time-series and standard geodesic regression, time-warped geodesic

regression, and cubic spline regression on the Grassmann manifold; 2) a spatiotemporal sta-

tistical atlas approach, which augments a commonly used atlas such as the median with

measures of data variance via a weighted functional boxplot; 3) hypothesis testing for shape

analysis to detect group differences between populations. The proposed method for cross-

sectional data uses shape ordering and hence does not require dense shape correspondences

or strong distributional assumptions on the data. For longitudinal data, hypothesis testing

is performed on shape trajectories which are estimated from individual subjects.

Applications of these methods include 1) capturing brain development and degeneration;

2) revealing growth patterns in pediatric upper airways and the scoring of airway abnormal-
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ities; 3) detecting group differences in longitudinal corpus callosum shapes of subjects with

dementia versus normal controls.
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CHAPTER 1 : INTRODUCTION

1.1 Motivation

Spatiotemporal data analysis frequently arises in medical research and computer vision

problems. Examples include MRI (magnetic resonance imaging) time-series collected to

explore brain development [Evans et al., 2006], corpus callosum shapes at varying ages ob-

tained to analyze the degeneration process of a single brain structure [Fletcher, 2013], and

traffic video clips acquired by a surveillance system monitoring highway traffic to classify con-

gestion in traffic sequences [Chan and Vasconcelos, 2005]. Analysis of this spatiotemporal

data, e.g., image time-series, shape sequences, and videos, is an important topic in the field of

computer vision and medical image analysis. In this dissertation, this topic will be explored

from three aspects: 1) capturing time-varying changes within a subject or a population, e.g.,

studying brain development or a disease process; 2) estimating a spatiotemporal atlas while

retaining population variation information, e.g., a pediatric airway atlas with a confidence

region; and 3) identifying shape differences between populations, e.g., to differentiate normal

control subjects from subjects with disease.

While methods to analyze time-varying scalar-valued data are advanced and well-studied

[Kedem and Fokianos, 2005], the theory and methodology is much less developed but of

equal importance, for spatiotemporal data, e.g., for image or shape sequences. Analysis of

such data is challenging because it frequently no longer lives in Euclidean space, but instead

in some non-Euclidean space which is a smooth manifold [Lee, 2012], e.g., the manifold of



diffeomorphisms [Banyaga, 1997], Kendall shape space [Kendall, 1984], or the Grassmannian

[Edelman et al., 1998]. Although a manifold resembles Euclidean space in the neighborhood

of each point, globally it may not. As a result, methods developed in Euclidean space cannot

be directly applied to the spatiotemporal data explored in this dissertation.

1.1.1 Estimation of Time-Varying Changes

Time-varying changes occur in spatiotemporal data, which is collected to study, for ex-

ample, aging [Scahill et al., 2003], disease progression [Kogure et al., 2000], and brain devel-

opment [Evans et al., 2006]. To summarize these changes within a subject or a population,

regression analysis is popular, because it is a powerful tool to model the relationship between

data objects [Marron and Alonso, 2014] and their associated descriptive variables, e.g., age.

Recently, regression models [Niethammer et al., 2011, Fletcher, 2013] have been proposed

to estimate changes in shape or image time-series by generalizing linear regression in Eu-

clidean space to Riemannian manifolds [Lee, 2012] and the manifold of diffeomorphisms

respectively. An interesting problem is to develop a uniform framework of parametric regres-

sion, which arises when changes in different types of spatiotemporal data are to be captured

using the equivalent of linear or higher-order fitting curves in non-Euclidean spaces. For in-

stance, the collected data could be shapes or videos. While a regression model equivalent to

linear curve fitting [Niethammer et al., 2011, Fletcher, 2013] is relatively simple, sometimes

it may be too restrictive for data exhibiting more complex changes. In such cases, higher-

order polynomial or spline fitting curves [Hinkle et al., 2014, Singh and Niethammer, 2014]

can be attractive, but their formulations are typically complicated.

This dissertation develops regression models of increasing order for different types of

spatiotemporal data and an approach for model criticism [Lloyd and Ghahramani, 2015] to
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check models’ underlying assumptions. To achieve this, I first represent data objects, e.g.,

shapes or videos, as elements on the Grassmannian, using singular value decomposition

(SVD) [Begelfor and Werman, 2006, Sepiashvili et al., 2003] and a dynamic texture model

[Doretto et al., 2003] respectively. Then optimal control approaches are applied to develop

regression models of increasing order on the Grassmannian. In existing work, two groups

of solutions are presented to solve parametric regression problems in the spaces of shapes

or images: 1) geodesic shooting based strategies that address the problem using adjoint

methods from an optimal-control point of view [Niethammer et al., 2011, Hong et al., 2012a,

Singh et al., 2013b], and 2) approaches that compute the required gradients using Jacobi

fields for optimization [Rentmeesters, 2011, Fletcher, 2013]. Unlike Jacobi field approaches,

solutions using optimal control methods do not require the computation of curvatures explic-

itly and can be easily extended to higher-order models, e.g., polynomials [Hinkle et al., 2014]

or splines [Singh and Niethammer, 2014]. Hence, the strategy based on geodesic shooting is

adopted to develop extensible solutions on the Grassmannian, i.e., extending the basic model

to time-warped and cubic-spline variants. Overall, a uniform framework for parametric re-

gression on the Grassmannian is proposed to solve fitting problems with models of increasing

order for different types of spatiotemporal data that can be represented as elements on the

Grassmann manifold.

Besides, in existing regression models for image time-series [Niethammer et al., 2011], im-

age intensities are generally not explicitly captured and instead accounted for by using image

similarity measures, which do not appropriately model some changes. Because typically im-

age intensity changes occur jointly with spatial deformations, for example, in MRI studies of

the developing brain due to myelination. While approaches accounting for intensity changes
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after image registration exist [Rohlfing et al., 2009], this dissertation develops a regression

model that captures spatial deformations and intensity changes simultaneously. This can

be achieved by using a metamorphic regression formulation, which combines the dynamical

system formulation for geodesic regression on images [Niethammer et al., 2011] with image

metamorphosis [Holm et al., 2009, Miller and Younes, 2001] for the large displacement dif-

feomorphic metric mapping (LDDMM) registration model [Beg et al., 2005]. The resulting

proposed model is called metamorphic geodesic regression on image time-series.

1.1.2 Estimation of A Spatiotemporal Statistical Atlas

Atlas-building from population data has become an important task in medical imag-

ing to provide templates for data analysis. Numerous methods for atlas-building exist,

ranging from methods designed for cross-sectional, longitudinal, and random design data

[Joshi et al., 2004, Fletcher et al., 2009, Hart et al., 2010]. These approaches typically esti-

mate a representative data object (such as a shape, a surface, or an image) for a population,

e.g., a mean [Joshi et al., 2004] (or a time-adjusted population mean [Hart et al., 2010]) or

a median [Fletcher et al., 2009] with respect to spatial deformations and appearance.

A limitation of all these methods is that they result in a single summary representer

and discard much of a population for subsequent analysis. For instance, a single point is

used to summarize the entire population on the manifold, when one summarizes it using a

mean or a median image or shape. For regression a single curve summarizes a population

without carrying forward any information from the local distribution of data around the

curve. These are restrictive representations that limit the capability of a model to present

confidence bounds, quantile measurements or to identify outliers. In the literature, the

limitation of the single summary representers has also been acknowledged. For instance,
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[Aljabar et al., 2009] suggest a multi-atlas approach to estimate multiple representers of

the population. In another study, [Gerber et al., 2010] propose to learn a low-dimensional

representation driven entirely by the population of images.

Another strategy to retain population variation is to represent additional aspects of the

full data distribution, such as percentiles, the minimum and maximum, variance, confidence

regions and outliers as captured by a boxplot for scalar-valued data. The functional box-

plot [Sun and Genton, 2011] is an effective tool to represent such statistics for functions.

Generalizing the notion of functional boxplots to summarize variabilities within a popula-

tion of entities such as shapes and images provides a simple and generic method to augment

a single representer with additional population information. Besides, as subject data typ-

ically has associated individual characteristics (e.g., age, weight, and gender), a method is

expected to be able to compute the statistical information parameterized by these charac-

teristics. For example, given a subject at a particular age the goal is to compute subject

age-specific confidence regions to assess similarity with respect to the full data population.

Hence, a weighted variant of the functional boxplot is developed in this dissertation to

enable the use of kernel regression for estimating a regressed curve with local distributional

information. If each data object on the regressed curve, with its additional statistical infor-

mation, is treated as a statistical atlas, this non-parametric regression model can be regarded

as a model to build a spatiotemporal statistical atlas, which is referred to as statistical atlas

construction via weighted functional boxplot.

1.1.3 Statistics of Group Differences

Apart from capturing variations within a subject or a population, differentiating shape

differences between populations is another important topic in the analysis of spatiotemporal
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data. For example, in the studies of Alzheimer’s disease (AD), which accounts for 60% to

70% of cases of dementia [Burns and Iliffe, 2009], researchers are interested in whether brain

shapes of normal control subjects are significantly different from those of subjects with disease

and where shape differences are located. To answer these questions, analysis approaches have

been proposed to assess object properties and are used to characterize shape variations across

subjects and between subject populations [Nitzken et al., 2014]. Most of these shape analysis

methods are based on the classical point distribution model (PDM) [Cootes et al., 2004], and

the PDM requires some form of point-to-point correspondences between shapes to allow pre-

cise local shape analysis. However, establishing these correspondences is highly non-trivial

and arguably one of the main sources of inaccuracy. Because any misregistration may cre-

ate artifacts in the final shape analysis results. Recently, shape characterizations have been

explored based on concepts of order statistics [Whitaker et al., 2013, Hong et al., 2014a].

These methods utilize depth-ordering of shapes, for example, to generalize the median and

the inter-quartile range (IQR) to shapes, effectively obtaining the equivalent of a boxplot

for shapes. Using shape-descriptions based on depth-ordering makes it possible to perform

shape analysis with very limited (e.g., rigid or affine) spatial alignment of shapes. Further-

more, it can avoid having strong distributional assumptions of the data population, e.g.,

an assumption of Gaussian distribution. Therefore, to address the problem of differenti-

ating subject populations, a statistical testing method based on depth-ordering on shapes

is proposed to detect potential global and local shape differences, which is referred to as

depth-ordering-based shape analysis.

Like many shape analysis methods, the ordering-based statistical testing does not take

into account the temporal dependencies of measurements. Hence, it will be inappropriate
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for some types of spatiotemporal data, e.g., the longitudinal data. Thanks to the paramet-

ric regression models [Niethammer et al., 2011, Fletcher, 2013], the longitudinal data of a

subject can be summarized as a smooth path, i.e., a trajectory that is compactly repre-

sented by its initial conditions. Based on these regression models, Riemannian approaches

for computing averages of trajectories have been proposed [Muralidharan and Fletcher, 2012,

Singh et al., 2013a]. In general, statistical methods for longitudinal manifold-valued data fo-

cus on the first-order statistics, such as computing the mean, which uses limited information

of the data distribution. Capturing higher-order statistics of trajectories themselves would be

useful for a more comprehensive description of the underlying distributions and for designing

test-statistics going beyond the simple comparison of means, for example testing differences

in variances. Hence, an approach that leverages both the first- and second-order statistics of

shape trajectories for group testing is proposed. It extends the principal geodesic analysis

(PGA) [Fletcher et al., 2004] to the tangent bundle of a shape, i.e., the space of trajectories,

to estimate both variance and principal directions of shape trajectories. Furthermore, the

Bhattacharyya distance [Bhattacharyya, 1946] is generalized to manifold-valued data, which

enables assessment of statistical differences between different groups of trajectories. With

the generalized Bhattacharyya distance as the test-statistic, a permutation test is performed

under the null hypothesis that the two distributions of trajectories are the same. Compared

to an existing method, this hypothesis testing for longitudinal data shows stronger evidence

in distinguishing groups with different distributions of trajectories, especially for cases with

similar means but different variances.
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1.2 Thesis Statement

Thesis: Advanced regression models or a time-varying statistical atlas can efficiently cap-

ture individual or population changes in spatiotemporal image and shape data. Statistical

differences between shape populations can be detected using depth-ordering and statistics on

shape trajectories.

The contributions of this dissertation are:

1. A uniform framework of parametric regression on the Grassmannian has been proposed

to capture both linear and non-linear changes. It handles regression formulations

with different orders, including standard geodesic regression, time-warped geodesic

regression, and cubic spline regression.

2. A model of metamorphic geodesic regression has been proposed to simultaneously cap-

ture spatial deformations and intensity changes in image time-series. It is efficiently

solved using a simple, approximate algorithm via pairwise shooting metamorphosis.

3. A model criticism for regression models on manifolds, e.g., the Grassmannian manifold,

has been proposed to check if model assumptions hold, using kernel two sample tests.

4. A model for building a spatiotemporal statistical atlas has been proposed based on

kernel regression and a weighted variant of the functional boxplot. It can construct a

series of time-varying atlases, augmented by the local distribution of spatiotemporal

data, e.g., confidence bounds or outliers. It has been applied to time-varying functions,

shapes, and images.

5. A new method of shape analysis based on depth-ordering has been proposed to identify

global and local shape differences without computing explicit dense correspondences or
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making strong distributional assumptions. It has been applied to analyze and compare

populations, e.g., normal controls and subjects with disease.

6. A model of hypothesis testing for longitudinal data has been proposed by leveraging

shape trajectories and their second-order statistics, i.e., variances of trajectory distri-

butions, to identify group differences of shapes.

1.3 Overview of Chapters

The remainder of this dissertation is organized in the following chapters:

Chapter 2 provides an overview of the required background in this dissertation, including

the necessary background for image and shape analysis and the mathematical background

for some manifolds discussed in this dissertation.

Chapter 3 presents parametric regression models on two types of smooth manifolds, i.e.,

the Grassmann manifold and the manifold of diffeomorphisms.

Chapter 4 presents the model for building a spatiotemporal statistical atlas.

Chapter 5 presents two hypothesis testing approaches to identify shape differences be-

tween populations for cross-sectional and longitudinal data respectively.

Chapter 6 concludes the dissertation with a discussion of its contributions and some

potential future work.

9



CHAPTER 2 : BACKGROUD

This chapter presents some necessary background material required in this dissertation.

In particular, the mathematical background is briefly reviewed in Section 2.1, including some

concepts in smooth manifolds and the Riemannian structure of the Grassmann manifold, as

well as how to represent data objects as elements on the Grassmannian. The background

for image and shape analysis is presented in Section 2.2. It starts with an overview of

fundamental problems in image analysis, e.g., image registration and shape representations.

The review of regression models, atlas construction, and statistical hypothesis testing aims

to help promote a better understanding of the following chapters of this dissertation.

2.1 Mathematical Background

2.1.1 Smooth Manifolds

In general, smooth manifolds [Lee, 2012] are spaces that locally look like Euclidean space

Rn, but globally they may not, e.g., spheres. To be a smooth manifold, a space should first

be a topological manifold, the most basic type of manifold. In particular, a topological space

M is a topological manifold of dimension n or a topological n-manifold, if it has the following

properties:

• M is a Hausdorff space: for every pair of points p, q ∈ M , there are disjoint open

subsets U, V ⊂M such that p ∈ U and q ∈ V .

• M is countable: there exits a countable basis for the topology of M .



• M is locally Euclidean of dimension n: every point of M has a neighborhood that is

homeomorphic to an open subset of Rn.

Apart from the topology, a smooth manifold also needs some extra structure, which allows

to define calculus for computation of smooth functions on the manifold. For two open subsets

U and V from Euclidean spaces Rn and Rm respectively, a function/map F : U → V is

smooth (or C∞, or infinitely differentiable) if each of its component functions has continuous

partial derivatives of all orders. Furthermore, if F is bijective and has a smooth inverse

map, it is called a diffeomorphism. In particular, a diffeomorphism is a homeomorphism.

Given two neighborhoods U, V in a manifold M , two homeomorphisms x : U → Rn and

y : V → Rn are C∞-related if the composite maps x ◦ y−1 : y(U ∩ V ) → x(U ∩ V ) and

y ◦ x−1 : x(U ∩ V )→ y(U ∩ V ) are C∞. Here, the pair (x, U) is called a chart or coordinate

system. A collection of charts whose domains cover M is called an atlas for M . If any two

charts in an atlas are smoothly compatible with each other, this atlas is called a smooth atlas.

And a smooth structure on a manifold M is a maximal smooth atlas on M . The manifold

M along with such an atlas is defined as a smooth manifold [Lee, 2012].

Tangent spaces. Let M be a smooth manifold, and let p be a point of M , associated with

smooth real-valued functions f : M → R. The set of all derivatives of C∞(M) at p is a

vector space called the tangent space to M at p, which is denoted by TpM . An element of

TpM is called a tangent vector at p [Lee, 2012].

Riemannian geometry. In manifold statistics, the definition of distances on manifolds is

related to Riemannian geometry. When measuring the lengths of vectors, a natural way is to

compute the inner product of these vectors. Similarly, a Riemannian metric or Riemannian

structure on a smooth manifold M is defined for each point p of M as an inner product 〈·, ·〉
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on its tangent space TpM [Do Carmo, 1992].

Geodesics. Using the Riemannian metric, we can compute the length of a curve on a

smooth manifold. In Euclidean space, the length of a straight line connecting two points is

the shortest path between them. Accordingly, the shortest smooth curve segment between

two points on a manifold is a geodesic.

2.1.2 Riemannian Structure of the Grassmannian

The Grassmannian is an example of a smooth manifold with a Riemannian structure.

The Grassmann manifold G(p, n) is defined as the set of p-dimensional linear subspaces of

Rn, typically represented by an orthonormal matrix Y ∈ Rn×p, such that Y = span(Y)

for Y ∈ G(p, n). It can equivalently be defined as a quotient space within the special

orthogonal group SO(n) as G(p, n) := SO(n)/(SO(n− p)× SO(p)). The canonical metric

gY : TYG(p, n)× TYG(p, n)→ R on G(p, n) is given by

gY(∆Y ,∆Y) = tr ∆>Y∆Y = tr C>(In −YY>)C , (2.1)

where In denotes the n× n identity matrix, TYG(p, n) is the tangent space at Y , ∆Y is the

tangent vector in TYG(p, n), and C ∈ Rn×p is arbitrary. For the Grassmann manifold this

essentially computes the distance between subspaces [Edelman et al., 1998]. Typically, the

principal angles between two subspaces are used to measure their distance. This measure

can be understood as an arc length distance. Under this choice of metric, the arc-length

of the geodesic connecting two subspaces Y ,Z ∈ G(p, n) is related to the canonical angles

φ = {φ1, . . . φp} ∈ [0, π/2] between Y and Z as d2
g(Y ,Z) = ||φ||22. Next, the notation

is slightly changed and d2
g(Y,Z) is used with Y = span(Y) and Z = span(Z). In fact,
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the (squared) geodesic distance can be computed via SVD, i.e., U(cos Σ)V> = Y>Z as

d2
g(Y,Z) = || diag Σ||2, where Σ is diagonal with principal angles φi, or UΣ′V> = Y>Z as

d2
g(Y,Z) = || cos−1(diag Σ′)||2 (cf. [Begelfor and Werman, 2006]). There are other defini-

tions of the distance between two subspaces, e.g., the chordal 2-norm and Frobenious-norm

distances. They are defined by embedding the Grassmann manifold in the vector space Rn×p

[Edelman et al., 1998]. Since the arc length distance is derived from the intrinsic geometry

of the Grassmann manifold, it is chosen as the geodesic distance of the Grassmannian in this

dissertation.

Now, consider a curve γ : [0, 1]→ G(p, n), r 7→ γ(r) such that γ(0) = Y0 and γ(1) = Y1,

with Y0 represented by Y0 and Y1 represented by Y1. The geodesic equation for such a

curve, given that Ẏ = d/drY(r)
.
= (In −YY>)C, on G(p, n) is given by

Ÿ(r) + Y(r)[Ẏ(r)>Ẏ(r)] = 0 , (2.2)

which also defines the Riemannian exponential map on the Grassmannian as an ODE (ordi-

nary differential equation) for convenient numerical computations. This can be derived by

solving an optimization problem from the calculus of variations. It minimizes the distance

between two points on the Grassmann manifold, i.e., Eq.(2.1), under the constraints of the

above definition for a tangent vector and keeping to be an orthonormal matrix along the

geodesic, i.e., Y>Y = I. Integrating Eq. (2.2), starting with initial conditions we can shoot

the geodesic forward in time.

The following parts present the differential geometric “tools” on the Grassmann manifold.

In particular, they include formulae/derivations for the Riemannian exponential map (Exp-

map), the inverse exponential map (a.k.a. Log-map) and parallel transport on G(p, n).
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Exponential map. The exponential map (Exp-map) maps a point Y = span(Y) with a

direction D in the tangent space TYG(p, n) to a point Z = span(Z) on the manifold G(p, n),

i.e.,

ExpY(tD) = Z, t ∈ [0, 1]

along the geodesic that connects Y and Z. By letting D = UΣV> denote the compact

SVD of D, the Exp-map on G(p, n), in terms of representers Y and Z, can be written as (cf.

[Begelfor and Werman, 2006])

Z = YV cos(tΣ)V> + U sin(tΣ)V> . (2.3)

Here, because Σ is a diagonal matrix, cos(tΣ) and sin(tΣ) are also diagonal matrices. They

can be computed by simply taking the sines or cosines on the matrices’ diagonal components.

The proof of this formulation can be found in [Edelman et al., 1998].

Inverse exponential map. The inverse exponential map (Log-map) computes the mapping

from a neighborhood U ⊂ G(p, n) of Y to TYG(p, n). In terms of representers Y,Z for the

subspaces Y = span(Y),Z = span(Z), the Log-map can be written as H = LogY(Z). In

other words, H is the direction matrix which allows starting at Y and walking along the

geodesic in the direction of H to reach Z in unit time (t = 1), i.e., Z = ExpY(H). Let

H = UΣV>. Multiplying Eq. (2.3) with Y> on the left-hand side (and t = 1) results in

Y>Z = Y>Y︸ ︷︷ ︸
=Ip

V cos(Σ)V> + Y>U︸ ︷︷ ︸
=0

sin(Σ)V> = V cos(Σ)V> .

Furthermore, replacing V cos(Σ)V> with Y>Z in Eq. (2.3) yields U sin(Σ)V> = Z −
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YY>Z . Thus

U sin(Σ)V>(V cos(Σ)V>)−1 = (Z−YY>Z)(Y>Z)−1,

which – upon noting that (1) (V cos(Σ)V>)−1 = V cos(Σ)−1V> and (2) V>V = Ip – reduces

to

U tan(Σ)V> = (Z−YY>Z)(Y>Z)−1 .

This yields H via the SVD of (Z−YY>Z)(Y>Z)−1 (or Z(Y>Z)−1 −Y) as

H = LogY(Z) = U arctan(Σ)V> .

Parallel transport. Given two subspaces X ,Y , represented via X,Y and a direction

matrix H ∈ TXG(p, n) such that Y = ExpX(H), the objective is to transport an arbitrary

tangent vector ∆ at TXG(p, n) to TYG(p, n) along the geodesic connecting X and Y . Letting

H = UΣV>, parallel transport (denoted by τ) can be computed via [Edelman et al., 1998]

τ∆(t) = −YV sin(tΣ)U>∆ + U cos(tΣ)U> + (In −UU>)∆, t ∈ [0, 1] . (2.4)

2.1.3 Representation on the Grassmannian

This dissertation describes two types of data that can be represented on G(p, n): linear

dynamical systems (LDS) and shapes (see shape representation in Section 2.2.2).

Linear dynamical systems. In the computer vision literature, dynamic texture models

[Doretto et al., 2003] are commonly applied to model videos as realizations of linear dynam-

ical systems (LDS). For a video, represented by a collection of vectorized frames y1, . . . ,yτ
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with yi ∈ Rn, the standard dynamic texture model with p states has the form

xk+1 = Axk + wk, wk ∼ N (0,W),

yk = Cxk + vk, vk ∼ N (0,R) , (2.5)

with xk ∈ Rp,A ∈ Rp×p, and C ∈ Rn×p. When relying on the prevalent system identification

of [Doretto et al., 2003], the matrix C is, by design, of (full) rank p (i.e., the number of

states) and by construction an observable system [Kalman, 1959] is obtained, where a full

rank observability matrix O ∈ Rnp×p is defined as O = [C (CA) (CA2) · · · (CAp−1)]>.

This system identification using the dynamic texture model is not unique. Because systems

(A,C) and (TAT−1,CT−1) with T ∈ GL(p) have the same transfer function, i.e., with the

same input they have the same output. Hence, the realization subspace spanned by O is a

point on the Grassmannian and the observability matrix is a representer of this subspace.

An LDS model is identified for a video by its np× p orthonormalized observability matrix.

To support a non-uniform weighting of samples during system identification, a temporally

localized variant of [Doretto et al., 2003] is proposed in this dissertation. This is beneficial in

a situation where a considerable number of frames are needed for stable system identification,

yet not all samples should contribute equally to the LDS parameter estimates. Specifically,

given the measurement matrix M = [y1, · · · ,yτ ] and a set of weights w = [w1, · · · , wτ ] such

that
∑

iwi = τ , a weighted SVD of M is computed as

UΣV> = M diag(
√

w) . (2.6)

Then, as in [Doretto et al., 2003], C = U and X = ΣV>. Once the state matrix X has
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been determined, A can be computed as A = Xτ
2W

1
2 (Xτ−1

1 W
1
2 )†, where † denotes the

pseudoinverse, Xτ
2 = [x2, · · · ,xτ ], Xτ−1

1 = [x1, · · · ,xτ−1] and W
1
2 is a diagonal matrix with

W
1
2
ii = [1

2
(wi + wi+1)]1/2.

Shapes. Let a shape be represented by a collection of m points. A shape matrix is con-

structed from its m points as L = [(x1, y1, ...); (x2, y2, ...); . . . ; (xm, ym, ...)]. By applying SVD

on this matrix, i.e., L = UΣV>, an affine-invariant shape representation is obtained by us-

ing the left-singular vectors U [Begelfor and Werman, 2006, Sepiashvili et al., 2003]. This

establishes a mapping from the shape matrix to a point on the Grassmannian (with U as the

representative). Such a representation has been used for facial aging regression, for instance

[Turaga et al., 2010].

2.2 Image and Shape Analysis Background

2.2.1 Image Registration

Image registration is one of the fundamental research topics in image analysis. It is the

process of placing different images into geometrical and/or anatomical agreement. Typically,

images of the same scene are taken at different times, from different viewpoints, and/or

different modalities. The regression problem presented in Chapter 3 can be reduced to an

image registration problem if there are only two images. Hence, some necessary knowledge

about image registration is presented here before the discussion of regression models. A

detailed review of image registration in computer vision and medical image analysis can be

found in [Zitova and Flusser, 2003] and [Oliveira and Tavares, 2014], respectively.

The high-level idea of image registration is to estimate a geometric transformation, which

is applied to the moving image and optimizes its similarity with respect to the reference

17



image, that is, the cost function. In addition, the cost function usually includes another

term, a regularization term, to enforce smoothness of the geometric transformation. In

general, there are three components needed for formulating an image registration problem:

the geometric transformation, the similarity measure, and the regularization term discussed

in the following.

Usually, the geometric transformations can be divided into two categories: rigid and non-

rigid transformations. Rigid transformations are the simplest cases, typically estimating the

parameters of translation and rotation. Non-rigid transformations include the similarity

transform, affine, projective, and curved (elastic or fluid) transformations. In this disserta-

tion, the image regression is built upon the large deformation diffeomorphic metric mapping

(LDDMM) model [Beg et al., 2005], which is a representative of the fluid-based registration.

The similarity measures are mostly divided into two types of methods: intensity and

feature-based approaches. The commonly-used measures in the category of intensity-based

similarity include the sum of squared differences (SSD) and the mutual information (MI).

The underlying assumption of SSD is that the structures of interest in both images should

have identical intensities. Hence, a lower SSD value indicates a better registration result. In

contrast, MI captures how well one image explains the other. Hence, for this measurement

a higher MI value indicates a better registration result. On the other hand, in the category

of the feature-based similarity measures, the similarity measures focus on computing the

differences of structures extracted from images. The feature could be smaller image patches

or volumes compared via their intensity differences or corresponding points compared via

their Euclidean distances.

The last component in the formulation of image registration is the regularization term.
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A commonly-used one is related to the second-order derivations of the transformation or the

Jacobian of the transformation. In the following the LDDMM will be treated as a concrete

example to discuss the non-rigid image registration, in particular the fluid flow registration.

Fluid flow registration and LDDMM [Beg et al., 2005]. As discussed before, the

objective of image registration is to deform a source image I0 (or the moving image) to

match a target image I1 (or the static/template image), as accurate as possible. In fluid

flow registration, the deformation (i.e., the transformation used in the previous part) is

parametrized through a spatiotemporal velocity field v. It “flows” the image I0 to another

image I1 under a transport equation

It +∇I>v = 0, I(0) = I0 . (2.7)

To ensure the smoothness of the velocity filed, it is meaningful to combine the intensity-based

similarity term with a regularity term, resulting in a cost function of the form

E(I, v) =
1

2

∫ 1

0

‖v‖2
L dt︸ ︷︷ ︸

Regularity

+
1

σ2
‖I(1)− I1‖2︸ ︷︷ ︸

Similarity

, (2.8)

where ‖v‖2
L = 〈Lv, Lv〉 and L is a differential operator to encourage smoothness of the

velocity field. Typically, L = −α∇2 + γ, and α and γ are constants. This cost function

should be minimized with respect to the dynamic constraint in Eq. (2.7).

To solve this optimization problem, the dynamic constraint is added as an equality con-

straint through a Lagrangian multiplier λ, which has the same size with the image I, i.e.,

E(I, v, λ) =
1

2

∫ 1

0

‖v‖2
L dt+

1

σ2
‖I(1)− I1‖2 + 〈λ, It +∇>v〉 dt, (2.9)
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then optimality conditions can be obtained through variational calculus, resulting in



It +∇I>v = 0, I(0) = I0,

−λt − div(λv) = 0, λ(1) = 2
σ2 (I1 − I(1)),

v + (L†L)−1λ∇I = 0 .

(2.10)

Here, L† denotes the adjoint of L. There are two commonly-used optimization methods

for LDDMM to obtain a numerical solution, the relaxation optimization and the shooting

optimization.

In relaxation optimization the velocity field at every time point is updated in each iter-

ation. It proceeds as follows

• Given an estimation for the velocity field v, flow the intensity I forward according to

the first equation in Eqs. (2.10).

• Compute the solution for the adjoint λ backward in time using the second equation in

Eqs. (2.10).

• Compute the gradient for the velocity v at every point in time using the equation

∇vE = v + (L†L)−1(λ∇I).

• Update the estimate for the velocity v using a gradient descent step.

• Repeat the previous steps until convergence.

The relaxation strategy needs to store the intensity I, its adjoint λ, and the velocity

field v at every discretized time. This is memory consuming. In the shooting strategy

[Ashburner and Friston, 2011, Vialard et al., 2012], only the variables at time 0, i.e., λ(0)
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and v(0) are of the interest. Actually, given λ(0) (the so-called initial momentum) we can

compute the initial velocity v(0) using the image I0 and the third equation in Eqs. (2.10).

This can save memory resources during the computation. In particular, the shooting opti-

mization is derived according to the fact that the energy is conserved along the geodesic.

Then, the regularity term can be rewritten using initial conditions only, i.e., the initial image

and the initial velocity. From now on, the adjoint λ will be replaced with the notation p

to represent the momentum, because new Lagrangian multipliers will be introduced in the

shooting formulation. Since the velocity field v = −(L†L)−1p∇I, we can derive

‖v‖2
L = 〈Lv, Lv〉 = 〈v, L†Lv〉 = 〈(L†L)−1p∇I, p∇I〉 . (2.11)

With K = (L†L)−1, we obtain the new cost function in form of

E(I(0), p(0)) =
1

2
〈p(0)∇I(0), K ∗ p(0)∇I(0)〉+

1

σ2
‖I(1)− I1‖2 . (2.12)

This cost function is minimized under the constraints of the relaxation optimality conditions:



It +∇I>v = 0, I(0) = I0,

pt + div(pv) = 0,

v +K ∗ p∇I = 0,

(2.13)

which are also called the shooting equations. Given an initial momentum, these equations

are used to shoot an initial image forward to a target image. As the initial momentum is

unknown, we solve it by adding Eqs. (2.13) through Lagrangian multipliers, λI , λp, and λv;
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then we compute the adjoint model through variational calculus. As a result, we obtain



λIt + div(λIv + pK ∗ λv) = 0, λI(1) = 2
σ2 (I1 − I(1)),

λpt + (∇λp)>v −∇I>K ∗ λv = 0, λp(1) = 0,

λv + λI∇I −∇λpp = 0 .

