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ABSTRACT

JUNPYO HONG: Classification of Neuroanatomical Structures based on
Non-Euclidean Geometric Object Properties
(Under the direction of Stephen M. Pizer)

Studying the observed morphological differences in neuroanatomical structures between individ-
uals with neurodevelopmental disorders and a control group of typically developing individuals has
been an important objective. Researchers study the differences with two goals: to assist an accurate
diagnosis of the disease and to gain insights into underlying mechanisms of the disease that cause
such changes.

Shape classification is commonly utilized in such a study. An effective classification is difficult
because it requires 1) a choice of an object model that can provide rich geometric object properties
(GOPs) relevant for a given classification task, and 2) a choice of a statistical classification method
that accounts for the non-Euclidean nature of GOPs.

I lay out my methodological contributions to address the aforementioned challenges in the
context of early diagnosis and detection of Autism Spectrum Disorder (ASD) in infants based on
shapes of hippocampi and caudate nuclei; morphological deviations in these structures between
individuals with ASD and typically developing individuals have been reported in the literature. These
contributions respectively lead to 1) an effective modeling of shapes of objects of interest and 2) an
effective classification.

As the first contribution for modeling shapes, I propose a method to obtain a set of skeletal
models called s-reps from a set of 3D objects. First, the method iteratively deforms the object surface
via Mean Curvature Flow (MCF) until the deformed surface is approximately ellipsoidal. Then, an
s-rep of the approximate ellipsoid is obtained analytically. Finally, the ellipsoid s-rep is deformed
via a series of inverse MCF transformations. The method has two important properties: 1) it is fully
automatic, and 2) it yields a set of s-reps with good correspondence across the set. The method is

shown effective in generating a set of s-reps for a few neuroanatomical structures.
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As the second contribution with respect to shape modeling, I introduce an extension to the current
s-rep for representing an object with a narrowing sharp tail. This includes a spoke interpolation
method for interpolating a discrete s-rep of an object with a narrowing sharp tail into a continuous
object. This extension is necessary for representing surface geometry of objects whose boundary
has a singular point. I demonstrate that this extension allows appropriate surface modeling of a
narrowing sharp tail region of the caudate nucleus. In addition, I show that the extension is beneficial
in classifying autistic and non-autistic infants at high risk of ASD based on shapes of caudate nuclei.

As the first contribution with respect to statistical methods, I propose a novel shape classification
framework that uses the s-rep to capture rich localized geometric descriptions of the object, a
statistical method called Principal Nested Spheres (PNS) analysis to handle the non-Euclidean s-rep
GOPs, and a classification method called Distance Weighted Discrimination (DWD). I evaluate the
effectiveness of the proposed method in classifying autistic and non-autistic infants based on either
hippocampal shapes or caudate shapes in terms of the Area Under the ROC curve (AUC). In addition,
I show that the proposed method is superior to commonly used shape classification methods in the
literature.

As my final methodological contribution, I extend the proposed shape classification method to
perfrom the classifcation task based on temporal shape differences. DWD learns a class separation
direction based on the temporal shape differences that are obtained by taking differences of the
temporal pair of Euclideanized s-reps. In the context of early diagnosis and detection of ASD
in young infants, the proposed temporal shape difference classification produces some interesting
results; for both the hippocampus and the caudate nucleus, the temporal shape difference does not

seem to be as predictive as the shape alone.
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CHAPTER 1

Introduction

1.1 Overview

The driving biomedical problem of this dissertation is an early diagnosis and detection of Autism
Spectrum Disorder (ASD). This work focuses on classifying the autistic from the non-autistic among
infants at high familial risk (HR) of ASD based on shapes of hippocampi or caudate nuclei. Among
these infants at high risk of ASD, I refer those who are later diagnosed with ASD as HR-ASD and
those who are not as HR-Neg. There are two important factors to consider for this shape classification

problem:
* A choice of an object model to represent the shape of the hippocampus and the caudate nucleus.

* A choice of a method to learn a classification rule based on shape descriptions of hippocampi

and caudate nuclei.

An effective shape classification is difficult because of several challenges associated with each design
choice. Firstly, with numerous object models having been proposed in the literature, choosing
an object model capable of providing shape descriptions of the object that may be relevant for a
classification task at hand is in itself challenging. Secondly, one has to consider whether an object
model can be fitted to a set of object segmentation with reasonably good correspondence to avoid
any spurious classification. Finally, after settling the choice of the object model that satisfies the
two aforementioned concerns, choosing a classification method capable of yielding an effective
classification rule poses yet another challenge.

In order to effectively discriminate the HR-ASD from the HR-Neg infants based on morpho-
logical traits of hippocampi and caudate nuclei, the following properties are necessary for each

component of the shape classification.



* An object model needs to

— provide rich localized descriptions of those structures that are sensitive to any subtle

morphological difference.

— be fitted to an object segmentation robustly and automatically with good correspondence

in the target objects across the sample population.

— be able to adequately represent surface geometry of an object with a singular point, e.g.,

the caudate nucleus.
¢ A classification method needs to

— robustly classify cases when the input feature dimension is larger than the sample size.

— account for the fact that GOPs abstractly live on a curved manifold.

This dissertation describes novel methodological contributions in each of these areas. In subse-
quent sections of this chapter, I first overview the current findings in the driving application problem.
Then, I provide details on the intuition behind each of my contributions. Finally, I conclude this

chapter with my thesis statement and the organization of the remaining chapters.

1.2 Current Findings on ASD from Neuroimaging Studies

ASD is a neurodevelopmental disorder characterized by a few core symptoms including repetitive
behaviors and difficulties in social interaction and communication. ASD manifests very early in life.
Previous behavioral studies of ASD show that clinical symptoms may appear as early as 12 months
with most infants receiving a diagnosis by the age of 4. This relatively narrow window of birth to age
of onset of symptoms provides opportunities to study the underlying neurodevelopmental process of
infants with ASD.

Recent longitudinal infant brain imaging studies of infants have yielded many important insights
about the developmental process of infants who are diagnosed with autism by the age of 2. Findings
include increased cortical gray and white matter volumes, increased amygdala volumes, and atypical

neurodevelopmental trajectories (Hazlett et al., 2012; Wolff et al., 2013).



However not much is known about localized morphological differences of subcortical structures
between the individuals with and without ASD during this early developmental period. In older
children, there have been a number of studies showing that subcortical structures including the caudate
nuclei and the hippocampi are implicated in ASD. This has motivated me to develop classification
methods based on local surface geometric properties of the hippocampus and the caudate nucleus

from the perspective of shape classification.

1.3 Common Object Models used in Shape Classification

Classification methods based on a global volume of the objects (Hazlett et al., 2012) have been
common due to the simplicity of computing and understanding the measure. However, such methods
may not yield an effective discrimination when classifying anatomical structures between patients
at the early stage of the disease and healthy control subjects because a single measure such as the
global volume may not adequately explain subtle morphological differences between the two groups.
In addition, those methods have weakness in providing localized insights into causes of the observed
difference in volume, e.g., that the volume change is driven by one or more regions of the structures.
The localized analysis could yield an important biological insight into the disease.

The Point Distribution Model (PDM) (Cootes et al., 1992) has been a popular object model in
shape classification (Davies et al., 2003). The PDM describes a shape of the object as a tuple of
enumerated points usually placed along the boundary of the object. The PDM has several desirable
traits such as being easy to create from image data (Davies et al., 2003; Styner et al., 2006) and
supporting a localized analysis of the shape of the objects. However, the localized analysis of shapes
with PDMs is still limited due to PDMs only explicitly capturing positional geometrical properties of
the objects; therefore, the PDM-based analysis is limited in accurately modeling inter-class shape

variations involving a local direction and a local width.

1.4 Skeletal Representations

Skeletal representations describe the shape of an object via a collection of geometric primitives each
of which has an associated skeletal locus. The s-rep is a skeletal representation whose geometric

primitives are vectors called spokes pointing to the object boundary from each skeletal locus to



the object boundary. These spokes provide the rich localized shape properties of the object, i.e.,
orientation, width, and position. These GOPs are capable of modeling a localized nonlinear inter-class
shape difference that may be a useful insight into the classification task.

However, these GOPs, e.g., a set of local directions, are non-Euclidean. Therefore, a classification
method has to be chosen carefully because of non-Euclidean nature of the s-rep GOPs: without
properly handling the nonlinearity of GOPs, a classification method, e.g., the Support Vector Machine,
designed to classify Euclidean data fails to learn a sensible classification rule (Sen, 2008). I use an
alternative approach called Euclideanization where these non-Euclidean s-rep GOPs are properly

transformed into a Euclidean feature tuple.

1.5 Automatic Generation of S-reps with Good Correspondence

For each target object in the training set, a set of s-reps are first obtained by registering an implied
boundary surface of the template s-rep model to each target object boundary. The template s-rep is
deformed to roughly fit each target object boundary via the Thin Plate Spline (TPS) transformation
computed based on the correspondence established by Thin Shell Demons (TSD). Then, spokes of
each warped template s-rep are further refined so that the s-rep tightly fits the target object boundary.
This process yields a set of fitted s-reps that have a reasonable correspondence in spokes across the
set.

The template s-rep is often chosen to be the s-rep fitted to the same target object in the past.
However, the template s-rep model, e.g., the left hippocampus s-rep of a young adult, often does not
reflect shape variations observed in the given sample population of the target object, e.g., a set of
left hippocampi of young infants. In short, establishing a reasonable correspondence in spokes by
warping a single s-rep model to each target object in the set poses another challenge when the chosen
template s-rep is not representative of the sample population.

However, an analytical expression of the s-rep is known for an ellipsoid. Thus, the ellipsoid s-rep
can be deformed to fit each target object if a mapping between the ellipsoid and the target object is
established. I use Mean Curvature Flow (MCF) to obtain the ellipsoidal mapping of the target surface.

Then, I apply a deformation that is the inverse of MCF to an ellipsoid s-rep followed by refinements



in spokes to the deformed ellipsoid s-rep to obtain a fitted s-rep. Reasonable correspondence in

spokes is achieved because ellipsoids are related by scaling each axis of the ellipsoid.

1.6 Extensions of the Discrete S-rep to Model a Singular Point

My driving medical problem requires appropriately capturing geometric properties of the caudate
nucleus (CN). The literature reports morphological deviations of the CN between individuals with
and without ASD. Especially notable is the association of ASD patients’ restricted and repetitive
behaviors with enlargement of the global volume. However, detailed analysis of the local shape
differences of CN between the two groups is lacking.

The input boundary surface of the CN derived from a medical image, e.g., structural Magnetic
Resonance Imaging, tends to have a tapering sharp tail, i.e., a singular point. The singular point on
the boundary of the caudate nucleus makes it difficult to represent the structure with an s-rep becuase
it causes the skeletal surface to collapse to a point. This degeneracy of the skeletal surface causes a
number of issues in modeling the surface geometry of the caudate nucleus.

To address this challenge in modeling neuroanatomical structures with a singular point, e.g., the
caudate nucleus, via the s-rep I introduce an additional geometric primitive dedicated to represent
the singular point to account for the degeneracy. Then, I extend the current quad-based spoke
interpolation method so that the interpolated boundary surface patches are C? continuous up to the

singular point.

