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ABSTRACT

Ilwoo Lyu: Cortical Surface Registration and Shape Analysis
(Under the direction of Martin A. Styner)

A population analysis of human cortical morphometry is critical for insights into brain

development or degeneration. Such an analysis allows for investigating sulcal and gyral

folding patterns. In general, such a population analysis requires both a well-established

cortical correspondence and a well-defined quantification of the cortical morphometry. The

highly folded and convoluted structures render a reliable and consistent population analysis

challenging. Three key challenges have been identified for such an analysis: 1) consistent

sulcal landmark extraction from the cortical surface to guide better cortical correspondence,

2) a correspondence establishment for a reliable and stable population analysis, and 3)

quantification of the cortical folding in a more reliable and biologically meaningful fashion.

The main focus of this dissertation is to develop a fully automatic pipeline that supports

a population analysis of local cortical folding changes. My proposed pipeline consists of

three novel components I developed to overcome the challenges in the population analysis:

1) automatic sulcal curve extraction for stable/reliable anatomical landmark selection, 2)

group-wise registration for establishing cortical shape correspondence across a population

with no template selection bias, and 3) quantification of local cortical folding using a novel

cortical-shape-adaptive kernel.

To evaluate my methodological contributions, I applied all of them in an application to
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early postnatal brain development. I studied the human cortical morphological development

using the proposed quantification of local cortical folding from neonate age to 1 year and

2 years of age, with quantitative developmental assessments. This study revealed a novel

pattern of associations between the cortical gyrification and cognitive development.
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CHAPTER 1: INTRODUCTION

1.1 Overview

Cortical brain morphometric measures such as cortical surface area or thickness have been

widely investigated in neuroimaging studies of brain development and degeneration. These

measures enable analyses of global or local developmental trajectories over age of anatomical

changes and their relationships with cognitive function or environment factors. In addition,

quantification of cortical folding has evolved to be an important measure for such cortical

analyses. The cortical gyrification is a dynamic process on the cortex involving surface

expansion/shrinkage as the number of neurons increases/decreases during brain growth.

However, the complete trajectory of cortical gyrification of the human brain is currently

unknown, which makes it difficult to determine an optimal measure of cortical folding as no

generic ground truth of the trajectory is available. There have been increasing attempts to

quantify gyrification in brain developmental studies and pathological disorders via a surface

expansion/shrinkage rate over the cortex of adults [2, 67, 35, 110, 56], infants [68, 62, 49], and

non-human primates [143, 144]. The main challenge comes from the nature of the cortical

shape with its highly complex and variable cortical folding patterns, which hampers the

consistency of cortical analyses. Thus, a key aspect to cortical folding analyses is to determine

where and how to measure a folding region in a consistent way.

As mentioned above, well-defined quantification of cortical folding is a prerequisite for a
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cortical folding pattern analysis. However, the cortical folding patterns are highly complicated

and variable in both intra- and inter-subject comparisons, which makes quantification of

cortical folding challenging. Even if such quantification is well defined in a single subject,

the complexity and variability of the cortical shape yield significant challenges to a popu-

lation study without an appropriate establishment of inter-subject cortical correspondence.

Therefore, successful analyses of cortical folding patterns need to address two critical issues:

consistent anatomical/geometric landmark extraction and cortical surface correspondence.

Recently, with the advent of 3D cortical surface reconstruction, fundamental geometric

landmarks such as local curvature are easily accessible and thus commonly used in the

field of the 3D cortical surface-based analysis. Of many potential geometric properties, it

is well-known that sulcal landmarks are one of the most invariant, stable features across

cortical regions. Currently, two popular ways exist to define sulcal landmarks. The most

prevalent way is based on regional parcellation, given a shape correspondence to a template

(or reference) model. However, this approach often suffers from inaccurate boundaries due to

high sulcal variability across subjects. Another way is to extract sulcal landmarks without

utilizing any predefined template model. In this context, the main advantage comes from no

template selection bias, but the approach casts a critical question of how to define/design

sulcal landmarks.

A consistent cortical surface correspondence across a population is a significant step in a

statistical analysis, providing reliability to better capture population variability as well as to

provide reproducibility. To overcome high inter-subject variability, an inclusion of anatomical

characteristics such as sulcal landmarks can better support the establishment of cortical

correspondence. Particularly, the sulcal fundic regions can serve as robust landmarks in

2



terms of relative invariance and stability across a population. Once a set of well-described

anatomical features is obtained, the next step is to properly fuse those features into the

cortical shape correspondence establishment.

To address a cortical shape correspondence problem for a population analysis, the necessary

solutions/methods can be separated into the following sub-problem steps:

• Anatomical/geometric landmark extraction

• Cortical surface correspondence

• Quantification of cortical folding patterns

• Population analysis for a brain development study

1.2 Previous Work

1.2.1 Sulcal Landmark Extraction

As discussed already, sulcal fundic regions are known as one of the most invariant, stable

features across cortical regions and thus have been widely used as robust features for cortical

registration. Sulcal fundic region recognition has been proposed in several studies [81, 111, 71]

and employed as critical features for a cortical correspondence [28, 3, 130, 73]

Curvature-based sulcal region extraction methods have been reported in [47, 84, 93, 61].

Curvature measures have the nice property of capturing local, geometric characteristics at

a given point. However, such measures are quite sensitive to noise. To alleviate that, a

smoothing kernel is commonly employed, which needs to be chosen carefully as otherwise

large portions of the surface are smoothed out. Moreover, sulcal curves do not always pass
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through points with the maximum curvature, as discussed in [55].

Shi et al. [114] applied the Hamilton-Jacobi equation to the cortical surface to extract

sulcal curves by solving the Eikonal equation (a special form of the Hamilton-Jacobi equation).

Seong et al. [111] further proposed a more general solver that computes anisotropic geodesics.

In their method, the cortical surface is first segmented into seed regions by thresholding a

sulcal depth map, and anisotropic skeletons are then computed by solving the Hamilton-Jacobi

equation. This method requires careful parameter tuning to determine candidate points that

belong to potential sulcal curves. Moreover, since the initial seed regions for the wavefrontal

propagation are based on a sulcal depth map, the sulcal curve extraction could be quite

sensitive to the initial definition of the seed regions especially in cortical fissures with wide

sulcal fundi like the Sylvian fissure.

Sulcal depth information has also been proposed for sulcal curve extraction. Kao et al.

[46] used sulcal depth measures to select candidate sulcal points and connected/refined them

to have a set of curve segments. Le Troter et al. [55] utilized a geodesic density map using

sulcal depth to extract sulcal curves. In this method, sulcal basins are segmented from the

cortical surface to compute the shortest geodesic paths between all possible two points of the

basins. To determine sulcal points, they compute a density map of the paths that measure

how often each vertex belongs to all possible paths. This is based on the assumption that

the shortest paths are highly likely to have an intersection with sulcal curves. However, this

method is sensitive to initial computation of the sulcal depth map as well as a parcellation of

the sulcal basins prior to the processing.
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1.2.2 Sulcal Landmark Labeling

Many geometric methods discussed above tackled the sulcal landmark extraction problem

by exploiting geometric information such as geodesic distance or sulcal depth. However, such

a geometry-based approach generally cannot distinguish the primary cortical sulci effectively

from the secondary or tertiary sulci without an incorporation of prior knowledge about

sulcal landmarks. The recognition of the primary sulci is useful in neuroimaging applications

[97, 40], in that they are more consistent in sulcal fundic regions across different brains. For

the recognition of sulcal landmarks, one could employ cortical parcellation methods either

by analyzing structural neuroimaging data [102, 12] or by combining prior neuroanatomical

information and cortical geometry [33]. However, these parcellation-based approaches often

suffer from inaccurate boundaries of the cortical parcellation due to the high variability across

subjects.

For labeling cortical features, Sandor and Leahy [109] used a manually labeled brain

atlas. An atlas encodes neuroanatomical labeling conventions determined by knowledge

on structure-function relationships and cytoarchitectronic or receptor labeling properties of

regions. Their approach warps the atlas to an individual subject’s cortical surface in order to

inherit the labels of cortical features from the atlas. Since this method depends on an atlas

registration scheme, it requires a surface correspondence between a template and subjects

and generally suffers from a template selection bias. Similar surface-registration methods

have been reported in [135, 126, 63, 64, 124].

A graph-based approach was taken in [54, 82]. In this approach, cortical sulci were

represented by nodes while their relationships were represented by arcs. The detected sulci
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were then labeled based on a manually labeled training set. This approach was further

extended to detection of major cortical sulci. In such an approach, joint sulcal shape priors

between neighboring sulci were used in the learning process [115]. However, the approach

simplified the sulcus detection problem by removing sulcal curves crossing over gyral regions

and representing each sulcus as a simple curve. A watershed transform-based approach

was presented in [63, 105], in which segmented regions were manually labeled by an expert.

Learning-based techniques were also proposed in [106, 5, 132, 96] to detect and label sulci.

However, these techniques depend on specific atlas registration schemes [106, 5, 96] or suffer

from lacks of neuroanatomical conventions [132]. Graph-based learning techniques were

integrated into a public-domain system BrainVisa [107], and cortical sulci that were detected

or labeled by this system have been successfully used in many neuroimaging applications

[10, 16, 15, 27, 24].

1.2.3 Cortical Surface Correspondence

Cortical correspondence methods can be categorized broadly into two main approaches:

volume/voxel registration-based [57] and surface model-based registration [92, 65, 73]. While

volume-based registration is computed on the three-dimensional image grid, the true structure

of the cortical surface is a two dimensional manifold. Volume/voxel based methods in general

do not sufficiently incorporate the folding pattern of that cortical surface to allow for a localized

analysis [26]. In contrast, localized cortical correspondence is significantly improved with a

surface based registration via a cortical surface model. Surface-based registrations can be

further categorized as follows: 1) parametrized vs. non-parametrized surface representations

and 2) pair-wise registration (individual registration to a template) vs. group-wise registration
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(across a population at once).

Cortical surface registration employing parametrized representations is the most prevalent

in the field. It is based on mapping the cortical surface onto a specific parametrized space.

Several mapping spaces have been proposed including planar [3], hyperbolic [130] or spherical

[123, 44] parametrizations. Spherical parametrizations are most popularly used due to their

convenience, reduced distortions and computational efficiency [125, 31, 140, 95, 108, 74]. To

reduce mapping distortions in parametrization, geometric features (e.g., local curvatures,

curvedness, shape index, etc.) have been widely employed in popular pipelines such as

Freesurfer. In recent work [69, 3, 130], sulcal landmark features were employed to reduce

such mapping distortion. Alternatively, Shi et al. [116] proposed an embedding in the

Laplace-Beltrami (LB) space that incorporates a spectral representation to reduce distortions.

While these parametrization-based methods are able to provide appropriate parametrized

representations, it is noteworthy that all such parametrizations possess significant residual

mapping distortions.

Several researchers proposed cortical surface registration in a non-parametrized space.

Non-parametric cortical representation is advantageous in that no cortical mapping is required

to avoid distortion of the original surface representation. In one such approach, a spectral-

based representation is applied to the cortical surface by solving the eigenfunctions of the LB

operator, which provides an intrinsic features for cortical surface matching in the spectral

domain [89, 65]. In [11, 92], particle-based registration is applied to cortical surface models

on which particles are spread such that they establish a group-wise correspondence across

subjects. Though these non-parametric methods are free from mapping distortions, it is

difficult to establish a continuous correspondence, which necessitates the interpolation of the
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implicit deformation field.

The well-studied template-based methods establish a correspondence via a prior template

model in a pair-wise manner. Spherical mapping-based methods are most commonly used

for cortical registration. Several studies [125, 31, 140, 95] have shown successful pair-wise

registration in the spherical space to allow every subject to be aligned to a single template

model. Van Essen [136] applied a surface registration method to human and even non-

human primate subjects via spherical mapping. Lyttelton et al. [70] further proposed an

iterative registration scheme that updates the initial template model for better correspondence

establishment. Lyu et al. [73] also proposed a template-based cortical registration via

spherical harmonic decomposition of the deformation field. Unfortunately, even if individual

correspondence to the template is well developed, these pair-wise methods all possess an

inherent bias to the initial template model. The specific template may also be a non-

optimal choice for the data at hand, yielding lower sensitivity and specificity in the statistical

population analysis.

As reported in [120, 91], group-wise correspondence methods generally yield better

statistical shape models. In earlier work [21, 133, 121, 19], a minimum description length

(MDL) scheme was proposed to describe shape models across a population in a group-wise

manner. Also, Cates et al. [11] adapted an entropy minimization akin to MDL to formulate

their particle-based registration without using a template model or prior information. Indeed,

MDL under the Gaussian assumption is equivalent to entropy minimization as revealed in

[52, 14]. Oguz et al. [92] further refined the particle-based registration by incorporating

curvature features, leading to an improved correspondence and tight cortical thickness

distributions over the entire cortical surface. However, a particle-based correspondence only
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implicitly defines a deformation model without guarantee of topology preservation. In other

words, this method is likely to yield over-folding of the cortical surface. Furthermore, this

method does not provide an explicit estimation of the deformation field between subjects.

1.2.4 Quantification of Cortical Folding

It is challenging to develop a good metric of cortical folding without deep insight into the

developmental trajectory of cortical folding or the modeling of cortical gyrification. In earlier

work [142, 85], the so-called gyrification index (GI) has proposed to quantitatively measure

cortical folding in the volume space by computing a ratio of the pial1 perimeter over the outer

perimeter for each slice. This provides an easy interpretation of cortical folding by globally

capturing the amount of cortical folding in each slice. Despite its clear representation, it

comes with several shortcomings as pointed out in [110]. Particularly, it is highly likely for

this 2D measure to be biased to a cutting plane selection (e.g., sagittal plane) due to loss

of cortical spatial information that is inherently defined in 3D space. In this context, the

cortical folding of a buried deep sulcus is rarely captured in a single slice. One can use 3D

manual delineation of contours over the entire cortex to overcome such limitations, but this

is a highly time-consuming and tedious task.

More recently, approaches have shifted to a 3D surface-based analysis [17, 137], which

provides a higher potential for an appropriate cortical shape analysis. Several investigations

have also been made based on various geometric representations of cortical folding. In [35],

1 The pia is a membrane that covers the brain underneath the skull.
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local mean curvatures computed over the entire cortex were employed as a surrogate local

measurement of cortical folding. In [49], local shape analyses were performed using the

so-called shape complexity index based on the shape index proposed by Koenderink and

van Doorn [51] to measure a local cortical shape change over the years. Batchelor et al. [4]

investigated several geometric properties as measures of cortical folding. Similar to the 2D

GI, local gyrification can be measured in 3D space by the area ratio between the outer hull

and the pial surface [128, 110, 122, 56, 62]. An outer hull-free gyrification index was also

proposed in [117, 77]. As such measures are defined locally, regional quantification of cortical

folding is generally obtained by computing the corresponding average within a specific region

over the cortex.

Though various cortical folding measures have been proposed, there is yet a lack of

methods that incorporate cortical shape into the cortical folding representation. Currently,

the popular way to compute a local GI measure is instead to employ a kernel defined over the

cortical surface: the Euclidean sphere kernel [128, 110], the geodesic distance kernel [35, 49],

the nearest neighborhood-ring kernel [56, 62] or the ROI-based kernel [122]. In general, simple

local kernel-based approaches tend to describe global cortical folding patterns reasonably

well but do not incorporate local cortical shape. The corresponding measures are sensitive to

the kernel size as well as the surface reconstruction (e.g., a degree of surface tessellation).

Moreover, as these kernel-based methods do not take into account any prior knowledge

of sulcal or gyral regions, the kernels merge and eventually smooth out cortical folding

measures across the cortex over multiple sulci into a single measurement. Such smoothed

multi sulcal/gyral folding measures might be prone to a non-optimal cortical folding analysis,

as cortical regions within a single sulcus or gyrus are more functionally related than those
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across mutiple sulci/gyri [100].

1.2.5 Cortical Morphological Development in Early Stage

Several studies have found that the human brain changes dramatically during the early

postnatal phase. Total brain volume doubles in the first year of life and reaches 80% of adult

volume by the end of the second [50, 38]. Similarly, surface area grows fastest and reaches

70% of adult values in the early postnatal period; as well, cortical thickness exhibits a rapid

thickening and reaches 97% of adult values [50, 38]. Cortical changes with respect to cortical

thickness and surface area are also correlated to cortical folding development [118, 34]. In

addition, the early postnatal phase (from neonate to 2 year) is a critical period in cognitive

development [87], e.g., the development of primary sensory processing or language. According

to [88], foster care before age 2 helped children have significantly better cognitive outcomes,

as compared to kids raised in orphanages. Thus, it is important to investigate the association

of cognitive development and brain growth in the early postnatal period. Unfortunately,

there is a lack of studies that describe brain growth trajectories particularly in the early stage

[39] and their relationship to cognitive development.

The Mullen scale at early learning (MSEL) [86] is a common quantification of cognition

in early childhood. The MSEL has 6 major sub-scales quantitatively different aspect of

cognition: fine motor, gross motor, visual reception, expressive language, receptive language,

and the composite (a combination of all but gross motor). The scores in each category are

represented as normalized t-scores (µ = 50, σ = 10, range=20-80), and the composite is a

scaled to IQ score (µ = 100, σ = 15, range=49-155).
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1.3 Thesis Statement

Thesis: Template-free group-wise cortical surface correspondence can be established with

the support of anatomical/geometric sulcal landmarks. Such cortical correspondence can be

employed with a local-shape-adaptive quantification of cortical folding patterns to describe

cortical gyrification trajectories in early postnatal brain development.

The contributions of this dissertation include

1. A novel sulcal curve extraction method: Sulcal curves are automatically extracted from

the cortical surface in a fashion robust to surface noise. My proposed method achieves

high computational efficiency, improves robustness to noise, and high reliability in a

scan-rescan dataset as compared to a well-known existing method.

2. A template-free group-wise cortical surface correspondence: A population correspondence

is established and improved simultaneously in a group-wise fashion free from template

selection bias. My novel group-wise registration method allows for local cortical shape

analysis in human and non-human primate neuroimaging studies. The proposed method

achieves superior results with respect to consistency across subjects as evaluated via

quantitative and visual comparisons compared to well-known existing methods.

3. A cortical-shape-adaptive local gyrification index: A cortical-shape-adaptive kernel

design is proposed to quantify cortical folding patterns. My novel shape-adaptive

kernel measures local gyrification on the human cortex. At a higher reproducibility

in multi-scan dataset. My proposed method further captures cortical folding in a

more biologically and functionally relevant way, as compared to existing gyrification

measures.
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4. A description of trajectories of cortical gyrification and early cognition development:

This dissertation presents an application of my entire framework to a population study

of early cortical morphometric development in local gyrification index and cognitive

development.

5. A publicly available software package: The source codes of the proposed pipeline

developed in this dissertation are publicly available at http://github.com/ilwoolyu/.