(2.14)

According to Eq (2.14), we can shoot backward to update the initial momentum using

∇p(t0)E = −λp(0) +∇I>0 K ∗ (p(0)∇I(0)), (2.15)

which is the gradient obtained through the variational calculus for the Lagrangian function.

Note that, the initial image is not required to be updated, because it is fixed. Besides,

solving transport equations can be non-trivial for non-smooth functions. In practice, instead

of solving It +∇I>v = 0 we solve

Φt +DΦv = 0, Φ(0) = id, (2.16)

where Φ is the deformation map for the coordinate mapping and id is the identity map.

Then, the intensity I at each time point can be estimated by I(t) = I0 ◦ Φ(t). Similarly,

given a backward solution to

−Φb
t −DΦbv = 0, Φb(1) = id, (2.17)

the corresponding adjoint can be computed as λ(t) = |DΦb(t)|λ(1) ◦ Φb(t). Because the ve-

locity field is regularized by the L operator, this map-based approach is expected to produce
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smooth maps, which are much easier to propagate numerically.

2.2.2 Shape Representation

In [Dryden and Mardia, 1998], shape is defined as all the geometrical information that

remains when location, scale, and rotational effects are filtered out from an object. This defi-

nition has been generalized to mean “a shape is the spatial information after an equivalence

group of geometric transformations are filtered out, for example, the group of similarity

transformations”. There are different shape representations. In this dissertation the shape

is represented in two ways: 1) point-based representation, i.e., describing a shape with a

finite number of points on its boundary; and 2) binary representation with 1 indicating

the inside of a shape and 0 outside. Besides, other shape representations exist, e.g., the

surface-based representations [Dale et al., 1999], and the medial representations (e.g., m-

reps [Pizer et al., 2003]).

In particular, a point-based shape can be represented as an element on the Grassman-

nian, as discussed in Section 2.1.3. This representation is designed for shapes after remov-

ing the effects of translation, rotation, and non-uniform scaling. In some other scenarios

where uniform scaling is considered instead of non-uniform scaling, the Kendall shape space

[Kendall, 1984] is one possible choice for the shape representation. For example, in Chapter

5, geodesic regression on Kendall shape space from [Fletcher, 2013] will be used to summa-

rize a shape trajectory for each subject with longitudinal shape data. Therefore, some basic

concepts in the Kendall shape space is presented here, including the required computation

of Exponential/Log maps for geodesic regression. For more detailed explanations about the

Kendall shape space, please refer to [Kendall, 1984] and [Fletcher, 2013].

Kendall Shape Space. A collection of 2D points can be considered as a complex k-vector,
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z ∈ Ck. After removing translation, rotation and scaling, a shape can be treated as a point

in the complex projective space CPk−2. Given a centered shape x and the initial velocity v,

which is a tangent vector at x, such that 〈x, v〉 = 0, the exponential map is given by

Expx(v) = cos θ · x+
‖x‖ sin θ

θ
· v, θ = ‖v‖ . (2.18)

The Log-map computes the initial velocity between two shapes x and y and is given by

Logx(y) =
θ · (y − πx(y))

‖y − πx(y)‖
, θ = arccos

|〈x, y〉|
‖x‖‖y‖

, (2.19)

where πx(y) = x · 〈x, y〉/‖x‖2 denotes the projection of the vector y onto x.

2.2.3 Regression Models

In statistics, regression analysis is a powerful statistical tool to estimate the relation-

ships among variables. At the coarsest level, we distinguish between two categories of

regression approaches: parametric and non-parametric strategies, with trade-offs on both

sides [Moussa and Cheema, 1998]. In computer vision and medical image analysis non-

parametric regression on nonflat manifolds has gained considerable attention over the last

years. Strategies range from kernel regression [Davis et al., 2007] on the manifold of dif-

feomorphic transformations to gradient-descent [Samir et al., 2012] approaches on manifolds

commonly encountered in computer vision, such as the group of rotations SO(3) or Kendall’s

shape space. In other works, discretizations of the curve fitting problem have been explored

[Boumal and Absil, 2011a, Boumal and Absil, 2011b, Su et al., 2012] which, in some cases,

even allow employing second-order optimization methods [Boumal, 2013].
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Regression models presented in Chapter 3 are representatives of the parametric category,

in particular, on smooth manifolds. Although differential geometric concepts, e.g., geodesics

and intrinsic higher-order curves, have been well-studied in the literature [Noakes et al., 1989,

Camarinha et al., 1995, Crouch and Leite, 1995, Machado et al., 2010], their use for para-

metric regression, i.e., finding parametric relationships between the manifold-valued vari-

able and an independent scalar-valued variable, has only recently gained interest. A variety

of methods extending concepts of regression in Euclidean space to nonflat manifolds have

been proposed. [Rentmeesters, 2011, Fletcher, 2013] and [Hinkle et al., 2014] address the

problem of geodesic fitting on Riemannian manifolds. They primarily focus on symmetric

spaces, to which the Grassmann manifold belongs. [Batzies et al., 2015] study a theoretical

characterization of fitting geodesics on the Grassmannian. And [Niethammer et al., 2011]

generalize linear regression to the manifold of diffeomorphisms to model image time-series

data, followed by work extending this concept [Hong et al., 2012a, Singh et al., 2013b] and

enabling the use of higher-order models [Singh and Niethammer, 2014].

From a conceptual point of view, there are two groups of strategies to solve paramet-

ric regression problems on manifolds: first, geodesic shooting using adjoint methods from an

optimal-control point of view [Niethammer et al., 2011, Hong et al., 2012a, Singh et al., 2013b,

Singh and Niethammer, 2014, Hinkle et al., 2014]; second, strategies that leverage Jacobi

fields to compute the required gradients [Rentmeesters, 2011, Fletcher, 2013]. The ap-

proaches in this dissertation are representatives of the first category. Unlike Jacobi field

approaches, the presented approaches in the following chapter do not require computation of

the curvature explicitly and easily extend to higher-order models, such as the cubic splines

extension.
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Regression on the Grassmann manifold. In the context of computer-vision problems,

[Lui, 2012] recently adapted the known Euclidean least-squares solution to the Grassman-

nian. While this strategy works remarkably well for the presented gesture recognition tasks,

the formulation does not guarantee the minimization of the sum-of-squared geodesic distances

within the manifold, which would be the natural extension of least-squares to Riemannian

manifolds. Hence, the geometric and variational interpretation of [Lui, 2012] remains un-

clear. In contrast, this dissertation addresses the problem from the aforementioned energy-

minimization point of view which guarantees, by design, consistency with the geometry of

the manifold.

To the best of my knowledge, the most related work to the regression models in this

dissertation is [Rentmeesters, 2011, Fletcher, 2013] and [Batzies et al., 2015] in the context

of fitting geodesics, as well as [Machado et al., 2010] (and to some extent [Hinkle et al., 2014])

in the context of fitting higher-order curves.

[Batzies et al., 2015] present a theoretical study of fitting geodesics (i.e., first-order curves)

on the Grassmannian and derive a set of optimality criteria. However, the work is purely

theoretical and, as mentioned in [Batzies et al., 2015, Sect. 1], the objective is not to provide

a numerical solution scheme. [Rentmeesters, 2011] and [Fletcher, 2013] propose optimiza-

tion based on Jacobi fields to fit geodesics on general Riemannian manifolds. Contrary to

the regression approaches presented in this dissertation, it does not follow trivially how to

generalize [Rentmeesters, 2011] (or [Fletcher, 2013]) to higher-order models.

[Machado et al., 2010] specifically aim to address the problem of fitting higher-order

curves on Riemannian manifolds. Based on earlier work presented in [Noakes et al., 1989,

Camarinha et al., 1995, Crouch and Leite, 1995], they introduce a different variational for-
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mulation of the problem and derive optimality criteria from a theoretical point of view. From

a practical perspective, it remains unclear (as with [Batzies et al., 2015] in case of geodesics)

how these optimality criteria translate into a numerical optimization scheme. In other work,

[Hinkle et al., 2014] address the problem of fitting polynomials but mostly focus on mani-

folds with a Lie group structure1. In that case, adjoint optimization is greatly simplified.

For a general case curvature computations are required and can be tedious.

In comparison to prior work, in this dissertation I derive alternative optimality criteria

for geodesics and cubic splines using principles from optimal-control. These conditions not

only form the basis for the shooting approach but also naturally lead to convenient iterative

algorithms. By construction, the obtained solutions are guaranteed to be the sought-for

curves (i.e., geodesics, splines) on the manifold. In addition, the derived formulation for

cubic splines does not require computation of the Riemannian curvature tensor.

2.2.4 Atlas Construction

The problem of atlas construction is to build a template for a collection of data points,

e.g., images or shapes. The commonly used strategy is to estimate an average representation

of a data population, i.e., the mean for the population. For a collection of data samples

{xi}Ni=1 in a general metric space M, the intrinsic mean (i.e., the Fréchet mean) is defined

as the minimizer of the sum-of-squared distances to each of the data points, that is

µ = argminx∈M

N∑
i=1

d(x,xi)
2, (2.20)

1G(p, n) does not possess such a group structure.
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where d denotes the distance metric on M, i.e., d : M×M→ R. Typically, in the space of im-

ages or shapes this distance metric is the geodesic distance. For example, [Joshi et al., 2004]

propose a diffeomorphic atlas construction for a collection of images. If we replace the

squared distance with the absolute distance in Eq. (2.20), the resulting minimizer is the me-

dian of the data population [Fletcher et al., 2009]. If time information is further considered

during the atlas construction for three dimensional data objects, a longitudinal/4D atlas

[Kuklisova-Murgasova et al., 2011] can be obtained.

2.2.5 Statistical Hypothesis Testing

In data analysis, statistical hypothesis testing is a component that typically involves

tests of the relationship among data samples drawn from different populations. Given a

hypothesis of the statistical relationship between two data sets, hypothesis testing aims to

determine the probability that the hypothesis is rejected. In particular, we first formulate the

null hypothesis H0, i.e., a general statement or default position that there is no relationship

between two data populations or no differences among groups; and the alternative hypothesis

H1, which is contrary to the null hypothesis. A type I error is the incorrect rejection of a true

null hypothesis, i.e., a false positive; and a type II error is the failure to reject a false null

hypothesis, i.e., a false negative. In a hypothesis test, we need a test statistic to determine

when to reject the null hypothesis. Typically, it measures some attribute of a data sample

and compares to the distribution of the chosen attribute, resulting in a p-value to reject or

accept a null hypothesis at some significance level.

Permutation test. The method of permutation (or called randomization) is a general

approach in statistical hypothesis testing. The basic idea of a permutation test is comparing

the test statistic without permuting the labels of data samples to the distribution of the
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test statistic with many permutations under the null hypothesis. For example, there are

two groups with n and m subjects, respectively, i.e., {Xi}ni=1, and {Yi}mi=1. To compute the

difference between the two groups, we can measure their mean difference, i.e., T0 = X̄ − Ȳ .

This is the test statistic. The null hypothesis is that there is no difference between these

two groups. Under this null hypothesis, we can permute the data in these two groups to

estimate the distribution of the test statistic. This can be achieved by computing the mean

difference T = X̄ − Ȳ as many times as possible, e.g., repeating all the combinations,
(
N
n

)
where N = n + m. Assume the mean of group X is expected to be smaller than the group

Y . Because all the permutations are equally likely under the null hypothesis H0, the p-value

is

p = P (T ≤ T0|H0) =

∑(N
n

)
i=1 I(Ti ≤ T0)(

N
n

) , (2.21)

where Ti is the value of the test statistic at the ith randomization and I(·) is the indicator

function. For more details, please refer to [Ernst et al., 2004].
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CHAPTER 3 : ESTIMATION OF TIME-VARYING CHANGES

This chapter1 presents a general framework with an extensible set of regression formu-

lations, including standard geodesic regression, time-warped geodesic regression, and cubic-

splines on Riemannian manifolds, e.g., the Grassmann manifold, and the manifold of diffeo-

morphisms. This regression framework addresses the problem of fitting parametric curves

on Riemannian manifolds for the purpose of intrinsic parametric regression. It starts from

the energy minimization formulations of classical regression models, e.g., linear least-squares

and cubic splines in Euclidean space, and then generalizes these concepts to general non-flat

Riemannian manifolds, following an optimal-control point of view. This idea is specialized

to the Grassmann manifold and it yields a simple, extensible, and easy-to-implement so-

lution to the parametric regression problem. The idea is also extended to the manifold of

diffeomorphisms to jointly capture spatial and intensity changes in image time-series.

In particular, Section 3.1 revisits regression models in Euclidean space from the optimal-

control point of view. In Section 3.2 these classical models are generalized to general Rie-

mannian manifolds. Section 3.3 presents the algorithms for computing parametric regression

on the Grassmann manifold. It demonstrates the utility of the proposed solution on differ-

ent vision problems, such as shape regression as a function of age, traffic-speed estimation

and crowd-counting from surveillance video clips. Most notably, these problems can be con-

1The work presented in this chapter is based on previous papers [Hong et al., 2012a, Hong et al., 2012b,
Hong et al., 2014c, Hong et al., 2014d, Hong et al., 2015b, Hong et al., 2016].



veniently solved within the same framework without any specifically-tailored steps along

the processing pipeline. Furthermore, Section 3.4 presents the geodesic regression on image

time-series to simultaneously capture spatial deformations and appearance changes. Finally,

in Section 3.5 a model criticism approach is presented to evaluate regression models on

manifolds, in particular for the Grassmann manifold.

3.1 Regression in Rn via Optimal-Control

This section starts with a review of linear regression in Rn and discusses its solution via

optimal-control. While regression is a well studied statistical technique and several solutions

exist for univariate and multivariate models [Freedman, 2009], the presented optimal-control

perspective not only allows easily generalizing regression to manifolds but also defining more

complex models on these manifolds.

3.1.1 Linear Regression

A straight line in Rn can be defined as an acceleration-free curve with parameter t,

represented by states, (x1(t), x2(t)), such that ẋ1 = x2, and ẋ2 = 0, where x1(t) ∈ Rn is the

position of a particle at time t and x2(t) ∈ Rn represents its velocity at t. Let {yi}N−1
i=0 ∈ Rn

denote a collection of N measurements at time instances {ti}N−1
i=0 with ti ∈ [0, 1]. The

linear regression problem is defined as that of estimating a parametrized linear motion of the

particle x1(t), such that the path of its trajectory best fits the measurements in the least-

squares sense. The constrained optimization problem, from an optimal-control perspective,

is

min
Θ

E(Θ) =
N−1∑
i=0

‖x1(ti)− yi‖2

︸ ︷︷ ︸
Data-matching

, s.t. ẋ1 − x2 = 0, and ẋ2 = 0︸ ︷︷ ︸
“Dynamics” constraints

, (3.1)
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with Θ = {xi(0)}2
i=1, i.e., the initial conditions. Adding the dynamics constraints through

time-dependent Lagrangian multipliers, Λ = {λ1, λ2} ∈ Rn, results in

E(Θ,Λ) =
N−1∑
i=0

‖x1(ti)− yi‖2 +

∫ 1

0

λ>1 (ẋ1 − x2) + λ>2 (ẋ2) dt . (3.2)

For readability the argument t has been omitted for λ1(t) and λ2(t). They are referred

to as adjoint variables, enforcing the dynamical “straight-line” constraints. Equation (3.2)

is the Lagrangian associated to the original constrained optimization problem. An optimal

solution is a saddle point of the Lagrangian, and the Karush-Kuhn-Tucker (KKT) conditions

are necessary conditions for an optimum [Boyd and Vandenberghe, 2004]. In particular,

evaluating the gradients with respect to the state variables results in the adjoint system as

λ̇1 = 0, and −λ̇2 = λ1, with jumps in λ1 as λ1(t+i )−λ1(t−i ) = 2(x1(ti)−yi), at measurements

ti. The optimality conditions on the gradients also result in the boundary conditions λ1(1) =

0 and λ2(1) = 0. Finally, the gradients with respect to the initial conditions are ∇x1(0)E =

−λ1(0), and ∇x2(0)E = −λ2(0). These gradients are evaluated by integrating backward the

adjoint system to t = 0 starting from t = 1. The gradients are used to update the initial

conditions using a line-search [Nocedal and Wright, 2006]. Such a method, performing a

gradient descent only on the initial conditions, is known as a shooting method. This is

different from a relaxation method, which starts with a guess for the exact solution at each

interior point and iteratively adjusts the guess to approximate the optimal solution. Since

different from a relaxation method a shooting method works on the initial conditions, it may

save memory especially when we deal with images and shapes later.

This optimal-control perspective constitutes a general method for estimating first-order

curves which allows generalizing the notion of straight lines to manifolds (geodesics), as long
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“time-warped” curve

Data in original domain Data in “time-warped” domain Data in original domain

Figure 3.1: Illustration of time-warped regression in R. The dashed straight-line (middle) shows the
fitting result in the warped time coordinates, and the solid curve (right) demonstrates the fitting
result to the original data points (left).

as the forward system (dynamics), the gradient computations, as well as the gradient steps

all respect the geometry of the underlying space.

3.1.2 Time-Warped Regression

Fitting straight lines is too restrictive for some data. Hence, the idea of time-warped re-

gression is to use a simple model to warp the time-points, or more generally the independent

variable, when comparison to data is performed, e.g ., as in the data matching term of Eq.

(3.1). The time-warp should maintain the order of the data, and hence needs to be diffeo-

morphic. This is conceptually similar to an error-in-variables model where uncertainties in

the independent variables are modeled. However, in the concept of time-warping, we are not

directly concerned with modeling such uncertainties, but instead in obtaining a somewhat

richer model based on a known and easy-to-estimate linear regression model.

In principle, the mapping of the time points could be described by a general diffeomor-

phism. In fact, such an approach is followed in [Durrleman et al., 2013] for spatiotemporal

atlas-building in the context of shape analysis. The motivation for proposing an approach to

linear regression with parametric time-warps is to keep the model simple while gaining more

flexibility. Extensions to non-parametric approaches can easily be obtained. A representa-
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tive of a simple parametric regression model is logistic regression2 which is typically used

to model saturation effects. Under this model, points that are close in time for the linear

fit may be mapped to points far apart in time, thereby it allows modeling saturations for

instance (cf . Fig. 3.1). Other possibilities of parametric time-warps include those derived

from families of quadratic, logarithmic and exponential functions.

Formally, let f : R → R, t 7→ t̄ = f(t;θ) denote a parametrized (by θ) time-warping

function and let x1(t) denote the particle on the regression line in the warped time coordinates

t̄. Following this notation, the states are denoted as (x1(t), x2(t)) and represent position and

slope in re-parametrized time t. In time-warped regression, the data matching term in the

sum of Eq. (3.1) then becomes ‖x1(f(ti;θ))−yi‖2 and the objective (as before) is to optimize

x1(t̄0) and x2(t̄0) as well as the parameter θ.

A convenient way to minimize the energy functional in Eq. (3.1) with the adjusted data

matching term is to use an alternating optimization strategy. That is, we first fix θ to

update the initial conditions, and then fix the initial conditions to update θ. This requires

the derivative of the energy with respect to θ for fixed x1(t̄). Using the chain rule, we obtain

the gradient as

∇θE = 2
N−1∑
i=0

(x1(f(ti;θ))− yi)>ẋ1(f(ti;θ))∇θf(ti;θ) . (3.3)

Given a numerical solution to the regression problem of Section 3.1.1, the time-warped

extension alternatingly updates (1) the initial conditions (x1(t̄0), x2(t̄0)) in the warped time

domain using the gradients in Eq. (3.1.1) and (2) θ using the gradient in Eq. (3.3). Fig. 3.1

2Not to be confused with the statistical classification method.
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visualizes the principle of time-warped linear regression on a collection of artificially gen-

erated data points. While the new model only slightly increases the overall complexity, it

notably increases modeling flexibility by using a curve instead of a straight line.

3.1.3 Cubic Spline Regression

To further increase the flexibility of a regression model, cubic splines are another com-

monly used technique. This section revisits cubic spline regression from the optimal-control

perspective. This will facilitate the transition to general Riemannian manifolds.

Variational formulation. An acceleration-controlled curve with time-dependent states

(x1, x2, x3) such that ẋ1 = x2 and ẋ2 = x3, defines a cubic curve in Rn. Such a curve is a

solution to the energy minimization problem, cf . [Ahlberg et al., 1967],

min
Θ

E(Θ) =
1

2

∫ 1

0

‖x3‖2 dt, subject to ẋ1 = x2(t) and ẋ2 = x3(t) , (3.4)

with Θ = {xi(t)}3
i=1. Here, x3 is referred to as the control variable that describes the

acceleration of the dynamics in this system. Similar to the strategy for fitting straight lines,

we can get a relaxation solution to Eq. (3.4) by adding adjoint variables which results in the

system of adjoint equations λ̇1 = 0 and ẋ3 = −λ1.

Shooting solution. To obtain the shooting formulation, we explicitly add the evolution of

x3, i.e., ẋ3 = −λ1, as another dynamical constraint; this increases the order of the dynamics.

Setting x4 = −λ1 results in the classical system of equations for shooting cubic curves

ẋ1 = x2(t), ẋ2 = x3(t), ẋ3 = x4(t), ẋ4 = 0 . (3.5)
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Figure 3.2: Cubic-spline regression in R. The left side shows the regression result, and the remaining
plots show the other states.

The states (x1, x2, x3, x4), at all times, are entirely determined by their initial values {xi(0)}4
i=1

and, in particular we have

x1(t) = x1(0) + x2(0)t+
1

2
x3(0)t2 +

1

6
x4(0)t3 . (3.6)

Data-independent controls. Using the shooting equations of Eq. (3.5) for cubic splines,

we can define a smooth curve that best fits the data in the least-squares sense. Since a cubic

polynomial by itself is restricted to only fit “cubic-like” data, we add flexibility by gluing

piecewise cubic polynomials together. Typically, we define controls at pre-defined locations

and only allow the state x4 to jump at those locations.

Now, let {tc}Cc=1, tc ∈ (0, 1) denote C data-independent fixed control points, which implic-

itly define C+1 intervals in [0, 1], denoted as {Ic}C+1
c=1 . The constrained energy minimization
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problem corresponding to the regression task, in this setting, can be written as

min
Θ

E(Θ) =
C+1∑
c=1

∑
ti∈Ic

‖x1(ti)− yi‖2,

subject to ẋ1 = x2(t), ẋ2 = x3(t), ẋ3 = x4(t), ẋ4 = 0 within Ic

and x1, x2, x3 are continuous across tc ,

(3.7)

with parameters Θ = {{xi(0)}4
i=1, {x4(tc)}Cc=1}. Using time-dependent adjoint states {λi}4

i=1

for the dynamics constraints, and (time-independent) duals νc,i for the continuity constraints,

we can derive the adjoint system of equations from the unconstrained Lagrangian as

λ̇1 = 0, λ̇2 = −λ1, λ̇3 = −λ2, λ̇4 = −λ3 . (3.8)

The gradients w.r.t. the initial conditions {xi(0)}4
i=1 are

∇x1(0)E = −λ1(0), ∇x2(0)E = −λ2(0), ∇x3(0)E = −λ3(0), ∇x4(0)E = −λ4(0) . (3.9)

The jerks (i.e., rate of acceleration change) at x4(tc) are updated using ∇x4(tc)E = −λ4(tc).

The values of the adjoint variables at 0 are computed by integrating backward the adjoint

system starting from ∀i : λi(1) = 0. Note that λ1, λ2 and λ3 are continuous at joints, but λ1

jumps at the data-point location as per λ1(t+i ) − λ1(t−i ) = 2(x1(ti) − yi). During backward

integration, λ4 starts with zero at each tc+1 and the accumulated value at tc is used for the

gradient update of x4(tc).

It is critical to note that, along the time t, such a formulation guarantees that x4(t)

is piecewise constant, x3(t) is piecewise linear, x2(t) is piecewise quadratic, and x1(t) is

piecewise cubic; this results in a cubic spline curve. Fig. 3.2 demonstrates this shooting-

based spline fitting method on data in R. While it is difficult to explain this data with one
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simple cubic curve, it suffices to add one control point to recover the underlying trend. The

state x4 experiences a jump at the control location that integrates up three-times to give a

C2-continuous evolution for the state x1.

3.2 Regression on Riemannian Manifolds

In this section the optimal-control perspective of Section 3.1 is adopted and the regres-

sion problems are generalized to nonflat, smooth Riemannian manifolds. In the literature

this generalization of linear regression is typically referred to as geodesic regression. For a

thorough treatment of Riemannian manifolds, please refer to [Boothby, 1986]. Note that the

term geodesic regression here does not refer to the model that is fitted but rather to the fact

that the Euclidean distance in the data matching term of the energies is replaced by the

geodesic distance on the manifold. In particular, the measurements {yi}N−1
i=0 in Euclidean

space now become elements {Yi}N−1
i=0 on some Riemannian manifold M with Riemannian

metric 〈·, ·〉p at p ∈ M3. The geodesic distance, induced by this metric, will be denoted as

dg. Besides, the variable ti is replaced with ri, indicating that the independent value does

not have to be time, but can also represent other entities, such as counts or speed.

The first objective is to estimate a geodesic γ : R → M, represented by initial point

γ(r0) and initial velocity γ̇(r0) at the tangent space Tγ(r0)M, i.e.,

min
Θ

E(Θ) = α

∫ 1

0

〈γ̇, γ̇〉γ(r) dr︸ ︷︷ ︸
Regularity

+
1

σ2

N−1∑
i=0

d2
g(γ(ri), Yi)︸ ︷︷ ︸

Data-matching

subject to ∇γ̇ γ̇ = 0 (geodesic equation) ,

(3.10)

3The subscript p will be omitted when it is clear from the context.
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with Θ = {γ(0), γ̇(0)} and ∇ denoting the Levi-Civita connection on M. The covariant

derivative ∇γ̇ γ̇ of value 0 ensures that the curve is a geodesic. The parameters α ≥ 0 and

σ > 0 balance the regularity and the data-matching term. In the Euclidean case, there

is typically no regularity term because we usually do not have prior knowledge about the

slope. Similarly, on Riemannian manifolds we may penalize the initial velocity by choosing

α > 0; but typically, α is also set to 0. The regularity term on the velocity can be further

reduced to a smoothness penalty at r0, i.e.,
∫ 1

0
〈γ̇, γ̇〉dr = 〈γ̇(r0), γ̇(r0)〉, because of the

energy conservation along the geodesic. Also, since the geodesic is represented by the initial

conditions (γ(r0), γ̇(r0)), we can move along the geodesic and estimate the point γ(ri) that

corresponds to Yi.

3.2.1 Optimization via Geodesic Shooting

Taking the optimal-control point of view, the second-order problem of Eq. (3.10) can be

written as a first-order system, upon the introduction of auxiliary statesX1(r) = γ(r) andX2(r) =

γ̇(r). Here, X1 corresponds to the intercept and X2 corresponds to the slope in classical lin-

ear regression. Considering the simplified smoothness penalty of the previous section, the

constrained minimization of Eq. (3.10) reduces to

min
Θ

E(Θ) = α〈X2(r0), X2(r0)〉 +
1

σ2

N−1∑
i=0

d2
g(X1(ri), Yi)

subject to ∇X2X2 = 0 ,

(3.11)

with Θ = {Xi(r0)}2
i=1. X1(ri) is the estimated point on the geodesic at ri, obtained by shoot-

ing forward with X1(r0) and X2(r0). Analogously to the elaborations of previous sections,

we convert Eq. (3.11) to the Lagrangian function via time-dependent adjoint variables, then
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take variations with respect to its arguments resulting in the KKT conditions, and eventu-

ally obtain (1) dynamical systems of states and adjoint variables, (2) boundary conditions on

the adjoint variables, and (3) gradients with respect to initial conditions. By shooting for-

ward/backward and updating the initial states via the gradients, we can obtain a numerical

solution to the problem.

3.2.2 Time-Warped Regression

The time-warping strategy of Section 3.1.2 can also be adapted to Riemannian mani-

folds, because it focuses on warping the axis of the independent scalar-valued variable, not

the axis of the dependent manifold-valued variable. In other words, the time-warped model is

independent of the underlying type of space. Formally, given a warping function f (cf . Sec-

tion 3.1.2), all instances of the form Xj(ri) in Eq. (3.11) are replaced by Xj(f(ri;θ)) for

j = 1, 2. While the model retains its simplicity, i.e., we still fit geodesic curves, the warping

function allows for increased modeling flexibility.

Since we have an existing solution to the problem of fitting geodesic curves, the easiest

way to minimize the resulting energy is by alternating optimization, similar to Section 3.1.2.

This requires the derivative of the energy with respect to θ for fixed Xi(r). Application of

the chain rule and [Samir et al., 2012, Appendix A] yields

∇θE = 2α〈Ẋ2(f(r0;θ)), X2(f(r0;θ))〉∇θf(r0;θ)

− 2

σ2

N−1∑
i=0

〈LogX1(f(ri;θ)) Yi, Ẋ1(f(ri;θ))〉∇θf(ri;θ) ,

(3.12)

where LogX1(f(ri;θ)) Yi denotes the Riemannian log-map, i.e., the initial velocity of the geodesic

connecting X1(f(ri;θ)) and Yi in unit time and Ẋ1(f(ri;θ)) is the velocity of the regression
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geodesic at the warped-time point. This leaves to choose a good parametric model for f(r;θ).

As the time warp is required to be diffeomorphic, we choose a parametric model that is diffeo-

morphic by design. One choice is the generalized logistic function [Fekedulegn et al., 1999],

e.g ., with asymptotes 0 for r → −∞ and 1 for r →∞, given by

f(r;θ) =
1

(1 + βe−k(r−M))1/m
, (3.13)

with θ = (k,M, β,m). The parameter k controls the growth rate, M is the time of maximum

growth if β = m, β and m define the value of f at t = M , and m > 0 affects the asymptote

of maximum growth. This function maps the original infinite time interval to a warped

time-range from 0 to 1. In summary, the alternating optimization algorithm is as follows:

0) Initialize θ such that the warped time is evenly distributed within (0, 1).

1) Update time-points {ri = f(ri;θ)}N−1
i=0 and perform standard geodesic regression.

2) Update θ by numerical optimization using the gradient given in Eq. (3.12).

3) Check convergence. If not converged goto 1).

3.2.3 Cubic Spline Regression

As in Section 3.1.3, cubic curves on a Riemannian manifoldM can be defined as solutions

to the variational problem of minimizing an acceleration-based energy. The notion of acceler-

ation is defined using the covariant derivatives on Riemannian manifolds [Noakes et al., 1989,

Camarinha et al., 1995]. In particular, we define a time-dependent control, i.e., a forcing

variable X3(r), as

X3(r) = ∇X2(r)X2(r) = ∇Ẋ1(r)Ẋ1(r) . (3.14)
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We can interpret X3(r) as a control that forces the curve X1(r) to deviate from being a

geodesic [Trouvé and Vialard, 2012] (which is the case if X3(r) = 0). As an end-point

problem, a Riemannian cubic curve is thus defined by the curve X1(r) such that it minimizes

an energy of the form

E(X1) =
1

2

∫ 1

0

‖∇Ẋ1
Ẋ1‖2dt, (3.15)

where the norm ‖ · ‖ is induced by the metric on M at X1. In Section 3.3.3, this concept

will be adapted to the Grassmannian to enable regression with cubic splines.

3.3 Regression on the Grassmannian

The Grassmannian is a type of Riemannian manifold where the geodesic distance, parallel

transport, as well as the Riemannian Log-/Exp-map are relatively simple to compute (see

[Gallivan et al., 2003] and Section 2.1.2). According to the Riemannian structure of the

Grassmannian discussed in Section 2.1.2 (see [Absil et al., 2004] for details), those three

regression models are specialized to this manifold.

3.3.1 Standard Geodesic Regression

First, the inner-product and the squared geodesic distance in Eq. (3.10) are adapted to

G(p, n) by following Section 2.1.2. Next, given the auxiliary states, which are denoted as

matrices X1 (initial point) and X2 (velocity), we can write the geodesic equation of Eq. (2.2)

as a system of first-order dynamics:

Ẋ1 = X2, and Ẋ2 = −X1(X>2 X2) . (3.16)

For a point on G(p, n) it should further hold that (1) X1(r)>X1(r) = Ip and (2) the velocity

at X1(r) needs to be orthogonal to that point, i.e., X1(r)>X2(r) = 0. If we enforce these
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Algorithm 1 Standard Grassmannian geodesic regression (Std-GGR)

Input: {(ri,Yi)}N−1
i=0 , α and σ2

Output: X1(r0), X2(r0)
Set initial X1(r0) and X2(r0), e.g ., X1(r0) = Y0, and X2(r0) = 0.
while not converged do

Solve Eqs. (3.16) with X1(r0) and X2(r0) forward for r ∈ [r0, rN−1].