1.7 Common Classification Methods used in Shape Classification

Accurate classification of medically imaged objects on the basis of their GOPs is difficult. In
such a setting the input feature space is a curved manifold due to the non-Euclidean nature of
the GOPs. However, a classification method designed to find an optimal classification rule on the
non-Euclidean feature space is lacking. Direct application of the Euclidean classification methods on
GOPs yields a suboptimal classification rule; as demonstrated in (Sen, 2008) it might even be invalid.
In this dissertation I apply Principal Nested Spheres Analysis (PNS) to the GOPs to transform the
non-Euclidean nature into the Euclidean. PNS yields a set of the best-fitting submanifolds of the

GOPs as well as their signed geodesic distances to the respective best-fitting submanifold. These



signed distances can be regarded as the Euclidean counterparts to the original GOPs; the original
non-Euclidean GOPs appear now to be reasonably Euclideanized for the Euclidean classification
methods.

The shape classification problem is often a High Dimensional Low Sample Size (HDLSS)
problem in which the dimension of the input GOPs tuple is larger than the number of available
data samples. In the HDLSS classification problem Marron (Marron et al., 2007) has shown
that many classifiers, e.g., the Support Vector Machine and the Mean Difference Classifier, lose
generalizability due to a phenomenon called data piling. To account for this phenomenon in my
shape classification tasks, I use Distance Weighted Discrimination, which is designed to learn a

generalizable classification rule in HDLSS classification problems.

1.8 Shape Classification of a Temporal Pair of Objects

A number of recent psychiatric studies have shown that the brain developmental trajectories of
HR-ASD infants noticeably deviate from those of the typically developing infants (Hazlett et al.,
2017). However, not much is known about the correlation between ASD and the developmental
trajectories of the implicated subcortical structures. This has motivated me to investigate the problem
of classifying objects based on a growth information as to whether the disease is present. For the
early diagnosis of ASD, I have chosen to investigate a growth information of hippocampi and caudate
nuclei between 6 months and 12 months.

The main task in the shape pair classification is to accurately encode the temporal difference
in GOPs of an object between the two time points into the DWD classifier’s feature tuple. This
raises a statistical question whether the GOPs of each of the s-rep are analyzed together or separately
for PNS. In this work I chose the latter approach in which the Euclideanized input feature tuple is
obtained by taking difference between the s-rep GOPs that are Euclideanized by a common polar
system produced from a union of s-reps across the time points and across the classes.

I have evaluated the effectiveness of the temporal difference classification method in two
scenarios: 1) ASD classification given the temporal pair of hippocampi of 6-month olds and 12-
month olds, 2) ASD classification given the temporal pair of caudate nuclei of 6-month olds and

12-month olds,



1.9 Thesis and Contributions

Thesis: Classification of medically imaged neuroanatomical structures based on their geometric

object properties benefits from the following:

1. An object model providing local object width and orientation in addition to positional informa-

tion

2. An object modeling procedure that efficiently yields geometric correspondence across a

population
3. A classification method capable of learning on a curved manifold
The major methodological contributions of this dissertation are as follows:

1. A fully automatic procedure to obtain a set of s-reps fitted to each target object boundary data

with reasonably good correspondence in spokes.

2. An extension to the current s-rep modeling framework for appropriately representing an object

with a singular point, e.g., the caudate nucleus.

3. A non-Euclidean classification method that use PNS to obtain the Euclideanized s-rep GOPs

on which DWD classifier is trained.
4. A statistical technique to compare different shape classification methods.

5. A non-Euclidean classification method for classifying a temporal difference of s-reps in which
the input feature tuple to DWD is formed by taking the difference of the Euclideanized s-rep

GOPs for each time point

In addition to the above methodological contributions, I have also accomplished the following

engineering contributions:

1. Redesign of the computer representation of the discrete s-rep, which allows modeling objects

with different topologies including the spherical (slabular), the quasi-tubular, and the toroidal

2. Integration of Pablo, the main piece of software used to fit and visualize s-reps into 3D Slicer

for easier distribution of the s-rep modules to the medical image analysis community



. Modernization of the s-rep modules
. Implementation of the module that converts a legacy s-rep into the new s-rep
. Implementation of the module that visualizes a legacy s-rep in 3D Slicer

. Improvement of the numerical stability of estimating surface normals and principal curvatures

from the implicit representation of the object by a signed distance image.



CHAPTER 2

Background

In this chapter I lay out background information that is common for each of the subsequent
chapters. I first overview object models. Then, I overview statistical methods to understand shape

features and classification methods.

2.1 Object Models

At a high level there are two categories of object models that have been proposed for statistical
analysis: continuous, parameterized models modulo parameterization (Kurtek et al., 2012; Jermyn
et al., 2012; Bauer et al., 2010, 2012; Durrleman et al., 2014) and discrete models. Due to the discrete
models’ strengths in explicitly dealing with localized features, I focus on those models. Among the
discrete models are those based on deformations of an atlas (Beg et al., 2005; Miller et al., 2002;
Wang et al., 2007), those based on the b-PDM (Cootes et al., 1995; Styner et al., 2006; Davies
et al., 2003), and those based on skeletal models (Styner et al., 2004; Yushkevich and Zhang, 2013;
Bouix et al., 2005; Schulz et al., 2016). The b-PDM-based models have been the most popular. The
skeletal models were designed to add local object width features and local directional features to
those provided by PDMs.

I overview the two object models that I compare in this work: the PDM and the s-rep. For each

model, I provide
* a brief description of the representation
* a brief description on fitting the object model to a boundary description provided as input

* a brief description of a curved manifold on which shape features of the representation live.



2.1.1 The Point Distribution Model

The PDM is a point tuple for each object in a training set. In the boundary PDM (b-PDM) each
example object in the set has a set of enumerated points along its boundary, with points with
corresponding index in each object chosen so as to be in correspondence across the training set.

There are several ways to produce a set of PDMs with reasonable correspondence from a set of
objects, including manual placements of landmarks, automatic placements of points based a criterion
such as minimum description length (Davies et al., 2003) or spherical harmonics (Styner et al., 2004,
2006).

The PDM GOPs, i.e., a tuple of point coordinates, are often interpreted in two ways: 1) as a
point on a flat Euclidean space or 2) as a point on a curved manifold (Kendall, 1984). Consider the
b-PDM in the training set P with n boundary points. By scaling the entire point tuple such that the
sum of squares of all the center-of-mass-relative point features has unit value, this can be thought
of projecting the point tuple onto the unit hypersphere S>*~*. The dimensionality of 3n — 4 comes
from the fact that three degrees of freedom were used during alignment and one more degree of
freedom was used to normalize a scale to unity. Therefore, as rigorously shown by Kendall in his
work (Kendall, 1984), the translationally aligned b-PDM can be represented as a concatenation of
this scaling factor and this normalized tuple of points: the b-PDM abstractly lives on the manifold

Rt x §3n—4,

2.1.2 The S-Rep

The discrete s-rep is a skeletal discretization of the interior of the object. It consists of a set of points
sampled on the skeletal surface, which is a folded surface with the same topology, in this dissertation
spherical topology, and vectors called spokes associated with each of the skeletal points that are
approximately normal to the object boundary surface. These spokes explicitly capture local direction
and local width information of the object. An example discrete s-rep of a hippocampus can be seen
in figure. 2.1.

S-reps are fitted to an object via a posterior optimization that tries to match the boundary surface
implied by the continuous s-rep interpolated from the discrete spokes by Vicory’s work in (Tu et al.,

2016) to the input object boundary from the image data while remaining as medial as possible.
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(b)

Figure 2.1: (a) Skeletal model of a hippocampus s-rep; (b) solid model implied by that s-rep. Yellow
spheres are sample points along the skeletal surface. Solid lines extending from these sample points
are spoke vectors, which are approximately normal to the boundary surface. Interpolation of a
discrete s-rep into a continuous skeleton with a continuous field of spokes forms a continuous s-rep
whose spokes completely fill the interior of the object they are representing.

The optimization is initialized by deforming a reference s-rep to an individual case via the TPS
transformation that is computed based on boundary correspondence between the reference object and
the target object. The boundary correspondence is established by TSD. Then, the deformed reference
s-rep is refined to fit tighter to the input object boundary by lengthening or shortening spokes. This
process yields a set of s-reps whose spokes are in reasonable correspondence in the training set.
S-rep GOPs, i.e. a tuple of positions, local width, local orientation, lie on a curved manifold.
Consider a discrete s-rep s with n spoke vectors and m skeletal points. The set of skeletal points
forms a PDM that is aligned such that its center of gravity is at the origin. Additionally, this tuple
of centered points is scaled by a factor making the sum of squared distances to the origin to be
unity. Therefore, this PDM is described by a tuple of centered points that abstractly lives on the unit
hypersphere S>~* and an associated log-transformed scaling factor. The directional component
of each spoke abstractly lives on the unit 2-sphere S?, and the log-transformed associated length
component of each spoke lives on the Euclidean space R'. Thus, a single discrete s-rep abstractly

lives on R 11 x §3m—4 « (82)n.

2.2 Statistical Methods

I provide brief descriptions of statistical methods commonly used to understand the input shape data.

I first overview PCA, the conventional approach. Then, I overview PNS analysis, a variant of PCA to
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analyze data that live on abstract spheres. I briefly describe CPNS, a statistical analysis technique
that is appropriate for analyzing the data that live on a Cartesian product of Euclidean space and
hyperspheres. Finally, I finally briefly describe Polysphere PCA (PPCA), a method designed as an
extension to PNS to properly understand the correlation of variables in each domain in a Cartesian

product of hyperspheres, i.e., polysphere.

2.2.1 Principal Component Analysis

Principal component analysis (PCA) is an important statistical method for analyzing Euclidean data.
It provides a means of reducing the intrinsic dimension of data by capturing its major modes of
variation. PCA has been widely used in the field of medical image analysis and computer vision
because descriptions of objects of interest are often high dimensional whereas the important variations
can be quite low dimensional. Those modes of variation are often quite illuminating and relevant to
the task at hand.

PCA can be understood in terms of a forward or backward procedure. The forward method
progressively builds up the dimension of the approximating subspace being fitted to the data, whereas
the backward method progressively reduces the dimension of the subspace being fitted to the data.
Both approaches yield the same result when the data lie on a Euclidean space. However, GOPs
do not lie on a Euclidean space. The backward approach typically yields different results from the
forward approach when applied to non-Euclidean data. As noted in (Damon and Marron, 2013), the
backward approach is usually more appropriate to analyze those non-Euclidean features.

The forward PCA increases dimension by adding the component that captures the most remaining
variance; at each iteration a component that best describes the data and that is orthogonal to previous
components is added to form a new best fitting manifold so that the current manifold is the best
fitting submanifold of the data in the original dimension. The principal component scores are found
by projecting all the data onto the found submanifold.