1.4 Overview of Chapters

Figure 1.1 illustrates a schematic overview of the entire pipeline proposed in this disserta-

tion. The remainder of this dissertation is organized according to this overview in the following

chapters. Chapter 2 provides an overview of the required background in this dissertation,

including geometric properties, surface correspondence, quantification of cortical folding, and

cortical surface analysis in early development. Chapter 3 presents automatic sulcal curve

extraction on the cortical surface without incorporating a template model. Chapter 4 presents

cortical surface correspondence modeled by spherical harmonics decomposition via entropy

minimization. Chapter 5 presents local gyrification index based on the cortical-shape-adaptive

kernel. Chapter 6 presents applications to early development of the human cortex and a

relationship between local gyrification and cognitive development. Chapter 7 concludes the

dissertation with a discussion of its contributions and some potential future work.
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Sulcal Curve Extraction
(Chapter 3)

Local Gyrification Index
(Chapter 5)

Group‐wise 
Correspondence

(Chapter 4)

Sulcal Curve
Labeling

(Chapter 4)

Surface Reconstruction
(Chapter 2)

Cortical Folding Population 
Analysis

(Chapter 6)

Figure 1.1: A schematic overview of the whole pipeline. A detailed discussion of the individual
components is made for each corresponding chapter.
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CHAPTER 2: BACKGROUND

This chapter presents the background materials required for this dissertation. Section 2.1

describes an overview of popular cortical surface reconstruction methods. Section 2.2 provides

the description of geometric curvature of smooth surfaces for surface handling and geometric

property extraction throughout this dissertation. Section 2.3 briefly summarizes the spherical

harmonic basis functions employed for the deformation field representation, and Section 2.4

presents an entropy model to find an optimal geometric property agreement for group-wise

surface correspondence. At the end of this chapter, Section 2.5 presents a basic concept of

wavefront propagation over the cortical surface model, formulated by the Hamilton-Jacobi

partial differential equation (H-J PDE) for geodesic distance computation over surface models.

2.1 Cortical Surface Reconstruction

Surface properties can be measured directly from 3D images or reconstructed surfaces.

Volume-based approaches to measure cortical surface properties are limited since the spatial

information of the cortical surface is inherently defined on a 2D manifold. Due to that limited

representation, volume-based approaches often lack the appropriate quantification of cortical

surface properties to perform a cortical shape-based analysis of surface area and cortical

thickness measures. As a consequence, surface-based approaches, in which a cortical surface

model is reconstructed from the volume images, are the standard in the field to quantify

surface properties.
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Earlier studies proposed a cortical surface model obtained along the gray matter and CSF

boundary by deforming a topologically corrected model like a sphere [78, 80]. However, such

reconstructed models generally suffered from poor representations of the narrow and deep

buried cortical folding because it is exceedingly difficult to design an energy functional that

fits the deformable model through the narrow opening of the sulci to the true cortical folding

as pointed out in [30].

More recently, approaches have sought to finding the white and gray matter boundary

to reconstruct a surface model, for example, FreeSurfer [17] or CIVET [79] pipelines. These

frameworks are quite similar in terms of two properties: 1) their surface model guarantees a

spherical topology for the white matter surface model construction. 2) the gray matter surface

is obtained by deforming the white matter surface to fit the gray matter and CSF boundary,

in which the cortical correspondence between the white and gray surfaces is inherently

established. Briefly, the overall pipeline is summarized as follows. The raw MR images are

first refined by bias field correction and intensity normalization. Then the preprocessed

images are aligned in a common space such as Talairach space for skull stripping (including

neck and eyeball) and cortical structure segmentation. The cortical tissues are segmented to

create a white matter mask by filling in the subcortical structures within the white matter.

This white matter mask is then separated into left and right hemispheres. Finally, the initial

white matter surface is obtained via a rough triangulated tessellation in FreeSurfer or via

deforming a topologically correct model in CIVET. Once the white cortical surface is obtained,

the gray cortical surface is reconstructed by deforming the white cortical surface using volume

intensity information with several geometric constraints (e.g., curvature smoothing).

Although the deep sulcal folding was better represented in cortical surface models, it has
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been observed that the cortical surface reconstruction is also susceptible to partial volume

effects with narrow sulcal fundi (e.g., less than 1 mm) often poorly represented due to low MR

image resolution. In FreeSurfer, there are two types of topological defects as a result of such

partial volume effects in the resulting model: holes and handles are present since it creates

the surface model using a tessellation technique for the volume-wise tissue segmentation

result. In contrast, such topological defects do not exist in CIVET because a topologically

correct model is employed to fit to the white and gray boundary. However, this approach

still suffers from partial volume effects in the white and gray boundary due to the design

difficulty in energy functional. Therefore, the postprocessing is required either for topological

correction to guarantee a desirable topology [32] or for appropriate representation of narrow

cortical fundi by estimating partial volumes correctly [127].

2.2 Curvature Metrics

In differential geometry, given a point x on the smooth surface with the tangent (walking)

direction T, the normal curvature at x quantitatively measures the amount of the surface

bend along T as measured by the swing of the surface normal N at x. Let Ω be a smooth

surface ∈ R3 with a sufficient parametrization: x(u, v) ∈ Ω such that xu and xv are linearly

independent, where u, v ∈ R. Let DT denote the directional derivative along T. The normal

swing at x along T is decomposed into two components: the normal curvature κT and its

geodesic torsion τT:

DTN = κT ·T + τT ·T⊥, (2.1)
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where T⊥ is the orthogonal direction to T on the tangent plane, and

N = xu × xv
‖xu × xv‖

. (2.2)

Similarly, the normal swing at x along T⊥ is given by the normal curvature κN⊥ and its

geodesic torsion τT⊥ :

DT⊥N = κT⊥ ·T⊥ + τT⊥ ·T. (2.3)

These properties are represented as a matrix form:

 DTN

DT⊥N

 =

 κT τT

τT⊥ κT⊥


 T

T⊥

 . (2.4)

Call the 2 × 2 matrix MII. The geodesic torsion is the same regardless of the tangent direction

T, i.e., τT = τT⊥ . The associated eigenvalues of MII are called principal curvatures that

capture the pure normal swing along the eigenvectors with no geodesic torsion. To improve

the ability of shape description, the principal curvatures (κ1 ≤ κ2) are further extended to

the following geometric properties: mean curvature H, Gaussian curvature K, shape index S

[51], and curvedness C [51].

H = 1
2(κ1 + κ2),

K = κ1 · κ2,

S = − 2
π

tan−1
(
κ1 + κ2

−κ1 + κ2

)
,

C = 2
π

log
√(κ2

1 + κ2
2)

2

 .

(2.5)
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Here is a brief description of those curvature metrics. The mean curvature H is the average

of the principal curvatures; it equals the average normal curvatures over all directions. This

quantification is an extrinsic measure and is equivalent to a half of the trace of MII. The

Gaussian curvature K, log(detMII), summarizes the swings of the normal per unit area; also,

it is intrinsic in a sense of invariance to local isometries. Both H and K are invariant to

the choice of bases and to rigid transformation, whereas these measures are not invariant to

scaling. The shape index S and curvedness C were originally proposed to describe local shape

in a more intuitive way. For example, Koenderink and van Doorn [51] argued that although

spheres with different sizes intuitively have the same shape, H and K fail to describe such a

property. S captures the local shape in a sense of convexity, hyperbolicity, and concavity,

ranging from -1 (concave sphere) to the interval (−1
2 , 1

2) (hyperbolic) to 1 (convex sphere).

C measures how curved the surface is, ranging from −∞ (flat point) to ∞ (singular point).

2.3 Spherical Harmonic Basis Functions

Spherical harmonics are a special form of eigenfunctions of the Laplace-Beltrami operator,

as defined on the sphere. At a point (θ, φ) on the sphere defined over θ ∈ [0, π]× φ ∈ [0, 2π),

the spherical harmonic basis functions with degree l and order m (−l ≤ m ≤ l) are given by

Y m
l (θ, φ) =

√√√√2l + 1
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimφ , (2.6)

Y −ml (θ, φ) = (−1)mY m∗
l (θ, φ) , (2.7)
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where Y m∗
l denotes the complex conjugate of Y m

l and Pm
l is the associated Legendre polynomial

Pm
l (x) = (−1)m

2ll! (1− x2)m
2
d(l+m)

dx(l+m) (x2 − 1)l . (2.8)

The spherical harmonic basis functions are orthonormal over the sphere. A real form of the

functions can be obtained as defined by

Yl,m =



1√
2(Y m

l + (−1)mY −ml ) m > 0 ,

Y 0
l m = 0 ,

1√
2i(Y

−m
l − (−1)mY m

l ) m < 0 .

(2.9)

Any signals x(θ, φ) on the sphere can be decomposed into a linear combination of spherical

harmonic basis functions.

x(θ, φ) =
∞∑
l=0

l∑
m=−l

cml · Y m
l (θ, φ), (2.10)

where cml is a spherical harmonic coefficient of Y m
l . Typically, the coefficients can be obtained

by least squares fitting. The degree controls the reconstruction level of the original signal, as

the high degree spherical harmonic basis functions handle high frequency components of the

original signal interpolation. In practice, the degree is employed to determine smoothness of

the original signal. Several applications are available using spherical harmonic decomposition

such as shape analysis [119] and surface smoothing [13]. Moreover, in order to handle geometric

properties of the cortical surface over the sphere via spherical harmonics, a mapping from

the surface to the sphere is a must. This can be achieved in two ways: area-preserved [9] or

conformal (angular preservation) mappings.
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2.4 Entropy for Group-wise Surface Correspondence

Surface correspondence is a prerequisite for a surface-based population analysis. Depending

on the objective, the correspondence can be optimized in several ways: landmark matching,

predefined model fitting, and tight statistical distribution. In landmark matching, the

shape correspondence is established via a geometric landmark-based metric minimization

incorporating landmark agreement and regularization of the deformation. Another approach

is fitting a predefined model to each individual surface, e.g., using SPHARM-PDM or skeletal

representations (s-reps) [98]. The main idea is to roughly fit the target shape by minimizing

momentum and further to refine the shape correspondence across a population. On the other

hand, Kotcheff and Taylor [52] proposed surface correspondence based on tightening the

probability distribution. The principle behind this approach is based on Occam’s razor that

states “simple descriptions generalize best.” Thus, the corresponding objective function is

the shape variability across a population, measuring tightness from the covariance matrix of

derived PDMs. Later, a different objective function was proposed based on an MDL scheme

as a tightness measure of the probability distribution [21, 133, 121, 19]. In information

theory, MDL is a single scalar encoding for data compression, so it quantifies the amount of

information that needs to encode the distribution for given a query value. For any distribution

p, therefore, it is possible to construct a code c such that the length (in bits) of p at x is

given by

c(p(x)) = − log2 p(x), (2.11)

which minimizes the expected code length. In this framework, a shape correspondence is

established by updating a current parametrization that minimizes MDL of the population
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variability. More formally, the MDL for a population variability is equivalent to computing
∑ log λ, where λ are eigenvalues of the covariance matrix.

In the MDL framework both a proper shape parametrization and a update scheme are

necessary at each optimization step. To avoid reparametrization every single step, Cates

et al. [11] adapted entropy minimization akin to MDL to formulate particle-based registration

on cortical surface models. In information theory, entropy describes the average of the

information, i.e., the uncertainty removed when specifying the entity. For a given distribution

p, its entropy is given by

H(p(x)) = E[c(p(x))] = −
∫ ∞
−∞

∫ ∞
−∞
· · ·

∫ ∞
−∞

p(x) log2 p(x)dx. (2.12)

Under the Gaussian assumption of p, the entropy reduces to a simplified form:

1
2 log (det (2πe · Σ)) = N

2

[
{log(2π) + 1}+ 1

N

N∑
i=1

log λi
]
, (2.13)

where Σ is a covariance matrix and λ are the eigenvalues of Σ. This implies that MDL is

equivalent to entropy minimization under the Gaussian assumption as revealed in [52, 14]. In

the entropy-based framework, prelabeled particles are employed for shape correspondence

establishment. The entropy encodes particle behaviors controlled in two different ways:

for intra-subject similarity, the corresponding particles move over the surfaces to minimize

entropy of their locations. In each subject, particles tends to move away from each atlas

as far as possible to maximize entropy of their locations. Though they did not provide

a weighting scheme, the particle-based shape correspondence needs to be leveraged by
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introducing weighting factors as discussed in [131]. It can be easily observed that a particle-

based shape correspondence implicitly defines a deformation model without guarantee of

topological preservation. Also, particle-based methods were difficult to provide an explicit

estimation of a deformation field between subjects.

2.5 Wavefront Propagation

A geodesic distance can be computed via formulating the wavefront propagation over

the surface model. Given a medium Ω and its boundary ∂Ω (tangent space of the cortical

surface with a speed at every point for example) in R2, the minimum travel-time from one

(or multiple) source ∈ ∂Ω to a point x ∈ Ω in the medium, u(x), follows the propagation

equation for some propagation speed function F :

‖∇u(x)‖F
(

x,
∇u(x)
‖∇u(x)‖

)
= 1, x ∈ Ω ⊂ R2,

u(x) = 0, x ∈ ∂Ω.
(2.14)

Such a formulation of the wavefront propagation is the so-called Hamilton-Jacobi partial

differential equation (H-J PDE). A special case of the H-J PDE is as known as the Eikonal

equation that solves the wavefront propagation with a constant speed function α(x) in every

direction. Like several applications (curvature-based speed [94], diffusion tensor [41]), now

consider a special form of 2× 2 tensor matrix M(x) on the tangent plane such that

F

(
x,
∇u(x)
‖∇u(x)‖

)
= ∇u(x)T
‖∇u(x)‖M(x) ∇u(x)

‖∇u(x)‖ . (2.15)
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If M is symmetric and positive, M is of an elliptic form along its eigenvectors. The wavefront

propagation behaves according to the design of the tensor matrix M .

Although efficient Dijkstra-like solvers called fast marching [129, 112] are well developed

for solving the Eikonal equation, the general H-J PDE cannot be directly solved using that

solver because the characteristics of the PDE do not coincide with its gradients [113]. As

pointed out in [41], therefore, PDEs with proper initial boundary conditions are classically

solved by decomposing them into an independent system of ordinary differential equations

by the method of characteristics [90]. However, this classic solution may not exist because

the H-J PDE develops a discontinuity without smoothing constraints. Several alternative

numerical approaches to a viscosity solution equipped with additional smoothing term are

available as well. Single-pass approaches [113] solve the H-J PDE along the characteristic

directions, whereas iterative approaches [45, 101] do in a number of pre-defined directions.

In this dissertation, the ordered upwind method was employed with O(γN logN) complexity

akin to Dijkstra’s shortest path finding, where N is the number of discrete points over Ω with

an upper bound of its anisotropy coefficients γ, proposed by Sethian and Vladimirsky [113].
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CHAPTER 3: AUTOMATIC SULCAL CURVE EXTRACTION ON THE

CORTICAL SURFACE

3.1 Overview

The recognition of sulcal regions on the cortical surface is an important task for shape

analysis and landmark detection. However, it is a challenging task especially for the complex,

folded human cortex. This chapter focuses on the extraction of sulcal curves from the human

cortical surface. Current sulcal curve extraction methods are time-consuming in practice and

often delineate curves incorrectly in the presence of significant noise.

This chapter presents a novel sulcal curve extraction method1 on the cortical surface

using the line simplification method originally proposed by Ramer [103] and by Douglas

and Peucker [25]. The method approximates a polyline/polygon with a small number of the

original points. It denoises a given curve by selecting a minimum sufficient number of the

extremal points that are part of the original curve. The algorithm has been widely applied in

the field of data compression, digital cartography, and denoising over range data from robotic

sensors. In neuroimaging studies, sulcal fundic regions are known to have a higher stability

than other cortical regions. Even though one can determine appropriate sulcal regions by

applying a simple thresholding of the local curvature or sulcal depth information, those

1The work is based on the previously published paper: Lyu et al. [76]. This chapter partially adapts text
descriptions and figures from the published paper.
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approaches often suffer from the existence of noise over the sulcal regions. In my approach

the sulcal curves are determined in a more robust way via the proposed line simplification

method. In particular, the proposed method has several advantages over existing methods

in terms of 1) no template model being required (or no prior information), 2) providing

more robust sulcal curve extraction even at a high noise level, and 3) fast processing (high

scalability).

The sulcal curve extraction method proposed in this chapter is briefly summarized as

follows. First, a set candidate points is selected by thresholding the principal curvature map

on the cortical surface. Since the line simplification has been originally defined for 2D curves,

the surface is then cut to produce 2D contours at all candidate points with respect to the

principal direction. The line simplification determines candidate sulcal points by denoising

over the extracted contours. Finally, this reduced set of candidate points are connected in a

piece-wise manner to obtain a set of complete sulcal curves. Section 3.2 states the objective

of this chapter. Section 3.3 presents the transformation of the 3D cortical surface into several

2D slice contours to feed an input into the line simplification method. In Section 3.4, the

candidate sulcal points are selected by the line simplification method. Finally, Section 3.5

presents piece-wise curve extraction from the selected sulcal points.

3.2 Objective

Given a triangulated mesh Ω with a set of vertices V , the objective is to find a subset

U ⊆ V that consists of sulcal points located at the deepest sulcal region so as to represent

sulcal curves. The entire process consists of two main parts: sulcal point extraction and

sulcal curve delineation.
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Figure 3.1: A schematic overview of the sulcal curve extraction. For each candidate sulcal
point, a single contour is extracted. The line simplification is then employed to filter non-sulcal
candidates.

In the sulcal point extraction a set of candidate points is first selected via a relatively

generous thresholding of the maximum principal curvature at each location ∈ Ω. Then, a

cutting plane is computed such that it is orthogonal to the first principal direction at each

point v ∈ V , and the corresponding intersection is obtained between that plane and the

surface. A point is added to U if it is preserved after the line simplification process. In the

sulcal curve delineation, the selected points are connected using a geodesic kernel over Ω with

additional smoothing term. A schematic overview of the proposed method is illustrated in

Figure 3.1.

3.3 Slicing and Contour Extraction

The line simplification method has been originally designed for 1D polylines. To extend

the idea to a surface, a novel definition is necessary for most meaningful lines from the surface

at every vertex/point. Here, the proposed method utilizes a planar intersection along a given

direction. In particular, at a given point v ∈ V ⊂ Ω, the normal curvature with respect to a
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given tangent direction T is obtained by

k(T) = DTN ·T, (3.1)

where N is the surface normal at v. Since the objective is to check if v is potentially identified

as a sulcal point, a proper tangent direction T needs to be determined to find a maximum

curvature k in 2D space, in which the surface bends highly along its sulcal bank. The

maximum curvature is defined here along the direction associated with the second principal

curvature k2 ≥ k1, where k1 is the first principal curvature (see also Section 2.2 for details).