Solve

{
λ̇1 = λ2X

>
2 X2, λ1(rN−1+) = 0,

λ̇2 = −λ1 + X2(λ>2 X1 + X>1 λ2), λ2(rN−1) = 0
backward with jump conditions

λ1(ri−) = λ1(ri+) − 1
σ2∇X1(ri)d

2
g(X1(ri),Yi), and ∇X1(ri)d

2
g(X1(ri),Yi) computed as

−2 LogX1(ri) Yi. For multiple measurements at a given ri, the jump conditions for each mea-
surement are added up.
Compute gradients with respect to initial conditions:

∇X1(r0)E = −(In −X1(r0)X1(r0)>)λ1(r0−) + X2(r0)λ2(r0)>X1(r0),

∇X2(r0)E = 2αX2(r0)− (In −X1(r0)X1(r0)>)λ2(r0).

Use a line search with these gradients to update X1(r0) and X2(r0) (see Algorithm 2).
end while

two constraints at the starting point r0, they will remain satisfied along the geodesic. This

yields

min
Θ

E(Θ) = α tr X2(r0)>X2(r0) +
1

σ2

N−1∑
i=0

d2
g(X1(ri),Yi)

subject to X1(r0)>X1(r0) = Ip, X1(r0)>X2(r0) = 0 and Eq. (3.16) ,

(3.17)

with Θ = {Xi(r0)}2
i=1. Based on the adjoint method, we obtain the shooting solution to

Eq. (3.17), listed in Alg. 1. Note that the jump conditions on λ1 involve the gradient of the

residual term d2
g(X1(ri),Yi) with respect to X1(ri), i.e., the base point of the residual on

the fitted geodesic; this gradient is −2 LogX1(ri)
Yi (See next subsection). This problem of

fitting a geodesic is referred to as standard Grassmannian geodesic regression (Std-GGR).

Residuals to curves on the Grassmannian. In Algorithm 1 we need the gradient of the

residuals d2
g(X1(ri),Yi) with respect to the base point X1(ri) in order to compute the jump

conditions for the adjoint variable λ1. The residual measures the squared geodesic distance
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Algorithm 2 Grassmannian equivalent of xk+1 = xk − ∆tg, where ∆t is the time step
and g is the gradient.

Input: X1(r0), X2(r0), ∇X1(r0)E, ∇X2(r0)E, ∆t
Output: Updated Xu

1(r0) and Xu
2(r0)

Compute X
u

2(r0) = X2(r0)−∆t∇X2(r0)E
Compute Xu

1(r0) by flowing for ∆t along geodesic with initial condition
(X1(r0),−∇X1(r0)E)

Transport X
u

2(r0) along the geodesic connecting X1(r0) to Xu
1(r0), using (3.23), resulting

in X
uT

2 (r0)
Project updated initial velocity onto the tangent space (for consistency): Xu

2(r0)← (In −
Xu

1(r0)Xu
1(r0)>)X

uT

2 (r0).

between the point X1(ri) on the fitted curve and the corresponding measurement Yi. To

derive this gradient, we consider the constrained minimization problem of two points with

exact matching:

E(X1(r)) =

∫ r1

r0

tr X2(r)>X2(r) dr,

s.t. X1(r0) = Y0, X1(r1) = Y1, and X1(r0)>X1(r0) = Ip ,

(3.18)

with X2(r) = (In −X1(r)X1(r)>)C. We know that the squared distance can be formulated

as d2
g(Y0,Y1) = minX1(r) E(X1(r)) for r0 = 0 and r1 = 1. After adding the constraint on the

form of X2(r) via the time-dependent adjoint variable λ and the constraint X1(0)>X1(0) = Ip

via λc, we obtain (by taking variations), among other terms, the optimality condition

(2C> − λ>)(In −X1(r)X1(r)>) = 0 , (3.19)

and another optimality condition for a free initial condition4 X1(0)

∇X1(0)E = −λ(0) + X1(0)(λ>c + λc) = 0 . (3.20)

4Note that technically we started with X1(r0) = Y0, i.e., this condition would not be free and we would not
need to consider variations of X1(r0). However, the goal is to compute the energy gradient with respect to
the initial condition X1(r0). Consequentially, the variation of the energy with respect to it allows computing
∇X1(0)E.
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Left-multiplication by X1(0)> yields λc +λ>c = X>1 (0)λ(0) which we can use to obtain, upon

back-substitution into Eq. (3.20),

−(In −X1(0)X1(0)>)λ(0) = 0 . (3.21)

Using Eq. (3.19) and the above expression for X2(r), we can obtain

∇X1(0)E = −(In −X1(0)X1(0)>)λ(0) = −2X2(0) , (3.22)

with X2(0) being the tangent vector at X1(0) such that ExpX1(0)(X2(0)) = X1(1). This

tangent vector can be computed via the Log-map presented in Section 2.1.2, i.e., X2(0) =

LogX1(0)(X1(1)).

Line search on the Grassmannian. Performing a line search on the Grassmann manifold

in Algorithm 1 is not as straightforward as in Euclidean space since we need to assure that

the constraints for X1(r0) and X2(r0) are fulfilled for any given step. In particular, changing

X1(r0) will change the associated tangent vector X2(r0). Once, we have updated X1(r0)

to Xu
1(r0) by moving along the geodesic defined by X1(r0) and the gradient of the energy

with respect to this initial point, i.e., ∇X1(r0)E, we can transport the tangent X2(r0) to

Xu
1(r0) using the closed form solution for parallel transport of [Edelman et al., 1998] (cf .

Section 2.1.2). In particular,

Xu
2(r0) = [X1(r0)V U]

− sin tΣ

cos tΣ

U> + (In −UU>)X2(r0) (3.23)

where H = UΣV> is the compact SVD of the tangent vector at X1(r0) along the geodesic

connecting X1(r0) and Xu
1(r0). Note that t = 1 in Eq. (3.23). Algorithm 2 lists the line

search procedure in full technical detail.
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Note: when implementing Algorithm 1 (the same holds for Algorithm 3) it is important

to pay attention to the ordering of the matrix multiplications, as performing them in an

appropriate order will reduce time and memory complexity.

3.3.2 Time-Warped Regression

Since the concept of time-warped geodesic regression is generic for Riemannian manifolds,

specialization to the Grassmannian is straightforward. The Std-GGR solution is used during

the alternating optimization steps. By choosing the generalized logistic function of Eq. (3.13)

to account for saturations of scalar-valued outputs, the time-warped model on G(p, n) can

be used to capture saturation effects for which standard geodesic regression is not sensible.

This strategy is referred to as time-warped Grassmannian geodesic regression (TW-GGR).

3.3.3 Cubic Spline Regression

To enable cubic spline regression on the Grassmannian, we follow Section 3.2.3 and add

the external force X3. In other words, we represent an acceleration-controlled curve X1(r)

on G(p, n) using a dynamic system with states (X1,X2,X3) such that

X2 = Ẋ1, and X3 = Ẋ2 + X1(X>2 X2) . (3.24)

If X3 = 0, the second equation is reduced to the geodesic equation of Eq. (2.2), i.e., the

geodesic is acceleration-free. To obtain an acceleration-controlled curve, we need to solve

min
Θ

E(Θ) =
1

2

∫ 1

0

tr X>3 X3 dr

s.t. X>1 X1 = Ip, X>1 X2 = 0, and Eq. (3.24) (3.25)

with Θ = {Xi(r0)}3
i=1. First, we show that by enforcing X>1 X2 = 0 at all time points, we
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only need to enforce X>1 X1 = Ip initially. This can be seen by taking the derivative of X>1 X1

with respect to r, i.e.,

d

dr
X>1 X1 = Ẋ>1 X1 + X>1 Ẋ1 = X>2 X1 + X>1 X2 = 0 . (3.26)

In other words, if X1(0)>X1(0) = Ip holds, then X>1 X1 = Ip holds for all r by enforcing

X>1 X2 = 0 at all time points. Hence, Equation (3.25) can be rewritten as

min
Θ

E(Θ) =
1

2

∫ 1

0

tr X>3 X3 dr

s.t. X>1 X2 = 0,Eq. (3.24), and X1(0)>X1(0) = Ip . (3.27)

For the first three time-evolving constraints, we introduce three time-dependent adjoint

variables, λ1, λ2, and λ3, to convert the constrained problem to an unconstrained one. We

then take the variations with respect to the state variables which results in the following

system of adjoint equations:



−λ̇>1 + (X>2 X2)λ>2 + λ3X
>
2 = 0,

−λ̇>2 − λ>1 + X>1 λ2X
>
2 + λ>2 X1X

>
2 + λ>3 X>1 = 0,

X>3 − λ>2 = 0 .

(3.28)

Using X3 = λ2 and setting X4 = λ1, we can rewrite the adjoint equations (3.28) as

Ẋ>4 = (X>2 X2)X>3 + λ3X
>
2 , (3.29)

Ẋ>3 = −X>4 + X>1 X3X
>
2 + X>3 X1X

>
2 + λ>3 X>1 . (3.30)
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Next, we derive the form of X3 using the dynamic constraints. By taking the time-derivative

of X>1 X2 we get

d

dr
X>1 X2 = Ẋ>1 X2 + X>1 Ẋ2 = Ẋ>1 X2 + X>1 (X3 −X1X

>
2 X2)

= X>2 X2 + X>1 X3 −X>2 X2 = X>1 X3 .

(3.31)

However, the constraint X>1 X2 = 0 implies d
dr

X>1 X2 = 0 which yields X>1 X3 = 0. It further

implies d
dr

X>1 X3 = 0 and we get, as a side result,

X>2 X3 + X>1 Ẋ3 = 0 . (3.32)

We can then use X>1 X3 = 0 to simplify Eq. (3.30) to

−Ẋ>3 −X>4 + λ>3 X>1 = 0 ⇔ −Ẋ3 −X4 + X1λ3 = 0 . (3.33)

Upon left-multiplication of Eq. (3.33) by X1 we obtain the expression for λ3 as

λ3 = X>1 Ẋ3 + X>1 X4
(3.32)
= X>1 X4 −X>2 X3 . (3.34)

Substituting λ3 into Eq. (3.33) yields the evolution equation for Ẋ3 as

Ẋ3 = −X4 + X1X
>
1 X4 −X1X

>
2 X3 (3.35)

and substituting λ3 in Eq. (3.29) yields the evolution equation for Ẋ4

Ẋ4 = X3X
>
2 X2 + X2X

>
4 X1 −X2X

>
3 X2 . (3.36)
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In summary, the system of equations for shooting cubic curves on G(p, n) are

Ẋ1 = X2, Ẋ2 = X3 −X1X
>
2 X2,

Ẋ3 = −X4 + X1X
>
1 X4 −X1X

>
2 X3,

Ẋ4 = X3X
>
2 X2 + X2X

>
4 X1 −X2X

>
3 X2 .

(3.37)

It is important to note that X1 does not follow a geodesic path under non-zero force X3.

Hence, the constraints X1(r)>X1(r) = Ip and X1(r)>X2(r) = 0 should be enforced at

every instance of r to keep the path on the manifold. However, we showed that enforcing

X1(r)>X2(r) = 0 at all times already guarantees that X1(r)>X1(r) = Ip if this holds initially

at r = 0. Also, X1(r)>X2(r) = 0 implies that X1(r)>X3(r) = 0. By using this fact during

relaxation, the constraints are already implicitly captured in Eqs. (3.37). Subsequently, for

shooting we only need to guarantee that all these constraints hold initially. To get a cubic

spline curve, we follow Section 3.1.3 and introduce control points {rc}Cc=1, which divide the

support of the independent variable into several intervals Ic. The first three states should

be continuous at the control points, but the state X4 is allowed to jump. Hence, the spline

regression problem on G(p, n) becomes, cf . Eq. (3.7),

min
Θ

E(Θ) = α

∫ rN−1

r0

tr X>3 X3 dr +
1

σ2

N−1∑
i=0

d2
g(X1(ri),Yi)

subject to X1(r0)>X1(r0) = Ip, X1(r0)>X2(r0) = 0, X1(r0)>X3(r0) = 0,

X1,X2,X3 are continuous at {rc}Cc=1, and Eqs. (3.37) hold in each Ic,

(3.38)

with Θ = {{Xi(r0)}4
i=1, {X4(r+

c )}Cc=1}. Alg. 3 lists the shooting solution to Eq. (3.38),

referred to as cubic-spline Grassmannian geodesic regression (CS-GGR).
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Algorithm 3 Cubic-spline Grassmannian geodesic regression (CS-GGR)

Input: {(ri,Yi)}N−1
i=0 , {rc}Cc=1, α and σ2

Output: X1(r0), X2(r0), X3(r0), X4(r0), {X4(r+
c )}Cc=1

Set initial X1(r0) as Y0 for example, and X2(r0), X3(r0), X4(r0), {X4(r+
c )}Cc=1 as zero matrices.

while not converged do
Solve Eq. (3.37) forward in each interval with X1(r0), X2(r0), X3(r0), X4(r0), {X4(r+

c )}Cc=1,
and {X1(r+

c ) = X1(r−c ), X2(r+
c ) = X2(r−c ), X3(r+

c ) = X3(r−c )}Cc=1.

Solve



λ̇1 = λ2X
>
2 X2 − λ3(X>4 X1 −X>3 X2)−X4(λ>3 X1 + X>2 λ4),

λ̇2 = −λ1 + X2(λ>2 X1 + X>1 λ2 − λ>4 X3 −X>3 λ4) + X3(λ>3 X1 + X>2 λ4)

+λ4(−X>1 X4 + X>2 X3),

λ̇3 = −λ2 − λ4X
>
2 X2 + X2(X>1 λ3 + λ>4 X2) + 2αX3,

λ̇4 = λ3 −X1(X>1 λ3 + λ>4 X2)

backward

with λ1(rN−1) = λ2(rN−1) = λ3(rN−1) = λ4(rN−1) = λ4(r−c ) = 0, and
{λ1(r−c ) = λ1(r+

c ), λ2(r−c ) = λ2(r+
c ), λ3(r−c ) = λ3(r+

c )}Cc=1, as well as jump conditions λ1(r−i ) =
λ1(r+

i )− 1
σ2∇X1(ri)d

2
g(X1(ri),Yi), and∇X1(ri)d

2
g(X1(ri),Yi) computed as −2 LogX1(ri) Yi. For

multiple measurements at a given ri, the jump conditions for each measurement are added up.
Compute gradients with respect to initial conditions and the fourth state at control points:

∇X1(r0)E = −(In −X1(r0)X1(r0)>)λ1(r−0 ) + X2(r0)λ2(r0)>X1(r0) + X3(r0)λ3(r0)>X1(r0),

∇X2(r0)E = −(In −X1(r0)X1(r0)>)λ2(r0),

∇X3(r0)E = −(In −X1(r0)X1(r0)>)λ3(r0),

∇X4(r0)E = −λ4(r0), ∇X4(r+c )E = −λ4(r+
c ), c = 1...C .

Use a line search with these gradients to update X1(r0), X2(r0), X3(r0), X4(r0), and
{X4(r+

c )}Cc=1.
end while

3.3.4 Experimental Results

Synthetic data. We first demonstrate Std-GGR, TW-GGR and CS-GGR on synthetic data

and compare against two approaches from the literature [Rentmeesters, 2011, Su et al., 2012]

(see Section 2.2.3 for detailed discussions about the literature).

Each data point in the following experiment represents a 2D sine/cosine signal, sampled

at 630 evenly-spaced locations in [0, 10π]. These signals s ∈ R2×630 are then linearly projected

into R24 via s = Us, where W ∼ N (0, I24) and W = UΣV>. White Gaussian noise with

σ = 0.1 is added to s. For each embedded signal s ∈ R24×630, we estimate a two-state

(i.e., p = 2) LDS as discussed in Section 2.1.3, and use the corresponding observability

50



matrix to represent it as a point on G(2, 48). Besides, each data point has an associated

scalar value; this independent variable is uniformly distributed within (0, 10) and controls

the signal frequency of the data point. For Std-GGR, we directly use this value as the signal

frequency to generate 2D signals, while for TW-GGR and CS-GGR, a generalized logistic

function or a sine function is adopted to convert the values to a signal frequency for data

generation. It is important to note that the largest eigenvalue of the state-transition matrix

A in LDS (see Section 2.1.3) reflects the frequency of the sine/cosine signal, according to

the experiments.

To quantitatively assess the quality of the fitting results, we design a “denoising” experi-

ment. The data to be used for denoising is generated as follows: First, we use each regression

method to estimate a model from the (clean) data points we just generated. In the second

step, we take the initial conditions of each model, shoot forward and record the points along

the regression curve at fixed values of the independent variable (i.e., the signal frequency).

These points serve as the ground truth (GT). In a final step, we take each point on the

ground truth curve, generate a random tangent vector at each location and shoot forward

along that vector for a small time (e.g ., 0.03). The newly generated points then serve as the

“noisy” measurements of the original points.

To obtain fitting results on the noisy data, we initialize the first state X1 with the first

data point, and all other initial conditions with 0. Table 3.1 lists the differences between our

estimated regression curves (Est.) and the corresponding ground truth using two strategies:

(1) comparison of the initial conditions as well as the parameters of the warping function

in TW-GGR; (2) comparison of the full curves (sampled at the values of the independent

variable) and the data points. The numbers indicate that all three models captured different
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Method X1(r0) X2(r0) X3(r0) X4(r0) k M

Std-GGR 0.02 0.16 – – – –

[Rentmeesters, 2011] 0.02 0.16 – – – –

TW-GGR 0.02 0.16 – – 0.05 0.6e-2

CS-GGR 0.07 0.54 0.36 0.97 – –

[Su et al., 2012] – – – – – –

Method GT vs. Data Data vs. Est. GT vs. Est.

Std-GGR 0.7e-2 0.7e-2 0.3e-3

[Rentmeesters, 2011] 0.7e-2 0.6e-2 0.3e-3

TW-GGR 6.9e-3 6.6e-3 0.3e-3

CS-GGR 6.8e-3 5.8e-3 1.1e-3

[Su et al., 2012] 6.8e-3 8.2e-3 3.5e-3

Table 3.1: Comparison of the regression results on synthetic data. First, we report differences in
the initial conditions Xi(r0): for X1, we report the geodesic distance on the Grassmannian; for
X2, X3 and X4, we report ‖XEst.

i − XGT
i ‖F /‖XGT

i ‖F . For multiple X4s, we take the average.
For TW-GGR, we also report the difference in the parameters of the time-warp function (k,M).
Second, we report the mean squared (geodesic) distance (MSD) between two curves. In particular,
we compute (1) the MSD between the data points and the corresponding points on the ground
truth (GT) curves (GT vs. Data); (2) the MSD between the data points and the points on the
estimated regression curves (Data vs. Est.) and (3) the MSD between the points on the ground
truth curves and the data points on the estimated regression curves (Data vs. Est.). The second
row shows a comparison to [Rentmeesters, 2011] (conceptually similar to [Fletcher, 2013]). The
last row lists the (best) MSDs for the approach of Su et al . [Su et al., 2012] on the data used to
test CS-GGR (for λ1/λ2 = 10).

types of relationships on G(2, 48). We compare to [Rentmeesters, 2011] which is a repre-

sentative for Jacobi field based parametric regression (see also [Fletcher, 2013]). Since this

approach fits a geodesic and returns an initial point and a velocity vector (as in Std-GGR),

the same quantitative measures are reported in Table 3.1. As expected, we essentially obtain

the same solution, since the same energy is minimized.

In the context of fitting cubic splines, we compare CS-GGR against the discrete curve fit-

ting approach of [Su et al., 2012], adapted to G(p, n). Since, [Su et al., 2012] does not output

the fitted curve in parametric form, but as a collection of points sampled along the sought-for

curve, Table 3.1 only reports performance measures computed from sample points. Addi-

tionally, we assess performance by adopting a different evaluation protocol. In particular,
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Figure 3.3: CS-GGR (1 control point) vs. [Su et al., 2012] (λ1/λ2 = 10) in terms of the the
largest eigenvalue of the state-transition matrix A of Eq. (2.5) (reconstructed from the observability
matrices that we obtain along each path) to the ground truth.

we take the observability matrices of the linear dynamical systems estimated from each s as

the ground truth. We then perturb the signal frequency with Gaussian noise, estimate new

dynamical systems and eventually run [Su et al., 2012] and CS-GGR on the observability

matrices of these systems. For evaluation, we report the mean absolute error (MAE) in the

largest eigenvalue of the state-transition matrix A to the ground truth. Fig. 3.3 shows a

visualization of the (real-part) of the largest eigenvalue for different levels of noise. The data

matching / smoothing balance for [Su et al., 2012] was set to (λ1, λ2) = (1, 0.1). As we see

from Fig. 3.3, the numeric results are fairly similar between both strategies. However, CS-

GGR is guaranteed to return a curve with a smooth change in momentum, whereas control-

ling data-matching vs. smoothness in [Su et al., 2012] can lead to instantaneous momentum

changes at the sampling locations. Further, storage complexity of our approach scales with

the number of control-points, whereas storage complexity of [Su et al., 2012] scales with the

the number of sampled points, highlighting one advantage of fitting parametric models with

respect to storage requirements. Finally, we remark that we can generate arbitrarily many

points along our parametric curves after fitting. In contrast, discrete curve fitting strategies

would require re-estimation of the curve once the number of desired samples increases.

Applications. To demonstrate Std-GGR, TW-GGR and CS-GGR on actual vision data,

53



20 20 21 23 24

484746382424

48 49 52 55 55 58

696765646360

73 74 77 80 81 83

90

19

86

Figure 3.4: Corpora callosa (with the subject’s age)
[Fletcher, 2013].
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Figure 3.5: UCSD traffic dataset
[Chan and Vasconcelos, 2005].

we present four applications: in the first two applications, we regress the manifold-valued

variable, i.e., landmark-based shapes; in the last two applications, we predict the indepen-

dent variable based on the regression curve fitted to the manifold-valued data, i.e., LDS

representations of surveillance videos.

(1) Corpus callosum shapes [Fletcher, 2013]. We use a collection of 32 corpus callosum

shapes with ages varying from 19 to 90 years, see Fig. 3.4. Each shape is represented by

m = 64 2D boundary landmarks and is projected to a point on the Grassmannian using the

representation of Section 2.1.3.

(2) Rat calvarium landmarks [Bookstein, 1991]. We use 18 individuals with 8 time points

from the Vilmann rat data, each in the age range of 7 to 150 days. Each shape is represented

by a set of 8 landmarks. Fig. 3.8 (left) shows a selection of the landmarks projected onto

the Grassmann manifold, using the same representation as the corpus callosum data.

(3) UCSD traffic dataset [Chan and Vasconcelos, 2005]. This dataset was introduced

in the context of clustering traffic flow patterns with LDS models. It contains a collection
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Figure 3.6: Illustration of the dataset for crowd counting. Top: Example frames from the UCSD
pedestrian dataset [Chan and Vasconcelos, 2012]. Bottom: Total crowd count over all frames (left),
and average people count over a 400-frame sliding window (right).

of short traffic video clips, acquired by a surveillance system monitoring highway traffic.

There are 253 videos in total and each video is roughly matched to the speed measurements

from a highway-mounted speed sensor (see Fig. 3.5). We use the pre-processed video clips

introduced in [Chan and Vasconcelos, 2005] which were converted to grayscale and spatially

normalized to 48 × 48 pixels with zero mean and unit variance. The rationale for using

an LDS representation for speed prediction is the fact that clustering and categorization

experiments in [Chan and Vasconcelos, 2005] showed compelling evidence that dynamics are

indicative of the traffic class. We argue that the notion of speed of an object (e.g ., a car)

could be considered a property that humans infer from its visual dynamics.

(4) UCSD pedestrian dataset [Chan and Vasconcelos, 2012]. We use the Peds1 subset

which contains 4000 frames with a ground-truth people count associated with each frame,

see Fig. 3.6. Similar to [Chan and Vasconcelos, 2012] we ask the question whether we can

infer the number of people in a scene (or clip) without actually detecting the people. While

this problem has been addressed by resorting to crowd / motion segmentation and Gaussian
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process regression on low-level features extracted from the segmentation regions, we go one

step further and try to avoid any preprocessing at all. In fact, our objective is to infer

an average people count from an LDS representation of short video segments (i.e., within a

temporal sliding window). This is plausible because the visual dynamics of a scene change as

people appear in it. In fact, it could be considered as another form of “traffic”. Further, an

LDS does not only model the dynamics but also the appearance of videos; both aspects are

represented in the observability matrix. However, such a strategy does not allow for fine-grain

frame-by-frame predictions as in [Chan and Vasconcelos, 2012]. Yet, it has the advantages

of not requiring any pre-selection of features or potentially unstable preprocessing steps such

as the aforementioned crowd segmentation. In our setup, we split the 4000 frames into 37

video clips via a sliding window of size 400, shifted by 100 frames (see Fig. 3.6), and associate

an average people count with each clip. The clips are spatially down-sampled to 60 × 40

pixel (original: 238 × 158) to keep the observability matrices at a reasonable size. Since

the overlap between the clips potentially biases the experiments, we introduce a weighted

variant of system identification (see Section 2.1.3) with weights based on a Gaussian function

centered at the middle of the sliding window and a standard deviation of 100. While this

ensures stable system identification, by still using 400 frames, it reduces the impact of the

overlapping frames on the parameter estimates. With this strategy, the average crowd count

is localized to a smaller region.

General settings. In all experiments, α in the energy function is set to 0, σ to 1, the initial

point is set to be the first data point, and all other initial conditions are set to zero. For the

parameter(s) θ of TW-GGR, we fix (β,m) = (1, 1) so that M is the time of the maximal

growth. Usually, one control point is used in CS-GGR.
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Figure 3.7: Comparison between Std-GGR, TW-GGR and CS-GGR (with one control point) on
the corpus callosum data [Fletcher, 2013]. The shapes are generated along the fitted curves and
are colored by age (best viewed in color).

Regressing the manifold-valued variable

The first category of applications leverages the regressed relationship between the inde-

pendent variable, i.e., age, and the manifold-valued dependent variable, i.e., shapes. The

objective is to estimate the shape for a given age. We demonstrate Std-GGR, TW-GGR and

CS-GGR on both corpus callosum and rat calvarium data. The control point for CS-GGR is

set to the mean age of the subjects. Three measures are used to quantitatively compare the

regression results: (1) the regression energy, i.e., the data matching error over all observa-

tions; (2) the R2 statistic on the Grassmannian, which is between 0 and 1, with 1 indicating

a perfect fit and 0 indicating a fit no better than the Fréchet mean (see [Fletcher, 2013] for

more details); and (3) the mean squared error (MSE) on the testing data, reported by means

of (leave-one-subject-out) cross-validation (CV). On both datasets, we compare against the

approaches of Rentmeesters [Rentmeesters, 2011] and Su et al . [Su et al., 2012]. In case of

the latter approach, the data vs. smoothness weighting (i.e., λ1/λ2) is chosen to achieve an

MSE as close as possible (or better) to the best result of our approaches.

Corpus callosum aging. Fig. 3.7 shows the corpus callosum shapes along the fitted curves

for the time points in the data. The shapes are recovered from the points along the curve

through scaling by the mean singular values of the SVD results. Table 3.2 lists the quantita-
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Figure 3.8: Comparison between Std-GGR, TW-GGR and CS-GGR (with one control point) on
the rat calvarium data [Bookstein, 1991]. The shapes are generated along the fitted curves and the
landmarks are colored by age in days (best-viewed in color).

Corpus callosum [Fletcher, 2013]

[Rentmeesters, 2011]
Std- TW- (1)CS- (2)CS-

[Su et al., 2012]
GGR GGR GGR GGR

Energy 0.35 0.35 0.34 0.32 0.31 –

R2 0.12 0.12 0.15 0.21 0.23 0.15

MSE(e-2) 1.25 1.25 1.22 1.36 1.43 1.25

Rat calvarium [Bookstein, 1991]

[Rentmeesters, 2011]
Std- TW- (1)CS- (2)CS-

[Su et al., 2012]
GGR GGR GGR GGR

Energy 0.32 0.32 0.18 0.16 0.16 –

R2 0.61 0.61 0.79 0.81 0.81 0.89†

MSE(e-3) 2.3 2.3 1.3 1.2 1.2 4.1†

Table 3.2: Comparison of Std-GGR, TW-GGR and CS-GGR with one (1) and two (2) control points
to the approaches of [Rentmeesters, 2011] and [Su et al., 2012] (for λ1/λ2 = 1/10). For Energy and
MSE smaller values are better, for R2 larger values are better. In case of [Su et al., 2012], we fit
one curve to each individual in the rat calvarium data; MSE and R2 are then averaged.

tive measurements. With Std-GGR, the corpus callosum starts to shrink from the minimum

age 19, which is consistent with the regression results in [Fletcher, 2013, Hinkle et al., 2014].

However, according to biological studies [Hopper et al., 1994, Johnson et al., 1994], the cor-

pus callosum size remains stable during the most active years of the lifespan, which is con-

sistent with our TW-GGR result. As we can see from the optimized logistic function in
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Figure 3.9: Estimated time-warp functions for TW-GGR.

Fig. 3.9 (left), TW-GGR estimates that thinning starts at ≈ 50 years, and at the age of 65,

the shrinking rate reaches its peak. From the CS-GGR results reported in Table 3.2, we first

observe that the R2 value increases notably to 0.21/0.23, compared to 0.12 for Std-GGR.

While this suggests a better fit to the data, it is not a fair comparison, since the number of

parameters for CS-GGR increases as well and a higher R2 value is expected. Secondly, the

more interesting observation is that, qualitatively, we observe higher-order shape changes in

the anterior and posterior regions of the corpus callosum, shown in the zoomed-in regions of

Fig. 3.7; this is similar to what is reported in [Hinkle et al., 2014] for polynomial regression

in 2D Kendall shape space. However, our shape representation, by design, easily extends

to point configurations in R3. This is in contrast to 3D Kendall shape space which has a

substantially more complex structure than its 2D variant [Dryden and Mardia, 1998]. Ad-

ditionally, we notice that the result of [Rentmeesters, 2011] equals the result obtained via

Std-GGR (as expected). For [Su et al., 2012], the result is comparable to TW-GGR.

Rat calvarium growth. Fig. 3.8 (leftmost) shows the projection of the original data on

G(2, 8), as well as (part of) the data samples generated along the fitted curves. Table 3.2

lists the performance measures. From the zoomed-in regions in Fig. 3.8, we observe that

the rat calvarium grows at an approximately constant speed during the first 150 days if
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the relationship is modeled by Std-GGR. However, the estimated logistic curve for TW-

GGR, shown in Fig. 3.9 (right), indicates that the rat calvarium only grows fast in the

first few weeks, reaching its peak at 30 days; then, the rate of growth gradually levels

off and becomes steady after around 14 weeks. In fact, similar growth curves for the rat

skull were reported in [Hughes et al., 1978]. Based on their study, the growth velocities of

viscerocranium length and nurocranium width rose to the peak in the 26− 32 days period.

Comparing the R2 values for TW-GGR and CS-GGR, we see an interesting effect: although,

we have more parameters in CS-GGR, the R2 score only marginally improves. This indicates

that TW-GGR already sufficiently captures the relationship between age and shape. It

further confirms, to a large extent, a hypothesis from [Hinkle et al., 2014], where the authors

noted that the cubic polynomial in 2D Kendall shape space degrades to a geodesic under

polynomial time re-parametrization. Since TW-GGR re-parametrizes time (not via a cubic

polynomial, but via a logistic function), it is not surprising that this relatively simple model

exhibits similar performance to the more complex CS-GGR model. Similar to the corpus

callosum data (and the synthetic data), [Rentmeesters, 2011] gives the same results as Std-

GGR. For [Su et al., 2012], we record an MSE of 4.1e-3, however, the corresponding R2 score

is higher. This can be explained, in part, by the fact that we fit one model per individual

(as opposed to one model for all individuals) and then average the MSE and R2 scores. This

is done because [Su et al., 2012] cannot handle multiple data instances per time point.

Predicting the independent variable

In the second category of applications the objective is to predict the independent variable

using its regressed relationship with the manifold-valued dependent variable. Specifically,

given a point on G(p, n), e.g ., an LDS representation of a video clip, we search along the
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Traffic speed

Baseline Std-GGR Std-GGR (PW†) CS-GGR

Mean energy – 2554.88 2461.95 2670.84

Train-MAE – 2.98± 0.33 1.48± 0.07 2.42± 0.35

Test-MAE 4.14± 0.36 4.44± 0.16 3.46± 0.64 6.32± 1.62

Crowd counting

Baseline Std-GGR Std-GGR (PW†) CS-GGR

Mean energy – 273.81 224.87 244.02

Train-MAE – 0.97± 0.07 0.59± 0.13 0.63± 0.19

Test-MAE 2.40± 0.53 1.88± 0.75 2.14± 1.03 2.11± 0.76

Table 3.3: Mean energy and mean absolute errors (MAE) over all CV-folds ±1σ on training and
testing data. Comparisons to [Rentmeesters, 2011] and [Su et al., 2012] were left-out, because
[Rentmeesters, 2011] did not converge appropriately and [Su et al., 2012] did not scale to the size
of these problems. †PW means piecewise.

regressed curve (with a step size of 0.05, in the same unit of the independent variable in

our experiments) to find its closest point, and then we take the corresponding independent

variable of this closest point as its predicted value. This could be considered a variant of

nearest-neighbor regression where the search space is restricted to the sampled curve. The

case when the search space is not restricted but contains all data points, will be referred to

as our baseline. Note that in our case, search complexity is controlled via the step-size, while

the search complexity for the baseline scales linearly with the sample size.