In contrast, the backward view of PCA progressively reduces the intrinsic dimension of the
manifold by removing the component of the least variance from all the data points; at the beginning
of each iteration the data is projected onto the submanifold found in the previous iteration, and then
the best fitting submanifold is found by minimizing the sum of squared distances of all the projected

data.
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2.2.2 Principal Nested Spheres Analysis

Principal Nested Spheres (PNS) analysis is a special case of backward PCA on hyperspheres. PNS
progressively reduces intrinsic dimension by finding the best fitting subsphere S¥~ that is nested in
the current hypersphere S*. At each iteration, the data points are first projected onto the subsphere
found in the previous iteration; then the fitting is done by minimizing the sum of squared geodesic
distances of all the projected data points to the subsphere. Over the training cases PNS will yield a
tuple of signed geodesic distances to the best fitting subsphere for each dimension-reduction iteration.

These signed geodesic distances are a Euclideanized form of their spherical counterparts; I call
this process Euclideanization. The final result of PNS yields Euclideanized variables and a set of
polar systems that provide a means of transformations between the original space and Euclideanized
space and vice versa.The dimension 0 point in feature space produced at the end of this iteration is

called the backwards mean. (Jung et al., 2012) provides more information on the method.

2.2.3 Commensuration of Spherical GOPs

Suppose the data of interest live on a Cartesian product of a Euclidean space and hyperspheres.
Such an instance includes any model described by a combination of GOPs involving PDMs, lengths,
directions, and scaling. In this case, PNS is applied independently to each GOP that lives on a
hypersphere.

In the case of s-reps PNS is applied to centered scale normalized point tuple and each spoke
directions separately. Each application of PNS on spherical GOPs produce their Euclidean counter-
parts. To make the components appropriately commensurate (Jung et al., 2010) when analyzing a
set of s-reps, I multiply each Euclideanized value derived from a PDM by the geometric mean of
the scale factors in the training population, and I multiply each Euclideanized value derived from a

direction by the geometric mean of its associated length.

2.3 Classification Methods

At a high level there are two categories of classification methods: likelihood based methods and

separating direction based methods. See (Duda et al., 2012) and (Friedman et al., 2001) for an
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overview of common existing classification methods. In this dissertation I focus on the methods
based on finding an optimal separating direction that points from one class to the other because the
inter-class shape difference can easily be visualized by interpolating points in the feature space along
the separation direction. Given a separation direction, the class label is decided based on scalar
projection of data points onto the separation direction.

I concentrate on linear classification methods because 1) in High Dimensional Low Sample Size
(HDLSS) setting (when the dimension of data is larger than the sample size), El Karoui demonstrated
that there is little value added by Kernel tricks since the kernel method is asymptotically linear
method in this setting (El Karoui et al., 2010). 2) I want to gain insights into the driving application
problem, e.g. classfying autistic infants from non-autistic infants by directly inspecting features. I
especially pay attention to the separating direction vector since large entries in the vector indicate that
the corresponding feature is relevant. A good separating direction provides additional information
and insight into the data by visualizing the trends between the classes by linearly interpolating and

then synthesizing the data in the original feature space along the direction.

2.3.1 Support Vector Machine

The SVM (Cortes and Vapnik, 1995) is a binary classification method that yields a separation
direction in the feature space by minimizing the gap between the two classes. SVM then classifies a

new example by thresholding the scalar value of the projection of it’s feature tuple onto this direction.

2.3.2 Distance Weighted Discrimination

DWD is a classification method similar to SVM but which is more robust to noise and limited sample
size. Like the SVM, DWD takes in two classes of data and yields a separating direction that can be
used to classify new data points through projection and thresholding. Unlike SVM, the separating
direction computed by DWD is influenced by all points in the data set. A full description of DWD

can be found in (Marron et al., 2007).
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CHAPTER 3

Materials

The image dataset on which my study bases was acquired from an NIH-funded study of Autism
referred to as the Infant Brain Imaging Study (IBIS). I focus on the subset of the participants of
this study who are at high familial risk (HR) of ASD because they have an older sibling already
diagnosed with ASD. There are 49 infants who were clinically diagnosed with ASD at age 24 months
(HR-ASD) and 149 infants who did not meet criteria for ASD (HR-Neg). MRI scans (Siemens 3T
TIM Trio scanners, T1 weighted imaging at 1.0 x 1.0 x 1.0 mm voxel resolution) were acquired
while infants were naturally sleeping. The infants were scanned longitudinally at the age of 6 months,
12 months, and 24 months. The MRI scans were aligned to a common coordinate system. Subcortical
structures were automatically segmented from the aligned MRI scans (Wang et al., 2014). Details on
the original MRI dataset can be found in (Hazlett et al., 2017; Wolff et al., 2015; Lewis et al., 2014).

Bilateral hippocampi and the caudate nuclei are expected to be associated with ASD. However,
I fitted the s-rep to the left hippocampus and the left caudate nucleus for method development. 15
records for the HR-ASD at 6-months and 6 records for the HR-Neg were not available to us at the
time of the analysis. Thus, the dataset we use in this study consists of 34 autistic infants and 143
non-autistic infants.

In this dissertation, I study the following classification tasks between HR-ASD infants and
HR-Neg infants based on 1) the left hippocampi s-reps at 6 months 2) the left caudate nuclei s-reps
at 6 months 3) the temporal difference of the left hippocampi s-reps of the infants at 6 months and 12
months 4) the temporal difference of the left caudate nuclei s-reps of the infants at 6 months and 12

months.



CHAPTER 4

Automatic Generation of Case-Specific S-reps

4.1 Introduction

S-rep has been shown to be a powerful shape representation in various statistical shape analysis tasks
including hypothesis testing (Schulz et al., 2016), classification (Hong et al., 2016), shape probability
distribution estimation [ref], and segmentation [Jared’s segmentation]. For these tasks it is important
that the set of s-reps have good correspondence in spokes across the set to yield meaningful statistical
insights related to the morphology of the target object in the sample population. Tu et al. (Tu et al.,
2018) proposed an entropy-based method to improve the s-rep spoke correspondence. However, for a
set of s-reps of moderate size (e.g., 30 cases) the method cannot be applied because of its prohibitive
computational cost.

As mentioned in section 2.1.2, one approach to establish the s-rep correspondence across the set
is to warp a single template s-rep to fit each target object surface. However, using a single template
model as a basis of the spoke correspondence tends to cause difficulties for the s-rep fitting process.
This approach often yields a set of s-reps that contain geometric artifacts, e.g., creases and folds,
on the boundary surface implied by the fitted s-reps as can be seen in figure 4.1. These artifacts
arise because of 1) the difficulty in finding the appropriate template s-rep that is representative of the
population of interest and 2) the difficulty in estimating the deformation that respects the skeletal
geometry of the target object.

I argue that the following properties are desirable for the optimal template s-rep:

1. It is case-specific.
2. It is obtained from an analytical expression.

3. The correspondence across the cases in the set can be achieved with a simple transformation.



(a) (b)

Figure 4.1: (a) The solid model of the template hippocampus s-rep; (b) The solid model of the
warped template hippocampus s-rep.

In this chapter I present a novel method to automatically generate a set of fitted s-reps with

reasonably good correspondence across the cases. The method works as follows:
1. Deform a target object surface to an ellipsoid via Mean Curvature Flow (MCF) [ref to MCF?].
2. Obtain a skeletal model of the ellipsoid from a known analytical expression.
3. Deform the ellipsoid s-rep back to the original object via reverse MCF transformations.

The remainder of this chapter is organized as follows. First, I provide a brief description of
MCEF and the Thin Plate Splines (TPS). Then, I describe the method in detail. I demonstrate that the
method is effective at generating s-reps for 6-month old infants’ hippocampi, caudate nuclei, and

neonates’ lateral ventricles. Finally, I conclude this chapter with discussion.

4.2 Background

4.2.1 Mean Curvature Flow

Mean Curvature Flow (MCF) is a geometric flow method in which the input surface evolves along

the surface normal proportional to the mean curvature of the surface. MCF is mathematically defined
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as the following.

0
508 (@) = H (2, ) N (x,1)

8 (LU, 0) = S() (x)

where S is the original surface, S is the deforming surface, x is a point on S, H (z, t) is the mean
curvature of M at z at time ¢, and A (z,t) is the surface normal of M at x at time ¢. One of
well-studied asymptotic behavior of MCF is that S will converge to a sphere as ¢ — co. MCF can be
formulated both continuously and discretely. In this work I use a discrete formulation of MCF: MCF
on a triangle mesh. Given a triangle mesh S (V, E') where V and E denote vertices and edges of the
mesh respectively, the mean curvature H at each vertex = € V is estimated as the average of dihedral

angles of the triangles that share the vertex z. More extensive introduction of MCEF is available in

[ref].

4.2.2 Thin Plate Splines

Thin Plate Splines (TPS) has been commonly used in non-rigid image registration given two sets
of landmarks. The method generates a full 3D deformation field by interpolating the displacement
of the landmarks. TPS is not guaranteed to produce a diffeomorphic transformation; it can produce
folds within the deformation field. However, this can be prevented if the displacement vectors are
short enough. A more comprehensive reference on using TPS for image registration is available in

[Bookstein ref].

4.3 Method

Figure 4.2 shows the workflow of the method. First, I iteratively deform the input target surface via
MCEF. At each iteration I determine if the current deforming surface is approximately ellipsoidal. If it
is, I obtain the s-rep of the best-fitting ellipsoid to it. Then, I transform the ellipsoid s-rep first to the
approximate ellipsoid and then in reverse direction of the MCF so that the s-rep will roughly fit the

original boundary data. I provide details of each step of the method.
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Figure 4.2: The illustration of the workflow of the method to obtain the s-rep fitted to the input
boundary surface

4.3.1 Applying MCF to the Deforming Surface

I iteratively apply MCEF to the triangle mesh of the object derived from the image data. In order to
improve the numerical stability in computing the discrete mean curvature at each vertex, at each
iteration of the process prior to applying MCF I apply Taubin smoothing [ref]; as a side effect, the

smoothing yields more regularly shaped triangles.

4.3.2 Determining if the Deforming Surface is Ellipsoidal

After I apply MCF to the mesh, I examine the second moment of the mesh to see if it is ellipsoidal.

The second moments matrix of the mesh is computed as the following.
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where x;, y;, z; are coordinates of ith boundary vertex relative to the center of mass of those vertices.

The eigendecomposition of the matrix yields the three principal axes and spread of the data along
each principal axis. Using the result of the eigenanalysis, I derive the analytical expression of the
best-fitting ellipsoid for the mesh. Then, I compute absolute value of shortest distance between each
vertex of the deforming mesh and the best fitting ellipsoid. If the 95% quantile of the distance is less
than a threshold, I conclude that the current surface is ellipsoidal enough. I save all the intermediate

deforming meshes S; ¢ = 1,2, ..., n for later computation of the reverse MCF transformation.

4.3.3 Obtaining the S-rep of the Best-Fitting Ellipsoid

Once the surface deformed by MCF is ellipsoidal enough, the best-fitting ellipsoid’s s-rep is analyti-

cally derived as the following:
1. Sampling the skeletal surface of the ellipsoid
2. Obtaining spokes of the sampled skeletal points.