Thus, the first principal direction defines a plane for each vertex v ∈ V . Let Tk1 be the first

principal direction associated with k1 at v. Thus, the plane equation is given by

Tk1 · (x− v) = 0. (3.2)

Assume that there are neither holes on the surface nor self-intersections. Thus, a cut between

the plane and the surface yields a (or multiple) closed loop with no self-intersection. Here I

propose a discrete version of [18] to produce a contour at any location of the surface. On

the discrete surface model, a planar intersection test requires an exhaustive, computationally

demanding test for every edge on the surface, where Equation 3.2 is satisfied. Thanks to an

edge culling technique, this can be efficiently addressed by an incorporation of hierarchical

axis-aligned bounding boxes (AABB). Finally, by sorting these intersections in counter-

clockwise order with respect to the curve tangent (x− v), the ordered closed loop(s) is easily

obtained for ∀v ∈ Ω. Figure 3.2 illustrates an example of contour extraction for both a
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(a) (b) (c)

Figure 3.2: Contour extraction. (a) Schematic situation with dotted curves indicating several
cutting planes. (a) The second (maximum curvature) principal directions is colored by red,
respectively. (b) The cutting plane orthogonal to the second principal direction represents
a sulcal point with the maximum surface bend. (c) An example contour on actual cortical
surface (b) without the surface for better visualization.

synthetic and an actual cortical surface. The principal direction captures the maximum

curvature as an optimal representation of the sulcal fundus in terms of its surface bend.

3.4 Sulcal Point Detection

Once the proposed contour is obtained at v ∈ Ω, my method applies the line simplification

approach to the contour to select the minimum sufficient number of extremal points that

represent the contour itself and to check if v is filtered out after the line simplification method,

as illustrated in Figure 3.3. Here is a brief summary of the line simplification method [103, 25].

For a given polyline, the two endpoints p0 and p1 are connected as a horizontal (base) line.

Then, the extremal point p̂ along the polyline with the maximum distance from the line is

selected as follows:

p̂ = argmax
p
‖(p1 − p0)× p‖ · ‖p1 − p0‖−1 . (3.3)

The initial curve is split into two segments at the selected point p̂ and the two endpoints. The

method is then recursively applied to the two curve segments until the maximum distance

is below a given threshold. Note that there can be various point selection strategies rather
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(a) (b) (c)

Figure 3.3: Sulcal point detection. (a) The contour that represents the maximum surface
bend at a query point is obtained with respect to the principal direction. (b) In order to
simplify the contour, the line simplification method selects a minimum sufficient number of
the convex (red) and concave (blue) points that are part of the original contour. (c) The
query point survives and is selected as a candidate point after the line simplification method.

(a) (b) (c) (d) (e)

Figure 3.4: A schematic overview of the line simplification method. (a)-(b) Given a piece-wise
curve, a horizontal line (red) is obtained by finding the two farthest points, and the extremal
point is selected, having the farthest distance (blue) from the horizontal line. (c)-(d) The
selected extremal point is then employed to connect a new horizontal line and the procedure
is recursively applied until the distance from the horizontal line to a new extremal point is
below a threshold. (e) The final simplified line is obtained by connecting all the detected
extremal points.

than the maximum deviation [104], depending on the application. Figure 3.4 illustrates a

schematic overview of the line simplification method.

In this problem setting, two endpoints are determined by finding the largest distance on

the plane of Tk2 among all possible pairs of points on the contour to split it into two longest

possible curves by finding two extremal points as stated in [103, 25]. The line simplification
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method is then applied to one of the two curves that contains the testing point v. If v is

reported as a local maximum by the line simplification method, v is collected into U as a

sulcal point. Overall, the proposed method collects a set of candidate points whose number

varies according to a user-defined threshold value. Figure 3.5 shows an example of candidate

points chosen by the line simplification method. Since potential sulcal points lie along valley

regions, they have a positive principal curvature. For expediting the process, the number of

tests is further reduced by choosing a generous thresholding of curvatures. In the experiment,

this threshold was empirically set to 0.01. Such thresholding is mainly for computational

time reduction.

3.5 Curve Delineation

In order to connect the candidate points into complete curves, potential endpoints of (yet

unknown) sulcal curves need to be estimated. For ∀u ∈ U , thus, sulcal candidates points are

collected within a geodesic distance r defined by an indicator function:

R(u,v) =


1 if Lu(v) ≤ r ,

0 otherwise ,
(3.4)

where Lu is a geodesic distance from u to v ∈ Ω. The geodesic distance Lu can be computed

by the Eikonal equation (see Equation 2.14). Assign u to a source of the wavefront propagation

by letting the tensor matrix M(v) = I for ∀v ∈ Ω in Equation 2.14, where I is the 2 × 2

identity matrix. Thus, with a sufficient boundary condition Lu(u) = 0, the speed function in
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Figure 3.5: Maximum curvature points (top) and detected sulcal points (bottom, where sulcal
endpoints are colored in green and blue). The vertices with positive curvatures are selected
for candidate sulcal points. Since the candidate vertices are spread over a large portion of the
sulcal fundic regions, they are further filtered out by the proposed method that eventually
selects sulcal points (blue). The endpoints (green) are then selected from the selected sulcal
points.

Equation 2.15 becomes

F

(
x,
∇Lu(x)
‖∇Lu(x)‖

)
= 1. (3.5)

For M = I, this simplifies the H-J PDE to the Eikonal PDE:

‖∇Lu(x)‖ = 1. (3.6)
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The solution provides a geodesic distance Lu for all locations of Ω. The geodesic distance r in

Equation 3.4 is chosen under the assumption that the sulcal regions are separated from each

other by at least r. In this chapter, this quantity was empirically set r = 4.0 mm based on

the average width of the sulcal regions in the MNI-305 template [70]. This geodesic distance

can be adjusted depending on the target population.

The candidate points are determined as endpoints if every point holding R(u, ·) = 1 is

located within an octant centered at u as shown in Figure 3.6. This is easily achieved by

testing the sign of the inner products of all neighboring points holding R(u, ·) = 1, i.e., no

line between the neighboring points and the center point u has a separating angle above

90 degrees. Let E ⊆ U be the set of the endpoints determined by this way. To find the

neighboring sulcal point at u ∈ E, the weighted shortest distance is employed from u to s,

such that s holds R(u, s) = 1. The distance weighting is based on the assumption that the

tangent direction of the sulcal curve changes smoothly along the curve. Thus, the weighted

distance is given by the following form:

C(s,u) = ‖(s− u)×T(u)‖ , (3.7)

where T(u) is the tangent vector at u. Therefore, the neighboring sulcal point ŝ at u is

obtained by

ŝ = argmin
s

C(s,u). (3.8)

However, T(u) is unknown due to no prior knowledge of the sulcal curve available. Instead

T(u) is estimated using the local principal direction, Tk2(u). This is an incremental procedure;

once ŝ is determined, the same procedure is applied at ŝ with its neighboring points holding
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Figure 3.6: A schematic overview of the proposed endpoint detection. An example of the
octant of the sphere is determined by three orthogonal axes. u is determined as an endpoint
if its neighboring points in a geodesic kernel S(u) belong to one of the octants. us0 and us1
form the maximum angle across every possible line starting from u, such that R(u, s0) = 1
and R(u, s1) = 1.

R(ŝ, ·) = 1 and it stops if ŝ ∈ E or ŝ is a part of the other already delineated curve (junction

point). Starting at an arbitrary endpoint, the curve estimation is finished if every element in

E has been connected. Figure 3.7 shows the estimated curves from sulcal points. The sulcal

endpoints are located in the end of each sulcal curve.

3.6 Materials

I chose the Kirby reproducibility dataset [53] to evaluate my sulcal extraction method

for reproducibility. Briefly, the Kirby reproducibility dataset was aquired on 21 healthy

volunteers with no history of neurological disease and is publicly available on NITRC2. Scan-

2http://www.nitrc.org/, Neuroimaging Informatics Tools and Resources Clearinghouse
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Figure 3.7: The estimated curves with endpoints in the lateral (left) and medial (right) views.
The sulcal curves are reconstructed from the detected sulcal points. Each curve is labeled
with a distinct color. End points are highlighted via larger dots. Sulcal regions with branches
are represented as several curves with junction points.

rescan imaging sessions with T1-weighted scans were acquired at the F.M. Kirby Research

Center (Baltimore, MD, USA), using the MP-RAGE sequence on 3T Philips Achieva scanners

at 1.0mm × 1.0mm × 1.2mm resolution (204 slices with TR = 6.7ms, TE = 3.1ms, flip

angle = 8 ◦, matrix = 240× 256) scans. The central cortical surfaces were created using the

standard Freesurfer v5.3 pipeline. For validation, the left hemispheres were resampled with

163,842 points via spherical icosahedron subdivision.

3.7 Results

All experiments were performed on a PC equipped with an Intel Core (TM) i5-3570K 3.4

GHz CPU with 12.00 GB memory, and only a single core was used. It took 1-2 minutes to

obtain a full set of complete curves on a cortical surface on average. Quantitative verification

on clinical data is extremely difficult as there is no ground truth for such sulcal curve data.

Qualitatively I compared the results to standards in the field such as BrainVisa. The following
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sections mainly focus on the reliability and reproducibility of the proposed method versus

other methods.

3.7.1 Noise Sensitivity

To evaluate noise sensitivity, synthetic surfaces were generated by vertex-wise perturbation

of an existing brain surface model. Perturbations were simulated via uniformly distributed

independent displacements of the vertices. The left hemisphere of the MNI-305 average

healthy control template surface was used for this evaluation purpose, also employed in [70],

as the original brain surface model. Figure 3.8 shows the detected sulcal curves with different

levels of perturbation. Visually, there is no significant difference from the original surface.

For quantitative evaluation of the robustness to noise, for each sulcal point on the original

surface, the Euclidean distance was measured to the closest point on the perturbed surface

as no ground truth is available. Quantitatively, the experimental result showed that for each

level of noise, the average distance was 0.505± 0.616, 0.776± 0.629, and 0.982± 0.702 mm,

respectively. This indicates that the average distances are reasonable given the original MR

image resolution (1.0 mm).

3.7.2 Reproducibility

From the KIRBY dataset, the BrainVISA pipeline3 [107] was used to generate surfaces from

the dataset with sulcal ribbon extraction, and the extracted sulcal ribbons then were projected

onto the sulcal fundi to have sulcal curves for comparison. Figure 3.9 shows an example of

3http://brainvisa.info/
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Original Surface Δmax=2.27 mm Δmax=4.54 mm Δmax=6.81 mm

Figure 3.8: Robustness to noise. Sulcal points are detected on the surface perturbed by a
random noise. ∆max indicates the maximum displacement of the vertex. The detected sulcal
points (blue) and the estimated curves (red) are stable across levels of noise. The quantitative
evaluation also shows that the average distance to the corresponding points is less than 1.0
mm.

the sulcal curves extracted by using the proposed method. Again, the closest distances were

measured at sulcal points between two corresponding surfaces and then averaged along each

sulcus. Since the closest distance computation is asymmetric (one-way), it took the maximum

of the two possible distances from both corresponding surfaces. Figure 3.10 illustrates a

statistics on the maximum average distances of the corresponding surfaces. Importantly,

the sulcal extraction in the BrainVISA pipeline generates only the set of the labeled major
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(a) (b) (c)

Figure 3.9: Sulcal curve extraction from the different scans for the same subject. (a)-(b) Two
sets of curves are labeled with respective colors (red and blue). (c) The two sets are well
aligned in the same space.

curves as its output (unlabeled curves provided in this pipeline). On the other hand, the

proposed method extracted both major and minor curves (major curve labeling is out of

scope in this chapter). Thus, it could be a unfair evaluation for the proposed method without

a major curve labeling procedure as one would expect higher reproducibility errors in those

smaller curves. Despite that disadvantage, the experimental results show that the proposed

method has less average distance than BrainVISA. The proposed method achieved 2.01 ±

0.33 mm (average ± standard deviation across all 21 cases), whereas BrainVISA showed an

average distance of 2.89 ± 0.73 mm. To obtain statistical significance, I applied a paired

t-test between the maximum average distances obtained from BrainVISA and the proposed

method (total 21 maximum average distances for each method as shown in Figure 3.10). This

reveals that the proposed method achieves a statistically significant smaller average distance

(p � 0.0001).
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Figure 3.10: The maximum average distances of the extracted sulcal curves on the 21 subjects
in the Kirby reproducibility dataset. The proposed method achieves consistent results over
those obtained in the BrainVISA pipeline.

3.8 Summary

This chapter presented a fast and accurate automatic sulcal curve extraction method to

provide cortical geometric landmarks based on the observation that sulcal fundic regions

are well defined as local extrema. A set of candidate sulcal points is chosen by the line

simplification method. The extracted sulcal points are further connected to form a set of sulcal

curves on the cortex. The resulting landmarks showed a high reliability in the multi-scan

dataset as well as robustness to a high level of noise.

The experimental results showed that the proposed method captures sulcal curves robustly

in the presence of noise and shows high computational efficiency. In comparison to Brain-

VISA, a standard neuroimaging tool, the proposed method showed significantly improved

reproducibility. The proposed method has several advantages: First, the parameter tuning is

quite simple as there is a small set of parameters and the results are robust to reasonable
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changes in the parameters. Second, no preprocessing is required on the cortical surface.
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CHAPTER 4: ROBUST ESTIMATION OF SURFACE

CORRESPONDENCE

4.1 Overview

Establishing surface correspondence is a critical step for a population analysis of surface

properties. While template-based cortical surface correspondence is standard in the field,

it is known to introduce a bias to the template selection for the statistical analysis. This

chapter presents my novel approach to establish cortical shape correspondence via a group-

wise cortical correspondence method using a spherical harmonic decomposition of a smooth

deformation field matching sulcal landmarks and sulcal depth maps. Since the pair-wise

correspondence potentially has a template selection bias, I expect group-wise correspondence

to establish a better correspondence for the purpose of population analysis such as a cortical

thickness analysis.

I propose here a group-wise approach1 with the following contributions: (a) robust

entropy estimation to reduce the influence of landmark extraction and labeling errors, (b) the

accelerated computation by employing orthonormality of the harmonic basis functions, (c) a

novel surface coloring for visual comparison, (d) experiments with respect to robustness

and comparisons with existing methods. The overall framework of the proposed group-wise

1The work is based on the previously published papers: Lyu et al. [73, 74, 75]. This chapter partially adapts
text descriptions and figures from the published papers.
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Figure 4.1: A schematic overview of the pair-wise method. From the cortical surface,
sulcal/gyral curves are extracted and their correspondence is established by the proposed
evolutionary algorithm. The complete gyrification index map is obtained via a Gaussian
propagation.

correspondence method is summarized as follows. 1) Cortical surfaces are reconstructed

from MRIs with spherical parametrization. 2) Sulcal curves are automatically extracted

with their labels and mapped onto the sphere. 3) Pair-wise registration is performed on the

mapped sphere (common space) to establish an individual correspondence to a prior template.

4) Group-wise registration is applied initialized by the pair-wise correspondence for unbiased

estimation regardless of the template choice. Figure 4.1 illustrates a schematic overview of

the proposed method.

As preprocessing, Section 4.2 demonstrates the previous methods of sulcal curve extraction

and their labeling as well as the rigid alignment of landmarks. In Section 4.3, the labeled

sulcal curves are employed for shape correspondence establishment in a pair-wise manner.
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Section 4.4 describes the group-wise shape correspondence to remove the template-selection

bias. Finally, Section 4.5 presents the shape correspondence evaluation methods.

4.2 Preprocessing

This section describes preprocessing of the input surface models including sulcal landmark

extraction/labeling and rigid alignment using landmarks.

4.2.1 Automatic Sulcal Curve Labeling and Landmark Correspondence

Two methods are employed as preprocessing of the proposed framework: my automatic

sulcal curve extraction described in Chapter 3 and the automatic sulcal curve labeling [71]

proposed during my earlier work. First, the unlabeled sulcal curves consisting of ordered sets

of points without branching are extracted from the triangulated surface by my sulcal curve

extraction method. While no branching is taken into account, each sulcal curve can be (and

is often) composed of multiple separated curve segments. Then, pre-labeled sulcal curves

(according to the protocol in [73] for the macaque subjects and [71] for the human subjects)

are employed to label corresponding unlabeled sulcal curves while discarding minor and

extraneous curves. This labeling method further establishes a point-by-point correspondence

on these sulcal curves called sulcal landmarks that are employed in the proposed sulcal

correspondence methods.

Here is a brief description of my sulcal curve labeling procedure. Given a set of input

(unlabeled) sulcal curves automatically extracted from a cortical surface (input) and a

collection of prelabeled major sulcal curves (template), the objective is to identify the input

major sulcal curves while establishing point-wise correspondence with template curves. Given
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Figure 4.2: A schematic overview of the spectral matching. The spectral matching establishes
a point-wise correspondence by taking into account both individual point similarity (a) and
relative relation similarity (b). Given two curves, p and q, the individual similarity is measured
between pi and qj (left), and the relative relation similarity is measured between (pi,pk) and
(qj,ql) (right). The affinity matrix M encodes those similarities, and its corresponding
eigenvalue guides the point-wise correspondence between curves.

a raw input sulcal curve set, the most similar template curves are chosen to label the raw

curves, based on the point-wise curve correspondence. To establish curve correspondence, the

spectral matching algorithm [60] is employed to choose the best matched curve by exploiting

the sulcal curve features and their relationship. Figure 4.2 shows an example of the spectral

matching using point-wise correspondence.

4.2.2 Rigid Transformation for Initial Alignment on Sphere

Given a set of point landmarks (sulcal curves for example), the landmark geodesic distance

errors over the unit sphere are employed for rigid alignment. Thus, the objective here is

to find proper spherical rotations that minimize the sum of landmark geodesic distance

errors. Specifically, there are two rotations used in this alignment. First, for each subject the

mean spherical position of its landmarks is obtained via computing the Fréchet mean. Let

Mi be the mean landmark position of subject i. All subjects are aligned to an arbitrarily
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(a) (b) (c)

Figure 4.3: Landmark distribution of 12 primate molar shapes on the sphere with 5 man-
ually annotated landmarks. Each color indicates the corresponding landmark. (a) initial
parametrization determined via SPHARM-PDM, (b) aligned landmarks after rigid trans-
formation on the sphere, and (c) final landmark alignment via the proposed group-wise
method.

selected subject j by simply rotating Mi to Mj. Let M′
i denote the rotated position of

Mi. Second, once M′
i are obtained, another rotation with respect to M′

i is computed by

minimizing the sum of landmark geodesic errors over the sphere, which needs to be optimized.

The optimization uses the NEWUOA optimizer [99] for finding two rotational angles. In

Figure 4.3, for example, 5 manually annotated landmarks are roughly aligned after rigid

transformation of primate molar shapes. Such a rigid transformation is used for initialization

of the proposed group-wise method.

4.3 Landmark-based Pair-wise Surface Correspondence

4.3.1 Objective

For two given triangulated cortical surfaces (template and subject), denote the template

and subject surfaces by Vtemp and Vsubj, respectively. The objective is to estimate a continuous
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cortical correspondence M : R3 → R3 such that

u = M(v) , (4.1)

where locations v on the subject surface Vsubj are mapped to the corresponding locations u

on the template surface Vtemp.