Furthermore, we remark that in this category of applications, TW-GGR is not appro-

priate for predicting the independent variable for the following reasons: First, in case of the

traffic speed measurement, the generalized logistic function tends to degenerate to almost

a step-function, due to the limited number of measurement points in the central regions.

In other words, two greatly different independent variables would correspond to two very

close data points, even the same one, which would result in a large prediction error. Sec-

ond, in case of crowd-counting, there is absolutely no prior knowledge about any saturation
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Figure 3.10: Traffic speed predictions via 5-fold CV. The red solid curve shows the ground truth
(best-viewed in color).
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Figure 3.11: Crowd counting results via 4-fold CV. Predictions are shown as a function of the
sliding window index. The gray envelope indicates the weighted standard deviation (±1σ) around
the average crowd size in a sliding window (best-viewed in color).

or growth effect which could be modeled via a logistic function. Consequently, we only

demonstrate Std-GGR, piecewise Std-GGR, and CS-GGR on the two datasets. Note that

prediction based on nearest neighbors could be problematic in case of CS-GGR, since the

model does not guarantee a monotonic curve. We report the mean regression energy and

the mean absolute error (MAE), computed over all folds in a cross-validation setup with a

dataset-dependent number of folds.

Speed prediction. For each video clip, we estimate LDS models with p = 10 states. The

control point of CS-GGR and the breakpoint for piecewise Std-GGR are set at 50 [mph].
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Results are reported for 5-fold CV, see Fig. 3.10. The quantitative comparison to the baseline

in Table 3.3 shows that piecewise Std-GGR has the best performance.

Crowd counting. For each video clip, we estimate LDS models with p = 10 states using

weighted system identification. The control point of CS-GGR and the breakpoint for piece-

wise Std-GGR are set to a count of 23 people which separates the 37 videos into two groups

of roughly equal size. Quantitative results for 4-fold CV are reported in Table 3.3. Fig. 3.11

shows the predictions vs. the ground truth; and both Std-GGR and CS-GGR output pre-

dictions “close” to the ground truth, mostly within 1σ (shaded region) of the average crowd

count. However, a closer look at Table 3.3 reveals a typical overfitting effect for CS-GGR:

while the training MAE is quite low, the testing MAE is higher than for the simpler Std-

GGR approach. Even though both models exhibit comparable performance (considering the

standard deviations), Std-GGR is preferable, due to fewer parameters and its guaranteed

monotonic regression curve.

3.4 Regression on Image Time-Series

The manifold of diffeomorphisms is another type of Riemannian manifold, which is com-

monly used to analyze images. In this section, we generalize linear regression to the manifold

of diffeomorphisms, capturing spatial and intensity changes simultaneously in image time-

series. This is achieved by combining the dynamical systems formulation for geodesic re-

gression for images [Niethammer et al., 2011] with image metamorphosis [Holm et al., 2009,

Miller and Younes, 2001]. Next, we start with the dynamical systems formulation for meta-

morphism to obtain the optimality conditions, that is, the dynamic constraints, for regres-

sion. And then we generalize the concept of a regression line to image time-series.
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3.4.1 Metamorphosis

Starting from the dynamical systems formulation for LDDMM image registration

E(v) =
1

2

∫ 1

0

‖v‖2
L dt+

1

σ2
‖I(1)− I1‖2, s.t. It +∇ITv = 0, I(0) = I0, (3.39)

image metamorphosis allows exact matching of a target image I1 by a warped and intensity-

adjusted source image I(1) by adding a control variable, q, which smoothly adjusts im-

age intensities along streamlines. Here, σ > 0, v is a spatiotemporal velocity field and

‖v‖2
L = 〈Lv, Lv〉, where L is a differential operator penalizing non-smooth velocities. The

optimization problem changes to [Miller and Younes, 2001, Holm et al., 2009]

E(v, q) =
1

2

∫ 1

0

‖v‖2
L + ρ‖q‖2

Q dt, s.t. It +∇ITv = q, I(0) = I0, I(1) = I1. (3.40)

The inexact match of the final image is replaced by an exact matching, hence the energy

value depends on the images only implicitly through the initial and final constraints; ρ > 0

controls the balance between intensity blending and spatial deformation. The solution to

both minimization problems Eq. (3.39) and Eq. (3.40) is given by a geodesic, which is

specified by its initial conditions. The initial conditions are numerically computed through

a shooting strategy.

Optimality conditions for shooting metamorphosis. To derive the second order dy-

namical system required for the shooting method, we add the dynamic constraint through

the momentum variable, p. Eq. (3.40) becomes

E(v, q, I, p) =

∫ 1

0

1

2
‖v‖2

L+
1

2
ρ‖q‖2

Q+〈p, It+∇ITv−q〉 dt, s.t. I(0) = I0, I(1) = I1. (3.41)
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To simplify the numerical implementation of the problem, we use an augmented Lagrangian

approach [Nocedal and Wright, 2006] converting the optimization problem (3.41) to

E(v, q, I, p) =

∫ 1

0

1

2
‖v‖2

L +
1

2
ρ‖q‖2

Q + 〈p, It +∇ITv − q〉 dt

− 〈r, I(1)− I1〉+
µ

2
‖I(1)− I1‖2, s.t. I(0) = I0, (3.42)

where µ > 0 and r is the Lagrangian multiplier function for the final image-match constraint.

The variation of Eq. (3.42) results in the optimality conditions



It +∇ITv = 1
ρ
(Q†Q)−1p, I(0) = I0,

−pt − div(pv) = 0, p(1) = r − µ(I(1)− I1),

L†Lv + p∇I = 0 .

(3.43)

The optimality conditions do not depend on q, since by optimality q = 1
ρ
(Q†Q)−1p. Hence,

the state for metamorphosis is identical to the state of LDDMM, i.e., (I, p), highlighting the

tight coupling in metamorphosis between image deformation and intensity changes. The final

state constraint I(1) = I1 has been replaced by an augmented Lagrangian penalty function.

Shooting for metamorphosis

The metamorphosis problem Eq. (3.40) has so far been addressed as a boundary value

problem by relaxation approaches [Garcin and Younes, 2005, Miller and Younes, 2001]. This

approach hinders the formulation of the regression problem and assures geodesics at con-

vergence only. We propose a shooting method instead. Since the final constraint has

been successfully eliminated through the augmented Lagrangian approach, ∇p(0)E can be
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computed using a first- or second-order adjoint method similarly as for LDDMM registra-

tion [Vialard et al., 2012, Ashburner and Friston, 2011]. The numerical solution alternates

between a descent step for p(0) for fixed r, µ and (upon reasonable convergence) an update

step r(k+1) = r(k) − µ(k)(I(1) − I1). The penalty parameter µ is increased as desired such

that µ(k+1) > µ(k). Numerically, we solve all equations by discretizing time, assuming v

and p to be piece-wise constant in a time-interval. We solve transport equations and scalar

conservation laws by propagating maps [Beg et al., 2005] to limit numerical dissipation.

First-order adjoint method. Following [Ashburner and Friston, 2011], we can compute

∇v(0)E by realizing that the Hilbert gradient is ∇v(0)E = v(0)+K ∗ (p(0)∇I(0)), where K =

(L†L)−1. Therefore, based on the adjoint solution method [Beg et al., 2005, Hart et al., 2009]

∇v(0)E = v(0) +K ∗ (p̂(0)∇I(0)) = v(0) +K ∗ (|DΦ|p̂(1) ◦ Φ∇I(0)), (3.44)

where Φ is the map from t = 1 to t = 0 given the current estimate of the velocity field v(x, t)

and p̂(1) = r−µ(I(1)−I1) with I(1) = I0◦Φ−1. Storage of the time-dependent velocity fields

is not required as both Φ and Φ−1 can be computed and stored during a forward (shooting)

sweep. Instead of performing the gradient descent on v(0) it is beneficial to compute it

directly with respect to p(0) since this avoids unnecessary matrix computation. Since at

t = 0: −(L†L)δv(0) = δp(0)∇I(0), it follows from Eq. (3.44) that

∇p(0)E = p(0)− p̂(0) = p(0)− |DΦ|(r − µ(I(1)− I1)) ◦ Φ. (3.45)

Second-order adjoint method. The energy can be rewritten in initial value form (w.r.t.
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(I(0), p(0))) as

E =
1

2
〈p(0)∇I(0), K ∗ (p(0)∇I(0))〉+

1

2ρ
〈(Q†Q)−1p(0), p(0)〉

−〈r, I(1)− I1〉+
µ

2
‖I(1)− I1‖2, s.t. Eq. (3.43) holds. (3.46)

At optimality, the state equations (3.43) and



−λIt − div(vλI) = div(pK ∗ λv),

−λpt − vT∇λp = −∇ITK ∗ λv + 1
ρ
(Q†Q)−1λI ,

λI∇I − p∇λp + λv = 0,

(3.47)

hold, with final conditions: λp(1) = 0; λI(1) = r − µ(I(1)− I1). The gradient is

∇p(0)E = −λp(0) +∇I(0)TK ∗ (p(0)∇I(0)) +
1

ρ
(Q†Q)−1p(0). (3.48)

The dynamic equations and the gradient are only slightly changed from the LDDMM regis-

tration [Vialard et al., 2012] when following the augmented Lagrangian approach.

3.4.2 Metamorphic Geodesic Regression

Our goal is the estimation of a regression geodesic (under the geodesic equations for

metamorphosis) w.r.t. a set of measurement images {Ii} by minimizing

E =
1

2
〈m(t0), K ∗m(t0)〉+

1

2ρ
〈(Q†Q)−1p(t0), p(t0)〉+

1

σ2

N∑
i=1

Sim(I(ti), Ii) (3.49)
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such that Eq. (3.43) holds. Here, σ > 0 balances the influence of the change of the regression

geodesic with respect to the measurements, m(t0) = p(t0)∇I(t0) and Sim denotes an image

similarity measure. A solution scheme with respect to (I(t0), p(t0)) can be obtained following

the derivations for geodesic regression [Niethammer et al., 2011]. Such a solution requires

the integration of the state equation as well as the second-order adjoint. Further, for meta-

morphosis it is sensible to also define Sim(I(ti), Ii) based on the squared distance induced

by the solution of the metamorphosis problem between I(ti) and Ii. Since no closed-form

solutions for these distances are computable in the image-valued case an iterative solution

method is required which would in turn require the underlying solution of metamorphosis

problems for each measurement at each iteration. This is costly.

Approximated metamorphic geodesic regression

To simplify the solution of metamorphic geodesic regression (3.49), we approximate the

distance between two images I1, I2 w.r.t. a base image Ib at time t as

Sim(I1, I2) = d2(I1, I2) ≈ t2
1

2
〈m1(0)−m2(0), K ∗ (m1(0)−m2(0))〉

+ t2
1

2ρ
〈(Q†Q)−1(p1(0)− p2(0)), p1(0)− p2(0)〉, (3.50)

where p1(0) and p2(0) are the initial momenta for I1 and I2 w.r.t. the base image Ib (i.e., the

initial momenta obtained by solving the metamorphosis problem between Ib and I1 as well

as for Ib and I2 respectively) and m1(0) = p1(0)∇Ib, m2(0) = p2(0)∇Ib. This can be seen as

a tangent space approximation for metamorphosis. The squared time-dependence emerges

because the individual difference terms are linear in time.

We assume that the initial image I(t0) on the regression geodesic is known. This simpli-
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fying assumption is meaningful, for example, for growth modeling w.r.t. a given base image5.

Substituting into Eq. (3.49) yields

E(p(t0)) =
1

2
〈m(t0), K ∗m(t0)〉+

1

2ρ
〈(Q†Q)−1p(t0), p(t0)〉

+
1

σ2

N∑
i=1

1

2
(∆ti)

2〈m(t0)−mi, K ∗ (m(t0)−mi)〉+
1

2ρ
(∆ti)

2〈(Q†Q)−1(p(t0)− pi), p(t0)− pi〉.

(3.51)

Here, m(t0) = p(t0)∇I(t0), ∆ti = ti−t0, mi = pi∇I(t0) and pi is the initial momentum for the

metamorphosis solution between I(t0) and Ii. For a given I(t0), the pi can be independently

computed. The approximated energy only depends on the initial momentum p(t0). The

energy variation yields the condition

R[(1 +
1

σ2

N∑
i=1

(∆ti)
2)p(t0)] = R[

1

σ2

N∑
i=1

(∆ti)
2pi], (3.52)

where the operator R is R[p] := ∇I(t0)TK ∗ (∇I(t0)p) + 1
ρ
(Q†Q)−1p. Since K = (L†L)−1 and

ρ > 0 this operator is invertible and therefore

p(t0) =
1
σ2

∑N
i=1(∆ti)

2pi

1 + 1
σ2

∑N
i=1(∆ti)2

σ→0
≈
∑N

i=1(∆ti)
2pi∑N

i=1(∆ti)2
. (3.53)

The last approximation is sensible since typically σ << 1. It recovers the metamorphosis

solution if there is only one measurement image and the base image.

5Ideally one would like to construct an image on the geodesic given all the measurement images and then
perform all computations with respect to it. For the linear regression model the point defined by the mean
in time and the measurements, (t, y), is on the regression line. If such a relation exists for metamorphic
geodesic regression, e.g., some form of unbiased mean with similar properties, remains to be determined.
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Figure 3.12: Bull’s eye metamorphic regression experiment. Measurement images (top row). Meta-
morphic regression result (middle row) and momenta (bottom row). The first image is chosen as the
base image. Momenta images: left: time-weighted average of the initial momenta; right: momenta
of the measurement images with respect to the base image.

3.4.3 Experimental Results

Simulated Examples. In Fig. 3.12, four images (32× 32, spacing 0.04) are synthesized to

simulate the movement of a bull’s eye. The outside white loop of the eye shrinks with no

intensity changes, while the inside circle grows at a constant speed and its intensity changes

from white to gray. The images are at time instants 0, 10, 20, 30 and we chose the first

one as the base image. Eight Gaussian kernels [Risser et al., 2011] are used for K: {K0.5,

K0.4, K0.3, K0.25, K0.2, K0.15, K0.1, K0.05}; ρ = 0.75. The result confirms that the spatial

transformation and intensity changes are captured simultaneously. The dark solid circle at

the center of the average momentum of Fig. 3.12 indicates that the intensity of the inside

circle will decrease gradually. The white loop outside of the dark area captures the growth

of the inside circle.

Fig. 3.13 shows a square (64 × 64, spacing 0.02) moving from left to right at a uniform

speed with gradually decreasing intensity. Measurements are at 0, 10, 20, 30, 40. We used
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Figure 3.13: Square metamorphic regression experiment. Left : moving square with decreasing
intensities and no oscillations during movement; Right : moving and oscillating square with alter-
nating intensities. In both cases the base image is the first one. Top row: measurement images,
middle row: metamorphic regression results, bottom row: momenta images (left: time-weighted
average of the initial momenta, to the right: momenta of the measurement images with respect to
the base image).

Figure 3.14: Two representative image scans at 3, 6 and 12 months (left to right).

a multi-Gaussian kernel K with {K1.0, K0.75, K0.5, K0.4, K0.3, K0.2, K0.1} and set ρ = 5.0.

Metamorphic regression successfully captures the spatial transformation and the intensity

changes of the square even when adding vertical oscillations. As expected, metamorphic

regression eliminates the oscillations while capturing the intensity change and the movement

to the right. We see from the time-weighted average of the initial momenta that intensity

changes are controlled by the values inside the square region (dark: decreasing intensity;

bright: increasing intensity). The spatial transformations are mainly controlled by the mo-

menta on the edges of the square.

Real Images. Fig. 3.14 shows two representative longitudinal MRI time-series (300 × 250

with spacing 0.2734 mm) of nine macaque monkeys at age 3, 6, and 12 months. Some subjects

have no visible myelination in the anterior parts of the brain at 3 months, while others show

substantial myelination. Here, we use metamorphic geodesic regression not for an individual
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Figure 3.15: Regression results for monkey data: LDDMM (top) metamorphosis (bottom). (a)
Images on geodesic at 12, 6, 3 months; (b) Zoom in for images on geodesic at 12, 6, 3 months; (c)
Zoom in for images at 3 months to illustrate spatial deformation.

longitudinal image set, but for all nine monkeys and all time-points simultaneously. We

use an unbiased atlas for images at 12 months as the base image. Metamorphic geodesic

regression is applied over the remaining 18 images at 3 and 6 months. We use a multi-

Gaussian kernel, K, with {K40, K20, K15, K10, K5, K2.5}, and ρ = 500.

Fig. 3.15 shows regression results for the simple metamorphic model and for its LDDMM

version [Hong et al., 2012b] which cannot capture intensity changes. The metamorphic re-

gression geodesic captures intensity changes of the brain well (increase in white matter in-

tensity with age caused by myelination) while capturing spatial deformations, most notably

a subtle expansion of the ventricles.

3.5 Model Criticism

In previous sections, to measure the goodness-of-fit of these regression models, we com-

pute the sum of squared errors (SSE, or energy), R2, and the mean squared error (MSE)

using cross-validation. While these measures assess quality of fit, they do not directly check

if the underlying model assumptions hold. In contrast, model criticism does exactly that: it

checks if a model’s assumptions (including the noise model) are consistent with the observed
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data. It thereby provides valuable additional information beyond the classical measures for

model fit. Recently, a statistical model criticism approach [Lloyd and Ghahramani, 2015]

using a kernel-based two-sample test [Gretton et al., 2012] has been proposed and its utility

to evaluate regression models in Euclidean space was demonstrated.

In this section, we take this approach one step further and use the fact that the strategy

of [Lloyd and Ghahramani, 2015] depends on a suitable kernel function for the data and can

thus be extended to manifolds given such a kernel function. For instance, given a popu-

lation of data samples on the Grassmannian, we (1) perform regression, then (2) generate

samples from the regression model and (3) assess whether the observed data could have

been generated by the fitted model. We demonstrate the approach by criticizing our three

regression models on the Grassmannian using both synthetic and real data. We argue that

model criticism approach is complementary to traditional measures of model fit, but it has

the advantage of directly assessing the suitability of a statistical model and its fit for given

observed data.

3.5.1 Model Criticism for Regression in Euclidean Space

The objective of model criticism for regression is to test for discrepancies between ob-

served data and a model estimated from the data [Lloyd and Ghahramani, 2015]. We assume

the data observations are independently and identically distributed (i.i.d.) and that we can

draw i.i.d. samples from the model respecting the noise assumptions; then, the key ingre-

dient of model criticism is to measure whether these two samples are drawn from the same

underlying distribution. To perform this two-sample test, a “kernelized” variant of the max-

imum mean discrepancy (MMD) [Gretton et al., 2012] has been proposed as one choice of

the test-statistic.
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Review of kernel-based two-sample testing [Gretton et al., 2012]. Assume we have

i.i.d. samples X = {xi}mi=1 and Y = {yi}ni=1, drawn randomly from distributions p, q,

defined on a domain X . The goal of two-sample testing is to assess if p = q. One choice of

a test-statistic is the MMD, defined as

MMD[F , p, q] = sup
f∈F

(Ex∼p[f(x)]− Ey∼q[f(y)]) , (3.54)

where F is a suitable class of functions f : X → R. To uniquely measure whether p = q,

Gretton et al. [Gretton et al., 2012] let F be the unit ball in a reproducing kernel Hilbert

space (RKHS) H, i.e., F = {f ∈ H : ‖f‖H ≤ 1}, with associated reproducing kernel

k : X × X → R. The kernel can be written as k(x, y) = 〈φ(x), φ(y)〉H, where 〈·, ·〉H is the

inner product in H and φ : X → H denotes the feature map.

According to [Gretton et al., 2012], Eq. (3.54) can then be expressed as the RKHS dis-

tance between the mean embeddings µ[p] and µ[q] of the distributions p and q, in particular

µ[p] := Ex∼p[φ(x)]. Since the mean embedding satisfies Ex∼p[f(x)] = 〈µ[p], f〉H, Eq. (3.54)

can be written as

MMD[F , p, q] = sup
‖f‖H≤1

〈µ[p]− µ[q], f〉 = ‖µ[p]− µ[q]‖H (3.55)

with the empirical estimate (using the kernel function k)

M̂MD[F , X, Y ] =

[
1

m2

m∑
i,j=1

k(xi, xj)−
2

mn

m,n∑
i,j=1

k(xi, yj) +
1

n2

n∑
i,j=1

k(yi, yj)

] 1
2

. (3.56)

In the following, we omit F and let M̂MD(X, Y ) denote the computation of the MMD
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statistic on two samples X and Y using a suitable kernel function k.

Model criticism using two-sample testing. Assume we have data observations {Y obs
i }Ni=1,

drawn from some distribution p, conditioned on an associated independent value ti. A regres-

sion model M is estimated from the tuples {(ti, Y obs
i )}Ni=1. If the regression model is based

on a Gaussian noise assumption6, we can generate i.i.d. samples from the model; let this

distribution be denoted by q and a sample by {Y est
i = M(ti) + ni}Ni=1, where ni ∼ N(0, σ2)

and σ is the standard deviation of the residuals. Criticizing the model M now means to per-

form a two-sample test between {(ti, Y obs
i )}Ni=1 and {(ti, Y est

i )}Ni=1 under the null-hypothesis

H0 : p = q. This is done by computing the test-statistic between data observations and sam-

ples drawn from the regression model, i.e., T ∗ = M̂MD({(ti, Y obs
i )}Ni=1, {(ti, Y est

i )}Ni=1). Then,

to obtain the distribution of T under H0, we repeatedly draw (from q) N i.i.d. samples to

form two populations, {(ti, Y a
i )}Ni=1 and {(ti, Y b

i )}Ni=1. For each such draw j, we compute

Tj = M̂MD({(ti, Y a
i )}Ni=1, {(ti, Y b

i )}Ni=1) and thereby obtain the empirical distribution of T

under H0. Note that in case of observations in Rn, computing the MMD statistic for model

criticism is straightforward, since we can simply add ti as an additional dimension to our

data, i.e., we obtain observations in Rn+1. The well-known RBF kernel can then be used to

compute Eq. (3.56). We will see that this needs to be handled differently on manifolds.

Finally, we count the number of times that the bootstrapped statistics under H0 are

larger than the test statistic T ∗, which results in a p-value estimate. Because T ∗ will be

affected by the added random noise, we can also sample it a large number of times, resulting

in a distribution of T ∗ and associated p-values.

6Other noise models can also be used as long as one can sample from them.
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3.5.2 Model Criticism for Regression on the Grassmannian

We now extend the model criticism approach of the previous section to the Grassmann

manifold. The test objects are regression models on the Grassmannian, i.e., generalizations

of classical regression in Euclidean space which minimize the sum of squared (geodesic)

distances to the regression curves. Noise in these models is assumed to be Gaussian. To

generalize the model criticism idea, one key ingredient is to draw random samples on the

Grassmannian at each point on the regression curves. The other key ingredient is a suitable

kernel k for Eq. (3.56) and a strategy to include the independent value into the kernel.

Drawing random samples on the Grassmannian. Similar to the Euclidean case, we

assume we have N data observations on the Grassmannian G(r, s)7 with associated indepen-

dent values, i.e., {(ti,Yobs
i )}Ni=1. Using a regression model M estimated from this data, we can

compute the corresponding data points on the regressed curve for each ti as Ȳest
i = M(ti).

To draw sample points at each ti under a Gaussian noise model, we adhere to the following

strategy (although, other approaches such as the one outlined in [Zhang and Fletcher, 2013]

are possible). First, we compute the empirical standard deviation of the residuals as

σ =

√∑N
i=1 d

2(Yobs
i , Ȳest

i )

N − 1
, (3.57)

where d(·, ·) denotes the geodesic distance on G(r, s). For each estimated data point Ȳest
i ,

we then generate a tangent vector Ẏest
i as the projection of an s × r random matrix

Zi = [zuv], zuv ∼ N (0, σ̂2) onto the tangent space at Ȳest
i ; this is done via Ẏest

i = (Is −

7The Grassmannian G(r, s) is the manifold of r-dimensional subspaces of Rs. A point on G(r, s) is identified
by an s× r matrix Y with Y>Y = Ir.
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Ȳest
i (Ȳest

i )>)Zi where Is is the s × s identity matrix. The random point Yest
i (at ti), is

eventually computed via the Riemannian exponential map as

Yest
i = Exp(Ȳest

i , Ẏest
i ) . (3.58)

We note that the standard deviation σ̂ of the samples in Zi is proportional to the standard

deviation σ as computed by Eq. (3.57). In fact, it can be shown8 that the resulting geodesic

distance between Ȳest
i and Yest

i has standard deviation σ̂
√
rs. Consequently, we set σ̂ =

σ/
√
rs when creating the Zi.

Kernels for model criticism on the Grassmannian. The next step is to adjust the

kernel-based two-sample test of [Gretton et al., 2012] for model criticism on the G(r, s) by

selecting a suitable kernel. In [Harandi et al., 2014], several positive definite (and universal)

kernels on G(r, s) have been proposed, e.g., RBF, Laplace and Binomial kernels. These

kernels are constructed by using the Binet-Cauchy kernel kbc [Wolf and Shashua, 2003] and

the projection kernel kp [Hamm and Lee, 2008]. In our experiments we selected the kernel

kl,p(X,Y) = exp
(
−β
√
r − ‖X>Y‖2

F

)
, β > 0, from [Harandi et al., 2014]9. However, for the

model criticism approach that was proposed in [Lloyd and Ghahramani, 2015] to be used on

regression models, we need to be able to compute the MMD test for (ti,Yi) (i.e., including

the information about the independent variable). While this is simple in the Euclidean

case (cf. Section 3.5.1), the situation on manifolds is more complicated since we cannot

8Say we have samples Y1, . . . ,Yn with Fréchet mean Ȳ. The Fréchet variance is defined as σ2 =
minY∈G(r,s) 1/n

∑n
i=1 d

2(Y,Yi); this can equivalently be written as σ2 = 1
n

∑n
i=1 tr(Ẏ>i Ẏi) with Ẏi =

Exp−1(Ȳ,Yi). Expanding the trace yields σ2 =
∑s

j=1

∑r
k=1[1/n

∑n
i=1 y

2
i,j,k] where the term in brackets is

σ̂2 since yi,j,k is i.i.d. as N (0, σ̂2). We finally obtain σ2 = rsσ̂2.
9Here, r denotes the subspace dimension in G(r, s), as defined before.
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simply add ti to our observations. Our strategy is to use an RBF kernel for the ti, i.e.,

krbf (t, t
′) = exp(−(t− t′)2/(2γ2)) and then leverage the closure properties of positive definite

kernels, which allow multiplication of positive definite kernels. This yields our combined

kernel as

k((ti,X), (tj,Y)) = exp

(
−(ti − tj)2

2γ2

)
· exp

(
−β
√
r − ‖X>Y‖2

F

)
. (3.59)

In all the experiments, we set both β and γ to 1 for simplicity.

Model criticism on the Grassmannian. The computational steps for model criticism

on the Grassmannian are listed below:

(1) Compute the points {Ȳest
i = M(ti)}Ni=1 for each data observation Yobs

i on G(r, s) from

the estimated regression model M .

(2) Estimate the standard deviation of residuals, σ, using Eq. (3.57).

(3) Generate noisy samples, Yest
i at each ti using Eq. (3.58) and σ̂2 = σ2/(rs).

(4) Compute T ∗ = M̂MD({(ti,Yest
i )}Ni=1, {(ti,Yobs

i )}Ni=1) using Eqs. (3.56) & (3.59).

(5) Repeat (3) and (4) many times to obtain a population of T ∗.

(6) Generate two groups of samples using (3), {(ti,Ya
i )}Ni=1, and {(ti,Yb

i )}Ni=1, and compute

T = M̂MD({(ti,Ya
i )}Ni=1, {(ti,Yb

i )}Ni=1).

(7) Repeat (6) many times to obtain a distribution of T under H0.

(8) Compute a p-value for each T ∗ in (5) with respect to the distribution of T from (7),

resulting in a population of p-values. This allows rejecting the null-hypothesis that the

observed data distribution is the same as the sampled data distribution of the model

at a chosen significance level α (e.g., 0.05).
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3.5.3 Experimental Results

We criticize three different regression models on the Grassmannian discussed in the pre-

vious section: Std-GGR, TW-GGR, and CS-GGR, which are generalizations of linear least

squares, time-warped, and cubic-spline regression, respectively.

Synthetic data. For easy visualization, we synthesize data on the Grassmannian G(1, 2),

i.e., the space of lines through the origin in R2. Each point uniquely corresponds to an angle

in [−π/2, π/2] with respect to the horizontal axis.

(1) Different data distributions. The first experiment is to perform model criticism on

one regression model, but for different data distributions. To generate this data, we select

two points on G(1, 2) to define a geodesic curve and then uniformly sample 51 points along

this geodesic from one point at time 0 to the other point at time 1. Using the strategy

described in Section 3.5.2, Gaussian noise with σ = 0.05 is then added to the sampled points

along the geodesic, resulting in the 1st group (Group 1) of synthetic data. The 2nd group

(Group 2) of synthetic data is simulated by concatenating two different geodesics. Again, 51

points are uniformly sampled along the curve and Gaussian noise is added. The left column

in Fig. 3.16(a) shows the two synthetic data sets using their corresponding angles.

Both groups are fitted using a standard geodesic regression model (Std-GGR); the quali-

tative and quantitative results of model criticism are reported in Fig. 3.16(a) and Table 3.4,

respectively. Among 1000 trials, H0 is rejected in only 8.1% of all cases for Group 1 (gen-

erated from one geodesic), but H0 is always rejected for Group 2 (i.e., generated from two

geodesics). As expected, Std-GGR is not an appropriate model to capture the distribution

of the data belonging to multiple geodesics. Model criticism correctly identifies this, while

the R2 values are hard to interpret with respect to model suitability.
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(a) Different data distributions (b) Different regression models

Figure 3.16: Model criticism for synthetic data on the Grassmannian. (a) Different data distribu-
tions are fitted by one regression model (Std-GGR); (b) One data distribution is fitted by different
regression models (top: Std-GGR, bottom: CS-GGR).

Different data distributions Different regression models

Group 1 Group 2 Std-GGR CS-GGR

R2 0.99 0.89 0.73 0.99

%(p-values < 0.05) 8.1%∗ 100% 88.0% 4.5%∗

Table 3.4: Comparison of R2 measure and model criticism for synthetic data. *In theory, this
number should approximate 5% with enough trials, e.g., 10000.

(2) Different regression models. The second experiment is to generate one data dis-

tribution but to estimate different regression models. We first generate a section of a sine

curve with x-axis as time and y-axis as the angle. Each angle θ corresponds to a point on

the Grassmannian, i.e., [cos θ; sin θ] ∈ G(1, 2). In this way, we can generate polynomial data

on G(1, 2) with associated time t ∈ [0, 1]. A visualization of the generated data with added

Gaussian noise (σ = 0.05) is shown in the left column of Fig. 3.16(b). The data points are

fitted by the standard regression model (Std-GGR) and its cubic spline variant (CS-GGR),

respectively. The results of model criticism are shown in Fig. 3.16(b) and Table 3.4; in 88.0%

of 1000 trials, H0 is rejected for the Std-GGR model, while we only reject H0 in 4.5% of

all trials for CS-GGR. As designed, CS-GGR has better performance than Std-GGR and

can appropriately capture the distribution of the generated data, as confirmed by model
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(a) Corpus callosum (b) Rat calvarium

Figure 3.17: Model criticism for real data. From top to bottom: the regression model corresponds
to Std-GGR, TW-GGR, and CS-GGR respectively.

Corpus callosum Rat calvarium

Std-GGR TW-GGR CS-GGR Std-GGR TW-GGR CS-GGR

R2 0.12 0.15 0.21 0.61 0.79 0.81

%(p-values < 0.05) 0.2% 0% 0% 100% 98.0% 1.3%

Table 3.5: Comparison of R2 measure and model criticism for real data.

criticism.

Real data. Two real applications, shape changes of the corpus callosum during aging and

landmark changes of the rat calvarium with age, are used to evaluate model criticism for

three regression models on the Grassmannian.

(1) Corpus callosum shapes. The population of corpus callosum shapes is the same one

used in Section 3.3.4. In Fig. 3.17(a) and Table 3.5, although the R2 values of the three

regression models are relatively low, our model criticism results with 1000 trials suggest that

all three models may be appropriate for the observed data.

(2) Rat calvarium landmarks. We use the same Vilmann rat dat in Section 3.3.4.