Given the principal radii r, 7y, r. of the ellipsoid that is aligned so that the radii are ordered as

ry > Ty > 1, the skeletal sheet of the ellipsoid is an ellipse that satisfies the following equation.

2 2
T x
o<1 (4.1)
mx mx
2 .2 r2_p2
where m, = 572 m, = L=
z Y

Once the analytical expression of the skeletal ellipse is obtained, I need to produce a sampled
skeleton in a way that supports classification on the set of fitted s-reps. Then, I sample n; points
along the major axis u; and ns points along the minor axis uy of the ellipse to generate a grid of
skeletal points on the ellipse. Both n; and ng are odd numbers. In our own research group the choice
of n1 and ny is made on the basis of level of detail of the surface geometry that we deem necessary
for a statistical task on a given population of shape. Please refer to chapter 3 of (Vicory, 2016) to
learn how the number of sampled skeletal points affects the level of detail on the surface geometry.
In this dissertation I won’t discuss this matter further.

Given how many points to sample on the skeleton, I want to sample the skeleton such that the

quadrilaterals formed by neighboring vertices are uniformly shaped. I first uniformly sample along
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Figure 4.3: Skeletal ellipse of an ellipsoid whose principal radii are 23, 8, and 5. The red circles are
the sampled internal skeletal points of the skeletal ellipse, and the black boundary curve is the end
curve of the true skeletal ellipse. To support the legacy representation of the s-rep, the black ellipse
is slightly eroded to the blue ellipse. The black points are the true end skeletal points of the true
skeletal ellipse, and these are pulled toward to the eroded ellipse. These pulled points are blue points
on the blue ellipse. In this case, the skeletal points are sampled to form 5 x 7 grid. After the end
skeletal points are sampled along the end curve, the interior skeletal points are uniformly sampled
along the blue lines until the lines intersect the medial curve of the skeletal ellipse, i.e., the horizontal
line aty = 0.

the boundary of the ellipse. Then, I sample the interior skeletal points uniformly along the ellipse’s
normal at each boundary skeletal point other than the first and last n; points; the interior points are
sampled until they intersect with the medial curve of the ellipse, i.e., the horizontal line at y = 0.
Figure 4.3 shows an example of a sampled skeletal ellipse.

Given a grid of sampled skeletal points on the skeletal ellipse, I need to compute the ellipsoid’s
spoke vectors for all the skeletal points. I compute spoke vectors by finding the ellipsoid’s boundary
points implied by the spokes. Let ¢ be a boundary point implied by a spoke and p be a skeletal point
to which the spoke is attached. Using the spherical parametrization of the ellipsoid, the coordinate
of ¢ is (14 cos (0) cos (¢) , ry sin () cos (¢) , 7. sin (¢)). According to the skeletal geometry, a valid

spoke vector pg satisfies the following property: ¢ lies on a bitangent sphere centered at p maximally

—

contained within the ellipsoid. Therefore, the unit vector 2% is the surface normal of the ellipsoid at

[p4]

q. I need to compute 6 and ¢ of ¢ that satisfy the skeletal geometric constraint to compute the spoke
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vector. Given that the skeletal point p = (z,y,0), € and ¢ are computed as the following:

tan (9) = 2=
my
\/y?m2 4 x?m2
cos (¢) = p—
aMy

When the value of ¢ becomes zero, namely on the boundary of the ellipse, the spoke points to
the locus of minimal (negative) principal curvature called the crest. This spoke has two important
skeletal geometric properties: 1) the spoke lies on the tangent plane of the end curve of the skeleton
and 2) the length of the spoke is the radius of that principal curvature. An example of the computed

spokes of the ellipsoid s-rep can be seen in the figure 4.4.

Figure 4.4: The computed spokes of the same ellipsoid used in the figure 4.3 The colored lines are
the spokes that are analytically computed using the equations. The cyan and magenta lines denote

spokes pointing top and bottom side of the ellipsoid. The red lines point to crests of the ellipsoid.

By mathematical definition the skeletal points on the end curve of the ellipse should have only
one spoke that points to the crest of the ellipsoid. However, the true crest spokes are pulled to be
attached to the nearest end skeletal points of the eroded skeletal ellipse to support the legacy computer

representation of the s-rep.
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For the purpose of classification I need to obtain a set of s-reps fitted to the given population of
shapes with reasonable spoke correspondence. In order to ensure reasonable spoke correspondence
of the fitted s-reps, I need to establish spoke correspondence among ellipsoid s-reps. Application
of MCF on different cases in the population often yields ellipsoid s-reps of different principal radii.
Different ellipsoids can be related with each other by simple scalings along the principal axes if the

following assumptions hold:
1. Shapes in the population are rotationally aligned

2. The converged ellipsoids have distinct principal radii, which can be used to establish corre-

spondence among the axes of the ellipsoids.

Given that the above assumptions hold, to provide correspondence among different ellipsoids I
compute one single ellipsoid whose principal radii are the repective geometric means of principal
radii of all the ellipsoids. After I obtain the mean ellipsoid s-rep, I stretch its skeletal axes of the s-rep
by the respective ratios of principal radii of each ellipsoid and principal radii of the mean ellipsoid to

obtain a case-specific ellipsoid s-rep.

4.3.4 Transforming the Ellipsoid S-rep back to the Original Surface

Given a case-specific ellipsoid s-rep, I need to deform the ellipsoid s-rep to match the original object
boundary at the spoke ends. To accomplish this, I deform the skeletal points and the spoke ends of the
best-fitting ellipsoid s-rep first to the approximate ellipsoid and then in reverse direction of the MCF.
I compute the deformation as a series of the TPS transformations. I treat the intermediate surfaces’
triangle mesh vertices saved throughout the MCF as the landmarks to compute each successive TPS
transformation: 7% : S* — S*~! where T denotes i-th transformation, S? and S*~! denote i-th and
1 — 1-th surfaces from MCEF. Figure 4.5 is an example of the s-rep fitted to one of hippocampi in the
dataset.

Because the reverse MCF deformation is computed purely based on boundary points, some
skeletal geometric properties are not properly propagated throughout the deformation. One such
property is the length of the crest spokes. For example, in figure 4.5 many of the crest spokes are too

long. This is problematic for the two reasons:

23



(b)

Figure 4.5: (a) Fitted s-rep of the hippocampus using the proposed approach; (b) solid model implied
by that s-rep. As can be seen in (a), the lengths of the crest spokes are longer than expected.

1. it narrows the quadrilaterals formed by neighboring skeletal points, which can cause numerical
instability for spoke interpolation. It can even cause the skeletal surface to almost collapse to a
curve, which can give wrong interpretation about the topology and skeletal geometry of the

object.
2. ityields a too small curvature at the end of the crest spoke.

In the subsequent section I describe a procedure to obtain the final s-rep that has more reasonable

crest spoke length.

4.3.5 Refining Skeletal Geometric Constraints of the Initial Fitted S-rep

To mitigate the problem of the initial fitted s-rep having unexpectedly longer crest spokes, I place an
additional constraint when computing the final TPS so that the computed deformation respects the
curvature. To achieve this, for the final TPS of the reverse MCF deformation I add an additional pair
of landmarks at each skeletal point on the end curve of the skeleton. The pair’s target landmarks are
the crest implied loci of the end skeletal points.

The target landmarks need to be the radius of the curvature away from the crest of the object
along its normal. In order to estimate the radius of the curvature, I use the implied boundary of the

initially fitted s-rep. I compute the radius of the curvature of a curve that spans across the spokes of
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the end skeletal points; I fit a cubic B-spline to boundary points obtained from spokes interpolated
from the top spoke to the crest spoke and from the crest spoke to the bottom spoke.

However, I have found the estimated radius of curvature to be an underestimate of the desired
length. In contrast, the current crest spoke length based on boundary points alone is an overestimate
of the desired length. As a result, I take the geometric mean of the estimated radius of curvature and
the current crest spoke length as a reasonable estimate for the desired crest spoke length.

Finally, I recompute the final TPS transformation with the additional pair of landmarks so that
the final warped s-rep has more appropriate crest spoke length. Below is a figure that shows before

and after the refinement on the crest spokes of the same hippocampus s-rep seen in figure 4.6.

(a) (b)

Figure 4.6: (a) Fitted s-rep of the hippocampus before the refinement on crest spokes; (b) fitted s-rep

of the hippocampus after the refinement on crest spokes.

As a side effect of refining the crest spokes, the quadrilaterals formed by neighboring skeletal
points are enlarged. This improves the numerical stability in obtaining the smooth implied boundary

of continuously interpolated spokes.

4.4 Results

In this section I present several results of applying the proposed method to automatically obtain an
s-rep of an object. I investigated the method’s effectiveness in producing a set of s-reps for 6-month

olds’ hippocampi and caudate nuclei; for both the hippocampus and the caudate nucleus, there are
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34 austic cases and 143 non-autistic cases. In addition, to assess the method’s applicability to thin
objects, I applied the method to obtain s-reps for 3 neonates’ lateral ventricles.

In order to get a sense on the accuracy of the proposed method, I examine how well the fitted
s-rep matches the original object boundary. I examine the distribution of the distance from each
spoke end of the fitted s-rep to the original object boundary; the distance is measured in voxel units
where the resolution of the image is supersampled to 0.05 x 0.05 x 0.05 mm. Figure 4.7 shows the

histogram of the distances of a case in the population of 6-month olds’ hippocampi.

Histogram of Spoke End Distance
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Figure 4.7: The histogram of the distances from each base spoke end of the fitted s-rep to the

corresponding object boundary for a case in the population of 6-month olds’ hippocampi.

As can be seen from figure 4.7, the majority of the distances is less than a voxel: most of the
spokes match the original boundary within 0.05 mm. The mean and the maximum distances are 0.61
voxels and 1.85 voxels respectively, i.e., 0.0305 mm and 0.0925 mm respectively.

In order to assess the quality of s-reps fitted to the population, I examine the distribution of the
mean spoke end distances of each hippocampus s-rep. Figure 4.8 shows the histogram of the mean

spoke end distances.
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Figure 4.8: The histogram of the mean spoke end distance for the population of hippocampi.

From figure 4.8 the mean spoke end distance is less than a voxel; therefore, the fitted s-reps on
average achieve sub-voxel accuracy in matching the original object boundary. The mean and the
maximum of the mean spoke end distance is 0.73 voxels and 1.14 voxels respectively.

The distribution of spoke end distances for an s-rep of the caudate nucleus of an 6 months olds
infant can be seen in figure 4.9 with the mean and the maximum being 0.66 voxels and 1.72 voxels

respectively.
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Figure 4.9: The histogram of the distances from each base spoke end of the fitted s-rep to the

corresponding object boundary for a case in the population of 6-month olds’ caudate nuclei.

Figure 4.10 shows the distribution of the mean spoke end distances of the fitted caudate nucleus
s-reps. The mean and the maximum of the mean spoke end distance are 0.65 voxels and 0.70 voxels
respectively.