4.3.2 Consistent Displacement Encoding Scheme

To take advantage of the well known spherical parametrization, an invertible spherical

mapping ψ(·) : R3 → S2 is established in the preprocessing stage. All vertices of the cortical

surfaces are then mapped onto the common unit sphere. This reduces the correspondence

estimation to finding M : S2 → S2. This spherical mapping establishes an initial cortical

correspondence that is further improved first by this pair-wise method followed by the

group-wise method.

In this correspondence framework, a novel encoding scheme is necessary for the deformation

representation as a displacement in local spherical polar angles of elevation 4θ and azimuth

4φ. It is well-known that the local spherical angles at different locations on the sphere based

on a single frame of reference (spherical coordinate system) yield inconsistent representations

of the same arclength. For example, a given displacement (4θ, 4φ) at the equator yields

a longer geodesic arclength than the same displacement closer to the pole. To address this

issue, I employ a locally normalized polar system to provide an arclength consistent encoding.

Let p and q be corresponding landmarks from a subject and the template, respectively.

First, a rotation matrix Rp is defined with an angle (≤ 90◦) along the longitude circle passing
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di = [Δθi,Δφi]
T

Spherical Harmonic 
Interpolation & 

Icosahedron SamplingSparse Deformation Estimated Deformation Field

Figure 4.4: Displacement encoding and estimated deformation field (an icosahedron sampling
of continuous representation). A spherical displacement is encoded as change in spherical
angles after rotation onto the equator for arclength preservation, which avoids distorted
displacement representation. The interpolation of the deformation field is obtained by
spherical harmonic decomposition.

through p and the two poles, such that p is exactly located on the equator. By applying Rp

to p and q, it can yield the normalized local polar displacement vector 4θ and 4φ. Thus,

the local landmark displacement at spherical vertex i (θi, φi) on the unit sphere is represented

as a vector di = ψ(Rpi
· pi)− ψ(Rpi

· qi) = [4θi,4φi]T (see Figure 4.4).

4.3.3 Initial Deformation Field

To find an initial deformation field over the entire surface, a least squares fitting of spherical

harmonic basis functions is applied to displacements of the sulcal landmarks established in

the sulcal labeling step [71]. This fitting employs standard spherical harmonic decomposition

of the [4θi,4φi] spherical signal. At a point (θ, φ) on the sphere, the spherical harmonic

basis functions with degree l and order m (−l ≤ m ≤ l) are described in Equation 2.9.

Given the degree l of spherical harmonic decomposition, assume that the number n of the

landmarks is larger than the dimension of (l + 1)2 spherical harmonic basis functions to
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prevent a rank-deficient problem. The coefficients can then be estimated by standard least

squares fitting.

C =
(
YYT

)−1
YDT , (4.2)

where D = [d1,d2, · · · ,dn] and Y is a (l + 1)2 by n matrix that incorporates the spherical

harmonic bases. Once the coefficients of the spherical harmonic decomposition are computed,

for a point v ∈ Vsubj subject space, its deformed position in the template space is easily

reconstructed by the spherical mapping function M̂ .

û = M̂(v) = RT
v · ψ−1(ψ(Rv · v) + CT ·Yv) , (4.3)

where Yv is a column vector of the spherical harmonic basis at ψ(v) and Rv is a rotation

matrix defined above that puts v on the equator. Figure 4.4 shows an example of the

estimated deformation field.

The basis functions are linearly independent due to their orthogonality property. Thus,

the initial deformation field is computed via a low degree (l = 5) fit of the sulcal landmarks,

while a higher degree representation is used in the optimization stage via an incremental

scheme.

4.3.4 Optimization

As discussed in the earlier section, the initial coefficients are determined only by the

sulcal landmarks. This choice biases the cortical correspondence to the specific sulcal fundic

regions affected by mislabeling errors in the sulcal labeling step. For improved correspondence

establishment, a geometric metric is formulated by incorporating sulcal landmark errors
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and agreements between sulcal depth maps via normalized cross-correlation (NCC) over

the entire cortical surface. To regularize the impact of landmark errors, an M-estimator is

employed based on a weighting function f under a Gaussian assumption in Equation 4.4.

By incorporating dmin as voxel size, landmark errors are ignored if below dmin distance and

reduced to a maximal contribution if over a maximum distance dmax. dmax was set about

10–20 times larger than dmin based on experimental observations.

f(d) = 2
∫ d

dmin

I(d)
σ
√

2π
exp

−1
2

(
x− dmin

σ

)2
 dx , (4.4)

I(d) =


1 d ≥ dmin ,

0 otherwise ,
(4.5)

where 6 · σ = dmax − dmin. Now, let L(·, ·) = f(η · arclen(·, ·)) be a regularized arclength,

where η is a ratio of the geodesic distance between two points mapped on the unit sphere and

on the template surface. Practically, η can be approximated as a ratio of the triangle size

under the assumption that the template surface consists of uniform triangles. The resulting

overall cost function is thus formulated with a regularization factor w by letting an operator

⊗ denote normalized cross correlation between two sulcal depth maps.

Ĉ = argmin
C

[
w

{
1
n

n∑
i=1

L(pi, p̂i)
}

+ (1− w)
{1

2 (1− S({u})⊗ S({û}))
}]

, (4.6)

where pi and p̂i are two corresponding sulcal points and S(·) is a sulcal depth map (or any

other property map such as a local curvature map) reconstructed from a set of vertices.

The optimization procedure employs the NEWUOA optimizer [99] for minimizing Ĉ. The
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optimizer finds an optimal solution without derivatives. In the experiment, w is empirically

set to 0.5 based on the experimental results in [73].

4.3.5 Optimal Pole Selection

The direction of displacements varies with location in the proposed spherical polar

coordinate system as shown in Figure 4.5. Depending on the location of the equator, two

identical displacements have a different sign in polar angles if they are computed on opposite

sites with respect to the poles. This can yield a deformation field with significant distortions

leading to even sign changes close to the poles. Therefore, a proper choice of the pole ê

can significantly minimize this influence and yield mostly smooth deformation fields. In

my experience, the presence of non-smooth deformations generally leads to high magnitude

coefficients in high frequency bases. Thus, a coefficient-sum-based metric could be a reasonable

choice as it weights higher frequency coefficients more strongly.

ê = argmin
e

k∑
l=0

l∑
m=−l

(l + 1) · {|cθl,m
|+ |cφl,m

|} , (4.7)

where cθ and cφ are coefficients for elevation and azimuth displacements, respectively. As this

metric possibly has local minima, the optimization is initialized with multiple initial guesses

spread across the sphere, and then the minimum is selected as the optimal pole. Figure 4.5

shows an example of artifacts in the standard polar coordinate system, which are significantly

reduced after the optimal pole selection.

50



Initial pole Artifacts Optimal pole Smooth Displacements

Figure 4.5: Artifacts in the standard polar coordinate system and reduced artifacts (smooth
deformation field) by the optimal pole selection. The artifacts introduced by spherical
harmonic interpolation are significantly reduced by choosing a proper pole.

4.4 Extension to Group-wise Surface Correspondence

This section demonstrates a group-wise registration to further improve pair-wise registra-

tion results as well as to remove the template selection bias inherent to pair-wise registration

as described in [73]. A group-wise correspondence is computed independently from any

template and thus is expected to perform more stably across a population of surfaces. The

group-wise correspondence method incorporates modified entropy terms computed over the

landmark distributions and feature maps such as sulcal depth. Figure 4.6 shows a schematic

overview of the group-wise registration.

4.4.1 Objective

For N given triangulated cortical surfaces mapped onto the unit sphere, each of which

has the same number n of the common corresponding vertices, let V i be the ith surface,

i = 1, · · · , N . The goal is to estimate continuous mapping functions of cortical correspondence
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Common Space

Subject #1
Sulcal Curves and Sulcal Depth

Subject #3
Sulcal Curves and Sulcal Depth

Subject #4
Sulcal Curves and Sulcal Depth

Subject #2
Sulcal Curves and Sulcal Depth

Figure 4.6: A schematic overview of the group-wise registration. An initial correspondence for
each subject is established by the pair-wise correspondence. The deformed sulcal curves and
depth maps are mapped onto the sphere based on the pair-wise correspondence. The group-
wise correspondence is then iteratively updated across a population via entropy minimization.

Mi : R2 → R2 that map surfaces into a common reference space such that

M1(v1) = M2(v2) = · · · = MN(vN) , (4.8)
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where vi are the corresponding locations on the subject surface.

Let x(Mj) be a column vector of the corresponding points of subject j deformed by Mj,

i.e., x(Mj) = [Mj(vj1), · · · ,Mj(vjn)]T . As described in [11], assume that x(Mj) are instances

of X drawn from a probability density function p(X). The average amount of the information

in the random sampling is given by the entropy H[X], and the minimization problem is then

formulated as follows.

{M̂1, · · · , M̂N} = argmin
{M1,··· ,MN}

H[x] , (4.9)

which drives mapped/deformed corresponding points closer to each other.

4.4.2 Entropy of Landmark Errors

In the previous section, I described my pair-wise correspondence that is employed as

initialization for my group-wise method. As the sulcal labeling procedure yields varying parts

of sulcal curves being labeled across different cortical surfaces, the set of sulcal landmarks

is selected to consist of only those that have a full correspondence set across all cortical

surfaces. Now, a key step for landmark entropy computation is the density estimation of

corresponding landmarks. However, appropriate density estimation on the sphere can be

computationally demanding, as it involves geodesic distance computation. Here I propose

two different methods for landmark mean estimation as well as weighting for the landmark

error handling.

Euclidean Mean as Landmark Mean Estimator Similar to [11] for reasons of efficiency,

assume that the initial mapping well centralizes corresponding landmarks, which allows a
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mapping from the spherical space to the Euclidean space S2 → R2 under the assumption

of proximity of corresponding landmarks. The average over corresponding landmarks is

computed in the Euclidean space and is then rescaled to the sphere to guarantee the average

to be located on the sphere. The landmarks are projected onto the tangent plane at that

approximated average to enable Euclidean statistics.

Euclidean Median as Landmark Mean Estimator As stated in earlier studies [71, 72],

the extracted sulcal curves can contain incorrectly identified sulcal labels, which can yield

significantly large errors affecting the computation of the group-wise entropy over the sphere.

Unfortunately, it is difficult to handle such mislabeled curves without manual modification.

This issue can be robustly handled via landmark mean estimation by using the median of

the corresponding points rather than the Euclidean mean. The median is more stable and

reliable than the mean of the projected landmarks. For the kth landmark, the estimate is

given by v̄k = Median{M1(v1
k),M2(v2

k), · · · ,MN (vNk )}. The tangential plane is defined at that

median, v̄k, over the landmarks k.

Weighting for Landmark Error Handling As stated before, my sulcal labeling method

can mislabel curves [71]. The mislabeled sulcal data can influence the covariance matrix;

they generally lead to higher entropy. In order to minimize the influence of such mislabeled

sulcal landmarks, a weighting function is employed to weight the Euclidean distances in the

tangent plane similarly as employed in pair-wise registration; the same weighting function

(Equation 4.4 and Equation 4.5) is employed for this purpose, where large distances contributes

less during entropy computation as these landmarks are highly likely to be mislabeled.
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4.4.3 Entropy of Multidimensional Geometric Properties

In addition to sulcal depth, my group-wise correspondence can be further improved by

incorporating geometric properties (e.g. shape index, curvedness, etc.). The idea in [75]

is to extend my method to incorporate a multidimensional geometric property map rather

than using a single scalar map. Let s(·) denote a multiple tuple of the property map at

a given point and vj be the point in the jth subject such that u = Mj(vj), where u is

a given point on the sphere. Given Mj, let vj be a corresponding vertex to u. It holds

s(M1(v1)) ∼= · · · ∼= s(MN (vN )) if shape correspondence is well established. By the icosahedron

subdivision-based spherical sampling of u, geometric properties are sampled and incorporated

into the entropy minimization problem. To normalize the property maps, each property is

then transformed into z-score prior to optimization.

4.4.4 Entropy Minimization

Consider a model x(Mj) as an instance of X such that

x(Mj) =
[
projv̄1(Mj(vj1)), · · · , projv̄n(Mj(vjn)), S({Mj(vj)})

]T
, (4.10)

where proj(·) denotes the projection of a vertex onto the tangential plane at the median over

the corresponding landmarks, and S(·) is multidimensional geometric properties.

For highly complex and variable shapes, surface triangle flips are often observed during

optimization as there is no such regularization in Equation 4.12. This can lead to overfitting

the resulting deformation fields. To address this issue, an additional term F is introduced

to count the number of flips with respect to surface normals of the deformed spheres. Since
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having no triangle flip is desired during optimization, the final entropy is therefore given by

H[X] =


1
2
∑ ln λ F = 0 ,

∞ otherwise ,
(4.11)

For the density estimation, assume a multivariate Gaussian distribution with covariance

Σ and therefore, the entropy is obtained by

H[X] ≈ 1
2
∑

ln λ+ const, (4.12)

where λ are the eigenvalues of Σ. By letting x̄ be the sample mean and z = [x(M1) −

x̄, · · · ,x(MN)− x̄], the sample covariance is given by 1
N−1zzT . In general, the dimension of

X is much larger than N , which is computational demanding. Instead, the eigenvalues of

1
N−1zTz are computed in the dual space for computational efficiency. The optimization uses

the same NEWUOA optimizer [99] for solving the entropy cost function as in the pair-wise

correspondence.

4.4.5 Hierarchical Optimization

There are two options available for hierarchical optimization to expedite the computation:

incremental coefficient computation and hierarchical subgroup division.

Incremental Coefficient Computation for High Degree of SPHARM It can be

easily observed that the computation time depends mainly on the number of landmarks and

geometric properties (e.g., sulcal depth) over the sphere. Thus, the computational time is
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directly associated and the eigenvalue computation. A nice property of the spherical harmonics

decomposition is the orthonormality of its basis functions, which makes it possible to compute

coefficients in an independent way for sets of basis functions. To reduce computation time,

initial computation is performed on coefficients in blocks of lblock size. That is, the method

starts with the first lblock low degrees, then the next lowest lblock degrees while fixing the

already computed coefficients. Once all coefficients have been obtained this way, all coefficients

are optimized over together to further tune the coefficients to reach optimal values. lblock is

empirically set to 3 in the experiment.

Subgroup Division Strategy for Large Population The proposed group-wise corre-

spondence is established via entropy minimization, depending heavily on computing the

covariance matrix and a product of its eigenvalues (determinant). In general, the covari-

ance matrix is non-sparse. As discussed in [1], therefore, the eigenvalue computation takes

O(N2.373) time for an N ×N matrix under the assumption that an arithmetic operation with

individual elements has complexity O(1). This issue can be handled in a hierarchical manner

to reduce the size of the covariance matrix. In particular, a population can be divided into

several subgroups, and then each subgroup’s correspondence can be established to create

the subgroup’s average model. This is a recursive process, in which subgroups of the (prior

average) shape models are hierarchically generated. Once such a hierarchical optimization

is completed, the intermediate coefficients are employed to deform the sphere for shape

correspondence across the entire population. For better subgroup division, one can use any

shape-based clustering such as PCA.
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4.5 Shape Correspondence Evaluation

This section presents two shape correspondence evaluation methods: average shape model

reconstruction and surface coloring.

4.5.1 Average Shape Model Construction

An advantage of the spherical harmonics representation is the continuous, smooth recon-

struction of signals on the sphere. This allows surface models to determine their corresponding

points at any given points. To take advantage of this spherical harmonic property, these

surfaces are resampled via the icosahedron subdivision and find their corresponding points

from the deformation field defined by the proposed spherical harmonic representation. For

each sampling point, the average location (x-, y-, and z-coordinates) over the corresponding

points was computed to generate a average surface model after Procrustes alignment based

on the proposed shape correspondence.

4.5.2 Correspondence Evaluation via Surface Coloring

I also propose a sulcal curve-based coloring by propagating colors assigned to sulcal

curves over the entire cortical surface in order to provide a visual quality assessment of the

established correspondence. Since only few curves with distinct colors are available, I aim at

propagating those colors over the entire surface. To generate the reference colorized template

surface, each RGB channel was independently interpolated to the full surface via spherical

harmonic decomposition on the spherical parametrization (see Figure 4.7). Due to no ground

truth being available in my experiments, this visualization allows evaluating correspondence

between multiple surfaces effectively, as corresponding locations are visualized with the same
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Spherical
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Surface
Mapping

Harmonic
Interpolation

Figure 4.7: Cortical surface coloring using spherical harmonic interpolation. An individual
curve has its own color for propagation and the sulcal curves are then mapped onto the sphere.
For each RGB channel, a color intensity is interpolated with a combination of harmonic basis
functions, and the color maps obtained via interpolation are remapped onto the original
space (cortical surface).

color.

4.6 Materials

I applied my method on non-human primate/human cortical surfaces for quantitative

evaluation, and I used an additional primate molar dataset to highlight the flexibility and

extendibility of my method.

4.6.1 Macaque Cortical Dataset

18-month-old macaques were imaged under anesthesia at the Yerkes Imaging Center

(Emory University, GA) on a 3T Siemens Trio scanner with an 8-channel phase array trans-
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receiving volume coil using MPRAGE with GRAPPA optimized to a high resolution at 0.6 mm

× 0.6 mm × 0.6 mm (TR = 3,000ms, TE = 3.33ms, flip angle = 8 ◦, matrix = 192× 192)2.

The cortical surfaces were reconstructed via the CIVET pipeline [48]. The 9 major curves

were employed on the left hemispheres: central, arcuate, principal, superior temporal, lunate,

cingulate, intraparietal, occipito-parietal, and sylvian sulcus.

4.6.2 IBIS Paediatric Cortical Dataset

Pediatric 2-year-old subjects were acquired on 3T Siemens Tim Trio scanners at 1 mm ×

1 mm × 1 mm resolution with T1-weighted (160 slices with TR = 2400ms, TE = 3.16ms, flip

angle = 8 ◦, matrix = 256× 256) and T2-weighted (160 slices with TR = 3200ms, TE = 499ms,

flip angle = 120 ◦, matrix = 256× 256) scans. 25 subjects were randomly selected from scans

acquired as part of the Infant Brain Imaging Study (IBIS) network at four different sites

(University of North Carolina at Chapel Hill, University of Washington at Seattle, Washington

University at Saint Louis, and the Children’s Hospital of Philadelphia)3. The cortical surfaces

were reconstructed via the CIVET pipeline [48]. The 13 major sulcal curves on each left

hemisphere were manually delineated: superior temporal (STS), inferior temporal (ITS),

temporo-occipital (TOS), central (CS), precentral (PreCS), postcentral (PostCS), inferior

frontal (IFS) and superior frontal (SFS), intraparietal (IPS), cingulate (CingS), calcarine

(CalcS), occipito-parietal (OPS), and sylvian (SylS) sulci. l was set to 15 as degrees of

2All experiments described in this study were performed in accordance with the NIH Guide for the Care
and Use of Laboratory Animals and approved by the Emory University Institutional Animal Care and Use
Committee (IACUC).