From the model criticism results shown in Fig. 3.17(b) and Table 3.5 we can see that the
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equivalent linear (Std-GGR) and time-warped (TW-GGR) models cannot faithfully capture

the distribution of the rat calvarium landmarks. However, the cubic-spline model is not

rejected by model criticism and therefore appears to be the best among the three models.

This result is consistent with the R2 values and also provides more information about the

regression models. As we can see, the R2 values of TW-GGR and CS-GGR are very close,

but the model criticism suggests CS-GGR is the one that should be chosen for regression on

this dataset.

3.6 Conclusion

In this chapter, a general theory was developed for parametric regression on manifolds

from an optimal-control perspective. By introducing the basic principles for fitting models

of increasing order for the special case of M = Rn, we established the framework that was

then used for a generalization to Riemannian manifolds and, in particular, the Grassmann

manifold, as well as the manifold of diffeomorphisms.

From an application point of view, we have seen that quite different vision problems

can be solved within the same framework under minimal data preprocessing. We compared

our regression approaches to two alternative approaches in the literature. In comparison, we

achieved similar or better performance, while providing a unified formulation and straightfor-

ward implementation. Our approaches also scale better to larger problems, thereby allowing

for experiments on the traffic and the pedestrian data sets. While the presented applica-

tions are limited to shape analysis and surveillance video processing, our method should

be widely applicable to other problems on the Grassmann manifold, e.g ., domain adapta-

tion [Gong et al., 2012], facial pose regression, or the recently proposed domain evolution

problems [Rematas et al., 2013].
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Regarding the limitations of the proposed approach, we note that the issue of model

selection is critical. In fact, whether we should use Std-GGR, TW-GGR or CS-GGR highly

depends on our prior knowledge of the data. In shape regression, for instance such prior

knowledge is frequently available, since the medical / biological literature already provides

evidence for different growth and saturation effects as a function of age. For applications

where the prediction of the independent variable is of importance, e.g ., traffic or or crowd

surveillance, we additionally have computational constraints in many cases. Interestingly, a

simple geodesic curve as a model for regression can often provide sufficiently good perfor-

mance, as we observed in the crowd counting experiment. We hypothesize that this can be

explained, to some extent, by the fact that geodesic regression respects the geometry of the

underlying space. In this space, the relationship between the dependent and the independent

variable might be relatively simple to model. In contrast, approaches where video content is

represented by feature vectors and conventional regression approaches with standard kernels

are used, more flexible models might be needed. TW-GGR can serve as a hybrid solution

when we have prior knowledge about the data; however, samples throughout the range of the

independent variable are needed to avoid degenerate cases of the warping function, which

could be avoided via regularization.

Furthermore, the model criticism approach provides another alternative for model se-

lection. This approach provides complementary information to the existing measure(s) for

checking the goodness-of-fit for regression models, such as the customary R2 statistic. While

we developed the approach for the Grassmannian, the general principle can be extended to

other smooth manifolds, as long as one knows how to add the modeled noise into samples

and a positive definite kernel is available for the underlying manifold. Two important in-
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gredients of model criticism are the estimation of the parameters of the noise model on the

manifold (in our case Gaussian noise and therefore we estimate the standard deviation) and

the selection of the kernel. Exploring, in detail, the influence of the estimator and the kernel

and its parameters is left as future work.
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CHAPTER 4 : ESTIMATION OF A SPATIOTEMPORAL STATISTICAL

ATLAS

This chapter1 presents a method to build a spatiotemporal atlas, which not only includes

a summary representer but also retains variation information of the data distribution. This

is achieved by a weighted variant of the functional boxplot, which enables the use of kernel

regression to build spatiotemporal atlases. The method is applied to functions, shapes, and

images. To demonstrate how an atlas can robustly be augmented with statistical data,

the method has been tested in two applications: capturing changes in the pediatric airway

development and changes of the corpus callosum over time. Furthermore, an age-adapted

atlas can be used to score the severity of a child suffering from airway obstruction before

and after surgery. This quantitative assessment shows significant differences among normal

controls, pre- and post-surgery subjects.

In particular, Section 4.1 presents the strategy of using weighted functional boxplots

to construct a spatiotemporal atlas. Section 4.2 shows the effectiveness of the method in

comparison to pointwise analysis and its difference to the point distribution model. In Section

4.3, it demonstrates the applicability of the method to functions, shapes, and images, as well

as the use of the presented method for quantitative assessment in pediatric airways.

1The work presented in this chapter is based on previous papers [Hong et al., 2013a, Hong et al., 2013b,
Hong et al., 2014a].



4.1 Statistical Atlas Building

This section introduces a weighted variant of the functional boxplot and extends it for

use with kernel regression of functional data. We first cover the preliminaries on kernel

regression and later present the concept of weighted band-depth essential to defining the

weighted functional boxplot. This method is applicable to the analysis of function, shape,

and image populations to create non-parametric regression models with associated subject

characteristics. For example, we consider subject age and demonstrate the effectiveness

of weighted functional boxplots and kernel smoothing [Wand and Jones, 1994] to build a

spatiotemporal atlas.

4.1.1 Atlas Building with Kernel Regression

Given spatially aligned data objects we want to capture population changes, e.g., with

respect to age. Spatial alignment refers to a preprocessing step that transforms all data

objects to common coordinates for further analysis. The type of alignment depends on the

objectives of a particular study. For instance, this alignment may be a rigid transformation

when the statistical analysis needs to be performed modulo translations and rotations only.

An atlas with population changes can be built through kernel regression which assigns weights

to data-objects with respect to the regressor (say a desired age ā). For example, we can use

a Gaussian weighting function wi = f(ai;σ, ā) = ce−(ai−ā)2/2σ2
, where ai is the age of the

observation i, σ is the Gaussian standard deviation and c a normalization constant to assure

that the weights sum up to one.

Boundary bias. Kernel-based methods exhibit a bias near the boundary of the available

data. This is usually attributed to the asymmetric averaging of limited information at

the boundaries. Many solutions have been proposed to address this issue [Schuster, 1985,
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Jones, 1993, Marron and Ruppert, 1994]. If the target age for the atlas is located within

the interior part of the observed population, boundary effects can be ignored. However, for

studies involving models for growth, aging or memory decline, we often build atlases for very

young or very old subjects. This usually requires averaging kernel weights with respect to

an age near the boundary. In such models, to mitigate the boundary bias, we adjust the

weights around the boundaries based on the approach proposed in [Schuster, 1985], which

relies on adjustment through boundary reflection.

We assume observations are given in the age range [bl, bh]. We adjust weights for ob-

servations at the boundaries in kernel regression by folding using reflection. In particular,

given the kernel bandwidth, σ, and the location for each observation, ai, with respect to the

regression location, ā, the adjusted weights over the complete range are given as

wi = f(ai;σ, ā) =



c(g(ai) + g(2bl − ai)), ai ∈ [bl, bl + σ)

cg(ai), ai ∈ [bl + σ, bh − σ]

c(g(ai) + g(2bh − ai)), ai ∈ (bh − σ, bh].

(4.1)

Here g(·) denotes the Gaussian function, g(·;σ, ā), with the mean, ā, and the variance, σ2.

Bandwidth for kernel. An appropriate choice of the bandwidth, σ, for kernel regression

depends upon the application. In general, the bandwidth should be chosen based on the

expected variation in the data. A small bandwidth is able to express fast changes at the

potential cost of becoming noise-sensitive, whereas a bandwidth that is too large gives overly

smooth kernel regression results. A compromise can be achieved by selecting the bandwidth

through cross-validation based model selection procedures [Hardle and Marron, 1985]. We

will cover more details on how to choose σ in the experimental sections.
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Note that for scalar-valued data, the weights for regression can be used to define a

weighted mean. For kernel regression on deformations, these weights can be incorporated

during the atlas-building procedure, e.g., in atlas construction using images [Davis et al., 2010].

Our goal is to augment the atlas with statistical information about observations and hence

develop a weighted functional boxplot. The weighted functional boxplot will allow obtaining

a regressed median. The median will be one of the data-objects from the population, which

represents the center at the target age. We will further define the α central region, compute

the interquartile-range and the maximum non-outlying envelope, and detect outliers.

4.1.2 Weighted Functional Boxplots

The challenge in defining a functional boxplot is to develop a notion of ordering for the

space of functions. Once this ordering has been defined order statistics can be computed.

Hence, the equivalent to a scalar-valued boxplot which makes use of the median and per-

centiles of the data can be defined. [Sun and Genton, 2011] proposed an ordering of functions

based on the concept of band-depth. Essentially, band-depth measures how deeply a partic-

ular function is buried within all the other functions of the data population. The deepest

one is then declared the median curve. The band-depth itself is used to define the ordering

among functions. To define a weighted functional boxplot consistent with the functional box-

plot introduced by [Sun and Genton, 2011], it requires the definition of a consistent weighted

band depth for functional data.

Weighted band-depth. The functional boxplot is defined through the concept of band-

depth [López-Pintado and Romo, 2009, Sun and Genton, 2011]. Since in our case, each ob-

servation has a different weight, we first need to define a weighted band-depth. Such a

definition would naturally generalize the functional boxplot to its weighted variant.

88



To motivate our choice, assume we want to compute a standard weighted median of scalar

values. This is given by

µ∗ = argmin
µ

n∑
i=1

wi|xi − µ|, (4.2)

where µ is the sought-for median, n is the number of measurements, {xi} are the measure-

ments, and wi > 0 are weights for the individual measurements. Assume that all weights

are natural numbers, i.e., wi ∈ N+. This can be realized exactly for arbitrary rational, wi,

and in general by multiplying the energy with a suitable constant, which does not change

the minimizer. Hence, we replace the weighted problem with the equivalent unweighted

minimization problem

µ∗ = argmin
µ

n∑
i=1

mi∑
j=1

|xi − µ|, (4.3)

where the individual measurements are simply repeated based on their multiplicities, i.e.,

mi = wi.

Using a similar strategy, we can derive the weighted band-depth. The band-depth intro-

duced in [López-Pintado and Romo, 2009, Sun and Genton, 2011] is defined for a population

of n functions, yi (for i = 1 . . . n), defined on a domain I, where I is an interval in R. It is

a graph-based approach that computes the fraction of bands delimited by the subset of the

population containing the curve, y(x). In particular, it is defined as

BD(j)
n (y) =

1

C

∑
1≤i1<i2<···<ij≤n

I{G(y) ⊆ B(yi1 , · · · , yij)}. (4.4)

Here j is the number of observations used for defining the band, C is a normalization constant

equal to the number of admissible permutations. G(y) is the graph of the function, G(y) =

{(x, y(x)) : x ∈ I}. B is the band delimited by the observations given as its arguments. That

89



is, B(yi1 , · · · , yij) = {(x, y(x)) : x ∈ I,minr=i1,··· ,ij yr(x) ≤ y(x) ≤ maxr=i1,··· ,ij yr(x)}. I{·}

denotes the indicator function, which evaluates to 1 if the graph of the function is within

the band or to 0 otherwise.

Now we want to define a weighted variant of the above definition of band-depth. For

the weighted variant, say, we are now given a population of functions, yi, for i = 1 . . . n,

each with its associated weight, wi. Before we present the actual expression for weighted

band-depth, we first write its repeated version. We notice that, similar to the scalar case, we

could write the band-depth for this population of functions by repeating each observation as

per its given weight. The band-depth with repeats is then given as

BD
(j)
n (y) =

1

C ′

∑
1≤i1<i2<···<ij≤n

I{G(y) ⊆ B(yi1 , · · · , yij)},

s.t. {yi1 , · · · , yij} contains unique observations, (4.5)

where C ′ is the normalization constant representing admissible permutations adjusted for

repeats and n is the number of observations including the repeats. The {yi} contain the

original observations {yi} but with repeats, according to their respective multiplicity given by

their weights. The band with repeated observations is given as B(yi1 , · · · , yij) = {(x, y(x)) :

x ∈ I,minr=i1,··· ,ij yr(x) ≤ y(x) ≤ maxr=i1,··· ,ij yr(x)}. We made use of the fact that,

according to our definition, we only consider unique observations for the depth measure.

Finally, we define the weighted band-depth by rewriting the sampled band-depth as

WBD(j)
n (y) =

1∑
1≤i1<i2<···<ij≤nwi1wi2 · · ·wij

·

∑
1≤i1<i2<···<ij≤n

wi1wi2 · · ·wijI{G(y) ⊆ B(yi1 , · · · , yij)},
(4.6)
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which generalizes to non-natural-numbered weights wi ∈ R+. This is a natural way to

define a weighted band-depth and, in further consequence, a weighted functional boxplot.

Computing the weighted band-depth in this way is intuitive, as only bands with large weights

for all its individual observations have a large impact. Furthermore, this weighted version

can also be adapted to the modified band-depth proposed in [Sun and Genton, 2011], i.e.,

WMBD(j)
n (y) =

1∑
1≤i1<i2<...<ij≤nwi1wi2 · · ·wij

·

∑
1≤i1<i2<...<ij≤n

wi1wi2 · · ·wijλm{A(y; yi1 , ..., yij)}
(4.7)

where Aj(y) ≡ A(y; yi1 , ..., yij) ≡ {x ∈ I : minr=i1,...,ijyr(x) ≤ y(x) ≤ maxr=i1,...,ijyr(x)}, m

is the observation’s dimension, λm(y) = λ(Aj(y))/λ(I) and λ ∈ Rm is the Lebesgue measure.

With the above definitions, the band depths of all the sampled observations can be

calculated and ranked in descending order, y[1](x) ≥ ... ≥ y[n](x). Here, y[1](x) is the deepest

observation and regarded as a notion of the median of the population, whereas y[n](x) is the

“most outlying” observation which is a potential outlier.

α central region. The concept of the central region was introduced in [Liu et al., 1999].

We define the α central region for the weighted functional boxplot based on the weights of

the observations. The band of the α central region is delimited by the α proportion of all

weights, i.e., the accumulated weights of the first p̂ deepest observations.

We first compute the value of p̂ based on the weights by

p̂ = {p ∈ N+ :
∑

r=1,...,p−1

w[r] < α,
∑

r=1,...,p

w[r] ≥ α, and p ≤ n}, (4.8)

where w[r] corresponds to the weight for the r-th deepest observation and 0 ≤ α ≤ 1. Here,
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we assume that the weights are normalized so they sum up to one. Then the α central region

can be generated using these first p̂ observations through

WCRα = {(x, y(x)) : min
r=1,...,p̂

y[r](x) ≤ y(x) ≤ max
r=1,...,p̂

y[r](x)}. (4.9)

When α = 0.5, Eq. (4.9) corresponds to the 50% central region WCR0.5. In practice, the

50% central region is commonly chosen as the confidence region for analysis because it 1)

is a robust range for interpretation and 2) enables visualization of the data spread which is

less affected by outliers or extreme-values.

Outlier detection. In classical boxplots, the outliers can be detected by the 1.5 IQR

(interquartile range) [Frigge et al., 1989]. This is comparable to 1.5 times the corresponding

range of the 50% central region for the weighted functional boxplot. The weights of the

observations also need to be taken into consideration during the outlier detection. For a

Gaussian distribution, the IQR encompasses the most central 50% of the distribution and

the fence defined by 1.5 IQR covers 99.3% of the distribution. Therefore, we use this

threshold, 0.993, to find the first q̂ deepest observations that would be within the fences by

q̂ = {q ∈ N+ :
∑

r=1,...,q−1

w[r] < β,
∑

r=1,...,q

w[r] ≥ β, and q ≤ n}, (4.10)

where β = 0.993. The next step is to narrow the fences with the 1.5 IQR, so that the

fences defined in weighted functional boxplots are the combination of the fence defined by

the 1.5 IQR with the accumulated weights consistent with the 1.5 IQR of the normal

distribution:

Cfences = {(x, y(x)) : max(minr=1,...,q̂y[r](x),min(WCR0.5)− 1.5 ∗ IQR)∪

min(maxr=1,...,q̂y[r](x),max(WCR0.5) + 1.5 ∗ IQR)}.
(4.11)
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Any objects outside the fences defined by Cfences are flagged as outliers.

4.1.3 Implementation and Algorithm Complexity

In this section, we discuss how to implement our statistical atlas-building method based

on the weighted functional boxplots (see Algorithm 4), as well as the time complexity of

the algorithm. From the observations and their associated independent values, e.g., ages,

the algorithm generates a statistical atlas at a target age, which consists of the median,

the confidence region, the maximal non-outlying region, and the outliers. Details about

converting between the functional representation of the boxplot and shapes and images are

covered in Section 4.3.1.

Algorithm 4 Statistical atlas-building based on weighted functional boxplots

Input: {ai, yi}Ni=1 (N observations with ages), ā (the target age), J (the number of observations
for a band)
Output: y[1] (the median), WCRα (the α center region), Cfences (the fences of the atlas)
Choose the bandwidth σ and compute the weight wi for each yi with Gaussian function centered
at ā (Section 4.1.1).
for i := 1:N do

for j := 2:J do
Loop through all combinations, choosing j from N observations, and compute the weighted
band depth for yi using Eq. (4.6) or (4.7).

end for
end for
Sort {yi}Ni=1 based on the weighted band-depth in the decreasing order, y[1] ≥ · · · ≥ y[N ].
Compute WCRα and Cfences according to Section 4.1.2.

Since in practice J � n, the complexity of this algorithm is O(MNJ+1) where M is the

dimension of each observation and N is the number of the observations. We usually choose

J = 2 resulting in a time complexity of O(MN3).

For our experiments we use the weighted version of the modified band-depth, Eq. (4.7),

because it results in fewer depth ties compared to the unmodified band-depth. Note that as

we are dealing with a generalization of the median, continuity with respect to the regression
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Figure 4.1: (a) 20 observations generated based on Eq. (4.12) and colored by age. (b) The age
histogram of the observations.

variable (here, age) cannot be guaranteed. Assuming that the underlying data is continuous,

a “more continuous” behavior may be achieved using more and sufficiently dense sampled

data. In particular, we would expect that additional samples in sparsely sampled regions of

a dataset would result in solutions with less severe discontinuities.

4.2 Comparisons of Boxplots for Analysis

Synthetic data. We compare the atlases built by weighted functional boxplots and those

built by 1) weighted pointwise boxplots and 2) functional boxplots, using synthetic observa-

tions defined by

yi(x) = 500 ∗ (1 + sin(2πx+ 0.1πi)) + 2 ∗ agei, (4.12)

where x ∈ [0, 1], i ranges from 1 to 20 (i.e., we generate 20 observations for analysis, shown

in Fig. 4.1(a)), and agei is the simulated age corresponding to the ith spike in Fig. 4.1(b).

The age varies from 0 to 200 months, that is, bl = 0 and bh = 200.

4.2.1 Comparison with Weighted Pointwise Boxplots

The left image of Fig. 4.2 shows an atlas built with the weighted pointwise boxplot

including four typical percentiles and the pointwise median. The weights are computed
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Figure 4.2: Comparisons of the atlases built by the weighted pointwise boxplot (left) and the
weighted functional boxplot (right) on the synthetic data. The atlases are adapted to the age of
85 months. The median computed by the weighted pointwise boxplot is a pointwise median, and
the median computed by the weighted functional boxplots corresponds to an existing observation
at 85 months.

based on the Gaussian function in Section 4.1.1 with σ = 30 months. While the median

curve follows the overall population trend, it is not “close” to any of the observations because

weighted boxplots, applied in a pointwise manner to a population of functions, disregard the

spatial aspect of the functional data. In contrast, our method shown in the right image of

Fig. 4.2 1) provides a median curve which corresponds to a curve in the data set, i.e., the one

at the age of 85 months, and 2) allows for the detection of functional outliers (gray dashed

lines) which results in a more robust statistical description for the atlas.

4.2.2 Comparison with Functional Boxplots

To construct an atlas at a particular age using standard functional boxplots, we use a

uniform window to pick curves centered around the age of interest. As shown in Fig. 4.3, only

two curves are available in the uniform window for atlas-building with functional boxplots,

and one of them is flagged as an outlier. This atlas includes little information about the

population. However, the atlas built using the weighted functional boxplot (with a Gaussian

window size comparable to that of the uniform window used in the standard functional

boxplots according to [Marron and Nolan, 1988]) captures the population data much better

as it suffers less from the local data sparsity.
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Figure 4.3: Comparisons of atlases built by the functional boxplot (left) and the weighted functional
boxplot (right) on the synthetic data. The atlases are built at age 165 months and for both methods
the observation at 148 months is selected as the median curve.
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Figure 4.4: Comparison of the atlas age and the median age between the functional boxplot (FB,
the blue dashed line) and the weighted functional boxplot (WFB, the magenta dashed line). The
cyan dots show the ideal case, that is, a method has a better performance if it passes through more
cyan dots. The right image is a close-up view of the left one.

For further illustration, we build a set of atlases from the synthetic curves at the age

associated to each curve using functional boxplots and weighted functional boxplots. Each

age-matched atlas has a median curve, and ideally the age of the atlas matches with the

age of the median when the age of the population is evenly distributed, indicated by the

cyan dots in Fig. 4.4. For this synthetic dataset, we want to determine which one provides

a better approximation of the median age to the atlas age, the functional boxplot or the

weighted functional boxplot. As shown in Fig. 4.4, the magenta line estimated by the

weighted functional boxplot (WFB) is much smoother than the blue line estimated by the

functional boxplot (FB), and the magenta line is closest to most of the cyan dots, indicating

that the weighted functional boxplot has a better performance than the functional boxplot

for spatiotemporal atlas construction.

Table 4.1 provides quantitative measurements on the median ages computed by the func-
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FB WFB

Mean of relative errors 15.25% 13.99%

Equal to atlas ages 35% 50%

Closer to atlas ages∗ 5% 20%

Table 4.1: Comparison of the median ages estimated by functional boxplots (FB) and weighted
functional boxplots (WFB) on synthetic data. ∗This measure counts the frequency with which the
estimated median ages are closer to the true age for FB and WFB respectively. In 75% of the cases
the median ages from these two methods are identical.
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Figure 4.5: Comparison between the point distribution model (left) and the functional boxplot
(right) applied to 18 2D hand contours. Left: mean shape in red and shape variation along the first
mode for −3 standard deviations (blue) and for +3 standard deviations (green). Right: median
shape in red and 50% confidence region in gray.

tional boxplot and weighted functional boxplots with respect to the atlas ages. In particular,

we evaluate the relative age error, how frequently the methods return a median curve of ex-

actly the correct age and with what frequency the estimated median curve’s age is closer

to the real age for the functional versus the weighted functional boxplot. The weighted

functional boxplot outperforms the standard functional boxplot for all these measures.

4.2.3 Comparison with the Point Distribution Model

The point distribution model (PDM) [Cootes et al., 2004] is a powerful method to sta-

tistically describe shape variations. Shape variation is captured by computing a mean shape

and the principal shape variations around this mean through principal component analysis.

It is important to note that the objective of a PDM is different from that of the functional
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Figure 4.6: CT scans for a control subject (left, CRL04) and a subglottic stenosis patient (right,
SGS03). The zoomed-in part in the red circle shows the location of subglottic stenosis, the nar-
rowing of the airway.

boxplot. Whereas PDM is used to capture the major modes of shape variation through a

multi-variate Gaussian distribution, the functional boxplot is free of distributional assump-

tions as it is a form of order statistics. The functional boxplot is therefore robust to outliers

and readily allows for the computation of α-central regions, such as the interquartile range,

to quantify data variation.

To demonstrate the difference in behavior between the PDM and the functional box-

plot, Fig. 4.5 shows the shape variation of 18 2D hand outlines from [Cootes et al., 1995] as

captured through a PDM and the functional boxplot. The PDM readily allows for the visu-

alization of the principal modes of shape variation, whereas the functional boxplot provides

an intuitive way of looking at the spatial differences observable within for example the 50%

confidence region (see Section 4.3.1 for details on how to compute the confidence region).

Hence, both methods provide useful but complementary information.

4.3 Experimental Results

In this section we show example applications using the weighted functional boxplot. The

examples involve functions, shapes, and images.

Functions. Our first application is the construction of a pediatric airway atlas from
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Figure 4.8: Normal curves for pediatric airway atlas construction, which are registered based on the
following five landmarks: nasal spine, choana, epiglottis tip, true vocal cord (TVC) and tracheal
carina (from left to right). Zoomed-in: the sub-region from TVC to tracheal carina where the
subglottis is located.

normal subjects to assess airway obstruction (i.e. subglottic stenosis, SGS) [Daniel, 2006],

as shown in the computed tomography (CT) images in Fig. 4.6. The observations are

a population of 1D functions describing airway cross-sectional areas parameterized along

the centerline of the airway as shown in Fig. 4.8. These functions are generated from

3D CT data for 68 normal subjects using a simplified airway model [Hong et al., 2013b],

shown in Fig. 4.7. The functions are registered using a landmark-based spatial align-

ment [Ramsay and Silverman, 2005]. The alignment is based on five key anatomic land-

marks: nasal spine, choana, epiglottis tip, true vocal cord and tracheal carina. For each

landmark, there is a physical position on the centerline and a mean position of that land-

mark for all subjects. We estimate a warping function parameterized as a spline smoothly
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Figure 4.9: Examples of the corpus callosum shape (left) and the binary image of the corresponding
segmentation (right).

passing through pairs of physical and mean position for all landmarks for the registration of

the functions. We focus the analysis on the region between the true vocal cord (TVC) and

the tracheal carina where the subglottis is located, as shown in the right image of Fig. 4.8.

The 68 normal functions are used to build a normal control pediatric airway atlas to assess

19 SGS subjects pre- or/and post-surgery.

Shapes. The second application is to build a corpus callosum atlas and to explore its

shape changes with age. We use the same dataset in Section 3.3.4.

Images. The third application is to understand age-related changes of the corpus cal-

losum using binary images. The images are converted from the aligned corpus callosum

shapes, and one example is shown in the right image of Fig. 4.9.

4.3.1 Functional Representation of Shapes and Images

In our experiments, we treat shapes and images as functions by vectorizing the data.

After analysis, we convert the functional form back to the original representation of the

data objects. It is instructive to look at the effect of this vectorizing step in the context

of binary images which we use as an image-based method to represent shapes (contours).

In this case images represent shapes through indicator functions. Note that we discuss

curves in 2D in this work, but the principle extends to the representation of any closed data

objects, e.g., closed surfaces in 3D. Assume the shapes are represented by images through
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indicator functions 1Ii , where Ii is the set which indicates the interior of the shape Si, i.e.,

Ii = {x : x inside Si} and 1Ii(x) := 1 if x ∈ Ii and 0 otherwise. We can then write

intersections and unions of sets through the indicator functions as

1Si∩Sj
= min{1Si

,1Sj
} and 1Si∪Sj

= max{1Si
,1Sj
}. (4.13)

The band-depth defined in Section 4.1.2 is based on evaluating I{G(y) ⊆ B(y1, · · · , yi)}.
Applied to indicator functions this expression is equivalent to

I

{⋂
i

Syi
⊆ Sy ⊆

⋃
i

Syi

}
(4.14)

as the band B is constructed by taking the minima and maxima over all functions. For

the indicator functions the minimum and maximum operators correspond to the set inter-

sections and unions respectively (due to the associativity of set union and intersection).

Applying the functional boxplot to vectorized indicator functions of image-representing

shapes is therefore equivalent to the definition of contour boxplots proposed independently

by [Whitaker et al., 2013], unifying the two methods. [Whitaker et al., 2013] introduce con-

tour boxplots to quantify uncertainty in feature sets from simulation ensembles for example

obtained from fluid simulations. Our weighted functional boxplot can be interpreted as an

extension of the method [Whitaker et al., 2013] to weighted contour boxplots. That is, the

vectorization approach is quite natural in the context of indicator-function-based shape rep-

resentation. The relation for the contour-based representations is theoretically less clear.

However, our experiments indicate that in practice this method achieves similar results to

the indicator-function-based shape representation. Specifically, bands for shapes and images

are computed as follows:
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Figure 4.10: The functional bands (left), delimited by three corpus callosum shapes (the blue
contours), and their corresponding shape band (top right) and image band (bottom right).

Shape band. To compute the band for aligned shapes, taking the three blue curves in

the top right of Fig. 4.10 as an example, we first vectorize them to compute the functional

band, shown in the top left of Fig. 4.10. Then, for a 2D point on the shape, (p, q), its

variation is within the rectangular region with the diagonal given by the two points on the

band’s boundary, (min(p),min(q)) and (max(p),max(q)). For a 3D point, its variation is

within a rectangular solid. The union of these rectangular regions then forms the shape

band. With a sufficiently dense sampling of the functions, we obtain a smooth shape band

as illustrated in the top right of Fig. 4.10. This shape band contains all three curves.

Image band. Compared with the shape band, the image band is much easier to con-

struct. As discussed above for binary images, the standard functional boxplot theory can

be directly applied. Converting the obtained bands back to the image domain immediately

results in the desired image band. The image band can be constructed for non-binary images

in the same way. Fig. 4.10 (bottom) shows the functional band for three binary images of

corpora callosa on the left and the corresponding image band on the right.

Fig. 4.10 also shows that both shape and image bands are similar and correctly capture
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the range of the observations.

4.3.2 Comparison with Pointwise Boxplots

We compare the functional boxplot to the pointwise approach on real datasets to demon-

strate the advantages of our method. Fig. 4.11 shows the median (the black curve) and the

confidence region (the 50% central region, magenta) for both pointwise and functional box-

plots. We count the number of data objects inside the confidence region shown in Table 4.2:

for the pointwise boxplots only 12 (of 68) functions and none of the shapes or images are fully

within the confidence region. However, the functional boxplot, by construction, provides a

confidence region containing 50% of the data objects. We consider this a more intuitive

representation of true data-object variation. To construct the pointwise confidence regions

for shapes we locally compute distances with respect to the median point which establishes

an (unsigned) ordering. The confidence region is then the convex hull of the closest half

of the points. This strategy would extend to constructing approximate confidence regions

with respect to manifold embedding coordinates. Specifically, in the coordinate system after

manifold embedding, each observation is represented as a point and the median is defined

as the point with the minimal sum of the squared geodesic distances to other points on the

manifold. The confidence region can then be defined as the convex hull on the manifold

formed by half of the points with the closest geodesic distances to the median point. This is

conceptually similar to the way we construct shape bands.

4.3.3 Atlas Construction with Weighted Functional Boxplots

The weighted functional boxplot is used to build a pediatric airway atlas with a standard

deviation of σ = 24 months for the weighting function, and to build the corpus callosum
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Figure 4.11: Comparison between pointwise (top) and functional (bottom) boxplots on functions,
shapes and images. The black curve is the median and for the pointwise boxplots it is the pointwise
median. The magenta region is the 50% confidence region.

Functions Shapes Images

Pointwise boxplots 12/68 0/32 0/32

Functional boxplots 34/68 16/32 16/32

Table 4.2: The number of data objects inside the 50% central region for functions, shapes and
images in Fig. 4.11. The first number is the sum of the data objects inside the central region, and
the second number is the total number of observations.

shape/image atlases with σ = 10 years. This allows capturing large changes for both cases,

while keeping the changes to be smooth. For the pediatric airway application, the age

range varies from 0 to 200 months, that is, bl = 0 and bh = 200. For the corpus callosum

application, we set the age within (0, 100 years), that is, bl = 0 and bh = 100.

Pediatric airway atlas. Fig. 4.12 shows two pediatric airway atlases at different ages,

20 months and 180 months respectively. The pediatric airway atlases capture increases in

cross-sectional airway area with age which is consistent with the growth pattern for pediatric

airways and indicates the necessity of building an age-adapted atlas as a reference. Further-

more, in Table 4.3 we measure the difference of median ages estimated by functional boxplots

and weighted functional boxplots. Similar to Section 4.2.2, we build an age-matched atlas

for each control subject and use the age of the selected median subject for comparison. The

weighted functional boxplot leads to a smaller mean relative error and more median ages
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Figure 4.12: Age-adapted atlases for functions: pediatric airway atlases at 20 and 180 months
respectively. The two airway geometries correspond to the median subjects selected by the age-
matched atlases. The older atlas has a larger airway size compared to the younger atlas, indicating
the importance of building age-matched atlases.

FB WFB

Mean of relative errors 19.75% 15.05%

Equal to atlas ages 11.76% 7.35%

Closer to atlas ages∗ 20.59% 26.47%

Table 4.3: Comparison of the median ages estimated from the functional boxplot (FB) and the
weighted functional boxplot (WFB) on the pediatric airway dataset. ∗This counts the number
of the median ages that are closer to the atlas ages between functional boxplots and weighted
functional boxplots; 52.94% of the median ages from these two methods are equal.

are closer to the atlas ages. However, fewer median ages agree exactly with the atlas ages.

This is acceptable because the cross-sectional area of pediatric airways increases with age in

general while small variations may be caused, e.g., by measurement errors and difference in

true developmental age. Overall, the weighted functional boxplot performs well at building

the age-adapted pediatric airway atlas.