In order to evaluate the method’s general applicability in producing an s-rep of an object other
than the hippocampus and the caudate nucleus, I applied the method to obtain the s-rep of the lateral
ventricle of a neonate. Thin structures like the lateral ventricle have been challenging to adequately
model with s-reps. Also, the lateral ventricle is a more strongly curving structure than both the
hippocampus and the caudate nucleus. Figure 4.11 shows the s-rep fitted to one of the three lateral
ventricles I fitted; in each one the fitted s-rep is capable of producing a smooth boundary, which

indicates that the s-rep adequately represents the lateral ventricle’s surface geometry.
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Figure 4.10: The histogram of the mean spoke end distance for the population of caudate nuclei.

(a)

(b)

Figure 4.11: (a) Fitted s-rep of a neonate’s left lateral ventricle using the proposed approach; (b)
solid model implied by that s-rep.
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Figure 4.12 shows the distribution of the chosen lateral ventricle s-rep’s spoke end distances

with the mean and the maximum being 0.54 and 1.40 respectively.

Histogram of Spoke End Distance
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Figure 4.12: The histogram of the distances from each base spoke end of the fitted s-rep to the

corresponding object boundary for a neonate’s lateral ventricle.

In this section I empirically show that the proposed method is effective in producing a set of fitted
s-reps for the hippocampus and the caudate nucleus. In addition, I demonstrate that the method’s
applicability is not limited to these two structures; it can be used to produce a reasonably well fitted
lateral ventricle s-rep. However, the method failed to produce an s-rep for the rather complicated
shaped mandible. Throughout MCEF, the vertices of the deforming meshes get clustered causing

numerical instability in computing the reverse MCF deformation.
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4.5 Discussion and Conclusion

In this chapter I have presented a novel method to automatically generate a set of fitted s-reps with
reasonably good spoke correspondence by first deriving a case-specific ellipsoid s-rep via MCF and
then applying the deformation to warp the ellipsoid s-rep to match the original object boundary. It
has produced a set of the reasonably well fitted s-reps for hippocampi and caudate nuclei in 6 months
olds. In addition, the method produces a reasonably well fitted s-rep for the lateral ventricle that the
previous s-rep fitting approach often fails to produce a satisfactorily fitted s-rep.

As it currently stands, the method fails to produce a fitted s-rep for the mandible. Mean curvature
flow fails in two aspects. First, the vertices on the condyles get clustered around the poles throughout
the surface evolution, which causes the reverse MCF deformation to fail. Secondly, the sharp bend
at the chin fails to stably unbend failing to converge to an ellipsoid. I speculate that employing
different geometric flows, e.g., Wilmore Flow or Ricci Flow, together with remeshing can address
these problems.

The fitted s-reps can be further improved in three aspects. First, the length of the spokes can be
adjusted to tighten the s-rep’s fit to the original object boundary. Secondly, the spoke directions can
be adjusted to be more approximately orthogonal to the original object boundary. Lastly, different
means of mapping the ellipsoid to the original object can be explored; especially, learning-based
surface registration methods to learn reverse MCF mappings may improve performance.

The method currently does not handle the inherent singularity of MCF. A surface evolution via
the mean curvature is known to have a singularity when the shape of the surface resembles that of a
dumbbell. The method would fail in two aspects: 1) obtaining an ellipsoid s-rep of the best-fitting
ellipsoid that resembles the deforming surface close enough and 2) computing the reverse MCF

deformation so that the deformation field does not have any folds.
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CHAPTER 5

Extensions of the S-rep to Model a Singular Point

5.1 Introduction

In the literature morphological deviation in the caudate nucleus (CN) between individuals with and
without ASD has been reported (Wolff et al., 2013; Hazlett et al., 2012). Especially notable is the
association of a core symptom of ASD, i.e., restricted and repetitive behavior, with enlargement of
the structure’s global volume. However, detailed analysis on local morphological differences of the
CN between the two groups is lacking.

The CN is a subcortical structure with a long tail that forms the dorsal striatum together with the
putamen. However, the segmentation of the CN tends to be cut off at the tail due to a low contrast
between the CN’s tail and the surrounding tissue.

As it currently stands, an s-rep has difficulties in modeling an object with a singular point, e.g.,
the CN. The singular point on the boundary of the object causes the skeletal surface to collapse to
a point; this degeneracy of the skeletal surface causes a number of issues in modeling the surface
geometry of the object of interest. In addition, the s-rep cannot properly model the singular point
because of the s-rep’s hard constraint that no spoke cross can cross each other; this hard constraint is
too hard to maintain at the singular point.

To address this challenge in modeling neuroanatomical structures with a singular point via
the s-rep, I introduce an additional geometric primitive dedicated to represent the singular point to
account for the degeneracy of the skeletal surface. Then, I extend the current quad-based spoke
interpolation method so that the interpolated boundary surface patches are C? continuous up to the

singular point.



This chapter is organized as follows. First, I overview the underlying mathematics of the s-rep
and the current quad-based spoke interpolation method. Then, I describe the method in detail as

follows:
1. The geometric primitive to represent the singular point
2. The extension of the current spoke interpolation method to obtain the continuous s-rep
3. The method to properly Euclideanize a population of the s-reps augmented with the primitive

I demonstrate that the new primitive is beneficial to modeling the 6-month olds’ caudate nuclei with

s-reps.

5.2 Background

In this section I briefly overview background necessary to understand the proposed extension to the
s-rep to model the singular point and its interpolation into a continuous s-rep. First, I overview the
mathematical definition of a continuous s-rep. Then, I overview a geometric interpolation method to

obtain an interpolated s-rep from a discrete legacy s-rep.
5.2.1 Mathematics of S-reps
A 3D, continuous s-rep is defined by two parametric functions:

* p(uy,u2): a 2D, non-branching skeletal surface

* S(u1,us2): afield of non-crossing spokes emanating from p(u1, us); each spoke approximately

orthogonally intersects the object boundary

S(u1,us2) can be viewed as a product of two additional parametric functions: U (u1,u2), a unit
normalized vector field of S(u1,ug) and r(uy, uz), a scalar field of |S(u1, uz2)|, the distance from
p(u1,ug) to the object boundary along the U (u1, ug). Accordingly, a point on the implied boundary
of the s-rep can be expressed as B(uq,uz) = p(uy, uz) + r(uy, uz)U(u1, ug).

This continuous s-rep is discretized to support various statistical tasks, e.g., classification. The

legacy discrete s-rep used in this work has a grid of m x n discretely sampled skeletal surface with
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either two (on the interior) or three (along the fold curve of the skeleton) spokes emanating from the
skeleton.

However, it is necessary to ensure that s-reps properly model the surface geometry of target
objects prior to the classification. To assess how well the fitted s-rep matches the original object
boundary, I need to be able to quantify the difference between the implied boundary of the s-rep and
the object boundary. The implied boundary is obtained by continuously interpolating the base spokes

of the s-rep.

5.2.2 Mathematics of Spoke Interpolation

Interpolating a discrete s-rep into a continuous s-rep is divided this into 1) a skeletal surface
interpolation operation and 2) a spoke interpolation on the interpolated skeletal surface. The skeletal
surface interpolation method uses standard polynomial-based methods.

The spoke interpolation method depends on first interpolating the spoke directions U and then
interpolating the spoke lengths r. Our experience shows that this strategy is preferable because we
have found a good way to interpolate the directions and have found that the overall result is then very
robust against approximation errors in the spoke length interpolation.

Let the skeletal surface be parameterized by (u1, uz), where both parameters are integers at the
corners of a quadrilateral in the grid on which the discrete s-rep is specified. Thus, the discrete s-rep
gives both 7 and U at these quadrilateral corners. Consider interpolation of the spoke directions U at
any point p (uy, ug) within any grid quadrilateral on the skeletal surface. Our plan for interpolation
of r is based on a 2nd-order Taylor series, for which we need not only the spoke directions U but
also their first and second order derivative values U,,, and U,,,,, for ¢« = 1, 2 at arbitrary points in
the quadrilateral. Spoke directions live on the unit 2-sphere S?. Thus, the sort of finite difference
calculations that must be used in order to compute U at our discrete skeletal points should be done
on the sphere. These calculations are done by representing the discrete spokes U as unit quaternions
and thus its derivatives with respect to u; as derivatives on the sphere. Using these derivatives,
Vicory applies the squad method (Shoemake, 1987) of interpolating quaternions to estimate the
spoke direction U at an arbitrary point interior to a quadrangle of discrete points by fitting Bezier

curves to the quaternions on the surface of the sphere. This approximation allows the computation of
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not only the U values but also their directional derivatives of both first and second order in either u1
or uy.

Given the ability to evaluate U and its derivatives in a quadrilateral, we need to interpolate the r
values in a way consistent with skeletal geometry. Spokes can be written .S = rU. The derivatives of
the spoke at a skeletal location p with respect to a step in direction v in either of the two orthogonal
directions uy or ug must follow S, = rU, + r,U from which it follows that r, = S, - U. Also,
Suw U = (8y), - U = 14y +rU. From this a Taylor series in the length d of a small step in direction
v from a skeletal position p together with three forward distance derivative approximations yields the

following expression.

% (S (p) + S (p + 2dv)) 5.1)

r(p+dv) =
Because the same mathematics works using a Taylor series in the backwards direction about p +
2dwv, for symmetry and to reduce approximation error the results of the two versions should be
averaged, yielding the final formula as 7 (p+dv) = U (p+dv) - (3 (S (p) + S (p + 2dv))) —
(S () Us (p) + 5 (p + 2dv) - Uy, (p + 2d0))

This formula allows computing the spoke half-way between two horizontally adjacent quadri-
lateral corners and using successive subdivision with it by halving as many times as necessary to
get the desired small spacing in u;. Applying the same method separably (on the results) in the us
direction, yields a spoke at any successively subdivided point within the quadrilateral. Finally, since
the method gives different results when you apply it first in uo and then in u;, we compute using
both orders and average the results.

At a skeletal fold, the skeletal surfaces lack of smoothness prevents the direct application of the
aforementioned method. We solve this problem by dilating the fold curve into a tube of very narrow

radius, treating the spoke at the curve as its value at the place it intersects the tube, and then using the

method for smooth surfaces to compute the continuation of the spoke to the object boundary.

5.3 Method

As previously mentioned, the current s-rep modeling framework is limited in geometrically modeling
an object with a singular point because of the degenerate skeleton and the hard constraint of non-

crossing spokes. I address this challenge as follows:
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1. I'introduce a new geometric primitive to represent the singular point.
2. I'modify the current interpolation method to produce interpolated s-reps with the new primitive.

3. Tintroduce a statistical method to analyze a set of s-reps that contain the new primitive.

5.3.1 Singular Point Primitive

The radius of the curvature at the singular point of the CN is zero, which yields a skeletal surface
that not only collapses to a point but also intersects the CN’s boundary. Based on this observation, I

explicitly represent the singular point as a point on the boundary with a direction.

5.3.2 Proposed Interpolation Method

Given the new primitive, I need to be able to produce a continuously interpolated s-rep for solid model-
ing of an object with a singular point, e.g., the CN. Vicory’s quad-based interpolation method (Vicory,
2016) is not designed to handle the degeneracy of the skeleton that I aim to model via the new
primitive. I adopt a different interpolation strategy while following the general workflow of the
current interpolation method. First, I describe how to interpolate a skeleton emanating from the base
skeleton’s end curve and converging to the singular point in its designated direction; the resulting
skeleton is smooth up to the singular point. Then, I describe how I interpolate the spokes given the
interpolated skeletal positions. Finally, I address how I interpolate the spokes that go around the crest

in this context.