3http://www.ibis-network.org, IRB approval, Informed consent was obtained from all parents of partici-
pants for screening and evaluations.
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spherical harmonic basis functions. For the macaque data the 9 major curves on the left

hemispheres were labeled including the central, arcuate, principal, superior temporal, lunate,

cingulate, intraparietal, occipito-parietal, and sylvian sulci.

4.6.3 Non-human Primate Molar Shape Dataset

The shapes analyzed in this study consist of 12 second mandibular molars from 6 living or

fossil euarchontan species: Donrussellia (subject 1, 2), Pronothodectes (subject 3, 4, 11, 12),

Saxonella (subject 5), Ptilocercus (subject 6, 7), Altanius (subject 8, 9), and Elphidotarsius

(subject 10). These molars are a subset of the sample utilized by Boyer et al. [8]; a detailed

explanation of sample preparation can be found in [7]. In brief, molds of actual toothrows were

molded using a polyvinylsiloxane material (PresidentJet Plus) and cast in epoxy (EpoTek 301).

The second mandibular molar was trimmed from the tooth row and scanned with the Scanco

µCT-40 machine at Stony Brook University’s Center for Biotechnology. Three-dimensional

surfaces of each tooth were segmented from the resulting DICOM or TIFF stacks using

Amira 5.1 or Avizo 6.0. SPHARM-PDM was then employed to create surface models with a

spherical topology. For landmark labeling, five distinct molar cusps were manually annotated

on each surface model. Figure 4.8 shows a complete set of the molars.

4.7 Results

My proposed method was applied on the dataset described above to evaluate the established

correspondence quality. Since there exists no ground-truth for a cortical correspondence,

comparisons were made with the initial spherical mapping and the pair-wise method via

analyses on cortical thickness as well as the agreement with manually extracted sulcal curves.
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Figure 4.8: A complete set of 12 primate fossil molar shapes with their shape correspondence
(different colors) established by the proposed method.

The experimental results showed consistency and reliability through quantitative and visual

comparisons with the existing methods.

4.7.1 Optimal Pole Selection

A leave-one-out cross-validation technique was applied for evaluation of the optimal pole

selection, in which a single sulcus is removed from each individual subject during registration

and measured landmark (reconstruction) errors between the removed sulcus reconstructed

by the deformation field and its corresponding one in the template. Figure 4.9 shows the

smaller average reconstruction errors for the optimal pole and the reduced coefficient load of

the azimuth displacement for the high-frequency harmonic basis functions by the proposed

pole selection.
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Figure 4.9: Reconstruction errors by a pole selection. (a) landmark errors and cumulative coefficient load for (b) elevation and
(c) azimuth displacements. The optimal pole selection yields less landmark reconstruction errors than the standard pole selection.
No major differences are observed for the elevation displacements, whereas for the azimuth displacements, the total amount of
the coefficient load significantly decreases for the optimal pole selection.
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Initial mapping CIVET 
correspondence

Pair-wise 
correspondence

Group-wise 
correspondence

STS ITS ColS CS PrCS PoCS IFS SFS IPS CingS POF CalcF SylF

Figure 4.10: Sulcal curve alignment by (1st column) initial spherical mapping, (2nd) CIVET
correspondence, (3rd) pair-wise correspondence, and (4th) group-wise correspondence.

STS ITS ColS CS PrCS PoCS IFS
CIVET 12.0908 12.2759 12.6610 12.2135 13.0999 11.7675 9.5944

Group-wise 11.9334 13.0723 11.1198 12.0140 12.6433 12.1376 7.9299
SFS IPS CingS POF CalcF SylF

CIVET 12.2897 12.2183 15.9611 9.9457 14.3972 12.0675
Group-wise 11.7407 11.8827 15.8695 9.6593 11.6527 11.3509

Table 4.1: Sulcal curve entropy measured based on the proposed metric. Most major sulcal
curves achieve small entropy except for ITS and PoCS due to a difficulty in automatic sulcal
labeling.

4.7.2 Sulcal Curve Variability

It is important to investigate how tightly the sulcal curves were aligned in the group-wise

common space. Only automatically labeled curves were used for the cortical correspondence

establishment. Also, the manually delineated curves were employed for validation purpose

only and thus were independent of the optimization step in the proposed method. Visually

the mapped major sulcal curves showed improved agreement in several regions as compared

to the pair-wise correspondence shown in Figure 4.10. As shown in Table 4.1, the proposed

method achieved lower entropy except for ITS and PoCS as compared to that computed

via CIVET. This is because ITS and PoCS labelings are more difficult to establish during

automatic sulcal labeling.
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depth thickness
mean std mean std

CIVET 1.1996 0.5103 0.4942 0.3314
initial 2.1313 0.9938 0.5317 0.3547

pair-wise 1.5815 0.8358 0.4996 0.3539
group-wise 1.5568 0.8180 0.4712 0.3375

Table 4.2: Variances of cortical properties for different correspondence methods (unit: mm):
For both sulcal depth and thickness variances, the proposed method shows significant
differences against both the initial mapping and the pair-wise method (p < 0.0001).

4.7.3 Variance over Sulcal Depth Maps and Cortical Thickness

For quantitative evaluation on the correspondence quality, cross-subject variance estimates

of sulcal depth were first measured over all vertices on the entire surface across subjects.

However, such an evaluation is biased, as I employ sulcal depth maps in the cost function.

Thus, I also considered variance estimates of cortical thickness as well as visual assessment of

manually labeled sulcal curves for unbiased evaluation. In Table 4.2, the variance analysis

indicates superior performance of the proposed method for sulcal depth and cortical thickness

measures, with significant differences to both the initial mapping and the pair-wise method,

revealed by Student’s t-test (p < 0.0001).

4.7.4 Visual Validation on Macaque Dataset

The cortical correspondence on the macaque dataset is obtained by applying my proposed

group-wise correspondence. In Figure 4.11, the proposed group-wise correspondence method

shows qualitative improvement over the pair-wise correspondence.
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Figure 4.11: Visual comparison of correspondence results: (1st column) the colored template
surface is propagated to a selected, representative example surface via (2nd) the initial
spherical mapping, (3rd) pair-wise correspondence, and (4th) group-wise correspondence.
The arrows indicate areas of visual differences across the correspondence methods. Visually
well-distinguishable regions are circled in red.

4.7.5 Evaluation of Average Shape Models

A primate molar dataset was used for evaluation of the proposed group-wise method. For

the primate molar shape correspondence, I used two geometric properties: curvedness and

shape index proposed in [51] (see also Section 2.2 for details). Those two properties are of

complementary geometric characteristics, in that regions not covered by curvedness are well

represented by shape index and vice versa. For the weighting balance between landmarks and

geometric properties, it can be observed that the equally weighted optimization achieves the

best representation of the population average. In Figure 4.12, the average model generated

by the proposed method nicely captures five molar cusps and enhanced sharpness of the

ridge/valley of the average model. That average model also well represents variance of each
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(a) (b) (c)

Figure 4.12: Average model reconstruction of 12 primate molar shapes with different shape
correspondence: (a) initial SPHARM-PDM, (b) rigid transformation in S2, and (c) the
proposed group-wise shape correspondence. The colors indicate location variance at each
vertex (color scale: 0 - 0.1 (blue - red)). The group-wise correspondence clearly captures
five cusps across multi subjects, whereas most cusps are hard to see in (a) and one cusp is
missing in (b).

area especially in the most anterior cusp that has a high variability across species.

To quantitatively evaluate the average shape models (and their shape correspondences),

I used two model evaluation techniques: generalization (the ability to describe instances

outside of the training set) and specificity (the ability to represent only valid instances of

the object) as described in [20]. Figure 4.13 illustrates generalization and specificity of the

average models. In both cases, it was observed that the reconstruction errors of the proposed

method are smaller than those of other methods. Also, the proposed method achieved high

compactness that the largest eigenvalue of the proposed method is relatively high. This

indicates that the eigenvalue better explains a majority of the shape variability.

4.7.6 Principal Component Analysis on Molar Shapes

As an application to shape classification, principal component analysis (PCA) was applied

on the primate fossil molars using different PCA models reconstructed by three correspon-
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Figure 4.13: Shape correspondence evaluation using reconstruction error on the primate molar dataset: (a) generalization, (b)
specificity, and (c) compactness. The proposed method achieves better generalization and specificity in terms of the instance
reconstruction error. Also, the largest eigenvalue gives higher contribution of the shape variability than in other methods. This
implies that only few principal components are enough for the shape reconstruction with small reconstruction errors.
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Figure 4.14: Primate fossil molar shape space defined by different correspondences. The
species are labeled by color: Donrussellia (subject 1, 2), Pronothodectes (subject 3, 4,
11, 12), Saxonella (subject 5), Ptilocercus (subject 6, 7), Altanius (subject 8, 9), and
Elphidotarsius (subject 10). Group-wise correspondence shows slightly better separation than
rigid correspondence along PC2; Donrussellia has similar values along PC2 for example.

dences (SPHARM-PDM, rigid transformation, and proposed method). As compared to the

initial correspondence, both rigid transformation and the proposed method can nicely separate

the topmost peak that has the largest variation across subjects. It can be easily determined

whether the location of the topmost peak is left or right according to that separation. In

Figure 4.14, the topmost peaks of subject 1, 4, 7, and 11 are located to the same side (also see

Figure 4.8) along the first principal direction. There was no significant difference of the first

principal direction between rigid transformation and the proposed method, yet for several

species (Donrussellia, Ptilocercus, and Pronothodectes) they were better classified along the

the second principal direction in the proposed method.

4.8 Summary

This chapter presented an automatic group-wise cortical correspondence method that

estimates a smooth continuous deformation field using entropy minimization incorporating

two terms: sulcal landmarks for local alignment and sulcal depth map for the cortical regions
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that are not covered by sulcal curves. The proposed framework is versatile, so it further

allows an extension to multidimensional geometric properties, which is not limited to a

specific population. To overcome potential mislabeling in the sulcal curve labeling procedure,

I used two robust metrics: median estimation of the sulcal points on the tangential plane

and weighted distances for reduction of mislabeling influences. To measure sulcal curve

alignments, an entropy-based metric is employed that quantifies variability in the sulcal

alignment. In addition, surface triangle regularity was addressed by introducing an additional

regularization term during the optimization. A detailed description of cortical surface coloring

was demonstrated for visual comparisons.

In my experiments, the proposed method outperformed the pair-wise method in human

subjects via quantitative analysis and visual comparisons as well as in non-human subjects

via visual assessment. Statistical analysis also provided evidence that the proposed method

has better consistency and reliability on different dataset as compared to the existing CIVET

method (p ≤ 0.001 in both cases). Specifically, for consistency the proposed method achieved

tighter sulcal curve alignment and sharper sulcal depth map average. Also, the shape

correspondence established by the proposed method achieved a tight and reliable alignment,

and the average model nicely captured inter-subject variability in visual and quantitative

comparisons.
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CHAPTER 5: SULCAL SHAPE-AWARE QUANTIFICATION OF

CORTICAL FOLDING

5.1 Overview

An appropriate quantification of the cortical folding is a critical step for surface-based

cortical folding analyses. However, a consistent cortical folding analysis is a challenging

due to highly complex and variable nature of human cortical folding patterns. In general,

cortical folding quantification consists of two major components: 1) the cortical folding metric

definition and 2) the local region definitions over which the metric is computed. This chapter

focuses on the latter, i.e., the design of a local region size/shape (geodesic kernel) on the

cortical surface such that this region is locally adaptive to sulcal and gyral patterns. Initial

attempts to quantify cortical gyrification were made by observation from the cortical folding

change during mammalian evolution [42, 29]. In their approach the evolution process was

assumed that the cortical surface is deformed from a simple convex hull-like surface. As

discussed in Section 1, although the ground truth of cortical gyrification remains largely

unclear yet, I follow the same idea of the evolution process as proposed in [42, 29]. Recent

approaches employing the 3D convex hull are also found in [110, 56].

By defining local regions along sulci and gyri, cortical patterns with similar functions

are more likely to be captured with the same region. In contrast, existing methods employ

regional kernels typically without taking cortical folding into account. To compensate, the
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commonly chosen kernel size is large and subsequently covers multiple sulcal regions that are

less functionally related. This often results in smoothing out the detailed representations

of cortical folding, consequently blurring folding measurements as well. In this chapter, a

novel sulcal-shape aware kernel for cortical folding analyses is proposed with the aim of less

blurring and more biologically plausible quantification of local gyrification. In contrast to

conventional kernel-based approaches, it is important for such an adaptive kernel design to

investigate the geometric properties of the local cortical shape. Briefly, the proposed method

consists of two components: 1) local cortical region segmentation and 2) adaptive kernel

creation based on the region segmentation. Figure 5.1 illustrates a schematic overview of the

proposed pipeline.

Section 5.2 defines the objective of this chapter. Section 5.3 describes the outer hull

creation needed for the computation of local gyrification indices and the correspondence

establishment between the hull and the pial surface. Section 5.4 describes a sulcal/gyral

curve-based cortical region segmentation. Section 5.5 presents a travel-time map computation

from this segmentation required in Section 5.6 to define a tensor field. Finally the tensor

field leads to the generation of the shape-adaptive kernel and the local gyrification index in

Section 5.7.

5.2 Objective

The objective of this work is to design a cortical-shape-adaptive kernel taking into account

information of sulcal and gyral regions. As highlighted in existing anatomic label maps

[134, 22, 138], there are several distinguishing regions on the cortex: sulcal fundi (valleys),

gyral crowns (ridge like regions), and sulcal banks (flat regions). I design an adaptive kernel
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Figure 5.1: A schematic overview of the proposed pipeline.

to capture these cortical regions via two different kernel shapes:

• At sulcal fundi/gyral crowns: an elongated kernel along the fundi and crowns

• At sulcal banks: an isotropic kernel that uniformly covers sulcal banks

In order to make it more specific, the kernel design problem can be transformed into performing

wavefront propagation over the cortical surface. In terms of wavefront propagation, the

desirable kernel design can be redefined equivalently as follows.

• At sulcal fundi/gyral crowns: anisotropic speed faster along the fundi and crowns

• At sulcal banks: isotropic speed in every direction

From this definition, the next question is how to design a tensor field for the wavefront

propagation to follow the above properties. Thus, my proposed kernel design can be achieved

in several steps: 1) sulcal/gyral region segmentation, 2) complete region segmentation based

on the segmented sulcal/gyral regions, 3) tensor estimation at every location of the surface,

and 4) local kernel creation via wavefront propagation on the tensor field. Figure 5.2 illustrates

an overview of the tensor field computation.
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(a) a set of sulcal/gyral curves ζ (b) travel-time map T

(c) gradient map ∇T (d) normalized travel-time map S

Figure 5.2: An overview of the tensor field computation. (a) Sulcal (red) and gyral (blue)
curves are automatically extracted from the cortex as sources for wavefront propagation. (b)
Travel-time to every vertex is computed by solving the eikonal equation. (c) A gradient map
is obtained in the tangent space of the cortex. (d) The travel-time map is normalized to
capture cortical properties: sulcal fundus/gyral crown (blue) or sulcal bank (red).
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5.3 Outer Hull Creation and Correspondence Establishment

The main idea of my proposed kernel-based local gyrification quantification is to measure

an area ratio between a cortical region and its corresponding region on the outer hull. Thus, a

key step is to create an outer hull as a reference that compactly contains a given pial surface

and to establish a surface correspondence between them. As proposed in [46], a morphological

closing operation is applied to the pial surface in the volume space to create an outer hull

that tightly envelops the pial surface, following the same parameter setting as used in [110].

Briefly, the pial surface is transformed into a binary volume, and then a morphological closing

operation is applied to sulci using a sphere of 15 mm diameter as the structural element. This

results in an outer hull in the volume space. For correspondence establishment the surface

evolution method [58] is then applied to trace sub-voxel accuracy trajectories from the pial

surface to the outer hull in the volume space by solving the Laplacian equation. As shown in

several studies [43, 62], such a method guarantees a bijective, smooth correspondence and no

intersections across trajectories. Finally, the outer hull is obtained by replacing vertices of

the original pial surface with the endpoints of the trajectories touching the outer hull in the

volume. In the experiment, the same voxel size to compute the surface evolution is used as

provided in the original input volume.

5.4 Sulcal/Gyral Curve Extraction

Cortical region segmentation into sulcal and gyral regions is needed to classify each cortical

region at which an adaptive kernel is created. As initialization, sulcal/gyral curves can guide

the sulcal/gyral cortical region segmentation. For this purpose the automatic sulcal curve
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extraction method presented in Chapter 3 is employed to obtain the sulcal/gyral curves from

the cortical surface. Then, this sulcal curve extraction is applied to inversely extract gyral

curves as shown in [77]. Briefly, the method consists of two main steps: 1) sulcal/gyral point

selection using a line simplification method and 2) curve delineation by tracing the selected

points, constrained by a smoothing term. In the sulcal/gyral point selection, the point is

evaluated along the direction associated with the principal curvature. The final curves are

of a piece-wise point set constrained by curvature smoothness. For the remainder of the

chapter, ζ denotes a set of the extracted gyral curves. The pial and white matter surfaces are

employed to accommodate the differing sharpness of sulcal fundus/gyral crown in these two

surfaces. Sulcal curves are extracted from the pial surface while gyral curves are extracted

from the white matter surface. The resulting gyral curves are projected onto pial surface

using the surface correspondence between the pial and white matter surfaces. Figure 5.2a

shows an example of the extracted sulcal/gyral curves on the pial surface.

5.5 Travel-time Map

As mentioned before, an adaptive kernel can be obtained via wavefront propagation driven

over a tensor field of the cortical surface. For this purpose, the entire cortical surface needs

to be segmented to define a tensor at every location of the cortex. This can be achieved

by extending the extracted sulcal/gyral curves (see Section 5.4). Specifically, for the entire

cortical surface segmentation a travel-time map T between sulcal/gyral curves is employed

and is obtained by computing shortest trajectories from the sulcal curves ζ to all the locations

of the cortical surface. This is a shortest geodesic path finding problem at an isotropic

speed at each location, which can be formulated by the eikonal equation by simplifying
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Equation 2.14 described in Chapter 2. A set of points ∈ ζ serves as sources of the wavefront

propagation, and in Equation 2.14, let the tensor matrix M be the identity matrix I. Thus,

with a boundary condition T (p) = 0 for ∀p ∈ ζ, Equation 2.15 becomes

F

(
x,
∇T (x)
‖∇T (x)‖

)
= 1. (5.1)

For M = I, this rather reduces the H-J PDE to

‖∇T (x)‖ = 1. (5.2)

The solution provides a travel-time map T for all locations of the surface as illustrated in

Figure 5.2b.

5.6 Tensor Field

To guide an adaptive kernel a tensor field over Ω is computed from T via wavefront

propagation. My goal is to design a kernel, in which the propagation speed is getting

anisotropic as it reaches sulcal/gyral regions and isotropic as it reaches sulcal banks. The

tensor field is decomposed into two components: principal propagation directions and their

associated propagation speeds.