Corpus callosum atlas. In Fig. 4.13, we select atlases at age 37 and 79 years for both the

shape and the segmentation of corpus callosum to demonstrate atlas changes with respect

to age. The two corpus callosum atlases reveal the thinning in the shape and the decreasing

105



−25 0 25

−10

0

10

3

0 25 50 75 100
0

1

2

3

↓ 38 (median)

↑ 37 years

−25 0 25

−10

0

10

0 25 50 75 100
0

1

2

3

80 (median)        

         ↓

79 years ↑

↑

(a) Shapes of corpus callosum (b) Images of corpus callosum

Figure 4.13: Age-adapted atlases for shapes and images: corpus callosum atlases at 37 (top) and
79 (bottom) years respectively. Zoomed-in: the anterior (the splenium, on the right of the atlas)
and posterior (the genu, on the left of the atlas) portions of corpus callosum atlases. The atlases
at different ages, especially the zoomed-in parts, clearly show the thinning of the corpus callosum
with age.
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Figure 4.14: The median shapes of two corpus callosum atlases at different ages and the direction
of change of the corresponding points on the boundaries.

volume in the image with age, especially at the anterior (the splenium) and posterior (the

genu) portions consistent with [Driesen and Raz, 1995, Fletcher, 2011]. To further visualize

these changes, we overlap the median shapes of the corpus callosum atlases in Fig. 4.13,

and we display the directions of change for all corresponding points on the boundary in

Fig. 4.14. Most parts of the median shape, especially the anterior and posterior regions,

show the thinning of the corpus callosum with age.

4.3.4 Computational Cost for Building a Statistical Atlas

The algorithm is implemented in Matlab. All the experiments were run on an Intel R©

Xeon(R) CPU E5645 system with 2.4GHz. Table 4.4 shows the computation times for

building atlases from populations of observations with different numbers of datasets and
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Observations Computational

Size Number Cost (s)

Synthetic functions 101 1D points 20 0.024

Pediatric airway 169 1D points 68 0.50

Corpus callosum (shape) 64 2D points 32 0.34

Corpus callosum (image) 157× 456 pixels 32 29.56

Table 4.4: Computational cost of building an atlas based on the weighted functional boxplot.
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SGS07 Post−Surgery

Figure 4.15: Airway changes for two subjects, SGS03 and SGS07, pre- and post-surgery (cyan
dashed lines) compared to their age-matched atlases respectively. For each subject, the stenosis of
the airway is marked by the zoomed-in circle on the pre-surgery geometry and no visible stenosis
exists in the post-surgery geometry (the arrow in the right image indicates the subglottic area).

different numbers of 1D/2D points or pixels. Most experiments required less than one second

of runtime. The image case, while still reasonably fast, is as expected slowest because the

dataset size is largest. This computational time can be greatly reduced if we use the fast

algorithm presented in Chapter 5 to compute the band-depth for binary images.

4.3.5 Assessment with Statistical Atlas

Comparison Pre- and Post-Surgery. To test the utility of the statistical atlas built by

weighted functional boxplots we show the airway changes of two SGS subjects before and
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Figure 4.16: Airway changes for SGS01 and SGS04 pre- and post-surgery. For both subjects, before
surgery there is a tracheostomy tube in the airway. After surgery the subglottic stenosis is resolved.
Compared with the age-matched atlas almost all of the corresponding curve is within the maximal
non-outlying envelope, indicating a successful surgery.

after surgery compared to the age-matched normal control airway atlases. The subject shown

on the top of Fig. 4.15 is SGS03, a male who had two CT scans, one before surgery at 9

months and the other after surgery at 20 months. Fig. 4.15 shows another male (SGS07) who

had a CT scan before surgery at 6 months and another one after surgery at 15 months. Before

treatment, there was a constricted region outside the atlas for both children, corresponding

to the dip in the cross-sectional area curve and the zoomed-in circle of the geometry in both

cases. After treatment, the airway size increased and the corresponding curve is almost

entirely within the maximal non-outlying envelope of the atlas. Also there is no visible

stenosis in the geometry, indicating that the surgeries for these children were successful.

Fig. 4.16 show two additional children with subglottic stenosis. We can see the tra-

cheostomy tubes in the CT scans and the airway geometries. We do not compute the cross-

sectional areas for such cases, because their airways appear disconnected before surgery and

breathing is accomplished through the tracheostomy tubes. Minimal cross-sectional areas

are set to zero. After surgery, the airway cross-sectional areas greatly increase. For SGS01
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Figure 4.17: The scores for all subjects, including three groups, SGS pre-surgery, SGS post-surgery
and control subjects, based on the atlases built by weighted pointwise boxplots, functional boxplots,
and weighted functional boxplots (from left to right). The curves in different colors represent the
kernel density estimations for different groups. Note: the y-axis in the plots is a random height to
visualize the scores clearly.

only a small part of the corresponding curve is slightly outside the maximal non-outlying

envelope of the atlas, and for SGS04 its whole corresponding curve is totally inside the

maximal non-outlying envelope, indicating successful surgeries also for these two cases.

Quantitative Measurements

Definition of the scoring system. The Myer-Cotton grading system [Myer et al., 1994]

is commonly used in clinical diagnosis for estimating the severity of subglottic stenosis in

the pediatric upper airway. It describes the stenosis by the relative percentage reduction of

the cross-sectional area at the subglottis. In practice, this is determined by using different

sizes of endotracheal tubes. Similar to the Myer-Cotton system, we define a scoring system

based on the age-matched atlas to quantitatively measure the severity of subglottic stenosis

for the pediatric upper airway. Compared with the Myer-Cotton system, our measurement

is non-invasive and not limited by the size of the endotracheal tubes.

For each individual curve y, from TVC to tracheal carina, we build an atlas that is

adapted to the age of the corresponding subject, and we compare the curve y with the

minimal curve of the atlas, Clower fence, because this minimal curve can be considered the
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Two sample t-test

Weighted Functional Weighted

pointwise boxplots boxplots functional boxplots

Pre v.s. CRL 2.1e-07 1.4e-11 2.6e-11

Pre v.s. Post 1.7e-03 1.4e-03 5.2e-04

Pre v.s. Post&CRL 7.7e-07 1.7e-09 1.4e-09

Post v.s. CRL 9.6e-03 4.4e-05 9.7e-05

Wilcoxon rank sum test

Weighted Functional Weighted

pointwise boxplots boxplots functional boxplots

Pre v.s. CRL 7.2e-05 6.0e-05 5.6e-05

Pre v.s. Post 1.9e-03 1.1e-03 6.5e-04

Pre v.s. Post&CRL 8.2e-05 6.7e-05 5.7e-05

Post v.s. CRL 1.6e-03 9.9e-05 3.9e-04

Table 4.5: P-values of two types of tests on the scores for pediatric upper airways estimated based
on weighted pointwise boxplots, functional boxplots and weighted functional boxplots. Notes: Pre
represents the SGS pre-surgery group, Post represents the SGS post-surgery group, CRL represents
the normal control group, and Post&CRL represents the union of the SGS post-surgery and normal
control groups.

minimal cross-sectional area of a normal airway at that age. With the minimal curve as the

reference of the airway’s cross-sectional area, our scoring system is defined as:

Score(y) = min
x

((y(x)− Clower fence(x))/Clower fence(x)). (4.15)

If the whole curve y is above the minimal curve, the score will be non-negative; otherwise

it will be negative. Since all y(x) ≥ 0, the lower bound for the score is −1. While there is

no theoretical upper bound to this definition, the score will be upper-bounded in practice

by the largest observable cross-sectional areas for a given age. That is, the score of the

cross-sectional area curve for a pediatric upper airway is within [−1,∞), where −1 indicates

a fully closed airway with a zero cross-sectional area somewhere. A negative score indicates

a potential stenosis and a normal control subject usually has a non-negative score. Overall,
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the higher the score, the more normal the corresponding subject will be. Note that our

measurement is not directly comparable to the Myer-Cotton system, as the Myer-Cotton

system computes within-subject scores by estimating the cross-sectional area of what should

be considered a non-constricted airway. Our score on the other hand makes use of population

data contained in the normal control atlas to define what a minimum normal cross-sectional

area should be. Nevertheless, the two scoring systems can be made “roughly comparable”

by setting all positive atlas-derived scores to zero (indicating a healthy airway) and negating

all negative scores.

Scores for all subjects. Based on our scoring system, we score the pediatric upper airways

not only for SGS patients but also for the normal controls. The scores shown in Fig. 4.17 are

estimated based on the atlases built by weighted pointwise boxplots, functional boxplots, and

weighted functional boxplots. The subjects shown in the plots include 68 normal controls

and 17 SGS patients (6 pre-surgery, 11 post-surgery). Among the total 19 SGS patients

two subjects that have completely obstructed airways are directly scored as −1 and are not

shown in Fig. 4.17. Within the 11 post-surgery subjects, some of them have no stenoses

after surgery, others show improvement in the airway but still exhibit slight stenoses.

To verify whether there is a statistically significant score difference among groups, we use

two types of hypothesis tests, the two sample t-test [Snedecor and Cochran, 1989] with the

normal distribution assumption for samples and the Wilcoxon rank sum test [Siegel, 1956],

a non-parametric statistical hypothesis test for populations that cannot be assumed to be

normally distributed. Table 4.5 shows the testing results among the following three groups:

SGS pre-surgery, SGS post-surgery, and control subjects. We use three different analysis

approaches: weighted pointwise boxplots, functional boxplots, and weighted functional box-
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plots. In each test between two groups the smallest p-value is in highlighted boldface in

Table 4.5. Overall, the results suggest that the weighted functional boxplot is superior to

the standard functional boxplot and the weighted pointwise boxplot in separating the SGS

pre-surgery subjects from the SGS post-surgery subjects or/and the normal controls, though

all results are highly statistically significant. Note that it is not obvious that post-surgery

and normal control subjects should be well distinguishable as a successful surgery should

result in a post-surgery airway which should be close to normal.

A closer look at the scores resulting from the three different analysis methods reveals that

the scores for the weighted pointwise boxplot (shown in Fig. 4.17(left)) mix the SGS post-

surgery subjects with the normal controls. While this could be desired, as a successful surgery

should result in a more “normal-looking” airway, more importantly the weighted pointwise

boxplot assigns negative weights to some of the normal controls. This suggests potential

stenoses in the control airways and conflicts with the definition of our scoring system. This

negative score effect for normal controls is not present for the weighted functional analysis

approach, but it also appears when using the un-weighted functional analysis (see details

below). This suggests that the weighted functional analysis is more appropriate for this

application.

Considering the scores of the functional boxplot (Fig. 4.17 (middle)), there are two normal

control subjects scored with negative values: CRL32 and CRL102, whose curves and age-

matched atlases are shown in Fig. 4.18. For these two subjects, parts of their curves are

below the atlases built by the functional boxplot. The age of CRL32 is 8 months which

is near the lower age boundary with limited information for atlas-building, and CRL102 is

at the age of 182 months and therefore suffering from local data sparsity in our current
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Figure 4.18: Two control subjects, represented by colored dashed curves and their age-matched
atlases. The curves obtain negative scores when using the functional boxplot and non-negative
scores when using the weighted functional boxplot.

dataset. Compared with the functional boxplot, the weighted functional boxplot shows

better performance given the limited data information and the local data sparsity as also

shown in Section 4.2. The curves for these two subjects are fully within the atlases built

by weighted functional boxplots and scored with non-negative values, as shown in the right

column of Fig. 4.18.

Score comparison of pre- and/or post-surgery. Table 4.6 shows the scores for SGS

subjects using weighted pointwise boxplots, functional boxplots, and weighted functional

boxplots, and it compares them with the clinical diagnosis based on the Myer-Cotton grad-

ing system. The scores computed using our scoring system are converted to be roughly

comparable to the corresponding Myer-Cotton values as described in Section 4.3.5. Scores

that are outside of the ±20% deviation of the clinical diagnosis and that are zero for sub-

jects with stenoses or non-zero for subjects without stenoses are shown in boldface. Table 4.6

shows that the weighted pointwise boxplot frequently gives results which are not what would
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Patient Id Surgery Myer-Cotton WPB FB WFB

SGS03 Pre 80-90% 86.0% 85.6% 85.6%

SGS07 Pre 85% 77.4% 74.5% 74.5%

SGS11 Pre 50% 59.2% 54.8% 54.8%

SGS12 Pre 70% 70% 70% 68.7%

SGS13 Pre 60-70% 9.9% 37.8% 34.0%

SGS18 Pre 60-70% 69.2% 69.2% 68.8%

SGS03 V3 Post 0% 0.3% 1.1% 0%

SGS05 Post 0% 0% 0% 0%

SGS06 Post 40-50% 0% 35.1% 13.9%

SGS08 Post 0% 0% 0% 0%

SGS09 Post 50% 19.6% 59.1% 57.8%

SGS10 Post grade I 0% 39.9% 27.6%

SGS14 Post 50% 0% 26.1% 0%

SGS17 Post 0% 16.3% 0% 0%

SGS07 V3 Post 30% 14.5% 9.3% 9.3%

SGS04 V3 Post grade I: 10% 0% 5.6% 0%

SGS01 V3 Post 15-20% 31.4% 30.2% 29.6%

Table 4.6: Comparison of the scores for SGS subjects using three different methods with the clinical
diagnosis based on the Myer-Cotton grading system. Notes: Weighted pointwise boxplots (WPB),
functional boxplots (FB), and weighted functional boxplots (WFB). The scores are converted based
on the correspondence between our scoring system and the Myer-Cotton system in Section 4.3.5.
Grade I represents an obstruction within (0% - 50%].

be expected from the Myer-Cotton scores. The scores based on the functional boxplot and

the weighted functional boxplot both give results which are more comparable to the Myer-

Cotton scoring.

To further reveal the differences between functional boxplots and weighted functional

boxplots, we quantitatively compare the four SGS subjects pre- and post-surgery shown

before in Section 4.3.5. In general, as shown in Fig. 4.19 the scores of these four subjects

increase after surgery for both methods, which indicates that all subjects’ airways improved

from the surgeries.

Classification of Control and SGS subjects. To demonstrate the classification accuracy
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Figure 4.19: Quantitative comparison of the scores for four SGS subjects before and after surgery
using functional boxplots and weighted functional boxplots for atlas-building.

Pre (P) Pre (P) Pre (P)

vs. CRL (N) vs. Post (N) vs. Post&CRL (N)

TP = 5 FP = 1 TP = 5 FP = 0 TP = 5 FP = 2

Weighted FN = 1 TN = 67 FN = 1 TN = 11 FN = 1 TN = 77

pointwise TPR = 0.83, FPR = 0.01 TPR = 0.83, FPR = 0.0 TPR = 0.83, FPR = 0.03

boxplots PPV= 0.83, ACC = 0.97 PPV = 1.0, ACC = 0.94 PPV = 0.71, ACC = 0.96

TP = 6 FP = 2 TP = 5 FP = 1 TP = 5 FP = 8

Functional FN = 0 TN = 66 FN = 1 TN = 10 FN = 1 TN = 71

boxplots TPR = 1.0, FPR = 0.03 TPR = 0.83, FPR = 0.09 TPR = 0.83, FPR = 0.10

PPV= 0.75, ACC = 0.97 PPV = 0.83, ACC = 0.88 PPV = 0.38, ACC = 0.89

TP = 6 FP = 0 TP = 5 FP = 1 TP = 6 FP = 3

Weighted FN = 0 TN = 68 FN = 1 TN = 10 FN = 0 TN = 76

functional TPR = 1.0, FPR = 0.0 TPR = 0.83, FPR = 0.09 TPR = 1.0, FPR = 0.04

boxplots PPV=1.0, ACC = 1.0 PPV = 0.83, ACC = 0.88 PPV = 0.67, ACC = 0.96

Table 4.7: The confusion matrices among groups: SGS pre-surgery (Pre), SGS post-surgery (Post),
and control (CRL). Notes: P (positive), N (negative), TP (true positive), FP (false positive), FN
(false negative), TN (true negative), TPR (true positive rate), FPR (false positive rate), PPV
(positive predictive value), and ACC (accuracy).

for separating SGS pre-surgery subjects from SGS post-surgery and/or control subjects we

compute the confusion matrices [Provost and Kohavi, 1998] based on the scores estimated

from weighted pointwise boxplots, functional boxplots and weighted functional boxplots,

as shown in Table 4.7. We label the SGS pre-surgery subjects as positive (P), and we la-

bel both SGS post-surgery and control subjects as negative (N). We repeatedly take one

subject out for testing (i.e., leave-one-patient-out) and trained a Support Vector Machine

(SVM) [Cortes and Vapnik, 1995] on the data from the remaining subjects. We use a linear
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SVM for our experiments. For the confusion matrices, we calculate the numbers of true

positive (TP), true negative (TN), false positive (FP), false negative (FN) instances. Be-

sides, we use the true positive rate (TPR = TP/(TP+FN)), the false positive rate (FPR

= FP/(FP+TN)), the positive predictive value (PPV = TP/(TP+FP)), and the accuracy

(ACC = (TP + TN)/(P+N)) to further assess the performance of the classification between

SGS pre-surgery subjects and others.

In the classification between SGS pre-surgery and control subjects, for weighted pointwise

boxplots one SGS pre-surgery subject is regarded as a normal control and one control subject

is regarded as pre-surgery; for functional boxplots there are two false positive subjects, which

means two children test positive but actually do not have subglottic stenoses. In contrast, the

weighted functional boxplot result shows no false positives or false negatives and yields 100%

classification accuracy. In the classification between SGS pre- and post-surgery subjects, the

weighted pointwise boxplot has one misclassified subject, and both functional boxplots and

weighted functional boxplots have one false positive and one false negative. The misclassified

cases will be discussed in detail in the next section. The accuracy of classifying the pre- and

post-surgery subjects using the weighted functional boxplot is about 88%. If we combine the

SGS post-surgery subjects with the normal controls, the accuracy of the weighted functional

boxplot increases to about 96%, which is higher than that of the functional boxplot.

It is important to note that no fully conclusive statements can be made based on the

presented classification results. While Table 4.7 indicates better prediction performance

when using WFBs, further tests with larger sample sizes are needed to substantiate our

claims.

Discussion of SGS outliers. Based on the above discussion, the scores computed from
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Figure 4.20: Three outliers in Fig. 4.17 for both functional boxplots and weighted functional box-
plots. (a) SGS09 is post-surgery while having a low score more consistent with a pre-surgery sub-
ject; (b) SGS13 is pre-surgery while mixed into the post-surgery group; (c) SGS08 is post-surgery
appearing as a normal control subject consistent with near normal post-operative airway.

weighted functional boxplots can be used to roughly divide the pediatric upper airways into

three different groups: the SGS pre-surgery group (score in [-1, -0.5)), the SGS post-surgery

group (score in [-0.5, 0)), and the normal control group with a score larger or equal to zero.

In this classification, three representative subjects should be discussed. Namely, SGS09,

SGS13 and SGS08, which are shown in Fig. 4.20 together with their cross-sectional area

curves in the age-matched atlases and their airway geometries.

SGS09 shown in Fig. 4.20(a) corresponds to the false positive subject in the confusion

matrix of the weighted functional boxplot in Table 4.7. This subject is post-surgery with a

50% airway obstruction based on the clinical diagnosis. From the cross-sectional area curve

and the zoomed-in part of the geometry we can clearly see the subglottic stenosis with a score

of −57.8%, thus resulting in being classified as a SGS pre-surgery case, which is sensible.

SGS13 is a pre-surgery subject and according to the clinical diagnosis has a 60 − 70%

obstruction in the airway. From Fig. 4.20(b), we see two stenoses in the airway, as confirmed

by the surgeon. However, because of its score, −34.0%, it is the false negative subject in

the confusion matrix of the weighted functional boxplot in Table 4.7 and it is classified as

belonging to the SGS post-surgery group.

The last case, SGS08, is post-surgery and has a very high score of 60.5%, indicating

a normal subject. As shown in Fig. 4.20(c), it has a comparable airway size to the atlas
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and its airway geometry also indicates no stenosis existing in the airway. This subject is

confirmed by the surgeon as near normal caliber airway and hence could also be sensibly

classified as normal. This case suggests that our scoring system can reliably be used to assess

abnormalities in pediatric upper airways.

4.4 Conclusion

In this chapter a method was proposed to compute weighted functional boxplots and

used for building spatiotemporal atlas. It was applied to construct a pediatric airway atlas

to assess children with subglottic stenosis and to construct a corpus callosum atlas capturing

the impact of aging. Also, a scoring system was defined for pediatric airways based on the

statistical atlas to quantitatively measure the severity of subglottic stenosis in children. The

proposed method is general and easy to compute, and it allows robust statistical description

of functional, shape, and image data.
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CHAPTER 5 : STATISTICS OF GROUP DIFFERENCES

This chapter1 presents two statistical analysis approaches to identify group-level shape

differences for both cross-sectional and longitudinal data. In particular, a new method is

proposed for cross-sectional data, which is based on the ordering of shapes using band-depth,

as discussed in Section 5.1. This band-depth is used to non-parametrically define a global

depth for a shape, which allows globally quantifying differences. Using the depth-ordering of

shapes also allows the detection of localized shape differences. For longitudinal data studied

in Section 5.2, the presented method further considers the within-subject correlation that is

ignored in the cross-sectional data, and it introduces shape trajectories that summarize shape

variations for testing group differences. A generalized Bhattacharyya distance is presented

to study statistical differences in two distributions of trajectories. This not only allows

considering second-order statistics, but also it serves as the test-statistic during hypothesis

testing. Both methods are tested on synthetic and real data.

5.1 Shape Analysis for Cross-Sectional Data

Analyzing and comparing three-dimensional brain structures or objects in general can be

as simple as comparing volumes. While informative, such a global measure cannot fully de-

scribe the changes between objects. Shape analysis approaches have been proposed to assess

object properties beyond global volume and to characterize shape variations across subjects

1The work presented in this chapter is based on previous papers [Hong et al., 2014b, Hong et al., 2015a,
Hong et al., 2015c].
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(a) Point distribution model (PDM) (b) Depth-ordering model (DOM)

Figure 5.1: Comparison between two types of models for capturing shape variations. The three
shapes in PDM (a) correspond to the mean and varying shapes along the first mode at ±3 standard
deviations. In DOM (b), the red shape is the median of the shape population and the grey area is
the region covered by 50% of the shapes at the top ranking list of the populations, similar to the
inter-quartile range (IQR) for scalar values visualized as part of a box-plot.

and between subject populations (cf . [Nitzken et al., 2014]). For instance, many shape anal-

ysis methods are based on the classical point distribution model (PDM) [Cootes et al., 2004],

which captures shape variations by computing a mean shape and the major modes around

the mean of corresponding points in a set of shapes as illustrated in Fig. 5.1(a). The PDM

assumes a Gaussian distribution of the points around the mean shape.

In contrast, shape characterizations built on concepts of order statistics have been ex-

plored recently [Whitaker et al., 2013, Hong et al., 2013a, Hong et al., 2014a], as discussed

in Chapter 4. These methods utilize depth-ordering of shapes to generalize order statistics,

for example, the median and the inter-quartile range (IQR), to shapes, effectively obtain-

ing the equivalent of a box-plot for shapes. Fig. 5.1(b) illustrates the depth-ordering model

(DOM). Using shape-descriptions based on depth-ordering makes it possible to perform shape

analysis without making strong distributional assumptions. While these approaches focus

on using DOM to analyze shape variations within one population, in this chapter we address

the challenge of differentiating subject populations, for example subjects with a disorder

versus normal controls, based on the depth-ordering model.
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Figure 5.2: Overview of the depth-ordering-based shape analysis. Based on the depth and the
ordering of a shape population, statistical tests are defined to globally separate control and disease
groups using global analysis with a scalar value (depth) for each shape. Statistical difference
for global analysis results can be established through permutation testing. Equivalently, local
shape differences can be detected using local analysis with a corresponding local permutation
test, resulting in p-values on the surface of a shape to establish local shape differences between
populations. The directionality of the shape differences (inflation versus deflation) can also be
determined.

Existing methods for population-based shape analysis can be roughly subdivided into

two categories: methods for global analysis and methods for local analysis. Global analysis

methods are designed to detect whether population shape differences exist [Loncaric, 1998,

Reuter et al., 2009, Wachinger et al., 2014], but they generally cannot locate or characterize

these shape differences. This limits interpretability of results and consequentially insights

into the underlying biological processes. The main attraction of such methods is that they

often avoid establishing dense correspondences between shapes through registration. In

contrast, local analysis methods require some form of point-to-point correspondence between

shapes to allow precise local shape analysis. Establishing these correspondences is highly non-

trivial and arguably one of the main sources of inaccuracy, because any misregistration may

create artifacts in the final shape analysis results. Nevertheless, a variety of methods for local

shape analysis have been proposed and successfully used [Miller, 2004, Davies et al., 2008,

Cates et al., 2008, Chung et al., 2008, Hosseinbor et al., 2014]. Shape representations that

fit an a-priori model to the data have also been used successfully, although they still need

to establish some form of one-to-one correspondence via model fitting [Styner et al., 2004,

Yushkevich and Zhang, 2013].
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The work presented in this section aims to explore a new method that allows for both

global and local shape analyses, and the method would only need limited (e.g., rigid or affine)

spatial alignment of shapes. This is achieved by using the notion of band-depth in statistics

[López-Pintado and Romo, 2009, Hong et al., 2013a], which provides a notion of centrality

of a shape with respect to a reference dataset. The deeper the shape the more similar it is to

all other shapes in the dataset. We use this notion to detect small morphometric differences

between two populations of neuroanatomical structures. Fig. 5.2 shows the general principle

of the approach. First, shapes are depth-ordered with respect to a reference dataset. We then

define a global statistical test directly on the shape depth, as well as a local statistical test

to assess local shape differences. This method is free from strong distributional assumptions

by using principles from non-parametric order-statistics.

5.1.1 Depth-Ordering of Shapes

Generalizing concepts from order-statistics to shape analysis faces the challenge that

there is no canonical ordering of shapes. To define such an ordering we can use the concept

of band-depth and ordering of functions and extend it to shapes, as discussed in Section

4.3.1. The intuition of ordering functions based on band-depth is that the deeper a function

is buried within a dataset the more central it is. The deepest function corresponds to

the within-sample median function. Once defined, this ordering can be used to generalize

traditional order statistics, such as the median or the inter-quartile range, to functions.

What makes band-depth attractive for shape-ordering is that shapes can be represented by

indicator functions, i.e., by binary functions that are 1 inside and 0 outside of a shape.

Despite its conceptual simplicity, one of the main limitations of band-depth is its com-

putational complexity. As we discussed in Section 4.1.3, the time complexity of functional
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Figure 5.3: Illustration of the computational complexity of band-depth calculation for all observa-
tions. The computational complexity of the original algorithm is cubic, and our algorithm reduces
it to linear, with respect to the number of observations.

boxplots is O(pnJ+1), where p is the dimension of each observation, n is the number of

the observations, and J is the number of observations used to define the band. Take

J = 2 for example, that is, the band is defined by two observations2. The original al-

gorithm [Sun and Genton, 2011] has O(pn3) complexity for computing band-depth for all

observations, as illustrated in Fig. 5.3(a). This makes this algorithm unsuitable for large

numbers of functions. To allow for faster computations recently a fast method to compute

band-depth has been proposed [Sun et al., 2012]. This method is based on computing local

curve ranks and requires sorting of values from all curves at the same position. The algorithm

uses a rank list to compute the frequency with which one point of a curve is contained by

other curves at the same location. However, the proposed algorithm is ill-suited for binary

shape representations as it does not consider ranking ties during sorting, which frequently

appear when sorting binary values. Fig. 5.3(b) illustrates this ranking approach.

We observed that for binary representations sorting can be avoided, as at any location

only two values are possible, that is, no sorting but simple addition and subtraction is

2Due to computational complexity this is typically how band-depth is evaluated, because choosing J > 2
results in even higher computational costs.
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enough to measure whether a point of a shape is contained by the band formed by shapes

of a population at that location. In this work we use this binary function representation

to compare shape populations. To improve the computational efficiency of our model, we

propose a novel fast algorithm to compute the band-depth of shapes represented by binary

maps. Most importantly we demonstrate how band-depth can be used to provide both global

and local statistical tests to differentiate between shape populations.

Given a set of n shapes represented as 3D binary volumes, {Y1,Y2, ...,Yn}, with dimen-

sion of (sx, sy, sz), we vectorize them into binary vectors yi ∈ {0, 1}p (1 ≤ i ≤ n), where

p = sx × sy × sz. The computation of modified band-depth (MBD, see Section 4.1.2) can

then be accomplished efficiently for J = 2 using our algorithm as follows:

S0) Given n binary volumes, {Yi}ni=1, vectorize them: yi ∈ {0, 1}p, p is the number of

voxels in a binary volume.

S1) At each location of a volume, k (1 ≤ k ≤ p), for a given value v(k) ∈ {0, 1}, we count

the number of functions that have a value larger (na), smaller (nb) or equal (nt) to

v(k):

a) if v(k) = 0, then na =
∑n

i=1 yi(k), nb = 0, and nt = n− na − 1;

b) if v(k) = 1, then na = 0, nb =
∑n

i=1(1− yi(k)), and nt = n− nb − 1.

This procedure allows evaluating how often a voxel of a volume is larger (or smaller)

than voxels of other volumes at the same location.

S2) Based on the numbers na and nb defined in step S1, we can calculate the number of

bands containing v(k), for example, from yi. First, let B be a band such that yi is

not one of its observations, and its bounds at k are denoted as bmin and bmax. For
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J = 2, we have the following possible scenarios, i.e., the combinations of possible B

that contain v(k):

a) bmin < v(k) < bmax (nanb such combinations),

b) bmin = v(k) and v(k) < bmax (nant such combinations),

c) bmin < v(k) and v(k) = bmax (nbnt such combinations),

d) bmin = v(k) and v(k) = bmax (nt(nt − 1)/2 such combinations).

In addition, we have to account for bands that have yi as one of its observations. There

are n−1 such bands. By collecting all combinations the total number of bands (J = 2)

containing the value v(k) is:

Ck(v(k)) = nanb + nant + nbnt + nt(nt − 1)/2 + (n− 1) .

For binary functions na and nb cannot simultaneously be different from zero, which

simplifies the expression to

Ck(v(k)) = (na + nb)nt + nt(nt − 1)/2 + n− 1 .

The above equation provides us with the number of times a voxel of a volume is

contained by voxels of any two volumes at the same location.

S3) The modified band-depth for a shape yi is then

MBD(yi) =
1

p

(
n

2

)−1 p∑
k=1

Ck(yi(k)) ,

where the notation Ck(yi(k)) denotes computing Ck in step S2 based on the coefficients

na, nb, nt given by the value of yi at location k.

We can connect this special case scenario to the original MBD definition. In particular,

125



the MBD definition in [Sun and Genton, 2011] is

MBDn,J(y) =
J∑
j=2

MBD(j)
n (y), and

MBD(j)
n (y) =

1

C

∑
1≤i1<i2<...<ij≤n

λp{A(y; yi1 , ..., yij)} ,

where Aj(y) ≡ A(y; yi1 , ..., yij) and Aj(y) ≡ {x ∈ I : minr=i1,...,ijyr(x) ≤ y(x) ≤

maxr=i1,...,ijyr(x)}, λp(y) = λ(Aj(y))/λ(I), λ is the Lebesgue measure on Rp and p is the

observation’s dimension, i.e., the number of voxels in a binary represented shape. First,

for bands made of two observations we have J = 2 and thus C =
(
n
2

)
. Second, for vol-

umes of size p, we have λ(I) = p. Finally, for binary volumes
∑

1≤i1<i2<···<ij≤n λ(Aj(yi))

is equivalent to
∑p

k=1Ck(yi(k)).

This algorithm computes MBD of all shapes in a population at the same time, not

sequentially. Compared to the original band-depth algorithm our computational complexity

is reduced from O(pn3) to O(pn), as shown in Fig. 5.3. This makes it possible to compute

band-depth for large populations and large multi-dimensional shapes.

Note that, when choosing two shapes from a population to define a band, we do not

exclude the one that is being evaluated from the admissible permutations of the population.

Instead, all the shapes in the population will be considered to define the bands. So, in the

algorithm the number of observations is n, i.e., the number of shapes in a population. One

can also exclude the current shape and compute its depth value with respect to a population

of the remaining shapes. This will not change the ranking because the current shape is always

contained within the band formed by shapes including itself, resulting in the same constant

difference in the depth value of each shape, compared to using n shapes as a population.
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Figure 5.4: Illustration of global shape analysis. A group of control subjects is chosen as a training
set, and the band-depth of each test shape from control or disease groups, is computed with
respect to the training set. The boxplots on the right show that in general the control group would
have larger depths than the disease group if control subjects are selected as the reference/training
population.