5.3.2.1 Skeleton Interpolation

In this section I describe how to construct a smooth, continuous skeleton up to the singular point. I
construct the skeleton from a smoothly varying series of non-crossing curves. As shown in figure 5.1,
these curves emanate from the respective positions interpolated along the base skeleton’s end curve
and converge to the singular point in its designated direction. I construct each individual curve as

follows:
1. Interpolating the curve’s starting point along the base skeleton’s end curve

2. Determining an emanating direction of the curve at the starting point
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3. Limiting the speed along that direction to enforce the non-crossing property of the curve

A starting point of each curve is first interpolated along the base skeleton’s end curve. The
point is interpolated from a cubic Hermite spline fitted to two adjacent skeletal points between
which the point lies in s-rep’s parametric space. Given the same parametrization of the skeleton in
(u1,uz), let the interpolated starting point along the end curve be p(u},u), and let the two adjacent

skeletal end points along the end curve be p(u?, u3) and p(u’™, uJ). Hermite interpolation requires

4 control values: two positional values of each point, p(u},u9) and p(u}™,u3), and two vectors
Puy (1}, u9) and py, (v, u9); the partial derivatives are computed via finite differences. The vector
H_ containing these control values is

He = (p (uf,ug) ,p (ui™ ud)  puy (ui,ug) s puy (w7, )
Let H(z) = (Hy(x), Hao(z), H3(x), Hy(z)) where the H;s are the cubic Hermite spline basis

functions:

Hy(z) =22% — 322 +1
Hy(z) = —223 + 322

5.2)
H3(x) =2 — 22° +

Hy(x) = 2 — 2*

Then, p(u,u9) can be computed by the following equation:

pui, up) = H(uj —uy) - H,

The same spline-based interpolation strategy is used to obtain the curve that originates from
p(uf, uY) and converges to the singular point in the designated direction. As previously noted, the
interpolation requires two positional values as well as the two vectors at p(u},u3) and the singular
point; I need to specify the vector at p(u},u3) so that the fitted curve at p(u},uy) does not cross
other curves.

The idea is to specify the emanating vectors at the discrete skeletal end points and to do so in

a way that allows the emanating vectors at intermediate points to be interpolated via quaternion
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splines. Given the two adjacent end skeletal points p (uzl, ug) and p (ulfrl, ug) between which the

starting point lies, the direction of the vector is obtained from a quaternion-based interpolation of
Pus (U, u3) and py, (ui™', u3). These partial derivatives are computed via finite differences.
Given the direction of the vector at p(u},u3), I need to decide the speed along the emanating
vector so that the produced curve does not cross other curves. Two curves at two distinct interpolated
starting points can cross each other when the emanating vectors are facing each other; however, the
crossing can be prevented if the speeds along the respective vectors are constrained to be less than
the half of the arc length between the two starting points. A similar intuition is often used in image
registration when obtaining a dense displacement field from a sparse set of displacement vectors.
0

Based on this observation, I constrain the magnitude of emanating vectors for the p(uj, us)s as

follows:

1. Finding the minimal arc length of the two adjacent base skeletal end points; let this value be

Lmin

2. Finding the maximal partial derivative of the skeleton at the discrete skeletal end points with

respect to uo; let this value be S,q,
3. Computing a scale factor y as a ratio of % to Stax
4. Adjusting the speed along the emanating directions at the discrete skeletal end points by ~y
5. Interpolating the speed along the intermediate emanating vectors

Figure 5.1 shows a skeleton of one of the CN s-rep with the new singular point primitive.
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Figure 5.1: An interpolated skeleton of one of the CN s-rep with the new singular point primitive.
The blue arrow seen at the lower left corner of the figure is the directional component of the singular

point primitive.

5.3.2.2 Spoke Interpolation

In this section I describe how to obtain a continuous s-rep from a discrete s-rep given the singular
point primitive. I construct a dense vector field of spokes on the skeleton by interpolating spokes
along each skeletal curves. As shown in figure 5.2 spokes on each curve smoothly vary from the
respective spokes interpolated along the base skeleton’s end curve to the specified direction at the

singular point. The spoke vectors along each skeletal curve is obtained as follows:

1. Interpolating the initial spoke along the base skeleton’s end curve

2. Interpolating the desired spoke from the initial spoke to the singular point.

An initial spoke is first interpolated along the base skeleton’s end curve. Let the initial spoke be

S (u“{, ug) whose tail position is the interpolated end skeletal point p (u*{, ug) The spoke direction
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U (u*{, ug) is estimated from a quaternion-based interpolation. The spoke length r (u’{, ug) is then
interpolated using the aforementioned equation in section 5.2.2.

Given the end initial spoke S(u}, u}), I need to interpolate the desired spoke S (u}, u}) along the
skeletal curve from p(u?, u3) to the singular point. The interpolation of S(u}, u}) follows the same
workflow: 1) the interpolation of the spoke direction U (u], u}) that is obtained from a quaternion-
based interpolation between the initial spoke direction U (u’{, ug) and the singular point direction
and 2) the interpolation of the spoke length r (u}, u3) that is obtained using the same expression

presented in section 5.2.2. Figure 5.2 shows the densely interpolated spokes of one of the CN s-rep.

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5

Figure 5.2: Densely interpolated spokes of the same CN s-rep previously seen in figure 5.1 with
the singular point primitive. The magenta vectors denote up spokes, the cyan vectors denote down

spokes, and the red vectors denote crest spokes.

5.3.3 Euclideanization of the Augmented S-reps

To classify HR-ASD infants and HR-Neg infants based on the caudate shape, I need to Euclideanize

GOPs provided by CN s-reps augmented with the singular point primitive. In this section I describe
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how to Euclideanize the augmented s-rep GOPs: the base s-rep GOPs and the singular point GOPs,
i.e., its boundary point and direction. First, I describe how to apply PNS to Euclideanize a set of the
augmented s-reps. Then, I discuss how to make the Euclideanized GOPs of singular point primitive
commensurate with the Euclideanized GOPs of the base s-rep for classification.

The Euclideanization of the augmented s-reps is very similar to that of the regular s-reps. First,
the primitive’s boundary point is concatenated with the base skeletal points, which yields a bigger
point tuple to which PNS is applied. Then, the primitive’s direction is handled by PNS just like spoke
directions.

Of importance for any statistical analyses is to make each feature commensurate. In this context |
need to make the Euclideanized primitive’s direction commensurate with other Euclideanized GOPs.
To be consistent with the commensuration of other directional primitves of the s-rep, I associate a
width feature as a multiplicative scale factor with the Euclideanized direction of the singular point.

Consider a section of the continuously interpolated augmented s-rep from the base end skeletal
curve to the singular point; the majority of the volume is concentrated at the base. Based on this
observation, I associate the singular point primitive’s direction with the geometric mean of the lengths
of all base spokes along the base skeleton’s end curve. Then, similar to how the Euclideanized GOPs
of spoke directions are commensurated, I commensurate the Euclideanized GOP of the singular point
primitive’ direction by multiplying PNS-generated features by the geometric mean of end spokes’

length.

5.4 Results

In this section I present couple of results of applying the proposed method to modeling the CN. The
method currently requires a user to manually provide the boundary point and the direction for the
singular point primitive. In this experiment, I manually specify the singular point. I specify the
direction that 1) lies on the tangent plane of the base end skeleton and 2) points toward the chosen
singular boundary point.

I investigate how well the interpolated CN s-reps with the singular point match the original CN
boundary. In order to get a sense on the accuracy of the proposed method, I examine how well the

interpolated spokes of the augmented CN s-reps match the original object boundary. I examine the
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distribution of the average distances between each interpolated spoke end and the original boundary.
The average distance is measured in voxel units where the resolution of the image is upsampled to
0.05 x 0.05 x 0.05mm.

Figure 5.3 shows the histogram of the average spoke end distances of the augmented CN s-reps
fitted to a population of 6-month olds’ caudate nucleus; there are 32 caudates of HR-ASD infants

and 137 caudates of HR-Neg infants.

Histogram of Mean Spoke End Distance

0.4 0.6 0.8 Lo
Interpolated Spoke End Distance in Voxel Unit

Figure 5.3: The histogram of the average spoke end distance of the augmented CN s-rep fitted to a

population of 6-month olds’ caudate nuclei.

As can be seen from figure 5.3, the majority of the distances is less than 1: most of the spokes
match the original boundary within 0.05 mm. The mean and the maximum distances are 0.40 voxels
and 1.25 voxels respectively.

In addition, the newly added singular point primitive is beneficial to the discrimination of HR-
ASD infants from HR-Neg infants; the classification based on the CN s-reps with the primitive yields
3% better performance than the one without the primitive. In subsequent chapter I shall describe the

classification method in detail.
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5.5 Conclusion and Discussion

In this chapter I have presented a novel method to represent an object with a singular point with
an s-rep. I first introduce additional geometric primitives, i.e., a boundary point and a direction, to
explicitly represent the singular point. Then, I describe a method to obtain a solid model of the object
by continusouly interpolating the spokes of the s-rep augmented with the singular point primitive. I
have demonstrated the method is useful in modeling the CN of 6-month old infants; I have shown
that the added primitive is beneficial to discriminating the autistic infants and the non-autistic infants.
I have shown some benefit of using the CN s-reps augmented with the singular point primitive in the
context of autism classification.

The method currently requires a user to specify the boundary point and the direction. An
optimization-based strategy can be used to refine both the singular point primitive and the base
discrete s-rep to tightly fit the original object boundary.

As it currently stands, the method represents the cuspidal singular point. However, there are
other work (Cohen et al., 2014) that model different types of the singular point based on parametrized
boundary mesh representation. The underlying mathematics of their method can be adapted for
s-rep-based modeling.

The proposed method can be adapted to interpolate s-rep spokes whose skeleton is a triangle
mesh. To interpolate an unknown spoke on a triagle, the similar interpolation strategy can be used.
Intermediate spokes can first be interpolated along each edge of the triangle. Then, the final spoke

can be interpolated as a average of the spokes interpolated from each intermediate spokes.
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CHAPTER 6

Non-Euclidean Shape Classification

6.1 Introduction

Binary classification of objects of interest based on medical imaging has been a common objective
(e.g., (Kurtek et al., 2011; Gorczowski et al., 2010; Zhao et al., 2014)). Researchers often wish to
determine if a subject has a disease or not based on geometric features of an anatomical structure
from a medical image. Beyond simply providing a rule for classification is the desire to gain deeper
scientific insights into phenomena underlying the disease.

These geometric features are often provided by object models and should be analyzed by
statistical methods suitable for shapes. One of the most popular forms of shape representation is the
Point Distribution Model (PDM) (e.g., (Cootes et al., 1995; Styner et al., 2006; Davies et al., 2003)).
A boundary PDM is a tuple of boundary points on an object, with points corresponding across
the training cases. Frequently, studies using PDMs capture shape variations through the statistical
method of Principal Component Analysis (PCA) (Cootes et al., 1992, 1995), and classification is
done using Linear Discriminant Analysis (LDA) or the Support Vector Machine (SVM) (Davies et al.,
2003).