5.6.1 Principal Propagation Direction

It is important to determine the directions along which the propagation is performed.

The basic idea is to utilize the orthogonal and tangent directions to the sulcal/gyral curves.

However, since the curves exist only in few cortical regions, it is necessary in other regions
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to define something acting like the curves, as well. For this purpose the iso-travel-time

contours of T are employed. This modeling issue can thus be addressed by finding shortest

trajectories (orthogonal to the contours) of T between sulcal fundi and gyral crowns. As

defined in [113], the shortest trajectory for anisotropic equations is computed by tracing

characteristic directions rather than gradients while they become coincident when it comes

to the eikonal equation. Thus, as T encodes the minimum travel-times from the sources, the

shortest geodesic trajectory is easily obtained along the gradient field ∇T .

For a given point x ∈ Ω, its two principal propagation directions v1(x), v2(x) are defined

in the tangent plane by letting

v1(x) = ∇T (x)
‖∇T (x)‖ and v2(x) = ∇T⊥(x)

‖∇T⊥(x)‖ , (5.3)

such that ∇T (x) ⊥ ∇T⊥(x). v1 encodes the tangent direction to the geodesic trajectory

between the corresponding sulcal fundus and gyral crown, and v2 does the orthogonal direction

to v1. In a triangulated mesh, the mean curvature normal approximation is achieved by

minimizing the Dirichlet energy using [83], and a local gradient ∇T (x) is then obtained

by the weighted mean of the projected first-order directional derivatives [141]. Figure 5.2c

illustrates an example of ∇T .

5.6.2 Principal Propagation Speed

The second modeling issue is to determine the speed associated with the principal

propagation direction at the two cortical region types of sulcal fundi/gyral crowns and sulcal

banks. For the former type it is desirable that the speed has minimum and maximum along
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v1 and v2, respectively, which yields an elongated kernel as a result. On the other hand, the

speed needs to be almost the same along every direction in the sulcal bank to produce an

isotropic kernel. However, it can be easily observed that the middle of sulcal banks does

not possess the same travel-time T over the entire surface as it varies at the depth of the

corresponding sulcus. To better classify the local region type using T at a given point x ∈ Ω,

a novel parametrization is required with respect to local regions such that T is normalized

over Ω ranging from η to 1 (0 < η ≤ 1).

The maximum travel-time is computed across the shortest trajectories passing through

a given point and then normalize the travel-time at that point by the local maximum.

Specifically, for a given point x ∈ Ω its source sx ∈ ζ is obtained by tracing gradients over

−∇T until T = 0 while holding T > 0 and T (x) > T (x +∇Tdx). This gives a label map of

Ω that represents the source of any point ∈ Ω. For a given source s, DL(s) denotes its label

region ⊆ Ω, i.e., DL(s) = {x ∈ Ω|sx = s}. Similarly, the maximum travel-time through x is

obtained by tracing over ∇T (DL(sx)) until it touches ∂DL(sx). The normalized travel-time

map S is thus obtained via simple linear interpolation.

S(x) = (1− η) · T (x)
Tmax(x) + η, (5.4)

where

Tmax(x) = max
y∈DL(sx)

T (y). (5.5)

Tmax(x) is the maximum travel-time along the shortest trajectory from the source through

x and holds T (x) ≤ Tmax(x). Thus, the normalized travel-time map S captures the region

properties in an easy way; for example, S(x) = 1 if it belongs to the middle of a sulcal bank,
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as shown in Figure 5.2d. Regardless of sulcal depth, S now supports consistent speed in

the principal propagation direction v1 and 1
S

to v2. They are reciprocal to each other to

guarantee the amount of the propagation at any point in Ω is constant, which is equal to 1.

5.6.3 Tensor Matrix

From Equation 5.3 and Equation 5.4, the new tensor matrix M̃ is defined in the tangent

plane as

M̃(x) = S(x) · v1(x)v1(x)T + S(x)−1 · v2(x)v2(x)T . (5.6)

The tensor matrix M̃(x) ultimately guides the spatial-varying wavefront propagation. Recall

that η is used to prevent M from being degenerative. The minimum bound η is thus employed

as a regularization term. Furthermore, the H-J PDE governed by Equation 5.6 is convex

because it holds the Lipschitz-continuity that bounds the propagation speed F such that

0 < η ≤ S ≤ F ≤ S−1 < ∞. As stated in [113], therefore, the propagation converges to

a viscosity solution at the bounded propagation speed F . Note that the speed tensor M̃

becomes isotropic when η = 1.0. Figure 5.3 shows behaviors of the proposed adaptive kernel

varying in η.

5.7 Adaptive Kernel and Local Gyrification Index

My proposed local-shape-adaptive kernel at x ∈ Ω is obtained by solving the H-J PDE

equipped with the proposed tensor matrix M̃ in Equation 5.6. In contrast to the conventional

kernel-based approaches, the cortical surface is employed to define the kernel specifically

suitable to the cortical folding while the kernel size is determined on the outer hull. Formally,
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S 1.0 0.5 0.1

Figure 5.3: Two different types of synthetic normalized travel-time maps S on the plane and
their kernel shapes with a constant area by varying η with a jet color scale (blue - red): 0-1.
The respective travel-time maps are obtained from the center horizontal (top) and marginal
horizontal (bottom) sources (blue). The kernel created at the center of the map as a source
point. The kernel is adaptively elongated faster as η becomes smaller (top), whereas the
kernel remains as isotropic as possible even with a small value of η (bottom). From the second
to fourth columns, the color indicates iso-contours over time.

the proposed wavefront propagation K for an adaptive kernel is formulated by recalling the

H-J PDE that satisfies the following equation with a boundary condition K(x) = 0 such that

‖∇K(x)‖ ·
(
∇K(x)T
‖∇K(x)‖M̃(x) ∇K(x)

‖∇K(x)‖

)
= 1. (5.7)

Once travel-time K is computed, a kernel can be created by tracing one of the iso-travel-time

contours of K. Denote a bijective function between Ω and H by f : R3 → R3. Recall that f

is established via a Laplace-based outer hull creation method so it is differentiable. To select

a proper iso-travel-time contour at x for the adaptive kernel creation, all the iso-travel-time

contours of K are projected onto H via f . Then, a projected iso-travel-time contour is
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chosen such that the area contained by the contour over H is equal to some positive constant

(typically, user-defined parameter). Now assume that Ω is parametrized by ϕ : R2 → R3

such that ϕ(u, v) = (x(u, v), y(u, v), z(u, v)) ∈ Ω. Formally, given K and travel-time δ, the

corresponding area of H to the iso-travel-time contour (T = δ) is formulated as the following

surface integral.

AH(x; δ) =
∫∫

DA(x;δ)

∥∥∥∥∥∂(f ◦ ϕ)
∂u

× ∂(f ◦ ϕ)
∂v

∥∥∥∥∥ dudv, (5.8)

where DA(x; δ) = {(u, v) ∈ R2|K(ϕ(u, v)) ≤ δ(x)}. The resulting kernel is then determined

by fixing the corresponding area of H by finding δ such that AH(x; δ) is equal to some

constant function ρ(δ) ∈ R+. Once δ is obtained by solving Equation 5.8, the surface area of

Ω governed by δ can be obtained as follows.

AΩ(x; δ) =
∫∫

DA(x;δ)

∥∥∥∥∥∂ϕ∂u × ∂ϕ

∂v

∥∥∥∥∥ dudv. (5.9)

From Equation 5.8 and Equation 5.9, my proposed local gyrification index is then given by

the area ratio

lGI(x; ρ(δ)) = AΩ(x; δ)
AH(x; δ) = 1

ρ(δ)AΩ(x; δ). (5.10)

The local surface area for each vertex is approximated by using barycentric cells in a

triangulated mesh. Figure 5.4 shows the different kernels applied to the actual human cortex

at ρ = 316 mm2.
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FreeSurfer Isotropic
Propagation

Anisotropic
Propagation

Figure 5.4: Kernels at an arbitrary example sulcal point on the same subject surface using
different approaches with a fixed area on the outer hull ρ = 316 mm2. The circular kernel
(intersection of the outer hull and the sphere) is obtained in FreeSurfer (left). The proposed
kernel can be obtained with different regularization factors: isotropic (η = 1.0, middle) and
anisotropic (η = 0.5, right) propagations. The FreeSurfer kernel has a circular shape on the
outer hull, whereas the isotropic one does so on the cortical surface. The color indicates
iso-contours over time.

5.8 Materials

In my experiments, pial cortical surfaces were created using the standard FreesSurfer

pipeline [17]. The proposed method was evaluated on the left hemispheres at a fine sampling

of 163,842 points (uniform sampling in spherical parameter space via icosahedron subdivision)

and compared with FreeSurfer’s local gyrification index [110].
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5.8.1 IBIS Living Phantom

The reproducibility of the proposed local gyrification index was evaluated on a large set

of scan/rescan data. A human phantom (male, age 26 at the start of this study) was scanned

at the four different imaging sites, equipped with a Siemens 3T Tim Trio scanner (Siemens,

Erlargen, Germany) for evaluation, at irregular intervals over the period of 2.5 years. The

same scanning sequences were employed for the developmental MRI scans; 36 scans were

acquired in total.

5.8.2 KIRBY Dataset

The Kirby dataset of 21 healthy volunteers’ scan/rescans already employed in Section 3

was also used here for reproducibility analysis [53], available on NITRC1. Scan-rescan imaging

sessions with T1-weighted scans were acquired using MP-RAGE sequence on the 21 subjects.

To compute relative measurement errors, the average local gyrification index was used for each

subject between the scan and rescan sessions. Refer to Section 3.6 for a detailed description.

5.8.3 Simulated Cortical Folding

Due to a high variability of the cortical folding, it would be computationally expensive

and difficult to model every possible sulcal folding pattern and determine the kernel size

that fully contains the sulcal fundus/gyral crown. For simplicity, I simulated such an ideal

scenario for numerical validation, in which the gyral crowns are parallel to the sulcal fundi

1http://www.nitrc.org/, Neuroimaging Informatics Tools and Resources Clearinghouse
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and symmetric at the sulcal fundus.

Parametric Simulated Model and Local Gyrification Index To create a simple

cortical folding model, an implicit plane was rendered in the x- and y-parametric space

in R2 given by (x, y) ∈ [−∞,∞] × [−0.75, 0.75]. Then a sine wave (amplitude = a/2 and

wavelength = 1/2) was applied over such a domain to obtain a sine waved plane F :

F (x, y) = a

2 [− cos(2π(2y + 1))− 1] . (5.11)

This gives three identical sulci having the same depth a (see Figure 5.5a). The magnitude of

the middle sulcus y ∈ [−0.25, 0.25] was then modified, while fixing a = 1 for the others to

simulate two different scenarios: shallow (a = 0.5) and deep (a = 2.0) sulci. A line integral

was performed along the sine wave to compute the ground-truth local gyrification indices

of shallow, deep, and neighboring sulci, respectively: 2.30, 8.11, and 4.19. The gyral/sulcal

points were selected as the sources of the propagation by finding the extreme points of F .

The propagation was then performed at the origin of the plane (0, 0, F (0, 0)).

Travel-time of Simulated Symmetric Cortical Folding Consider total travel-time

from a sulcal fundus to its neighboring gyral crowns (see Figure 5.5a). The wavefront

propagation thus begins at the sulcal fundus of x such that T (x) = 0. Let l be the length

of its trajectory to the gyral crown with a linear parametrization of t ∈ [0, l]. This encodes

that, for example, t = 0 corresponds to the sulcal fundus and t = l to the gyral crown. From

Equation 5.4, the travel-time along the gradient directions v1 is obtained by the inverse of
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(a) identical sulcus (a = 1.0) (b) shallow sulcus (a = 0.5) (c) deep sulcus (a = 2.0)

Figure 5.5: Simulated equally-spaced identical (a), shallow (b), and deep (c) sulci with their
normalized travel-time maps: sulcal fundus/gyral crown (blue) or sulcal bank (red). The
neighboring sulci are identical with the same depth (a = 1.0). The sulcal/gyral regions are
selected by finding extreme points as sources of the wavefront propagation The travel-time
map is normalized with respect to the spatial information over the cortical surface.

its speed: ∫ l

0

1
(1− η) (l/2−|t−l/2|)

l/2 + η
dt. (5.12)

This is symmetric at t = l/2, which yields a closed form by simplifying the original formula

in Equation 5.12. ∫ l/2

0

1
(1− η) t

l/2 + η
dt+

∫ l

l/2

1
(1− η) (l−t)

l/2 + η
dt

= 2
∫ l/2

0

1
(1− η) t

l/2 + η
dt =

∫ 1

0

l

(1− η)t+ η
dt

= −l log η
1− η .

(5.13)

This implies the minimum travel-time to reach the neighboring gyral crowns. From Equa-

tion 5.13, as η decreases, it takes longer propagation time (proportional to − log η/(1− η)) to

reach two neighboring gyral crowns, whose resulting kernel spans more surface area. Figure 5.5

shows the two shallow and deep sulci generated by Equation 5.11.
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5.9 Results

My proposed local gyrification index is determined by two parameters η (amount of

anisotropy) and ρ (kernel size). In this section, I evaluated the behaviors of the proposed

adaptive kernel by varying those parameters in several different settings. First, I show a

reproducibility of the proposed kernel on the same subject with different MRI scans. Second,

a comparison between different kernel shapes is made on the simulated folding. Finally, based

on the above described experiments on both simulated and real dataset, I investigate an

optimal parameter setting on a given population.

5.9.1 Reproducibility

The IBIS living phantom was used for the quantitative evaluation reproducibility without

and with outer hull correspondence.

Local Kernel Shape The kernel reproducibility itself was evaluated without an inclusion

of the outer hull correspondence. All the cortical surfaces were aligned via a generalized

Procrustes alignment. Then a kernel with a fixed size on the pial surface was created and

the average closest distance was measured for every possible pair (36 different scans = total

36× 35 combinations) of the acquired kernel boundaries at the corresponding locations from

different scans. Such extensive comparisons were made because no ground truth of boundary

correspondence is available and the metrics are asymmetric (one-sided) in general. I varied

the kernel size from 316 to 1, 264 mm2 with an interval of 316 mm2 as well as η at 1.0, 0.5,

0.2, and 0.1. The average closest distance over the entire cortex are summarized in Table 5.1.
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Area (mm2) 316 632 948 1,264
η = 1.0 0.56± 0.19 0.66± 0.22 0.72± 0.23 0.76± 0.24
η = 0.5 0.65± 0.21 0.78± 0.24 0.85± 0.25 0.91± 0.26
η = 0.2 0.71± 0.23 0.85± 0.26 0.94± 0.28 1.01± 0.29
η = 0.1 0.73± 0.24 0.88± 0.27 0.97± 0.29 1.04± 0.30

Table 5.1: Average closest distance of the adaptive kernel between all pairs of surfaces of the
same subject (unit: mm). The proposed adaptive kernel achieves a great reliability even for
large area with high anisotropy in terms of triangulated size, given that the average edge
length is 1.16± 0.46 mm.

The result reveals that the boundaries of the corresponding kernels were almost completely

overlapped as measured by the average closest distance that differs less than a single triangle

edge on average. This is partially due to utilizing the discrete wavefront propagation whose

boundary stops at a discrete vertex on the triangulated surface. In terms of the triangulated

quality of the pial surface (average edge length: 1.16 ± 0.46 mm), however, this implies

that the proposed approach is able to achieve an excellent reproducibility in computing the

proposed adaptive kernel even at a high anisotropic speed η = 0.1. Note that the adaptive

kernel is getting more sensitive to the sulcal/gyral curve extraction method as η decreases and

thus that the average closest distance increases while the resulting reproducibility decreases.

Local Gyrification Index The local gyrification index was computed using the conven-

tional FreeSurfer method [110] and the proposed adaptive kernel for the comparison purpose.

The kernel area on the outer hull ρ varies from 316 to 1,264 mm2 with an interval of 316

mm2 for η =1.0, 0.5, 0.2, and 0.1. Since the local gyrification index is unitless, a coeffi-

cient of variation (CoV) was used to measure the percentage of its measurement error that

quantifies how local gyrification indices vary across multiple scans. Figure 5.6 illustrates the

reproducibility over the entire surface for the conventional and proposed methods. Although
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Kernel Size FreeSurfer Isotropic Propagation Anisotropic Propagation

316 mm²
(r=10 mm)

CoV 7.17 ± 7.84% 3.64 ± 1.57% 4.78 ± 1.60%

1,264 mm²
(r=20 mm)

CoV 3.11 ± 1.29% 2.13 ± 0.79% 2.96 ± 0.92%
0% 30%

Figure 5.6: Reproducibility of the conventional and proposed method. The reproducibility is measured by coefficient of variation
(CoV). Overall, the proposed kernel-based local gyrification index achieves a better reproducibility than the conventional method
for both small and large sized kernels. The proposed kernel shows better performance as it gets isotropic due to a less influence
of sulcal/gyral patterns that might further introduce curve extraction errors in measurement. The inflated surface is used for
better visualization (blue - red): 0-30%.
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Area (mm2) 316 632 948 1,264
Radius (mm) 10 14 17 20

FreeSurfer 7.17± 7.84 4.87± 2.12 3.93± 1.65 3.11± 1.29
η = 1.0 3.64± 1.57 2.67± 1.05 2.31± 0.89 2.13± 0.79
η = 0.5 4.16± 1.49 3.18± 1.04 2.76± 0.88 2.52± 0.80
η = 0.2 4.78± 1.60 3.74± 1.17 3.26± 1.00 2.96± 0.92
η = 0.1 5.21± 1.79 4.13± 1.38 3.61± 1.19 3.28± 1.09

Table 5.2: Coefficient of variation of the local gyrification index (unit: %). Overall, the
proposed method achieves a better reliability than the conventional method (FreeSurfer).
The proposed local gyrification index exhibited a slightly lower (but still comparable) repro-
ducibility in the anisotropic propagation due to the sulcal/gyral curve extraction.

the reproducibility might be influenced by the surface correspondence f , the proposed local

gyrification index achieved a comparable reproducibility to the conventional method for

both the isotropic and anisotropic propagation. For the small kernel size (316 mm2), the

conventional method was unstable (as expected) around the Sylvian fissure likely due to its

deeply buried sheet, whereas the proposed kernel provided a consistently high reproducibility

even in that area. Note that the isotropic propagation should be considered as a lower bound

of the proposed method as it does not take into account the sulcal/gyral curves for the local

gyrification index computation. Table 5.2 summarizes the average coefficient of variation of

the local gyrification index over the entire cortex at different anisotropic speed η. As expected,

the local gyrification index achieved a slightly lower (but still comparable) reproducibility

when using anisotropic propagation due to being more sensitive to the variability in the

sulcal/gyral curve extraction.