5.1.2 Statistics Using Depth-Ordering

Band-depth computed in Section 5.1.1 can measure the relationship between a shape and

a reference population. A higher value indicates the shape is closer to the median of the

reference population, and a lower one indicates the shape is a potential outlier with respect

to the reference population. Based on this property of band-depth we can perform global

shape analysis as described in Section 5.1.2 as well as local shape analysis as described

in Section 5.1.2. For all these analyses we assume that shapes have been pre-aligned as

appropriate. Typically, this will either involve a rigid, similarity or affine alignment of

shapes to a given template or to a template obtained by some form of unbiased atlas-building

method. The choice of transform will depend on the objective of a given study. For example,

if size differences should be included, rigid alignment would be appropriate.

The key ingredient to performing statistics using depth-ordering is to compute depth-

ordering with respect to a reference population of shapes that are used as a non-parametric
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Figure 5.5: Global shape analysis on synthetic data using band-depth computed with (a) and with-
out (b) a training population. The training population allows detection of global shape differences.

model of shapes. In particular, while band-depth would typically be computed for each

shape of a population with respect to all the shapes, in our definition of statistical tests

we will make use of a reference population to which other shapes are compared, one at a

time. Intuitively, one establishes a reference population (for example a population of normal

control subjects) and then for another given shape not part of this population, one tests how

deep this shape would be buried with respect to the reference. Note that if a new subject

is added into the reference population, the band-depth of each shape should be recomputed

with respect to the new reference population.

Global Shape Analysis

The goal of global shape analysis is to establish if there are shape differences between

two different groups. To this end we assign a scalar description of shape, here a measure of

depth, to each shape. Given a dataset {Ri} containing a training population of shapes, we

compute the band-depth for a given datum D, from a set of input test shapes {Dj}. We first

compute the band-depth for all the data in a population of {Ri}
⋃
D using the algorithm

described in Section 5.1.1, and then we assign the resulting band-depth of D to the datum

D, denoted as BD(D; {Ri}), as illustrated in Fig. 5.4. A larger depth value indicates the test
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shape being closer to the training set. Typically, we choose a subgroup of control subjects

as the training population, so in general, the control test set would have larger depths than

the disease one.

In the proposed method the training population forms a “yard-stick” by which to judge

data-depth. This is substantially different from directly computing the band-depths for the

full dataset {Dj}, which would be problematic. Most easily this effect is illustrated by

considering scalar-valued data of two groups with the same variance but strongly different

means. The most central element (the median) in such a case would be half-way between

the means. This median element will have the largest band-depth. Band-depth will de-

crease moving away from this median element towards smaller and larger elements. Hence,

the groups would become indistinguishable even though they are clearly different. Equally

problematic would be to compute band-depth separately for both groups in which case they

cannot be meaningfully compared directly as the band-depth values become relative to each

group. To illustrate this effect Fig.5.5 shows the results of the proposed approach using a ref-

erence population and the approach using separate band-depth computations for the groups

of the synthetic striatum data described in detail in Section 5.1.4. Our proposed approach

using a reference group can clearly differentiate the populations whereas a computation of

the band-depth without a reference group is not successful.

Permutation test. To measure if global shape differences are statistically significant be-

tween control and disease groups, we use a permutation test on the mean depth of the control

group versus that of the disease group. The null hypothesis of the permutation test is that

both the control and the disease groups have the same mean depth with respect to the train-

ing group. Specifically, since the depth of each test shape has been computed with respect to
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Functions Shapes 

Figure 5.6: Illustration of the median and α-central region. The median function / shape (red)
is the most central one of a population, and the α-central region (grey) is the band delimited by
the α proportion of the deepest functions/shapes. For example, the grey region is the 0.6-central
region because it is built by three out of five functions/shapes.

the training group, we first compute the mean depth difference between the control test group

and the disease test group with no permutation. Then, in each permutation we exchange

the subjects in the two test groups and compute the mean depth difference between the two

permuted test groups3. We count the number of times that the mean depth difference is

larger than the one computed without permutation, and the proportion of larger values to

the total number of values is the associated p-value. We test for statistical significance at a

level of 0.05, i.e., we declare the statistical significance for a p-value ≤ 0.05.

Local shape analysis

For the local shape analysis the goal is not only to establish whether there are shape

differences, but also where these shape differences occur. To better understand the local

analysis, we first introduce its key ingredient, the α-central region as shown in Fig. 5.6,

which allows us to define a local shape analysis approach using depth-ordering. Specifically,

based on the ordering of shapes, we can not only compute the median shape, the most

central shape of a population, but also α-central regions (0 < α ≤ 1), similar to for example

3Since the permutation is performed between test groups and there is no change in the training group,
the depth value of each test subject will keep unchanged during this process. Hence, we do not need to
recompute their band-depth values.
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the inter-quartile-range (IQR) for scalar-valued cases. The band of the α-central region is

delimited by the α proportion of the deepest shapes in the ranking list, which is defined as

CRα = {B(y[1], y[2], ..., y[q]), q = dαne} , (5.1)

where y[1], ..., y[q] (q ≥ 1) denote the ordered shapes, from the deepest one to the qth-deepest

one, B(·) is the band as defined in Section 5.1.1. The grey band shown in Fig. 5.6 illustrates

a central region with α equal to 0.6, because the three deepest shapes, out of a total of five

shapes in a population, are used to build this central region.

The local analysis is based on the α-central regions of a reference population to detect

the location of shape differences. For the shapes in the reference population, starting from

the deepest shape (its median shape) we gradually add shapes in order of decreasing band-

depth. Each set of shapes defines a specific α-central region and a particular location is

assigned the α value of the first α-central region that covers it. The resulting map describes

the “centrality” of a shape population at each point in the domain. The test shape can

be overlaid on this centrality map and the corresponding α-values will be recorded on its

surface, thus providing a local measure of shape abnormality.

Fig. 5.7 illustrates this concept for a population of two-dimensional shapes. Given the

reference shapes, the blue shapes shown in Fig. 5.7(a), we build a centrality map based on

the band-depth of each shape. As shown in Fig. 5.7(b), the deepest shape has the lowest

α-value (light yellow) and the most outlying shape has the highest α-value (dark red). A

local measure of “belonging” to the population can then be computed for a test shape by

tracing the α-central region it traverses, see Fig. 5.7(c). Note that some regions of the shape
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Figure 5.7: Illustration of local shape analysis. Reference shape population (a) (blue contours)
defines a centrality map (b) (light yellow to dark red corresponds to the most to the least central
region of the reference population), which provides a local measure (c) (α-values) of how deeply a
test shape (the non-ellipse shape) is buried with respect to the reference population. The dilated
region is colored by the darkest red with α-values greater than 1.

may not be covered by the reference shape population, for example the top right part of the

test shape. To assign an α value in such cases, we use a dilation procedure starting from the

boundary of the α = 1 central region, evolving at a constant speed until all locations of the

volume are covered. This results in α values greater than 1, shown as the regions colored

with the darkest red in Fig. 5.7.

Overall, α > 0, and a larger α-value indicates a local region with a higher potential to

be different with respect to the reference group. Note that the centrality map has no notion

of the directionality of shape differences. Instead, it captures both the inflated and deflated

shape differences with respect to the reference group without distinguishing them, as the

bump and the indented region shown in Fig. 5.7.

Permutation test. To measure whether a local region of a test group is significantly differ-

ent from another test group, we design a permutation test using the α-values. Specifically,

similar to the global analysis, we have three groups of subjects: a group of control subjects

as the training set, another group of control subjects as the control test set, and a group of

disease subjects as the disease test set. We first compute the band-depth for each shape from

the two test groups with respect to the training set. That is, each test shape will be assigned
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a band-depth value, and its band-depth will be used for ordering in the permutation test.

Then, the median of one test group is chosen as the template, and the other test group is

left as the reference population. Our goal is to measure the shape differences of the template

compared to the reference population, which is ordered based on the associated band-depths

of its shapes when computing the α-values for the template.

We perform a permutation test with the null hypothesis being that the α-values recorded

on the surface of the template shape are the same for the two test populations. In each

permutation, we exchange the subjects in the two test groups to reconstruct a new reference

group and reorder its shapes according to the band-depth associated with them. Here,

we do not recompute these band-depths but always keep the band-depth values that are

associated to a particular shape. Then, new α-values for the template with respect to the

new reference population are computed. At each position we count the number of the α-

values that are larger than the one computed without permutation, resulting in p-values on

the surface of the template. When simultaneously testing numerous hypotheses it increases

the risk of false positive (type I errors). This is the problem of multiple comparisons. The

false discovery rate (FDR) is one way to control the expected proportion of those incorrectly-

rejected null hypotheses during multiple comparisons [Benjamini and Hochberg, 1995]. After

FDR-correction, a p-value smaller than 0.05 (e.g., with 10000 permutations) indicates that

the corresponding local region of the template is significantly different from that region of

the reference population at a significance level of 0.05.

5.1.3 Directionality of Shape Differences

While the concept of band-depth allows us to measure how central a shape is with respect

to a reference population, this measure is not signed and thus cannot represent whether a
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Figure 5.8: Illustration of directionality for a template shape (the ellipse with a bump and an
indented region) with respect to the median shape (the ellipse at the zero level-set) of a reference
population.

particular region of a shape is inflated or deflated (i.e., atrophied). In other words, band-

depth ordering lacks directionality. For example, in Fig. 5.7 two different regions can be

flagged as abnormal using the centrality map, but it is not possible to tell that one is

”thinner” and the other ”thicker” purely based on band-depth or the assigned α-values.

To measure the directionality of shape differences, we propose to use the signed distance

transform. The signed distance map of the median shape of the reference population is

computed. The test shape is then overlaid onto this signed distance map, so that the

corresponding values can be recorded on the surface of the test shape, as illustrated in

Fig. 5.8. As a result, a positive value indicates an enlarged region with respect to the

reference median, and a negative value indicates an atrophied region.

5.1.4 Experimental Results

We applied our method on both synthetic and real data. All shapes are pre-aligned using

a rigid transformation and represented as binary functions. If the size of a shape is of interest

in some applications, one should use a similarity transformation or an affine transformation

for the alignment.
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Figure 5.9: Ground-truth of a sample shape (two views from the lateral and medial sides). Colormap
on the shape indicates the location and magnitude of the artificial deformations compared to the
undeformed shape. Red color corresponds to a large deformation distance.

Synthetic data

In synthetic data we introduce a predefined shape change which we wish to recover using

our proposed approach. We use the technique described in [Gao and Bouix, 2012] to generate

large data sets of realistic shapes with known deformations. In short, a manifold learning

technique is used to generate arbitrarily many shapes from a small training sample. A joint

clustering algorithm is then applied to parcellate each shape’s surface into small regions

which are consistently located across all shapes. Finally, a Log-Euclidean framework is used

to introduce smooth, invertible and anatomically realistic deformations to one or multiple

regions as defined by the clustering.

For this application, we generated 160 shapes based on 27 manually traced striata. We

then modified 80 of them by thickening the putamen. A sample shape with deformation

distance is shown in Fig. 5.9. Here, the medial side of the putamen was “pulled out”, and

because of this large deformation the lateral side of the putamen was slightly deflated due

to the diffeomorphic nature of the deformation. We evenly divided 80 normal controls into

two groups. One group is used as the training set (NC-Train), and the other for testing

(NC-Test). From the 80 abnormal subjects, we randomly picked 40 of them for testing.
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(a) α-values (b) Raw and FDR-corrected p-values (c) Directionality

Figure 5.10: Local shape analysis on synthetic striatum shown from two views, the medial (top)
and the lateral (bottom) views, with the median of NC-Test as the template and the disease test
group as the reference. (a) The α-values on the template. (b) The corresponding raw p-values with
10000 permutations and FDR corrected p-values. (c) The directionality of shape differences on the
template with respect to the median of the reference group.

Global analysis. To test for global group separability, we followed the strategy described

in Section 5.1.2 to perform a permutation test (10000 permutations). When using the NC-

Train as the training set to compute band-depth for both control and disease test sets, the

resulting p-value is less than 1e-4, indicating the normal controls and the disease subjects

are significantly different. On the other hand, as shown in Fig. 5.5, when pooling all shapes

together to compute their band depths, no significant difference is detected. Since we know

the control and disease groups of the synthetic data are significantly different according to

the ground truth, this experimental result indicates that the training population is essential

for the discrimination of subject populations.

Local analysis. For the local analysis, we first need to choose the template and the reference

population for the permutation test. Two possible choices are: (i) taking the median of the

NC-Test as the template and the disease test group as the reference population; (ii) using

the median of the disease test group as the template and the NC-Test group as the reference

population. We demonstrate our method using both strategies with experimental results
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(a) α-values (b) Raw and FDR-corrected p-values (c) Directionality

Figure 5.11: Local shape analysis on synthetic striatum shown from two views, the medial (top) and
the lateral (bottom) views, with the median of the disease test group as the template and the NC-
Test group as the reference population. (a) The α-values on the template. (b) The corresponding
raw p-values with 10000 permutations and FDR corrected p-values. (c) The directionality of shape
differences on the template with respect to the median of the reference group.

shown in Fig. 5.10 and Fig. 5.11.

We first use the NC-Train group to compute the band-depth for all test shapes, and

then we estimate α-values of the template with respect to the reference population which is

ordered using the computed band-depth. The α-values on the NC-Test median are shown

in Fig. 5.10(a) and those of the disease median are shown in Fig. 5.11(a). Both results

demonstrate that the introduced deformed (or different) regions on both medial and lateral

sides of the template are detected as expected.

Fig. 5.10(b) and Fig. 5.11(b) show the raw p-values and the false-discovery-rate (FDR)

corrected p-values, with 10000 permutations. Based on the ground truth shown in Fig. 5.9,

the “pulled-out” region on the medial side of the putamen is significantly deformed, while

the deflated region on the lateral side is slightly deformed, and some significantly deformed

region may exist. We detect, regardless of which median shape is chosen as the template,

the significantly deformed region. The main difference is that Fig. 5.10(b) shows more

significantly different regions on the lateral side of the putamen than Fig. 5.11(b). Both
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(a) The median of the NC-Test group (b) The median of the disease group

Figure 5.12: The directionality of shape differences on the median test shapes with respect to the
median shape of the NC-Train group shown from two views, lateral (left) and medial (right) sides.

strategies provide reasonable results compared to the ground truth (Fig. 5.9).

Directionality of shape differences. To test our strategy of measuring the directionality

of shape differences, we first applied it on the median shapes of NC-Test and disease groups

with respect to the median of NC-Train, as shown in Fig. 5.12. As expected, the median

shapes from NC-Train and NC-Test have relatively small differences, c.f. Fig. 5.12(a). But,

in Fig. 5.12(b) (the disease median with respect to the NC-Train median), we can see positive

values on the medial side of the putamen, indicating that the disease median has an inflated

region compared to the NC-Train median, and negative values on the lateral side of putamen,

indicating that the disease median has a deflated region there. This is consistent with the

introduced deformation in the synthetic data.

Since the directionality test among the control and the disease median shapes correctly

reveals the directions of their shape differences, according to the introduced deformations, we

further applied the directionality computation on the template with respect to the median

shape of the reference population to augment the local analysis results based on depth-

ordering. Fig. 5.10(c) shows the NC-Test median with respect to the disease median. The

negative values on the medial side of the putamen indicate that this region of the NC-Test

median (template) is deflated compared to the corresponding part of the disease median

(from the reference population). And the positive values on the lateral side of the putamen
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indicate that this region of the NC-Test median is inflated compared to that part of the

disease median. This is also consistent with the ground truth. By also considering the p-

values in Fig. 5.10(b), we can determine the directionality for those significantly different

regions. Consistent results are shown in Fig. 5.11(c) for the disease median with respect to

the NC-Test median.

Real data

Magnetic Resonance Images (MRIs) of the brains of 123 subjects (including 102 males)

diagnosed with first-episode schizophrenia and of 56 normal control subjects (including 37

males) were acquired on a 1.5-T scanner. Multi-site SPGR T1-weighted images (voxel di-

mensions 0.9375 × 0.9375 × 1.5 mm) were obtained. These MRI scans were rigidly aligned

to a standard coordinate space, from which hippocampus structures were segmented. Each

binary segmentation was fit with a mesh model. This dataset was used in a previous shape

analysis study [McClure et al., 2013]. All the hippocampus shapes were pre-aligned using a

rigid transformation. To get the binary representation of the hippocampus shapes, we used

voxelizations with equal spacing in each direction. To measure the sensitivity with respect

to spacing we tested using spacings of 0.3 and 0.4 mm. Results were similar. Hence, only

results for a spacing of 0.4 mm are presented in what follows.

Global analysis. Similar to the synthetic data experiment, we divided the 56 normal

control subjects into two groups, NC-Train and NC-Test, and we considered all 123 subjects

with first-episode schizophrenia as the disease group. Fig. 5.13 shows the global differences

between NC-Test and the disease groups, for both left and right hippocampi. We also used a

permutation test with 10000 permutations to determine whether these groups’ mean depth

values differed significantly. This resulted in p-values of 0.03 for the left hippocampus and
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Figure 5.13: Global analysis on both left and right hippocampi. The disease group indicates
subjects with first-episode schizophrenia.

0.15 for the right hippocampus. This indicates based on the global depth-based analysis,

that the difference in the left hippocampi from disease and normal control populations is

marginally significant at a significance level of 0.05.

Local analysis. For the local shape analysis, we used the NC-Train group as the training

set to compute the depth for test subjects, and we took the median of the disease group as

the template and the NC-Test group as the reference population. Fig. 5.14 shows the local

analysis results on both left and right hippocampi. We can see that our method captures

some abnormal regions. However, based on the local p-values only relatively small regions of

the median disease shape are significantly different from the normal controls. The p-values

also show that the response is stronger on the left hippocampus, which is consistent with a

previous study by [McClure et al., 2013]. The shown p-values for this experiment were not

corrected using FDR, because no significant regions remained after FDR-correction. Note

that in our case we work directly on the voxel level of shapes thereby generating many local

comparisons. Considering the analysis at a coarser spatial scale, e.g., averaged responses

over regions as adopted in [McClure et al., 2013], could potentially reveal shape differences

which persist under FDR correction.
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α-values p-values directionality

(a) Left hippocampus viewed from lateral and medial sides

(b) Right hippocampus viewed from medial and lateral sides

Figure 5.14: Local analysis on the disease median of both left and right hippocampi with respect
to the normal control test group.

Directionality of shape differences. The right column in Fig. 5.14 shows the direction-

ality of shape differences on the template (the disease median) with respect to the median

of the reference group, NC-Test. We observe for both the left and right hippocampi of the

disease median that few detected regions are locally deflated with respect to the normal

median, but instead most of the other detected regions are found to be locally inflated com-

pared to the normal median. Since the detected regions are shown before FDR correction,

and no regions are significant after FDR correction, we cannot suggest if the disease shape

is deflated or inflated compared to the normal one.

Comparison with other methods

In [Gao et al., 2014], three standard methods, SPHARM-PDM, Shapeworks, and Tensor

Based Morphometry (TBM), were tested on the same synthetic dataset in our experiments.
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To quantitatively measure the significantly deformed region, they extracted the “region of

deformation” (ROD) from the ground truth data and computed the ratio between the area

of deformation and the area of the entire shape. The average of these ratios is referred to

as the ground truth. For the striatum dataset used in our work the average ratio is 0.33.

When measuring the detected significant region in the local analysis results, the ROD is

defined as the region whose FDR-corrected p-value is ≤ 0.05. The area ratio reported in

[Gao et al., 2014] is 0.61 for SPHARM-PDM, 0 for ShapeWorks, and 0.17 for TBM.

The ROD cannot measure how well a shape analysis method localizes the differences,

but it reveals whether the detected significant region has a reasonable size compared to the

ground truth. Using the combination of ROD with the visual results allows one to assess

both the location and extent of the detected deformation with respect to the ground truth.

We follow this measurement and compute the area ratio of our FDR-corrected results on

the synthetic data, resulting in 0.2 when using the median of NC-Test as the template (see

Fig. 5.10) and 0.15 when using the median of the disease test group as the template (see

Fig. 5.11). According to the ground truth of the area ratio for the synthetic data, our

method has better performance (closer to 0.33) than SPHARM-PDM and Shapeworks, and

it provides comparable, even slightly better, quantitative measures than TBM.

Compared to the qualitative results of the three methods evaluated in [Gao et al., 2014],

our method provides more accurate locations of the detected deformations, according to the

introduced deformations. Furthermore, in contrast to these methods, our results reveal that

most of the significantly different regions are located on the medial side of the putamen,

instead of the lateral side, which is also consistent with the synthetic data.

In addition, our real data experiment is consistent with previous results on shape differ-
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ences in the hippocampus for first-episode schizophrenia [McClure et al., 2013], specifically

with strong differences for the left hippocampus.

5.2 Hypothesis Testing for Longitudinal Data

The shape analysis method developed for cross-sectional data can effectively detect both

global and local shape differences, but it is time-independent. Recently, longitudinal data

designs frequently arise in medical research that involve repeated measurements during

follow-up studies. Analysis of such longitudinal data often involves constructing statisti-

cal models to summarize growth, aging and disease progression over time. For example,

longitudinal studies in new-borns and young children use imaging at multiple follow-up vis-

its to understand the process of early brain development [Gilmore et al., 2012]. Similarly,

recent collective efforts have enabled longitudinal data collection to facilitate the study of

neurodegeneration due to aging and age-related neurological disorders, such as Alzheimer’s

disease [Marcus et al., 2010]. Conventional cross-sectional models of regression that do not

take into account the temporal dependencies of measurements are inappropriate for modeling

such longitudinal data designs.

Recent methods for analyzing longitudinal, manifold-valued data have enabled modeling

and even detection of changes over time [Fletcher, 2013, Niethammer et al., 2011]. These

methods allow for the estimation of trajectories, i.e., smooth paths estimated from the lon-

gitudinal data of subjects. Based on them, Riemannian approaches for computing averages of

trajectories, e.g., mean trajectories, have been proposed [Muralidharan and Fletcher, 2012,

Singh et al., 2013a]. The registration and comparison of trajectories has been studied in

[Durrleman et al., 2013, Su et al., 2014a, Su et al., 2014b]. In general, statistical methods

for longitudinal manifold-valued data focus on first-order statistics, such as computing the
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mean, which only captures limited information of the data distribution. Capturing higher-

order statistics on the trajectories themselves would be useful for a more comprehensive

description of the underlying distributions and for designing test-statistics that go beyond a

simple comparison of means; an example would be testing differences in variances.

Motivated by this, we develop an approach that leverages second-order statistics of shape

trajectories for group testing. In particular, we propose a generalization of principal com-

ponent analysis (PCA) and principal geodesic analysis (PGA) [Fletcher et al., 2004] to the

tangent bundle [Lee, 2012] of a shape space. Similar to PCA/PGA, the first principal di-

rection characterizes the dominant variability in a population of trajectories, and each point

along this principal direction is a trajectory. This differs from previous studies which have

focused on computing averages on the tangent bundle. Incorporating second-order statistics

additionally allows identifying differences between groups of trajectories in situations where

the average longitudinal trend over time is similar (or equal) between two groups. We refer

to this approach as principal geodesic analysis on the tangent bundle. Having estimated

both variance and principal directions of shape trajectories, we then introduce a generaliza-

tion of the Bhattacharyya distance to manifold-valued data. This enables the assessment of

statistical differences between groups of trajectories.

5.2.1 Distribution of Trajectories in Euclidean Space

We first illustrate the concept of analyzing populations of trajectories in Euclidean space,

which is a trivial case of a Riemannian manifold.

Consider the case of two groups of subjects such that each subject is measured at multiple

points in time, see Fig. 5.15(b). If we ignore the within-subject correlations and model the

data with a cross-sectional design, illustrated in Fig. 5.15(a), the two groups cannot be
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Figure 5.15: A toy example in Euclidean space. Top: (a) Cross-sectional data of two groups,
illustrated as red circles and blue squares; (b) the same data with longitudinal information where
points on the same line are observations from one subject; (c) the trajectory space, represented by
a slope and an intercept. Every point in this space corresponds to a straight line in (b). Bottom:
(d) Trajectories generated by points along the 1st principal component (PC) of standard PCA in
trajectory space with {0, ±1, ±2} standard deviations (SD); (e) trajectories generated along the
2nd PC (best-viewed in color).

separated using statistical tests that rely on a comparison of means only (cf . Table 5.1).

Hence, to leverage longitudinal information, we first estimate linear regression models on

each subject to summarize its trend. The regression line, a smooth trajectory approximating

a subject’s data points, is parameterized by the tuple of slope and intercept, which can be

represented as a point in the space of trajectories. As shown in Fig. 5.15(c), representing the

data in this trajectory space separates the populations (at least visually) in this example.

In fact, Table 5.1 indicates that including longitudinal information allows us to identify

differences between the two groups statistically.
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To further analyze the group differences, we explore the distribution of trajectories within

the (slope, intercept) space, i.e., the trajectory space. Under a Gaussian assumption, prin-

cipal component analysis (PCA) is a standard tool to estimate the variance and principal

directions of a sample. By applying PCA to (slope, intercept) data, we obtain a representa-

tion of the population of trajectories, namely their variances and their principal components.

For example, the solid lines with different colors in Fig. 5.15(c) show the principal compo-

nents of the two groups, respectively. By moving along these two principal components, we

generate new points in the trajectory space such that each point represents a straight line

in the original space of the data points. Figures 5.15(d) and (e) visualize the trajectories

along the principal components for different standard deviations. The five trajectories in

Figure 5.15(d), for instance, show the five points along the first principal component in the

trajectory space for each group. This Euclidean case illustrates that the proposed approach

is a potentially useful tool in the analysis of longitudinal time-varying data.

Bhattacharyya distance. Visualization of trajectories along principal directions can qual-

itatively demonstrate differences between groups. However, to quantitatively assess the

differences, we need a suitable distance measure that serves as a test-statistic. One possible

candidate for this is the Bhattacharyya distance [Bhattacharyya, 1946], which measures the

similarity of two probability distributions. Given two multivariate Gaussians, with means

(µ1, µ2) and covariance matrices (Σ1,Σ2), the Bhattacharyya distanceDB has the closed-form

expression

DB((µ1,Σ1), (µ2,Σ2)) =
1

8
(µ1 − µ2)Σ−1(µ1 − µ2)> +

1

2
ln

(
|Σ|√
|Σ1| · |Σ2|

)
, (5.2)

where Σ = (Σ1 + Σ2)/2, and | · | denotes the matrix determinant. The first term in Eq. (5.2)
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Cross-sectional data Longitudinal data

D̄E D̄M DB D̄E D̄M DB

Distance 0.0003 0.0047 0.0077 0.2438 0.3332 0.6722

p-value 0.9232 0.7487 0.1249 0.0347 0.0186 1e-4

Table 5.1: Distances and estimated p-values (10000 random permutations) on toy data using (1)
the mean difference in Euclidean space (D̄E), (2) the Mahalanobis distance (D̄M ), and (3) the
Bhattacharyya distance (DB) as a test-statistic.

measures the separability of the distributions w.r.t. their means. It is related to the squared

Mahalanobis distance [Mahalanobis, 1936], which can be considered a special case of Eq. (5.2)

when the difference between the covariances (as measured by the second term in the sum-

mation) is not considered. This additional term makes DB more suitable, compared to the

Mahalanobis distance, in cases where the distributions differ in variances. In particular, the

Mahalanobis distance is zero when two distributions have equal means. However, as DB

only satisfies three conditions of a distance metric (non-negativity, identity of indiscernibles,

and symmetry), but lacks the triangle inequality, it is only a semi-metric.

In fact, Eq. (5.2) allows us to compute a distance between the two distributions (assuming

Gaussianity) in Fig. 5.15(c), and thereby to define a test-statistic to test for group differences

in a permutation testing setup. The null-hypothesis H0 of the permutation test is that the

two distributions (say P,Q) to be tested are the same, i.e., H0 : P = Q. We estimate the

empirical distribution of the test-statistic under H0 by repeatedly permuting the group labels

of the points in Fig. 5.15(c) and re-computing DB between the two groups that result from

the permuted labels. The p-value under H0 then is the proportion of the area under the

empirical distribution of samples for which the distance is less than the one estimated for

the original (unpermuted) label assignments. In Table 5.1, DB, tested on the longitudinal

data, exhibits the best performance in separating the groups with an estimated p-value of
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<1e-4 under 10000 permutations.

5.2.2 Distribution of Trajectories on Manifolds

To explore the distribution of trajectories for manifold-valued data, e.g ., images or shapes,

we need to generalize the statistical test of the previous section from Euclidean space to man-

ifolds. Specifically, let {Pi,j,k} be a population of longitudinal data on the same manifold,

where i is the group identifier, j is the subject identifier, and k identifies the time point.

Further assume we have N groups: group i has Si subjects (i = 1, . . . , N), and each sub-

ject has multiple time points, {ti,j,k}, k = 1, . . . , Ti,j. Our objective is to characterize the

distribution of trajectories for each group, {Di}, i.e., to estimate its variance and principal

directions, and to assess whether two groups are significantly different.

Individual trajectories for longitudinal data. To perform statistical tests on subjects

with associated longitudinal data, our first step is to summarize the variations within a

subject as a smooth trajectory. The parametric geodesic regression approaches for data in

Kendall’s shape space [Fletcher, 2013] or images [Niethammer et al., 2011, Hong et al., 2012a],

which generalize linear regression in Euclidean space, provide a compact representation of

the continuous trajectory for each subject. The trajectory of subject j from group i is

parametrized by the initial point p̂i,j and the initial velocity ûi,j. This trajectory minimizes

the sum-of-squared geodesic distances between the observations and their corresponding

points on the trajectory, i.e.,

(p̂i,j, ûi,j) = argmin(pi,j ,ui,j)

Ti,j∑
k=1

d2
g(Exp(pi,j, ti,j,k · ui,j), Pi,j,k) , (5.3)

where dg(·, ·) is the geodesic distance and Exp(·, ·) denotes the exponential map on some
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manifold M [Fletcher, 2013]. This compact representation, (p̂i,j, ûi,j), is a point in the tan-

gent bundle TM of M. TM is also a smooth manifold, which can be equipped with a

Riemannian metric, such as the Sasaki metric [Sasaki, 1958]. Since each subject’s longitu-

dinal data is represented as a point on TM, we work in this space, instead of the space of

the data points, to perform appropriate hypothesis testing.

Principal geodesic analysis (PGA) for trajectories. We adopt principal geodesic

analysis to estimate the variance and the principal directions of trajectories on the tan-

gent bundle for each group. We follow the definitions of the exponential- and the log-

map on TM in [Muralidharan and Fletcher, 2012] and use the Sasaki metric. Specifically,

given two points (p1, u1), (p2, u2) ∈ TM, the log-map outputs the tangent vector such that

(v, w) = Log(p1,u1)(p2, u2). The exponential map enables us to shoot forward with a given

base point and a tangent vector, i.e., (p2, u2) = ExpTM((p1, u1), (v, w)). Furthermore, using

the log-map, the geodesic distance on TM can be computed as dTM((p1, u1), (p2, u2)) =

‖Log(p1,u1)(p2, u2)‖.

Before computing the variance and the principal directions, we first need to estimate the

mean of the trajectories for each group. This is done by minimizing the sum-of-squared

geodesic distances, for each group, on TM as

∀i : (p̄i, ūi) = argmin(pi,ui)

Si∑
j=1

d2
TM((pi, ui), (p̂i,j, ûi,j)) . (5.4)

Then, following the PGA algorithm of [Fletcher et al., 2004], we compute the variance and

principal directions w.r.t. the estimated mean of the trajectories. Specifically, we first

compute the tangent vector from the mean of group i to the trajectory of its subject

j, (vi,j, wi,j) = Log(p̄i,ūi)
(p̂i,j, ûi,j) and then calculate its corresponding covariance matrix
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Σi = 1
Si−1

∑Si

j=1(vi,j, wi,j)(vi,j, wi,j)
>. The principal decomposition of Σi results in the eigen-

values λi,q ∈ R+
0 and eigenvectors (vi,q, wi,q) ∈ T(p̄i,ūi)M with q = 1, . . . , Qi for group i. As a

result, we can identify the distribution of trajectories for each group by Di = {(p̄i, ūi),Σi}

with i = 1, . . . , N . By moving along a principal direction, we can generate points on TM,

which correspond to trajectories on the manifold of the data points.

Generalized Bhattacharyya distance. Since we can characterize the distribution of

trajectories on TM for each group, to measure the distance between them, we generalize

the Bhattacharyya distance from Euclidean space to TM. Again, the distribution Di on

TM, is identified by a mean µi = (p̄i, ūi) ∈ TM and a covariance matrix Σi associated to

the mean.