In this chapter I investigate the possible improvements in classification that can arise from two
modifications in the above methods. The first is to statistically analyze the object representation
data in the realization that, per (Kendall, 1984), even PDMs can be understood as lying on a curved
manifold. I apply PNS-based Euclideanization for this purpose. The second modification I consider
is to use rich s-rep GOPs.

The method of classification I propose is DWD on GOPs that are Euclideanized using PNS. I

demonstrate that, both with PDMs and with s-reps, this statistical method produces more effective



classification than those making less use of the geometry of the manifold in which the representation
lies.

I apply the proposed method to the problem of classifying 3D hippocampi and caudate nuclei as
autistic or non-autistic based on their GOPs. I have evaluated my method on a dataset that consists of
143 non-autistic cases and 34 autistic cases. In this application I measure performance by calculating

the area under the ROC curve (AUC). As mathematically expected, the results show that

* the proposed method based on s-reps is superior to the classification based on s-reps without

Euclideanization.

¢ Euclideanization is also beneficial to the PDM-based classification; however, the observed

improvement is subtle.

* Euclideanized shape-based classification is better than the conventional global volume-based
classification; the observed improvement is more notable in the hippocampal shape-based

classification than in the caudate shape-based classification.

This chapter is organized as follows. In section 6.2 I first describe the proposed classification
method. In section 6.3 I provide details on the experimental setup and the classification evaluation
method Then, I present the result of the proposed classification method in section 6.4. Finally, I

conclude this chapter with a discussion in section 6.5.

6.2 Classification Method

The novelty of the proposed classification method comes from the fact that I recognize that s-rep
GOPs abstractly live on a curved manifold and that I appropriately take that into account during

classification. The proposed classification method works as follows.

1. Apply PNS to Euclideanize GOPs that live on a sphere and commensurate those features to

millimeters.

2. Learn the separation direction from these features concatenated with the originally Euclidean

features in the training data using DWD.
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3. Compute the function that maps values projected onto the separation direction to the probability

of belonging to the autistic group based on Bayes’ Theorem (figure. 6.1).

4. Classify each case in the test set based on the probabilities computed using the function from

the previous step.

In the following subsections, I provide a detailed description of each step.

6.2.1 Euclideanization of s-reps and basis of the transformation between s-rep space

and Euclidean space

As previously noted, a discrete s-rep has some spherical GOPs, i.e., each spoke’s direction and the
PDM formed by its skeletal sample points. I apply PNS separately to each spherical GOP, producing
corresponding Euclideanized variables.

I consider both great subspheres and small subspheres at each iteration of PNS to Euclideanize
spherical GOPs of the representation. Chi-squared based hypothesis testing was performed to decide
which subspheres to use at each iteration of PNS. Along with the Euclideanized variables, PNS
yields a polar system to be used as the basis of a transformation from the original s-rep space to the
corresponding Euclidean space, and vice versa.

I concatenate the already Euclidean and Euclideanized variables and scale each so that they are
commensurate. These variables form the feature space on which classifiers are trained and tested. |

denote these concatenated variables as the composite data matrix.

6.2.2 Learning the Separating Direction

The composite matrix computed via PNS is the input to DWD. That method learns a feature space
separating direction between the two classes, i.e., the autistic and the non-autistic group, via the

training set of discrete s-reps Euclideanized as described in the previous section.

6.2.3 Computing the Function from Projected Feature Values to the Probability of
being Autistic

Given a separation direction and a case with an unknown class label, my objective is to compute that

case’s posterior probability of belonging to the autistic group. Using Bayes’ Theorem, I can express
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this probability in terms of a prior and a likelihood of each class. I derive likelihood probabilities, i.e.,
the probability distributions of each class, given the s-rep features, by forming a pair of histograms

each describing statistics of the respective class as seen in figure. 6.1.
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Figure 6.1: Visualizations of the class likelihoods of hippocampi. The empirical histogram of the
scalar projection of the non-autistic cases in the training set onto the separation direction is plotted
using the blue dotted lines and with the Gaussian probability distribution as the blue solid curve.

Similarly for the autistic class in green.

Using the trained polar system, I first transform the s-rep of interest into a point in feature space.
Let dx be the scalar value resulting from projecting that data point X onto the separation direction;
let {dauism  be projection values of positive training examples, and let {dnon-autism } be projection
values of negative training examples. I form a pair of empirical histograms of d,uism and dyon-autism
as shown in figure 6.1. By treating duutism and dyon-autism @S random variables, I derive a probability
distribution for each class from the respective histograms.

Given the two histograms, I need to derive the class likelihood probabilities to compute the
posterior probability. I fit Gaussians to the two empirical distributions as the respective class
likelihood probability distributions. To simplify the calculation of the posterior, I examined if the
two fitted Gaussians have a common standard deviation; the F-test failed to reject the null hypothesis
that the two distributions are Gaussian with a common standard deviation. Given this outcome,

the class likelihood distributions are the two Gaussians whose mean is the sample mean of the
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respective histograms, and whose common standard deviation is obtained from the unbiased least
square estimate of the pooled variance of both histograms.

With these two distributions, p (dx|autism) and p (d x |non-autism), I can infer a class label of
an unknown case if the projection value of that case dx is given. It can be formulated by using
Bayes’ Theorem as follows.

By Bayes’ theorem,

p(autism)p(dx |autism)

p (autism|dx) = (6.1)

p(autism)p(dx |autism) + (1 — p(autism))p(d x |non-autism)
This can be reduced to

p(autism)
p(autism)(1 — R(dx)) + R(dx)

. 2 o . 2
R(dX) — exp [_; { (dX - Mnon—autlsm) B (dX Mautlsm) }] (6.3)
g g

where the pooled standard deviation estimate is computed as

p(autism|dx) = (6.2)

where

o2 = (Nautism — 1)Ua?utism + (Mnon-autism — 1)Ugon-autism (6.4)
(Nautism — 1) + (Mnon-autism — 1)
where n,uism denotes the number of observations for the autistic observations, o,uism denotes the
standard deviation of the scalar projections onto the direction for the autistic observations, and
similarly for the non-autistics with nyon-autism and Opon-autism-

In summary, I compute the posterior p (autism|dx ) given a scalar projection value dx along
the separation direction and a prior p(autism). The p (non-autism|dx) is the complement of
p (autism|dx). Not only does this probability communicate intuitively to a user how certain a
classification of a new case is but also basing it on parameterized probability distributions allows

stable predictions in the tails of the distribution.
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6.2.4 Classification based on Probability Produced by the Mapping Function

I decide the class label of an unknown case given a projected value dx and the prior p(autism) by

comparing p (autism|d x ) and p (non-autism|dx ).

6.3 Experimental Analysis

To evaluate the proposed method, I use repeated random hold-out so that I do not introduce bias in
the testing procedure. I first randomly partition the positive example set into 10 roughly equal size
subsets and likewise with the negative example sets. I set aside one of the subsets from each class for
testing and used the remaining subsets to collect statistics necessary for the classification method.

I have conducted 2, 000 rounds of random hold-out with the prior p(autism) being set to 1/4;
in the literature, one out of four infants at high familial risk for ASD is later diagnosed with
ASD. Given the prior and a trained separation direction, each hold-out round yields the posterior
probability p (autism|dx ) for each test sample; I collect the p (autism|dx )s for the positive test
samples separately from the negative test samples. I obtain two distributions of p (autism|dx ) for
the positive (negative respectively) test samples across the hold-out rounds. Then, I derive a ROC
curve from these two p (autism|dx ) distributions. I report the areas under these ROC curves (AUC)

in section 6.4.

S-rep based method compared to boundary PDM-based methods

The boundary PDM is a common approach to represent a shape via a collection of points along the
object’s boundary. I wish to compare the qualities of classification when hippocampal shapes are
represented by s-reps vs. boundary PDMs to see if the rich geometric information provided by s-reps
increases discriminative power over classification based on boundary information. And similarly for
caudate nuclei.

In order to make a fair comparison between boundary PDMs and s-reps, I need boundary PDMs
that can be compared directly to s-reps. Recall that s-reps are a collection of spoke vectors pointing

from skeletal sample points to the object’s surface and that s-reps are fitted such that the spoke vectors
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are in approximate correspondence across all cases in the training population; I form boundary PDMs
from these spoke endpoints. I will denote these boundary PDMs as srep-PDMs.

I classify srep-PDMs in two different ways. First, we applied our DWD-based method directly
to the point coordinate features. Second, in order to understand advantages of the Euclideanization
on that type of the shape data, we applied PNS to the point tuples to yield Euclideanized features as
well as a commensurated scale, and then we applied our DWD-based method to these features. The
same validation strategy used with s-reps was applied to each of these methods. For each method, I

report the final AUC in table 6.1 and in table 6.2.

6.4 Results

In this section I present the empirical results of applying the proposed method to the problem of

classifying autistic and non-autistic 6-month-old infants at high risk of ASD.

Methods AUC
s-reps + PNS + DWD 0.6400
s-reps + DWD 0.6123

boundary srep-PDMs + PNS + DWD | 0.6062
boundary srep-PDMs + DWD 0.6050
global volume + DWD 0.5560
random guessing 0.5000

Table 6.1: Table of an AUC of the ROC of the selected classification methods and the pure random
guessing in classifying the hippocampus of the autistic infants and the non-autistic infants. The result
shows that as expected, the Euclideanized s-rep-based classification performs the best.

Methods AUC
s-reps + PNS + DWD 0.5708
s-reps + DWD 0.5419

boundary srep-PDMs + PNS + DWD | 0.5400
boundary srep-PDMs + DWD 0.5365
global volume + DWD 0.5372
random guessing 0.5000

Table 6.2: The parallel results to the table 6.1 in classifying the caudate nucleus. The same
conclusion observed in the table 6.1 can be drawn.

Table 6.1 reports the performance of all the aforementioned methods in terms of the AUC in

classifying the hippocampus of the autistic infants and the non-autistic infants. For s-reps, classifica-
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tion using Euclideanization is superior to that without Euclideanization. For PDMs, classification
using Euclideanization yields a higher AUC, but the difference is subtle. With Euclideanization both
forms of model yield similar if not better classification than the common approach in the literature, a
volume-based classification of autistic hippocampi. S-rep-based classification with Euclideanization
is superior to all the other methods of classifying autistic infants from non-autistic infants based on
hippocampal shape.

Table 6.2 reports the AUC of the same methods in classifying the caudate nucleus. The same

conclusion as the hippocampal shape-based classification can be drawn.

6.5 Conclusion and Discussion

In this chapter I have presented a novel classification method that recognizes that rich geometric
information is provided by s-reps and that relevant shape information does not live in Euclidean
space. I have shown benefit to the classification performance when all of the GOPs of either s-reps or
boundary PDMs derived from s-reps are Euclideanized via PNS analysis.