5.9.2 Evaluation of Simulated Cortical Folding

To examine how my local gyrification index varies over η, I generated the cortical folding

via the simulation with an areal interval proportional to the standardized propagation area,

90



Figure 5.7: Local gyrification index of the sine waved plane in two different simulated
scenarios: shallower (a = 0.5) and deeper (a = 2) sulci than the neighboring ones (a = 1)
(see Figure 5.5). Ground truth values for both scenarios are shown by dashed line. The local
gyrification indices are assessed on the two simulated sulcal depths. When the proposed
kernel touches two gyral crowns (area = 1), it gets closer to the ground truth as η decreases
(higher anisotropic speed). Left: Since the two neighboring sulcal fundi are deeper (a = 1)
than the sulcus being evaluated, the gyrification index increases as the propagation covers
more area of the neighboring fundi. Right: The gyrification index constantly decreases as the
depth of the neighboring sulcal fundi is shallower (a = 1) than the sulcus being evaluated.

in which the kernel touches the two neighboring gyral crowns. In Figure 5.7, the local

gyrification index is getting closer to the ground truth as η decreases due to its increasing

anisotropic speed along the sulcal fundus. I further increased the kernel size until it almost

fully covers the two neighboring sulcal fundi. The local gyrification index was decreasing as

the neighboring sulcal fundi increasingly influenced the local gyrification index. For both

shallow and deep sulci, the local gyrification index changes slowly as η decreases. This implies

that the anisotropic propagation computed the local gyrification index in a more accurate

cortical-shape-adaptive way than the isotropic propagation.

5.9.3 A Choice of Kernel Size

It is important to cover sulcal/gyral regions completely to capture sulcal folding ap-

propriately. For this purpose, the minimum kernel size was computed for a given subject

population. It is noteworthy that the outer hull squeezes the sulcal regions while leaving the
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gyral crown with subtle distortion because a correspondence to the outer hull is obtained

by the Laplace-based surface evolution. Thus, I focused on fixing the outer hull area AH

corresponding to sulcal fundi. To determine the minimum kernel size that fully spans a sulcal

region (i.e., at least two gyral crowns), AH was computed for ∀x ∈ Ω belonging to the sulcal

curves. Since the cortical area is different across the subjects, the kernel size was normalized

with the average total cortical surface area over the population to remove the impact of

differently sized surfaces.

Using the Kirby dataset, I computed the average local gyrification index for each subject

between the scan and rescan sessions. Since there is a trade-off between reproducibility and

measurement accuracy, η was set to 0.2 to more adaptively capture cortical folding, while

keeping a comparable reproducibility to the conventional method. I also chose ρ = 316.66 mm2

over the population to guarantee the kernel size that completely covers any sulcus in this

subject population. Figure 5.8 shows local gyrification indices using different kernel sizes.

The proposed kernel more adaptively captured the cortical folding especially using a small

kernel size. Despite a high blurring effect with a large kernel, the proposed adaptive kernel

provided comparable local gyrification indices over the entire cortex as can be well seen by

the detailed gyrification index at the central or cingulate sulcus, for example.

5.10 Methodological Issues

5.10.1 Local Gyrification Index

Several metrics have been proposed to measure local cortical gyrification. The most

prevalent ways are based on an area ratio of the pial surface over the reference model (e.g.,
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Kernel Size FreeSurfer Isotropic Propagation Anisotropic Propagation

316 mm²
(r=10 mm)

632 mm²
(r=14 mm)

948 mm²
(r=17 mm)

1,264 mm²
(r=20 mm)

1 5

Figure 5.8: The average local gyrification indices on the Kirby dataset in the lateral and medial views. The sulcal folding
patterns are well captured by the isotropic (middle) and anisotropic (right) kernels. The sulcal fundi/gyral crowns are more
adaptively captured in the anisotropic kernel, whereas several folding patterns (e.g., precentral gyrus or superior temporal sulcus)
are smoothed out in the isotropic kernel at proposed local size (top). Even with a large kernel, the folding patterns are better
revealed by the anisotropic kernel than by that of FreeSurfer or the isotropic kernel (bottom). The inflated surface is used for
better visualization. The area of 1,264 mm2 corresponds to approximately a circle with a radius of 20 mm, which is a typical
size of the kernel used in the FreeSurfer method.
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outer hull). Depending on the metric definition, the denominator could be either the reference

model or the pial surface. Lebed et al. [56] used an area ratio reciprocal to the one used in

[110], for instance, so that a constant kernel over the pial surface captures cortical folding

more uniformly. However, considering cortical folding evolution, it is more plausible that

the amount of cortical folding is measured from the outer hull as proposed in [110]. A main

challenge in these conventional approaches was to find a proper kernel size to cover at least a

single sulcus. They used a large kernel to guarantee a complete coverage of deeply buried

sulcal fundi such as the Sylvian fissure [110] with corresponding loss of sensitivity or just used

a small kernel [56] that cannot sufficiently cover a highly variable sulcus. Neither methods

capture the folding patterns appropriately across the entire cortical surface.

By improving the conventional approaches, the proposed adaptive kernel provides an

improved sensitivity while appropriately capturing differently sized cortical folding regions.

The main difference to the conventional approaches is based on the wavefront propagation

over the pial surface and the Laplace-based correspondence between pial surface and outer

hull. In the conventional method [110], local cortical folding is hard to be captured since the

kernel was determined only on the outer hull. Even with a kernel defined on the pial surface

like [56], a large kernel might be needed to span a deeply buried sulcus. In my method, the

adaptive kernel size is determined by fixing the corresponding area to the outer hull while

the wavefront propagation is performed over the pial surface to capture a local cortical shape.

Thanks to the Laplace-based correspondence between the pial surface and the outer hull,

the cortical folding is represented in a more consistent way regardless of sulcal depth, as

the contribution of the sulcal fundus is relatively small to its neighboring gyral regions in

computing the corresponding outer hull area. This consequently enables the computation of
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a local gyrification index along sulcal fundic regions with the anisotropic kernel, providing a

more localized measurement as shown in Figure 5.8. Furthermore, compared to the isotropic

propagation, the local gyrification index can be refined along sulcal fundi/gyral crowns via the

proposed anisotropic propagation. For instance, in contrast to the anisotropic propagation,

Figure 5.8 shows that the isotropic propagation produces the discontinued local gyrification

indices at the gyral junction between central and middle frontal gyrus. Also, the anisotropic

propagation better quantifies the average gyrification indices along the cingulate sulcus even

with a large kernel size.

5.10.2 Cortical-Shape-Adaptive Kernel

My shape-adaptive kernel can be defined anywhere on the cortex, so it does not require

any particular interpolation scheme to assign a local gyrification index for a given location in

contrast to [110, 77]. There are two major issues in the proposed kernel creation, though,

related to a parameter choice: the amount of anisotropy and the kernel size. As shown in my

experiments, there is a trade-off between sensitivity and reproducibility in the amount of

anisotropy. In terms of sensitivity, cortical folding is better quantified with a higher anisotropic

speed, which adaptively captures cortical folding along the sulcal fundus/gyral crown. In

contrast, a higher anisotropic speed is more influenced by the quality of the sulcal/gyral curve

extraction, as these curves are the sources of the wavefront propagation, although it maintains

a reproducibility comparable to the conventional method. Note that the conventional method

evaluates its local gyrification index within a spherical region that is not of exactly the same

circular area at the corresponding location as the authors pointed out in [110]; the intersected

area of the outer hull is usually larger than the corresponding circular area. This leads to a
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higher blurring effect on the measurements with loss of sensitivity. I provided a suggested

anisotropic speed based on the experiment, yet depending on the application, the user can

choose alternative parameters to leverage sensitivity and reproducibility.

Another issue is to find the proper kernel size. A large sized kernel tends to smooth out

cortical folding patterns as already shown in several studies. In this chapter, for the local

gyrification index computation I used the minimal kernel size that completely covers any

of the sulcal fundic region. In the Kirby dataset, the kernel size at sulcal points was one

sixth of the minimal kernel size on average. The experimental results also revealed that such

a blurring effect is getting emphasized as the anisotropic speed becomes isotropic. In the

present studies, that effect is rarely avoidable as long as the kernel size is fixed across the

entire surface due to the variable nature of the cortical folding. With an incorporation of

the anisotropic wavefront propagation, the blurring effect can be reduced by minimizing

the influences of the neighboring sulci though. It would be interesting to see if an optimal

kernel size can be adaptively determined based on its neighborhood. One way to do so would

be to use the spatial information of sulci and gyri where the adaptive kernel size can be

computed based on neighboring gyral/sulcal curves, similar to [77]. Though this approach

looks promising, the adaptive kernel size might need to be justified at any point rather than

just at sulcal/gyral locations.

5.10.3 Computation Issues

There are several computation issues with the proposed adaptive kernel. Although sul-

cal/gyral curves were employed as the source of the anisotropic propagation, other information

could be used for the travel-time computation as the proposed approach is versatile. One
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can also incorporate sulcal depth or local curvature as potential candidate sources for the

travel-time map computation for example. The processing was performed over the discretized

surface model from which numerical errors arise. In the cortical surface model, the average

errors in the reproducibility were less than the average edge length (1.16± 0.46 mm), which

was acceptable also relative to the MR image resolution (1 mm). However, this error could

be reduced by further approximation of the wavefront propagation at each triangle using a

barycentric (or other interpolation) technique, which would result in more stable and reliable

measurements.

5.11 Summary

In this chapter, I proposed a local gyrification index using a novel shape-adaptive kernel

computed via wavefront propagation over the cortical surface. Unlike a simple geodesic/nearest

neighboring ring-based kernel, the proposed kernel is adaptively elongated along the cortical

geometry. The proposed kernel is well formulated by the H-J PDE with a sufficient condition

that guarantees a unique viscosity solution to this specific problem. Sulcal/gyral curves serve

as the source of the wavefront propagation to create a travel-time map. The proposed kernel

is then guided over the gradient field computed by the travel-time map.

The experimental results have shown that the proposed kernel a) achieves a high repro-

ducibility even at highly anisotropic kernels, b) shows minimally a comparable reproducibility

of the local gyrification index to the conventional method, and c) in my simulation produces

a local gyrification index close to the ground truth in both shallow and deep sulci. For

high shape adaptiveness and reproducibility, I also proposed a proper kernel size based on

the observation of the anisotropic propagation with a reproducibility comparable to the
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conventional method. The results showed that the proposed kernel adaptively captures local

folding patterns in the scan-rescan human dataset for both small and large kernel sizes.
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CHAPTER 6: CORTICAL MORPHOMETRY AND COGNITIVE

DEVELOPMENT IN EARLY POSTNATAL STAGE

6.1 Overview

In recent years an increasing number of studies have focused on cognitive development

or cortical gyrification in the early postnatal phase starting at neonate to 2 years of age.

However, to the best of my knowledge, no present study has yet revealed the association

between cognition development and cortical gyrification. In this chapter, I focus on employing

my local gyrification index to reveal its relationship with cognitive development as quantified

via cognitive associations. Section 6.3 describes the UNC Early Brain Development Study

(EBDS) dataset and the exclusion procedure used in this study. Section 6.4 presents the

statistical models used in this study, and Section 6.5 provides its findings.

6.2 Objective

The objective of this chapter is to investigate the relationship of cortical folding and

cognitive development. I investigate the following hypotheses:

1. Cortical gyrification dramatically changes in early postnatal development at spatially

ranging growth ratio.

2. There is a significant association between local cortical gyrification and cognitive

development.
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3. My proposed gyrification index reveals novel patterns of association in more sulcal

specific regions than existing methods [36].

6.3 The UNC Early Brain Development Studies (EBDS)

This section briefly describes the EBDS dataset1 administered at the University of North

Carolina at Chapel Hill under the principal investigator, Dr. Gilmore.

6.3.1 MR Image Acquisition

Subjects were part of large prospective studies of EBDS in healthy singletons and twins

[36, 50, 37, 38]. Subjects were recruited prenatally and scanned shortly after birth, at age

1 year, and at age 2 years with cognitive assessment also at age 1 and 2 years. MR Image

were acquired on both a Siemens Allegra and a Siemens Timm Trio head-only 3T scanner

(Siemens Medical Systems, Erlangen, Germany). Children were scanned unsedated while

asleep, fitted with ear protection and with their heads secured in a vacuum-fixation device.

T1-weighted structural pulse sequences were a 3D MP-RAGE (TR = 1,820 ms, inversion

time = 1,100 ms, TE = 4.38 ms, flip angle = 7◦, resolution = 1 mm × 1 mm × 1 mm).

Proton density and T2-weighted images were obtained with a TSE sequence (TR = 6,200

ms, TE1 = 20 ms, TE2 = 119 ms, flip angle = 150◦, resolution = 1.25 mm × 1.25 mm ×

1.95 mm). For neonates who were deemed likely to fail due to difficulty sleeping, a fast T2

sequence was done with a 15% decreased TR, smaller image matrix and fewer slices (5,270

1The Institutional Review Board of the University of North Carolina at Chapel Hill approved this study.
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ms, 104 mm × 256 mm, 50 slices).

6.3.2 Mullen Scales of Early Learning (MSEL)

The Mullen Scales of Early Learning [86] test is administered at the 1 and 2 years visits

in this study. It consists of the following measurement scales thought to be involved in the

corresponding cortical regions.

• The gross motor (GM) and fine motor (FM) measures evaluate postural and limb

control, bimanual manipulation, and fine motor movements related to the following

regions: primary motor cortex, premotor cortex, frontal lobe.

• The expressive language (EL) and receptive language (RL) measures evaluate language

processing and production related to the following regions: Broca’s area, Wernicke’s

area, Geschwind’s area, middle temporal lobe.

• The visual reception (VR) measure evaluates visual discrimination, memory, sequencing,

spatial awareness related to the following regions: visual cortex, occipital lobe, fusiform

gyrus, orbital frontal cortex, precuneus lobe, parietal lobe.

• The early learning composite score (ELC = FM + EL + RL + VR) evaluates general

cognition related to the following regions: frontal lobe, parietal lobe, visual cortex,

cingulate cortex, precuneus lobe.

Mullen scale t-scores (µ = 50, σ = 10, range=20-80) and scaled scores (µ = 100, σ = 15,

range=49-155) are standardized with a nationally representative sample of 1,849 children

(roughly 50% male). The MSEL has high internal consistency (median: 0.83) and reliability

(median: 0.91).
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6.3.3 Data Exclusion Criteria

Subjects assessed via MSEL at 1 and 2 years of age were excluded if they met at least one

of the following conditions: 1) gestational age at birth less than 32 weeks, 2) the length of stay

in the neonatal intensive care unit for greater than 1 day, 3) abnormality on MRI other than

a minor intracranial hemorrhage, common in the neonatal period [66], 4) major medical or

neurologic illness after birth, 5) ELC score of < 71, or 6) high genetic risks for schizophrenia

and bipolar illness. In the EBDS dataset about 30% of the entire population is at familial risk,

as these subjects were specifically recruited as part of EBDS. In this study I only considered

singleton subjects. Table 6.1 summarizes the final dataset that meets the above criteria, the

one used in this study. Figure 6.1 illustrates the Pearson’s correlation coefficients of every

possible pair of the MSEL categories in my study. The ELC not surprisingly shows strong

correlations with other MSEL scores except GM, as ELC is composed of the other categories

except GM.

6.3.4 Surface Model Reconstruction and Local Gyrification Index

The surface models were reconstructed via the FreeSurfer pipeline and were resampled

at 163,842 vertices via a standard icosahedron subdivision. The surface correspondence was

established using my group-wise method described in Chapter 4. Due to the large number

of the subjects in this study, I employed the proposed subgroup division scheme described

in Chapter 4, in which a surface correspondence for each subgroup with 20 subjects was

established. To quantify cortical gyrification, the local gyrification index was computed within

the cortical-shape-adaptive kernel described in Chapter 5. Since the cortical surface area

dramatically changes over ages, I further regularized the kernel size based on two observations.

102



 Correlation Matrix

50 100 150

ELC  
20 40 60 80

VR   
20 40 60 80

RL   
20 40 60 80

EL   
40 60

FM   
30 40 50 60 70

GM   

50

100

150

E
LC

  

20

40

60

80

V
R

   

20

40

60

80

R
L 

  

20

40

60

80

E
L 

  

40

60

F
M

   

30

40

50

60

70
G

M
   

0.18 0.16 0.17 0.19 0.22

0.18 0.40 0.45 0.55 0.70

0.16 0.40 0.65 0.54 0.80

0.17 0.45 0.65 0.64 0.86

0.19 0.55 0.54 0.64 0.86

0.22 0.70 0.80 0.86 0.86

Figure 6.1: The Pearson’s correlation coefficients of MSEL scores of the EBDS dataset. Every
pair of the scores has a positive correlation (p < 0.005). The ELC forms strong correlations
with other categories except GM, whereas GM has relatively low correlations.

First, the experimental results in Chapter 5 revealed that the minimum kernel size fully

spanning all the sulcal regions on the adult outer surface was roughly 316 mm2. Second,

in the EBDS dataset the average cortical surface areas at neonate, 1 year, and 2 year have

respective scaling factors of 0.36, 0.6, 0.66 compared to an average adult cortical surface area,
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Scans Total number Male Female Age (days) Age range Gestational age (days)
Neonate 178 88 90 20.89± 9.50 6-68 275.27± 11.29
1 year 85 44 41 385.27± 22.84 343-481 273.36± 11.86
2 years 76 44 32 746.54± 25.03 693-827 272.62± 14.04
Total 339 176 163 - - 274.20± 12.12
Scans GM FM EL RL VR ELC

Neonate 54.76± 6.71 55.84± 6.83 57.14± 9.56 58.53± 9.32 54.44± 9.82 112.99± 13.88
1 year 55.32± 6.92 56.64± 8.01 57.31± 8.73 58.26± 9.32 54.31± 11.24 113.31± 15.23
2 years 54.17± 7.73 56.13± 7.19 55.67± 8.15 57.16± 10.20 53.89± 10.98 111.49± 15.01
Total 54.77± 7.01 56.11± 7.23 56.85± 9.08 58.15± 9.54 54.28± 10.46 112.73± 14.50

Table 6.1: Early brain development studies (EBDS) dataset with population statistics and the 6 MSEL scores
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respectively. In order to take into account the inter-subject variability in cortical surface

area, I adaptively rescaled the kernel size for each subject according to the corresponding age

group. Specifically, for both left and right hemispheres, the average kernel size was 108 mm2

(r ≈ 5.9 mm), 180 mm2 (r ≈ 5.9 mm), 200 mm2 (r ≈ 8.0 mm) for neonate, 1 year and 2

years, respectively.

6.4 Linear Mixed Model for the Longitudinal Study

I designed longitudinal linear mixed models to investigate the association between cortical

morphological change (local gyrification change) and cognitive development in early childhood.

The local gyrification index was used as a dependent variable Y , and the fixed effects were

composed of 9 covariates: postnatal age at scan, gender, gestational age at birth, and 6

categories of MSEL. I only considered MSEL measured at 2 years old as fixed effects. The

effects were tested via a longitudinal mixed model developed in SurfStat2. For each subject i,

the following linear mixed models were fitted to my data, with Ui capturing estimates for the

subject-specific random effects.