Generalizing the first term of the Bhattacharyya distance in Eq. (5.2), i.e., the pooling of

covariance matrices Σ = (Σ1 + Σ2)/2, is not as straightforward on TM as it is in Euclidean

space because the covariance matrices Σ1 and Σ2 of the two groups reside in tangent spaces at

different points on TM. Hence, we follow the strategy in [Muralidharan and Fletcher, 2012]

and replace the first term with the average of two squared-Mahalanobis distances, i.e.,

(Logµ1 µ2
>Σ−1

1 Logµ1 µ2 + Logµ2 µ1
>Σ−1

2 Logµ2 µ1)/2. Furthermore, because most manifold-

valued data in medical applications is high dimensional and low sample size, the result-

ing covariance matrix is usually semi-positive-definite (SPD) with zero eigenvalues. This

means that in many applications Σ1 and Σ2 are not invertible4. To address this issue,

we approximate the covariance matrix via eigen-decomposition by dropping the eigenval-

4A better estimate of the covariance matrix may be obtained, e.g ., by using [Ledoit and Wolf, 2004] or
[Bickel and Levina, 2008].
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ues that are smaller than a cutoff value, ε5. In this way, the covariance matrix can be

decomposed approximately as Σi ≈ Ui,Qi
Λi,Qi

U>i,Qi
, where λi,q < ε if q > Qi, resulting in

Σ−1
i ≈ Ui,Qi

Λ−1
i,Qi

U>i,Qi
[Oliver, 1998].

To generalize the second term of the Bhattacharyya distance, which involves the compu-

tation of the determinant of a covariance matrix, we use the pseudo-determinant, i.e., the

product of all non-zero eigenvalues of a square matrix. For consistency, the same number

of eigenvalues as for the first term is used, i.e., |Σi| =
∏Qi

q=1 λi,q. Since it is non-trivial

to compute the pooled covariance matrix Σ, we replace its determinant in Eq. (5.2) with

the averaged determinants of Σ1 and Σ2. While this changes the original definition of the

Bhattacharyya distance, most of its properties are kept, see the proof at the end of this sub-

section. Also, it can be shown that the value of the second term increases as the difference

in the determinants gets larger. Hence, the generalized second term can serve as a distance

measure of generalized variances of covariance matrices on TM. In summary, we define the

generalized Bhattacharyya distance between two Gaussians D1, D2 on TM as

DTMB (D1, D2) =
1

16
(DTMM (µ1, D2) +DTMM (µ2, D1)) +

1

2
ln

(
(|Σ1|+ |Σ2|)
2
√
|Σ1| · |Σ2|

)
. (5.5)

Here, DTMM is a generalized version of the squared Mahalanobis distance, i.e., DTMM (µi, Dj) =

〈Logµj µi, Uj,Qj
〉>Λ−1

j,Qj
〈Logµj µi, Uj,Qj

〉, and 〈·, ·〉 is the inner product on the tangent bun-

dle. DTMB is a pseudo-semimetric, i.e., it satisfies (1) non-negativity, (2) symmetry, and

(3) DTMB (Di, Di) = 0 for all Di (required for the identity of indiscernibles). As shown in

the proof at the end of this subsection, although Eq. (5.5) does not satisfy the positivity

5The threshold ε varies with the application. In our experiments, we set it to 1e-6. Usually, the eigenvalues
larger than ε cover almost 99% of the variances.
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property, i.e., for all D1 6= D2, DTMB (D1, D2) > 0, only the distance between two distri-

butions with equal mean and generalized variance is zero. This may bring a problem when

two distributions have equal mean and generalized variance (i.e., equal determinate of the

covariance matrix), but their covariance matrices actually differ. In such a case, our gener-

alized Bhattacharyya distance cannot differentiate them. Consequently, we can distinguish

two distributions of trajectories that have different means and/or different determinants of

the covariance matrices.

We use Eq. (5.5) as our test-statistic in the same permutation testing setup as de-

scribed in Section 5.2.1. The null-hypothesis H0 is that the samples of trajectories from

the two groups were drawn from the same underlying distribution. The distribution of test-

statistics under H0 is estimated by randomly permuting the group label assignments. We

then count the number of times that the distance is larger than the one computed with-

out permutation to obtain a p-value estimate. Compared to the Hotelling T 2 statistic used

in [Muralidharan and Fletcher, 2012], which tests for the difference in sample means (based

on the squared Mahalanobis distance), our permutation test is based on Eq. (5.5), which

is more appropriate in situations where two distributions have similar means but different

variances.

Properties of the generalized Bhattacharyya distance

Non-negativity. In the first term of Eq. (5.5), DTMM is the generalized squared-Mahalanobis

distance which is non-negative; consequently, the first term in Eq. (5.5) is non-negative.

Furthermore, the determinant of a covariance matrix in the second term is also non-negative,

since it is the product of all non-negative eigenvalues. Besides, it is easy to demonstrate

that (|Σ1| + |Σ2|)/(2
√
|Σ1||Σ2|) ≥ 1, indicating the second term is non-negative. Hence,
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DTMB (D1, D2) ≥ 0.

Identity of indiscernibles. If D1 = D2, i.e., µ1 = µ2 and Σ1 = Σ2, we see that (1)

Logµ1 µ2 and Logµ2 µ1 are zero tangent vectors, and (2) |Σ1| = |Σ2|. Hence, DTMM (µ1, D2) =

DTMM (µ2, D1) = 0, i.e., the first term of Eq. (5.5) is 0; also, the second term is 0. Now,

if D1 = D2 then DTMB (D1, D2) = 0. On the other hand, assuming DTMB (D1, D2) = 0,

we can only obtain µ1 = µ2 and |Σ1| = |Σ2|, because of the non-negativity properties of

the two terms in Eq. (5.5). But, we cannot draw the conclusion that the two covariance

matrices are equal. Therefore, if D1 = D2 then DTMB (D1, D2) = 0, but it is possible that

DTMB (D1, D2) = 0 for some D1 6= D2, if µ1 = µ2 and |Σ1| = |Σ2|.

Symmetry. Because both terms of Eq. (5.5) are symmetric, the sum of them is also sym-

metric, i.e., DTMB (D1, D2) = DTMB (D2, D1).

Triangle inequality. Since, Eq. (5.2) in Rn does not satisfy the triangle inequality, our

generalized variant will not satisfy it either.

5.2.3 Experimental Results

We demonstrate our method on (1) a toy example in Euclidean space, (2) a 2D example

with synthetic shapes, and (3) real corpus callosum shapes. All shapes are represented in

(2D) Kendall’s shape space.

Toy example in Euclidean space. Fig. 5.15 shows the generated toy data and the quali-

tative comparison between two groups using PCA in the trajectory space. Both groups have

50 subjects each, measured at 3 to 7 time points. Table 5.1 reports the quantitative compar-

ison, i.e., permutation testing with 10000 permutations and three different distances: the

Euclidean distance D̄E (i.e., the squared mean differences), the Mahalanobis distance D̄M

(i.e., the squared mean difference based on the pooled covariance matrix), and the Bhat-
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(a) Basic shapes (b) Group A (c) Group B

Figure 5.16: Synthetic shapes: (a) Basic shapes used to generate the population on the right; (b)
and (c) show the two groups of trajectories (best-viewed in color).
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Figure 5.17: Visualization of the variances (left) and principal directions (right) of trajectory
distributions for the synthetic data (best-viewed in color).

tacharyya distance DB. The results of the cross-sectional vs . longitudinal tests indicate that

leveraging the longitudinal information greatly improves our ability to identify differences,

as indicated by low p-values. Besides, among the three evaluated distance measures, the

Bhattacharyya distance most clearly highlights this difference with a p-value of <1e-4 (given

the number of permutations).

Synthetic shapes in Kendall’s shape space. To verify the advantage of the generalized

Bhattacharyya distance over the generalized Mahalanobis distance, we generate two groups

of 2D shapes with similar mean trajectories but different variances, see Figs. 5.16b and 5.16c.
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(p̂, û) (p̂, 0) (0, û)

D̄TMM DTMB D̄TMM DTMB D̄TMM DTMB
Distance on TM 0.7212 2.2833 0.0232 0.0152 0.7439 2.3057

p-value 0.1817 0.0234 0.8486 0.6801 0.1650 0.0297

Table 5.2: Distances and estimated p-values (10000 random permutations) on synthetic shapes using
the averaged Mahalanobis distance (D̄TMM ) and the generalized Bhattacharyya distance (DTMB ).
The last two columns report the test results when dropping one of the initial conditions.

Hence, the distributions are different by design. In particular, we use the three shapes in the

first row of Fig. 5.16a to uniformly sample 60 shapes within the triangle region in Kendall’s

shape space, spanned by the three shapes6. We call them the base shapes. In the same way,

the shapes in the second and third row are used to sample 30 shapes each; we refer to these

shapes as the target shapes. In summary, we have 60 base shapes from the same distribution

and two groups of target shapes from two different distributions. By splitting the 60 base

shapes into two subsets of equal size and connecting each base shape with one target shape

(via a geodesic), we obtain 30 trajectories per group. Assuming every base shape is at time

0 and every target shape is at time 1, we sample 5 shapes along each trajectory to represent

one subject. To make sure these two groups of trajectories have similar means, the shapes

in the third row of Fig. 5.16a are not picked randomly but generated using the shapes in

the second row. This is done by computing the mean of the shapes in the second row,

then shooting a geodesic from the mean to each of the three shapes and continuing to move

beyond time 1 (for two times) to generate the shapes in the third row. Essentially, this has

the effect that the means of the trajectories of both groups are similar, but the variances

differ.

6We use two geodesics to connect three given shapes and uniformly sample points on these two geodesics.
Then, by connecting opposing points, we obtain new geodesics which are located within the triangle region
to sample a population of shapes.
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Fig. 5.17 shows the results of PGA in trajectory space for the synthetic shapes. The

largest eigenvalue of the trajectories in Group A is 0.005 at 72% cumulative variance, com-

pared to the largest eigenvalue of 0.02 at 85% cumulative variance in Group B. Also, as

expected, the trajectories visualized by 10 shapes in Fig. 5.17 show that the shapes of Group

B change faster than in Group A. Table 5.2 reports the quantitative measures of the dif-

ference between the two groups. Since, by design, the mean trajectories are similar, it is

difficult to identify significant deviations from the null-hypothesis H0 using the generalized

Mahalanobis distance; this is indicated by the relatively high p-values of D̄TMM in Table 5.27.

As desired, DTMB is sensitive w.r.t. differences in variance, indicated by the relatively low

p-value. This would allow to reject H0 at the customary significance level of 0.05.

Furthermore, since all base shapes are uniformly sampled from within the shape triangle

spanned by the first row of Fig. 5.16a, i.e., the initial points of the two groups have similar

means, it is not possible to only use the initial points to separate the two groups; this is

confirmed by the high p-values for both distance measures in the (p̂, 0) column of Table 5.2.

In fact, even when specifically testing for differences in the initial velocity, the generalized

Bhattacharyya distance exhibits better behavior than the generalized Mahalanobis distance

in terms of lower p-values (cf . column (0, û) of Table 5.2).

Corpora callosa in Kendall’s shape space. The longitudinal corpus callosum dataset

used in [Muralidharan and Fletcher, 2012], contains 23 subjects, 11 of which are males with

dementia, and the rest are normal controls. Every subject has been measured at three

time points within the age range of 60 to 92 years old, and each corpus callosum shape is

7The average of two generalized squared-Mahalanobis distances is related to the first term of the generalized
Bhattacharyya distance in Eq. (5.5).
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Group A: Normal controls

0

0.005

0.01

0

0.05

0.1

0%

50%

100%

C
um

.
va

ria
nc

e

0%

50%

100%

C
um

.
va

ria
nc

e

Group B: Disease

−1 SD (Frechet) Mean +1 SD1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.18: Visualization of the variances (left) and principal directions (right) of trajectory
distributions for the normal control (top) and disease group (bottom) of corpus callosum shapes
(best-viewed in color, blue to red: young to old).

(p̂, û) (p̂, 0) (0, û)

D̄TMM DTMB D̄TMM DTMB D̄TMM DTMB
Distance on TM 3.1817 4.0029 3.7377 3.6863 4.1537 4.3765

p-value 0.0241 0.0054 0.2014 0.0654 0.0319 0.0046

Table 5.3: Distances and estimated p-values (10000 random permutations) on corpora callosa using
the averaged Mahalanobis distance (D̄TMM ) and the generalized Bhattacharyya distance (DTMB ).
The last two columns report the test results of dropping one of the initial conditions during the
distance computation.

represented by 64 2D boundary landmarks.

Fig. 5.18 demonstrates the variances and the principal directions of the trajectories from

the normal controls and the disease group. As shown in Fig. 5.18, the largest eigenvalue of

the normal control group only accounts for 24% variability with a numeric value of 0.006,

while the largest eigenvalue of the disease group accounts for 52% variability with a numeric

value of 0.06. Fig. 5.18 (right) further shows the trajectories of each group along the first

principal direction with standard deviations changing from −1 to 1. The plots indicate that

the corpora callosa with dementia degenerate faster than the normal controls.

Table 5.3 reports the quantitative measures of the group tests on the corpus callosum

shapes with 10000 permutations. Compared to the generalized squared-Mahalanobis dis-
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tance, the generalized Bhattacharyya distance consistently exhibits better behavior in iden-

tifying the group differences. Similar to the experiments on the synthetic shapes, during the

distance computation we drop one term of the initial conditions to measure which one plays

a more important role in the group tests. As shown in Table 5.3, regardless of the distance

measure, the initial velocity is most relevant in identifying group differences; this is consis-

tent with [Muralidharan and Fletcher, 2012]. If we declare the statistical significance at the

level of 0.01, the p-value of the generalized Bhattacharyya distance, either using both initial

conditions or only the initial velocity, indicates that the disease group of corpus callosum

shapes is significantly different from the normal control group.

5.3 Conclusions

This chapter presented a shape analysis framework for cross-sectional data that can

provide both global and local information, yet does not require complex processes to establish

point-to-point correspondences. It used the notion of band-depth of functions to order shapes

according to how well they “fit in” a shape ensemble. This method allowed for the definition

of a median and α-central regions of a population, which can then be used to compare

different populations of shapes without strong distributional assumptions.

Different from the work presented in Chapter 4, which focuses on augmenting a popula-

tion atlas with statistical information using weighted band-depth, the work in this chapter

proposed a fast algorithm to compute the band-depth of shapes represented by binary maps,

and most importantly it showed how band-depth can be used to provide both global and local

statistical tests to differentiate between populations. In contrast to other deformation based

tools for shape analysis, the presented approach is non-parametric and naturally captures

how likely a shape belongs to a population. Although it does not provide physical measure-
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ments of displacement, these can be computed by deformation or a distance transform to

the population median.

One limitation of our method is the reliance on a representative training set. Also, the

size of the training set will affect the computed band-depth. Determining an appropriate size

of the training set to obtain sufficient statistical power is left for future work. In addition, as

discussed our current method works on the pixel/voxel level. In future work we will explore a

multi-scale approach to better adapt the analysis results to the spatial scale of the expected

differences. To further increase the statistical power of our method, we could include more

factors, e.g., age, gender, into the shape analysis, and we explore their relationship with the

estimated band-depths of shapes. This extension is not straightforward and therefore left to

future work.

On the other hand, we have proposed an approach for studying group differences in

the distributions of shape trajectories, estimated from longitudinal data. By means of a

generalized version of the Bhattacharyya distance, we demonstrated, on both real and toy

data, that taking second-order statistics into account can be beneficial in assessing group

differences. However, the proposed approach also has limitations. For instance, although

the compact representation of a trajectory is an efficient way to summarize longitudinal

data, its accuracy inevitably influences the test-statistics. Currently, the adopted regression

approach for estimating a trajectory is a generalization of linear regression in Euclidean

space. Hence, we expect poor fitting performance on data that cannot be represented by

a geodesic. For that reason, our test-statistic may not be appropriate under such a model.

Furthermore, our real dataset only contains a limited number of subjects, which does not

allow strong conclusions and requires to interpret results in the context of the low sample size.
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A potential direction for future work is to apply our method to other types of longitudinal

data, e.g ., images, which is straightforward but slightly more involved due to the complexity

of the tangent bundle.
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CHAPTER 6 : DISCUSSION AND FUTURE WORK

This chapter reviews and discusses the contributions of this dissertation in Section 6.1,

followed by the discussion of future work in Section 6.2.

6.1 Summary of Contributions

This dissertation studied computational methods for spatiotemporal data in three parts:

1) regression models to capture time-varying changes in spatiotemporal data, 2) statisti-

cal atlas construction to summarize a representative data object and population variation

information, and 3) statistical testing methods to identify shape differences between popula-

tions. In general, six approaches had been proposed to address the corresponding problems

discussed in Chapter 1. Each contribution is restated with a discussion of how it was ac-

complished in this dissertation.

1. To develop a uniform framework for fitting curves of increasing order for different types

of spatiotemporal data, a model of parametric regression on the Grassmannian was

proposed, by generalizing linear, time-warped, and cubic-spline regression in Euclidean

space to the Grassmannian via optimal-control.

In Chapter 3, linear regression was revisited as an optimization problem with a line

represented by second-order dynamics, which provides the intuition to generalize linear

regression to geodesic regression on the Grassmann manifold. Time-warped geodesic

regression was achieved by transforming the domain of the independent variable with



a warping function. In the warped domain a simple geodesic regression can be used

to achieve a good fitting result. For cubic spline regression, an extra force was added

into the geodesic equation to allow controlled deviations from a geodesic, resulting in

a spline curve. By further gluing spline pieces together, a formulation was obtained

for cubic spline regression.

These different orders of regression models on the Grassmann manifold provided the

flexibility to capture changes in spatiotemporal data, e.g., shape sequences and videos.

They were applied to capture rat calvarium development and corpus callosum degen-

eration, as well as to predict traffic speed from videos and to count people in crowds.

In general, these regression approaches can be applied to any data object that has a

subspace representation. Apart from the applications studied in this dissertation, one

could also use these methods to explore face recognition [Lui and Beveridge, 2008] and

activity recognition [Slama et al., 2015].

2. To simultaneously capture spatial deformations and intensity changes in image time-

series, a model of metamorphic geodesic regression was proposed to jointly account for

the appearance and shape changes and was efficiently solved using a simple, approximate

algorithm through pairwise shooting metamorphosis.

The metamorphic geodesic regression approach was presented in Chapter 3. It was

based on a shooting strategy under the framework of LDDMM registration. Shooting

metamorphosis was parametrized by the initial image and the initial momentum, simi-

lar to the intercept and the slope of a straight line. This made it possible to regress over

an image time-series through the generalization of linear least squares. To overcome

the high computational cost of image regression, the initial image was assumed to be
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fixed, simplifying the regression solution to a weighted average of the initial momenta

of pairwise shooting metamorphoses.

This method was able to capture white matter intensity changes caused by myelina-

tion in longitudinal MR images of macaque monkey brains. Generally speaking, this

approach is designed for applications that focus on capturing diffeomorphic spatial

deformation and image intensity changes simultaneously. For example, it could be

applied to image morphing [Wolberg, 1998] and furthermore multi-image morphing

[Georgiev and Wainer, 2001].

3. To check if the model assumptions hold, a model criticism for regression models on the

Grassmannian was proposed using kernel two-sample tests.

Model criticism was discussed in Chapter 3. It was achieved by performing a two-

sample test with a kernelized variant of maximum mean discrepancy as the test statis-

tic. The sampled data was generated on the Grassmannian under a Gaussian assump-

tion. Two real applications were studied: degeneration of the corpus callosum during

aging and developmental shape changes of the rat calvarium. The three regression

models on the Grassmann manifold, i.e., geodesic regression, time-warped geodesic

regression, and cubic spline regression, were tested to check model validity. While

this model criticism approach was developed for the Grassmannian, the principles are

applicable to smooth manifolds in general.

4. To augment a single regressed curve with the local distribution of spatiotemporal data,

e.g., confidence bounds or outliers, a model of statistical atlas construction via the

weighted functional boxplot was proposed. This approach was applied to time-varying

shapes and images.
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The time-varying statistical atlas was presented in Chapter 4. It was built based on a

weighted functional boxplot, which enabled the generalization of concepts such as the

median, percentiles, or outliers to spaces where the data objects are functions, shapes,

or images. Also, it allowed spatiotemporal atlas-building through kernel regression.

The utility of the approach was demonstrated by constructing statistical atlases for

pediatric upper airways and corpora callosa, which revealed their growth patterns. In

a pediatric airway study this method showed sensitivity in determining which children

with subglottic stenoses received surgical intervention. Overall, this method is suitable

for data objects that can be vectorized as functional data with application to robustly

building a statistical atlas for them. For example, one could construct an atlas with a

confidence region for image or shape segmentations obtained from different experts.

5. To explore a new method in analyzing and comparing populations, e.g., normal controls

and subjects with disease, a model of shape analysis based on depth-ordering was pro-

posed to define statistical tests for identifying global and local shape differences without

computing explicit dense correspondences or making strong distributional assumptions.

Ordering-based shape analysis was discussed in Chapter 5. In general, band-depth was

used to non-parametrically define a global depth for a shape with respect to a reference

population, typically consisting of normal control subjects. This allowed us to globally

quantify differences with respect to “normality”. Using depth-ordering of shapes also

allowed the detection of localized shape differences by using α-central values of shapes.

Permutation tests were adopted to statistically assess global and local shape differences.

The proposed method was evaluated on a synthetically generated striatum dataset, and

it was also applied to detect shape differences in the hippocampus between subjects
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with first-episode schizophrenia and normal controls. Typically, this method can be

used for analyzing any shapes that can be approximated using a binary representation

and identifying shape differences among different populations.

6. To facilitate statistical testing for trajectory distributions with similar mean and dif-

ferent variances, a model of hypothesis testing for longitudinal data was proposed by

leveraging second-order statistics, i.e., variances of trajectory distributions, to identify

group differences of shapes.

A hypothesis test for group differences of longitudinal data was presented in Chapter

5. And a generalization of principal geodesic analysis was introduced to the tangent

bundle of a shape space. This allowed the estimation of the variance and principal

directions of the distribution of trajectories that summarize shape variations within the

longitudinal data. Each trajectory was parameterized as a point in the tangent bundle

of the manifold. To study statistical differences in two distributions of trajectories,

the Bhattacharyya distance in Euclidean space was generalized to the tangent bundle

space. This not only allowed taking second-order statistics into account but also served

as the test-statistic during the permutation test. This study shed new light on group

differences in longitudinal corpus callosum shapes of subjects with dementia versus

normal controls.

In general, the assumptions of this method are that 1) individual changes can be

captured using standard geodesic regression and 2) the mean and its covariance matrix

can represent most information of interest in each trajectory population. Under these

assumptions the method is able to analyze group differences within longitudinal data.

Finally, the thesis statement presented in Chapter 1 is revisited:
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Thesis: Advanced regression models or a time-varying statistical atlas can efficiently cap-

ture individual or population changes in spatiotemporal image and shape data. Statistical

differences between shape populations can be detected using depth-ordering and statistics on

shape trajectories.

The first claim summarized the dissertation work on parametric regression in Chapter 3

and statistical atlas construction in Chapter 4. The regression models on the Grassmann

manifold and the manifold of diffeomorphisms captured time-varying changes within image

or shape time-series, e.g., the process of brain development or degeneration. On the other

hand, the spatiotemporal statistical atlas captured changes, while further including popu-

lation variations such as a confidence region and outliers. The second claim summarized

the dissertation work on statistical shape analysis in Chapter 5. The hypothesis testing ap-

proaches were applied to detect group differences in shape populations. For cross-sectional

data the tests were defined on shapes ordered with a depth value, which detected both

global and local differences between populations. For longitudinal data the test was defined

on shape trajectories that were summarized based on the data of individual subjects. Both

methods identified statistical differences between shape populations.

6.2 Future Work

There are several directions that can be explored in the future. Section 6.2.1 will discuss

four potential directions for further improving regression models on manifolds. Then, some

thoughts on statistical shape analysis will be presented in Section 6.2.2, which will be followed

by the discussion of model computing and visualization in Section 6.2.3. Finally, some other

application areas will be discussed in Section 6.2.4.
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6.2.1 Regression on Manifolds

In this dissertation the problem of regression on manifolds focused on estimating a func-

tion that describes the approximate relationship between manifold-valued data and its in-

dependent variable. Following this direction, there are several potential ways to further

improve the estimated regression model. On one hand, a hierarchical model could be built

to account for a more complex relationship among dependent and independent variables. If

there are multiple independent variables, multivariate regression could be considered. On

the other hand, one may wonder about the uncertain regions or the confidence intervals of

the estimated regression parameters. This is the regression uncertainty problem of interest.

Furthermore, when dealing with noisy data, typically a robust regression model is required

to ensure that the model performance is not affected by the presence of outliers. These four

potential directions for regression on manifolds will be discussed in the following.

(1) Hierarchical regression model. The regression models presented in Chapter 3 typi-

cally work on time-varying data collected from one subject or a population, without consider-

ing differences between subjects. A large data set with longitudinal data collected from each

subject often has a hierarchical structure that allows modeling both individual and group

trends. Hence, building a scalable regression model under a multilevel mixed-effects (hier-

archical) framework is a reasonable strategy. Another advantage is that this approach can

be parallelized due to its multilevel nature. In [Singh et al., 2013a] a hierarchical model was

proposed for the manifold of diffeomorphisms to perform regression on longitudinal image

sequences. It provided an approximate solution for its optimization problem by estimating

individual and group trends separately. In future work I will develop a hierarchical regres-

sion model on the Grassmann manifold that can simultaneously learn the individual and
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group trends. This could be achievable because the geometry of the Grassmann manifold is

relatively simpler than that of the manifold of diffeomorphisms. The big difference between

the hierarchical model and the original one would be the number of regression parameters.

The unknown parameters would include not only the initial conditions of the group trend

but also the initial conditions of individual trajectories for each subject.

(2) Multivariate regression. The regression models presented in this dissertation are

typically simple regressions, because the independent variable is a scalar number. In some

scenarios we may need to consider multiple independent variables, e.g., age, weight, and

gender, which could be modeled using multivariate regression [Mardia et al., 1980]. In par-

ticular, in a simple regression model the position of the underlying dynamic system is a

function of one independent variable. While in a multivariate regression model the posi-

tion could be a function of more than one independent variable. This formulation could

extend the manifold-valued regression model presented in this dissertation to a general one

that could handle more complex relationship among variables. Furthermore, if one has

more independent variables than observations, or the independent variables are highly cor-

related, principal component regression (PCR) [Jolliffe, 1982] or partial least squares (PLS)

[Geladi and Kowalski, 1986] could be adopted and extended to manifolds.

(3) Regression uncertainty. In Chapter 4 a confidence region (i.e., uncertainty) was

estimated for the predicted data object at a specific time point. This was obtained under

the non-parametric regression setting. Confidence regions of the prediction results could

also be estimated for parametric regression. Take least squares for example. Uncertainties

can be estimated for the intercept and the slope of the regression line by estimating their
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covariance matrix (i.e., the inverse of the Hessian matrix of regression parameters)1. In

particular, these uncertainties result in a confidence interval (CI) for estimated parameters

and a prediction interval (PI) for future observations [Rawlings et al., 1998]. Similarly, these

concepts could be extended to regression on manifolds. For manifold-valued data we could

compute uncertainties for the parameters of a regression model, e.g., the initial conditions,

the initial position and the initial velocity. This could be achieved by estimating their

Hessian matrix and taking the inverse of the Hessian matrix as the required covariance

matrix. Furthermore, by propagating the covariance matrix at the initial position forward

along the regression curve on manifolds, we could have a sequence of covariance matrices

that describe how the variances of the estimators change with the independent value.

(4) Robust regression. The non-parametric kernel regression in Chapter 4 detected out-

liers in a data set when building an atlas. However, in Chapter 3 the parametric regres-

sion models were estimated under the assumption that the input data is clean without

outliers. Since the presence of outliers might greatly affect the accuracy of the regres-

sion results, one may want to develop a robust regression which can be used on noisy

data. To solve this problem, one could perform regression with random sample consensus

(RANSAC) [Fischler and Bolles, 1981] to detect outliers. Another promising strategy is to

generalize the least trimmed squares (LTS) or the least median of squares (LMS) regression

[Rousseeuw and Leroy, 2005] to manifolds for robust regression.

1Each parameter may have different units, resulting in values at different scales. Here, the units are ignored,
while it will be interesting to consider them in the model.
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6.2.2 Statistical Shape Analysis

(1) Statistics of shape trajectories. Chapter 5 focused on identifying shape differences

between two populations. For data from different populations or data from one population

while having multiple subgroups, other interesting topics are classification or clustering prob-

lems. In future work I would like to discriminate subjects with disease from normal controls,

for example, using the shape trajectories estimated for each subject. Furthermore, when

analyzing shape differences in both cross-sectional and longitudinal data I observed that the

disease group usually has a much larger variance than the normal control group. It may

be that subgroups exist in the disease group. It will be interesting to see if we can cluster

disease subjects into different subgroups and to study the shared structures or features in

each subgroup.

(2) Shape domain adaptation. Domain adaptation [Ben-David et al., 2010] aims at

learning models from sufficient data in source domains and deploying them across target

domains with less data. In the real world of shape analysis we often encounter the task of

domain adaptation. For instance, we may have a large population of shape data collected

from subjects at middle ages. With enough data in this source domain we could learn a model

for further analysis, e.g., a shape subspace using principal component analysis (PCA). While

we may lack data collected from subjects at older ages to learn a reasonable subspace in this

target domain. To address this issue, one could transport or predict a new subspace from

available ones that are learnt from source domains. Since we can represent a subspace as

an element on the Grassmann manifold, the regression models presented in this dissertation

could be further applied to predict a new subspace for the target domain.
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6.2.3 Model Computing and Visualization

Apart from the above theoretical directions for future work, in practice efficient model

computing and visualization would greatly promote the widespread use of the proposed

computational models. This is especially important and worth the effort for models that

are built on high-dimensional complex data, e.g., the manifold-valued data studied in this

dissertation.

(1) Efficient model computing. Computational models for analyzing high-dimensional

data in non-Euclidean spaces often require efficient algorithms to estimate the model pa-

rameters. For example, an unoptimized program for the original LDDMM could take hours

to register two 3D images, making the analysis of a large number of images an intractable

task. One direction is to seek a “sweet spot” to trade accuracy for efficiency, which is often

achieved by reformulating models under reasonable assumptions. The simple image regres-

sion in Chapter 3 followed this approach. The resulting pairwise image registrations were

independent tasks which can be easily parallelized. In future work, I will adopt similar

strategies to speed up our regression models so that they can deal with large-scale data sets.

In another direction, as commodity computing hardware is increasingly affordable, an

ideal system should be able to exploit the computing power of multiple machines and coor-

dinate parallel model computation on them. The key strategy of this approach is to divide a

large problem into smaller ones and solve each of them in parallel on a cluster of machines.

One could build such a data processing system on top of a parallel computing framework

(e.g., MapReduce [Dean and Ghemawat, 2008] and Spark [Zaharia et al., 2012]) with cus-

tomized coordination among all computing nodes, enabling data processing at scale.

(2) Data and model visualization. The data objects studied in this dissertation are
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typically high-dimensional. It is crucial to understand the data before solving a problem

or formulating a model; however, humans have difficulty grasping high-dimensional data.

Visualization provides an intuitive way to interact with such data; techniques such as parallel

coordinates and feature extraction can be used to visualize high-dimensional data. For

complex high-dimensional data (e.g., manifold-valued data), efficient visualization techniques

rarely exist. Furthermore, visualization of model fitness for data sets has not been well

explored, despite being of great importance in checking data quality, model performance, and

even parameter settings. In future work, I will explore the visualization of high-dimensional

manifold-valued data, and the interaction between the data and model estimates. This will

allow exploring how high-dimensional data is distributed in a non-Euclidean space and which

subset of the data is well represented by the model and which subset is not.

6.2.4 Other Application Areas

(1) Video prediction. In computer vision researchers are interested in predicting a new

frame for a video or a new entire video. Since a video can be treated as a dynamic system,

this problem could be reduced to predict a new dynamic system. In Chapter 3 we modeled

the underlying dynamics of a video with the observability matrix obtained from linear dy-

namic system (LDS) identification. Using the regression models on the Grassmannian, we

can predict a new observability matrix. As a result, we can reconstruct the dynamic and

appearance matrices, i.e., A and C, respectively (see Section 2.1.3). By further estimating

the initial state x0 and associated noise models wk and vk from the input data, it might be

possible to synthesize a new video for a specific independent value. This could also be used

to predict a video of a cardiac or respiratory cycle in medical image analysis.

(2) Disease diagnosis. One important task of medical image analysis is to help diagnosis of
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a disease. Using discrepancies among shapes or shape trajectories of objects of interest, one

could design a grading system for a disease based on the shape or trajectory distribution of

the training data. For example, given shape populations collected from both normal controls

and disease subjects as training sets, one could compute band depth for a test shape with

respect to the control training group and the disease training group respectively. This would

result in two depth values. Their ratio, e.g., the disease one divided by the normal control

one, could be used as the diagnosis score. In particular, a normal control subject would have

a relatively lower score, which means this subject has a lower risk for having this disease.

In contrast, a subject with disease would be expected to have a relatively higher score.

For longitudinal data, according to the study in this dissertation the velocity of a shape

trajectory is dominant when separating disease subjects from normal controls. Therefore,

we could look at the changing speed of a shape and use it to define a score for diagnosis.
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