Yi = β0 + βAgeAgei + βGenderGenderi + βGestGesti + Ui + εi, (6.1)

Yi = β0 + βAgeAgei + βGenderGenderi + βGestGesti + βGMGMi + Ui + εi, (6.2)

Yi = β0 + βAgeAgei + βGenderGenderi + βGestGesti + βFMFMi + Ui + εi, (6.3)

2SurfStat is a MATLAB toolbox for statistical analysis of cortical surface data employing random field theory
for statistical inference [139], publicly available at http://www.stat.uchicago.edu/faculty/InMemoriam/
worsley/research/surfstat/index.htm
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Yi = β0 + βAgeAgei + βGenderGenderi + βGestGesti + βELELi + Ui + εi, (6.4)

Yi = β0 + βAgeAgei + βGenderGenderi + βGestGesti + βRLRLi + Ui + εi, (6.5)

Yi = β0 + βAgeAgei + βGenderGenderi + βGestGesti + βVRVRi + Ui + εi, (6.6)

Yi = β0 + βAgeAgei + βGenderGenderi + βGestGesti + βELCELCi + Ui + εi, (6.7)

where εi is an error term. In my experiment, standard false discovery rate (FDR) correction

was applied to correct for the multiple comparisons for models in Equation 6.1 [6]. Since

each surface model is composed of the large number of vertices (= 163,842), I employed an

ROI-based correction using a prelabeled parcellation (76 regions for each hemisphere) [23] for

the models (Equation 6.2 to Equation 6.7). In this ROI correction, rather than testing all

vertices independently, for each region the maximum t-value was selected and employed as the

representative statistical measurement of that region. Figure 6.2 illustrates the correlation of

gyrification index within subject across time revealed in the linear mixed model. Most gyral

regions and the frontal lobe show a high correlation, whereas several sulcal regions shows a

low (or nearly zero) correlation especially in deep sulcal regions such as central sulcus. Due

to the highly correlated regions, subject-specific random effects need to be considered in the

linear mixed model.

6.5 Findings of Early Morphometry and Cognitive Development

6.5.1 Cortical Gyrification in Early Stage

As expected, statistical analysis showed that local gyrification is highly associated with

age as visualized in Figure 6.3. Most cortical regions have a positive change rate of cortical
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Figure 6.2: The correlation of gyrification index within subject. The linear mixed model
reveals a high correlation mostly in the gyral regions and the frontal lobe, compared with
several sulcal regions such as central sulcus.

folding, whereas the deep sulcal regions such as central and cingulate sulci have almost zero

(and even negative) change rates. It is likely due to different growth rates across cortex such

as the myelination process [59] that 1) such deep cortical folding is nearly full at an early

postnatal age, whereas 2) the width between gyral crowns increases. This yields that the

gyrification index is getting smaller in those sulcal regions. For the gender effect, male subjects

show persistently higher local gyrification in the visual cortex and right pre-central sulcal

region, whereas female subjects show higher gyrification in superior temporal, right inferior

frontal lobe, and parieto-occipital sulcal regions, as shown in Figure 6.4. As only few studies

have focused on the gender effect of cortical gyrification in the early childhood ages, gender

107



Raw t-scores Corrected t-scores

-30

30

Figure 6.3: The age effect on cortical gyrification. Most cortical regions have positive
association of cortical gyrification over ages with t-value maps before (left) and after (right)
correction (q < 0.05). Deep sulcal regions such as central and cingulate sulci have negative
association since they are well developed during the gestational period.

differences of developmental trajectories still remain largely unclear in the early postnatal

phase. Despite the lack of findings, the results in Figure 6.4 are somewhat comparable to the

few previous studies [62, 49]. Specifically, Li et al. [62] argued that the local gyrification index

increases across the entire cortical regions over ages. In this study I found similar results with

their study but also my refined analysis revealed several regions, such as the central motor

and cingulate sulci, that show negative association in the early postnatal phase. The main

reasons for differences between my study and Li et al. [62] are 1) the sulcal-folding-adaptive

quantification and 2) more localized analysis with the smaller kernel size. For the gestational

age effect at birth, the cortical gyrification changes asymmetrically in the left and right

hemispheres as illustrated in Figure 6.5. Overall, a positive association with the gestational

age is revealed over most cortical regions while showing a negative association in the primary

motor cortex and collateral fissure.
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Figure 6.4: The gender effect (red: male, blue: female) on cortical gyrification with t-value
maps before (left) and after (right) correction (q < 0.05). Most cortical regions have positive
association of cortical gyrification over ages. The female subjects show higher gyrification
in the right superior temporal lobe, whereas the male subjects show higher development in
primary motor.

Raw t-scores Corrected t-scores
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4

Figure 6.5: The gestational age effect at birth on cortical gyrification with t-value maps before
(left) and after (right) correction (q < 0.05). Most cortical regions have positive association
of cortical gyrification over ages (uncorrected p-values).

6.5.2 Association of Cognitive Development

Next, I discuss the association of cortical morphological changes with cognitive development

in the early postnatal phases. Visually, Figure 6.1 illustrates the t-value map of ELC is quite

similar to that of other categories except GM, as expected. Mostly, the sulcal regions show a

negative association with cognitive development in contrast to the gyral regions that have
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positive association (see Figure 6.6 for raw t-values and Figure 6.7 for t-values after multi

comparison correction). As hypothesized, specific significant associations with functionally

well-known regions (Section 6.3.2). For motor development, there was a negative association

in the left and right primary motor and premotor cortices, whereas other regions show a

positive association such as the left parieto-occipital sulcus. For language development,

positive association was observed in parts of Broca’s area. For visual perception, the left

visual cortex in the medial side has positive association with local gyrification index, whereas

the parietal sulcus has negative association. There were several regions with positive and

negative association in ELC: right frontal lobe, left fusiform gyrus, and left visual cortex.

Surprisingly, the association patterns of local gyrification change with age and cognitive

development. Even though most regions show a positive correlation of local gyrification over

ages shown in Figure 6.3, their associations with cognitive development possess a different

pattern (Figure 6.8). For example, the precentral gyrus shows a positive correlation with age,

whereas it shows a negative correlation with ELC, i.e., the smaller local gyrification index,

the higher ELC score.

6.5.3 Comparisons with FreeSurfer

The ability of the local gyrification index to reveal statically significant regions is a key

feature in a population analysis. In this section, I computed the local gyrification index

using my method proposed in Chapter 5 and FreeSurfer [110]. The same kernel size of 800

mm2 (r ≈ 16 mm) was employed for fair comparisons of age effects (see Figure 6.9) and

cognitive scores of MSEL (see Figure 6.10). The experiment revealed that the proposed

local gyrification index achieves more refined results than FreeSurfer, as the proposed index
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Figure 6.6: Raw association with cognitive development using optimal kernel size (200 mm2

(r ≈ 8 mm)) with 6 categories of MSEL. The overall pattern of GM is quite different from
other categories as their correlations shown in Figure 6.2.

more adaptively captures local gyrification along the cortical folding as shown in Figure 6.9.

Compared with the results with kernel size (200 mm2) in Figure 6.6, the overall patterns

111



-4

4

(a) GM (b) FM

-4

4

(c) EL (d) RL

-4

4

(e) VR (f) ELC

Figure 6.7: Corrected association with cognitive development with 6 categories of MSEL.
Each hemisphere is divided into 76 parcels based on the prelabeled atlas for multi-comparison
correction. The overall pattern of GM is quite different from other categories as their
correlations shown in Figure 6.2.

with the large kernel size (800 mm2) are similar such that the average Pearson correlation of

the local gyrification index across vertices is 0.65 and 0.66 for the left and right hemispheres,
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(b) positive association (c) negative association

Figure 6.8: Local gyrification change over age and its association with ELC in two representa-
tive cortical locations. The (b) positive and (c) negative associations with ELC are illustrated
in the cortical surface (a) colored by yellow and magenta, respectively. The red line in (b)
and (c) indicates a linear fitting of the local gyrification index with respect to the age effect.
Both locations have positive correlation with age, while showing different associations with
ELC.

respectively. As expected, increasing kernel size smoothed out the observed cortical folding

patterns.
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FreeSurfer Adaptive Local Gyrification Index
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Figure 6.9: Comparison: association with demographic effects using large kernel size (800
mm2 (r ≈ 16 mm)). The FreeSurfer method captures overall blurred measurements across
the entire cortex, whereas the proposed method reveals correlation in a more adaptive and
detailed way along the sulcal folding. In addition, even with a large kernel size, the proposed
gyrification index has similar patterns to that with the small kernel size.
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Figure 6.10: Comparison: association with 6 categories of MSEL using large kernel size (800
mm2 (r ≈ 16 mm)). The overall pattern is quite similar to the optimal kernel-based results
as shown in Figure 6.6. The larger regions have higher t-scores as the kernel size increases.
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Figure 6.10: Comparison: association with 6 categories of MSEL using large kernel size (800
mm2 (r ≈ 16 mm)) (continued).

6.6 Summary

In this chapter, I presented an application of my method to the EBDS dataset. Due to

a high within-subject correlation, linear mixed models were proposed to incorporate fixed
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effects including age and demographic information. In addition to those mixed effects, the

early cognitive scores measured via MSEL were employed in the linear models to reveal the

association between local gyrification and early cognitive development.

The experimental results revealed several findings via my proposed pipeline. First, most

cortical regions have positive correlation with age, and my method revealed more refined

regions of significant change along the sulcal foldings than existing methods. For gender and

gestational age effects, I also observed several regions to be statistically significant. Second,

the associations with ELC showed a strongly similar pattern across different categories of

MSEL except for GM. Moreover, several regions show totally different associations with

cognitive scores compared to the age effects. Finally, the statistically significant regions

revealed via the proposed local gyrification index roughly agreed with those of existing

methods. However, the statistically significant regions were more to local cortical folding,

displaying far more detail than existing methods.
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CHAPTER 7: SUMMARY AND CONCLUSION

In this last chapter, I review and discuss the contributions of my work in Section 7.1 and

its limitations in Section 7.2 followed by a discussion of possible future work in Section 7.3.

7.1 Summary of Contributions

This dissertation investigated cortical surface correspondence and cortical shape analysis

including 1) sulcal curve extraction from the cortical surface, 2) sulcal-curve-guided cortical

surface registration via entropy minimization, 3) sulcal/gyral-curve-adaptive gyrification

index computation, and 4) a population study of the association between local gyrification

index changes and cognitive development from neonate to 2 years of age. The contributions

of this dissertation are as follows.

1. Sulcal curves were automatically extracted from the cortical surface in a robust way to

surface noise.

Chapter 3 demonstrated the automatic sulcal curve extraction in two main steps. To

select candidate sulcal points, the line simplification method was employed due to its

denoising effects that naturally handles surface noise. Sulcal curves were extracted from

the candidate sulcal points by tracing their curvature flow with a smoothing constraint.

In the experiment, the proposed algorithm achieved a high quality of automatic sulcal

curve extraction from two points of view: 1) the resulting sulcal curves were consistently

extracted at different noise levels, and 2) smaller distance errors on curve extraction
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were observed compared to a selected conventional method.

Unlike surface registration-based methods, the proposed sulcal curve extraction does not

necessitate a template, and only a single parameter was required, to control the number

of candidate sulcal points. In general, this sulcal curve extraction can be applied to any

type of surface models to delineate their ridge/valley curves. In Chapter 5, the gyral

curves were extracted as an inverse sulcal curve problem with the same methodology.

2. A population correspondence was established and optimized simultaneously across the

population free of a template selection bias.

In Chapter 4, a set of labeled sulcal curves were employed for landmark matching,

and each deformation field was estimated via entropy minimization. Sulcal curves

were automatically labeled, resulting in the curve correspondence across a population.

In this algorithm each deformation field was decomposed using spherical harmonic

basis functions for a smooth and continuous representation of the deformation. An

optimal pole selection was proposed to minimize the singularity effects at the poles. The

entire optimization was then achieved by minimizing the entropy of the corresponding

sulcal curve landmarks and the geometric features over the unit sphere. Compared

to conventional shape correspondence, the proposed shape correspondence performed

better in several ways in my experiments: 1) smaller variability of sulcal curve/cortical

thickness, 2) better visual assessments, 3) smaller reconstruction errors in generalization

and sensitivity, and 4) enhanced classification of shape models. Moreover, since the

resulting deformation field was continuous and smooth, a deformation field can be

created at any desired level of smoothness by simply adding/removing high frequency
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basis functions. Overall, the group-wise correspondence method was able to provide

improved shape correspondence for not only human cortical surfaces but also several

non-human surfaces, even for highly variable models like the presented primate molar

shape.

3. A cortical-shape-adaptive kernel design was proposed to quantify cortical folding patterns.

The cortical-shape-adaptive kernel was presented in Chapter 5. The H-J PDE was

employed to incorporate the local cortical folding via a wavefront propagation approach.

The surface model was represented as a medium having anisotropic speed functions to

guide the wavefront propagation over the surface. To adaptively capture the local cortical

folding, the local regions were segmented based on the sulcal/gyral curve information.

Then, for the adaptive kernel creation a speed tensor was determined depending on the

cortical location having 1) almost isotropic speed around the sulcal banks and 2) highly

anisotropic speed at the sulcal fundi/gyral crowns. In my experiments, the proposed

kernel-based local gyrification index achieved better performance than the conventional

method in reproducibility and sensitivity by varying kernel size and the amount of

the anisotropy. In the human phantom dataset, the shape-adaptive kernel produced

comparable (even a bit better) reliability to the conventional method, and the cortical

gyrification achieved high sensitivity along the cortical folding patterns. In contrast to

the conventional geodesic kernel, the adaptive kernel covered the cortical regions with

spatial similarity and improved biological interpretation as it follows sulcal patterns

belonging to regions with similar functionality.

4. As an application, a population study of early cortical morphometric development was
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conducted to reveal the association between local gyrification index changes and cognitive

development.

Chapter 6 revealed the association between local gyrification index changes and cognitive

development over early ages. The early brain development study (EBDS) database

was employed for that analysis. The experimental results showed high (positive and

negative) correlation of cortical folding changes over the early postnatal phase. In

addition, several cortical regions exhibited strong associations with early cognitive

development, and the resulting statistically significant regions were more detailed along

the functionally related sulcal folding patterns than in existing methods. The proposed

local gyrification index achieved overall a higher sensitivity in the cortical gyrification

analysis.

5. The source codes of the proposed methods are publicly available.

The source codes of the methods proposed in this dissertation are open to the public.

They are available at http://github.com/ilwoolyu/. The implementation details are

described in each source code.

7.2 Limitations

Here is a brief summary of the limitations of each proposed method:

1. Automatic cortical sulcal curve extraction

The curve extraction is purely based on the cortical surface geometry. The sulcal points

are selected based only on a 2D contour shape associated with principal curvature.

Since the extracted sulcal curves are obtained along the nearest neighboring sulcal
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points, it could be also different from the manual delineation although there is no

ground-truth or commonly agreed protocol of the sulcal curve delineation.

2. Sulcal-curve-guided cortical surface registration via entropy minimization

The surface registration based on the spherical harmonics representation requires a

spherical mapping that distorts the original cortical shape like many applications

employing spherical representations. A large number of basis functions are required for

a fine, sharp spherical harmonic representation. Finally, the entropy computation is

based on the eigendecomposition of the covariance matrix whose size is proportional to

the number of subjects. Since the covariance matrix is generally non-sparse and of full

rank, it is computationally demanding.

3. Sulcal/gyral-curve-adaptive local gyrification index

The adaptive kernel is created without biological information such as cortical labels. The

kernel thus could still cover several regions that have different functionality although

the proposed method shows in the experiment better region-specific performance than

the existing method. Moreover, since the cortical folding (size, shape, etc.) varies across

the surface, the use of the fixed kernel size is not optimal. An optimal kernel size would

be preferable in many applications. However, as discussed in Section 5.10, choosing

such an optimal kernel size is difficult for every location of the cortical surface due to a

high shape variability.
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7.3 Future Work

There are several directions for future research related to this dissertation. Some of these

are reviewed in this section.

7.3.1 Computational Issues

Parallel Processing The candidate sulcal point detection is clearly a independent task

across vertices in the sulcal curve extraction method presented in Chapter 3. This implies

that the proposed method has a high scalability, so it could be well organized into parallel

processing for expedite the entire candidate point selection procedure. It is generally time-

consuming to compute a local gyrification index for each vertex on the pial surface, as shown

in Chapter 5. Such an issue could be handled by a uniform (or shape-adaptive) sampling

over the cortical surface to reduce redundantly overlapped regions that produce almost the

same index as its neighboring vertices. Similar to the sulcal curve extraction, the proposed

method has a high scalability by parallelizing the entire processing to simultaneously handle

each vertex due to their independent computations. This parallelization may yield significant

computational improvements.

Query to Closest Triangle Through the chapters in this dissertation, a standard AABB

tree representation was employed to find the closest triangle at a given surface location.

For static surface objects, such a tree representation is fairly efficient for fast culling of the

farthest triangles, resulting in O(logN) computation time with only O(N) space, where N is

the number of the triangles. This was well incorporated with the contour extraction even
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for a large number of vertices, as shown in Chapter 3. For dynamic objects such as the

deformable spheres discussed in Chapter 4, however, a tree update was required at every

iteration, which takes O(N) computation time. This could be improved with an incorporation

of either parallelized hierarchical representations of the deformable object, widely used in the

collision detection field, or a sphere-oriented culling technique. A cache hit/miss technique

could also be an alternative to this approach since the amount of the spherical deformation

was small at each iteration as long as the subjects remain roughly aligned, which increases

the chance to refer to the previous closest triangle again.

7.3.2 Applications

There could be several applications of the proposed pipeline, as it is flexible and can be

easily adapted to any shape analysis study.

Geometric Landmarks and Features The proposed method allows the inclusion of

additional information such as DTI-based connectivity [92] or myelination map alignment

[108]. Furthermore, any known prior information can be straightforwardly propagated from

the template to assist cortical correspondence establishment. The proposed method could

further be improved by incorporating the entropy-based sulcal variability as proposed in

Chapter 4. The inter-subject variability of sulcal curves and sulcal depth defined in the

template space could be straightforwardly integrated into the entropy estimation. Finally,

the current mean/median computation of the landmarks over the sphere is performed under

Euclidean assumptions. It could be more accurately estimated using a Fréchet mean framework

for example.
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Shape Quantification As the proposed kernel is not limited to a local gyrification index

computation, it can be applied to evaluate different cortical measures such as cortical thickness

or shape complexity index [49]. I plan to apply the proposed method to cortical development

using such different cortical measures. In addition, a combination of those different metrics

measured in the proposed kernel could support geometric surface-related methods such as

cortical surface registration.

Clinical Studies The current study has focused on the cortical gyrification in the typically

developing population. There could be several other studies using the pipeline proposed

throughout this dissertation. As mentioned before, one third of the EBDS study subjects

exhibit high potential risk to schizophrenia. It would be interesting to figure out the difference

between typically developing and at-risk groups in the early postnatal phase.
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