In the context of the autism classification based on 1) the hippocampal shape and 2) the caudate
shape, I have shown that both the s-rep-based classification and the PDM-based classification provide
an advantage over a volume-based classification; therefore, I claim that shape information adds
additional discriminative power. I have also shown improvement when using s-reps over b-PDMs
when both GOPs are appropriately Euclideanized; I also show that local object directions and
local object width add discriminative power. I conclude that 1) shape descriptions add additional
discriminative power over global volume, and 2) local object directions and local object width that
s-reps provide add additional discriminative power over boundary position.

The proposed method yields a separating direction through the pooled backward mean in the
feature space of the Euclideanized s-reps. Each point on this vector can be used to generate an s-rep
using the polar system. Viewing the sequence of the s-reps as an animation yields understanding of
the shape changes between the two classes. Figure 6.2 shows selected frames from the sequence.
Our group’s paper on hypothesis testing on shapes using PNS-Euclideanization (Schulz et al., 2016)
analyzes the discriminability between these two classes of hippocampi locality by locality and GOP

by GOP.
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Figure 6.2: Selected frames from the sequence of the s-reps while walking along the separation
direction through the pooled backward mean from the autism class to the non-autism class. Viewing
the sequence as a looping movie makes the local shape changes between the two classes more
noticeable.

There are still some further questions to be investigated.

* As previously noted, deviations in the global volume of neuroanatomical structures, e.g.,
the caudate nucleus, have been observed in individuals with ASD [refs]. Measures such as
the intracranial volume (ICV) and the body length (Hazlett et al., 2017) have been used to
normalize volumes in these structures to remove factors not related to ASD, e.g., the nutrition
and the genetic factor. As it currently stands, such volume normalizations have not been
performed for analyses described in this work; it would be interesting to see if the same

conclusions can be drawn after normalizing volumes of hippocampi and caudate nuclei.

* As for the caudate shape-based classification reported in the table 6.2, the boundary point of
the singular point primitive described in the section 5 has not been included for the boundary
PDM-based analysis. However, I expect that adding the boundary position of the singular point
to the current point tuple would not change the result significantly. In my separate experiment
not included in this work, I measured the caudate classification performance when using

boundary PDMs derived from spherical harmonics (SPHARM-PDMs), which includes the
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singular point’s boundary position. The performance of SPHARM-PDM-based classification
without PNS-based Euclideanization is 0.5400, which does not differ significantly from that of

s-rep-PDM-based classification reported in the table 6.2.

To see if our results extend to other anatomic objects and diseases, we would like to apply the
method to different application problems, e.g., classification of Alzheimer patients based on

shapes of the neuroanatomical structures.

In Euclideanizing a spoke direction using PNS, we apply PNS separately because we are
making the naive assumption that each direction is independent. However, because an object
surface is continuous and smooth, each direction is highly correlated to its neighbors. We
would like to produce a Euclideanization method that reflects this correlation. Also, others
are suggesting methods for statistical analysis directly on the curved shape-feature space
manifold (Eltzner et al., 2015; Arnaudon et al., 2017), and it would be interesting to evaluate

classification methods using these ideas.

As previously mentioned in section 2 the method we used to achieve spoke correspondence in
s-reps across the training set could be improved. In separate work, reported in (Tu et al., 2018),
we created a method to improve the correspondence by spoke shifting on each training case,
S0 as to minimize an entropy measure. This entropy measure reflects both shape probability
distribution tightness and uniformity of coverage of the spokes in each training case. The
shape probability distribution used is derived from the same PNS approach used in this paper.
The correspondence was shown to be improved in a set of lateral ventricles and in a subset of
the hippocampi used in this paper. It would be interesting to see whether the classification of
hippocampi and caudate nuclei could be improved using these correspondence improved s-reps.
Finally, (Tu et al., 2018) also showed improved PDM correspondence when using the spoke
tips as the PDM as compared to a PDM derived from spherical harmonics and then improved
in correspondence by the entropy-based method of (Cates et al., 2006) . This further justifies
our decision to use the s-rep derived PDM instead of SPHARM-PDM in the classification

study reported in this paper.
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* Other work is in progress comparing different statistical methods against DWD. It would be
interesting to see how DWD for our purpose compares to other statistical methods such as

Random Forests, and Deep Learning.

* It would be also interesting to measure the relative power of classification via other shape
representations that have been used in the anatomic shape analysis literature, including but not
limited to parameterized surface representations used in (Kurtek et al., 2012; Jermyn et al.,
2012; Bauer et al., 2010, 2012; Durrleman et al., 2014), deformation fields used in (Lancaster
et al., 2003; Villalon-Reina et al., 2012), the spherical harmonic coefficients used in (Gerig
et al., 2001), spherical wavelet coefficients used in (Nain et al., 2007), and atlas deformation
representations such as LDDMM momentum (Beg et al., 2005; Miller et al., 2002; Wang et al.,
2007).
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CHAPTER 7

Non-Euclidean Temporal Shape Difference Clas-
sification

7.1 Introduction

So far in this dissertation I have discussed how to classify a set of subcortical structures in the context
of the early diagnosis of infants at high familial risk to develop ASD. In the previous chapter, I have
described the classification method that uses rich s-rep GOPs whose non-Euclidean nature is handled
by PNS. I have shown that the method achieves 64% and 51% in classifying HR-ASD infants and
HR-Neg infants at 6 months of age based on either the hippocampus s-reps or the caudate nucleus
S-reps.

However, an important question is whether the classification of the autistic infants and the
non-autistic infants can be improved if multiple s-rep GOPs are used to learn the classification rule.
Specifically, how much does the ASD classification benefit by incorporating temporal changes in the
shape as compared to the shape alone?

As previously shown, the s-rep based classification benefits from PNS-based Euclideanization.
Therefore, I need to properly handle the non-Euclidean nature of the GOPs of the s-rep pair. Among
many possible Euclideanization methods I consider how to apply PNS to obtain temporal s-rep
differences of the hippocampus and the caudate nucleus.

The remainder of this chapter is organized as follows: First, I describe how to apply PNS to
Euclideanize two distinct s-reps, i.e. the hippocampus and the caudate nucleus. In addition, I describe
how to obtain Euclideanized temporal differences of an object s-reps. I conclude this chapter with

the results followed by the discussion.



7.2 Method

In this section I describe the non-Euclidean temporal shape difference classification method. As
previously shown, the s-rep based classification benefits from Euclideanization due to highly non-
Euclidean nature of s-rep GOPs. Therefore, I need to Euclideanize the GOPs of the s-rep pairs prior
to learning the classification rule. First, I describe how to use PNS to obtain temporal differences of

s-reps at two time points. Then, I describe the classification scheme given the Euclideanized GOPs.

7.2.1 Euclideanization of Temporal Differences of an S-rep

As mentioned in chapter 2, ASD is a lifelong neurodevelopmental disorder. In the literature brain
developmental trajectories of individuals with ASD are different from those of typically developing
individuals. Would the developmental trajectories of the implicated brain structures such as the
hippocampus and the caudate nucleus have predictive power?

Given a set of object pairs at two time points, I use PNS-based Euclideanization to obtain temporal
shape differences of an object between the two time points. I adopt the same Euclideanization strategy

used in [Jared’s dissertation], which works as follows:

1. T apply PNS-based Euclideanization on the union of all training shapes across the classes and

across the time points to obtain a common polar system.
2. Given the common polar system, I derive the Euclideanized temporal shape differences by
subtracting the starting shapes from the ending shapes of their Euclideanized values.
7.2.2 Classification

Given the set of temporal differences of s-rep GOPs, I use DWD to learn to classify HR-ASD infants
from HR-Neg infants. The proposed classification method is evaluated as described in section 6.3 in

classifying HR-ASD infants and HR-Neg infants based on hippocampi or caudate nuclei.

7.3 Results

In this section I present results of classifying HR-ASD infants and HR-Neg infants based on

temporal shape changes from 6 months to 12 months in hippocampi and caudate nuclei. I compare
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discriminative power of the temporal shape difference against 6-month shape only and 12-month

shape only.
Methods AUC
temporal difference s-reps + PNS + DWD | 0.5427
6 month s-reps + PNS + DWD 0.6400
12 month s-reps + PNS + DWD 0.5837
random guessing 0.5000

Table 7.1: Table of AUCs of classifying HR-ASD and HR-Neg based on 1) temporal shape difference
in hippocampi at 6 months and 12 months (the top row), 2) 6 months hippocampi shapes (the 2"¢
row), 3) 12 months hippocampi shapes (the 3"¢ row), and 4) the pure random guessing (the bottom
row).

Methods AUC

temporal difference s-reps + PNS + DWD | 0.5041
6 month s-reps + PNS + DWD 0.5087

12 month s-reps + PNS + DWD 0.5605
random guessing 0.5000

Table 7.2: Table of AUCs of classifying HR-ASD and HR-Neg based on 1) temporal shape difference
in caudate nuclei at 6 months and 12 months (the top row), 2) 6 months caudate nuclei shapes (the
274 row), 3) 12 months caudate nuclei shapes (the 37 row), and 4) the pure random guessing (the
bottom row).

Table 7.1 reports the performance of classifying HR-ASD infants and HR-Neg infants based
on 1) temporal shape differences of hippocampi between 6 months and 12 months, 2) 6 months
hippocampi shapes, and 3) 12 months hippocampi shapes. As for the ASD classification based on
the hippocampal shapes, the hippocampal shapes at 6 months seems to be the most discriminative
predictor.

Table 7.2 reports the AUC of the same methods in the same classification task using caudate
nuclei shapes. When classifying HR-ASD infants and HR-Neg infants based on caudate shapes, the
caudate shapes at 12 months seems to be the most discriminative factor.

For both of the ASD classification tasks, the temporal shape difference seems to be the least

discriminative feature.
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7.4 Conclusion and Discussion

In this chapter I have adapted the idea of shape difference statistics from (Vicory, 2016) to classify
HR-ASD infants and HR-Neg infants based on temporal shape changes. I believe that this idea can
be further extended to perform classification based on developmental trajectories of shapes involving
more than two time points.

I have investigated whether a temporal shape difference between 6 months and 12 months is
an important predictor in classifying HR-ASD infants and HR-Neg infants. The empirical results
suggest that the temporal shape difference is not as discriminative as compared to 6 months shapes
or 12 months shapes. However, I speculate that the information captured by the temporal shape
differences is complementary to that captured by 6 months shapes or 12 months shapes alone; I
expect the prediction to improve if the temporal difference and either of 6 months or 12 months are
used together.

However, as noted in (Vicory, 2016), when the shapes undergo a relatively large deformation,
a pooling-based PNS Euclideanization strategy would be less effective, since the learned basis of
Euclideanization would not be particularly representative of shapes at either time points. Instead,
one could employ an Euclideanization strategy in which PNS is applied to Euclideanize shapes for
each class at each time point separately and then these Euclideanized shape features are transported

to a common place on the shape manifold.
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CHAPTER 8

Conclusions & Discussion

In this chapter I provide a summary of my contributions in section 8.1. Then, I conclude this

chapter with a further discussion of my contributions and potential future work in section 8.2.

8.1 Summary of Contributions

This dissertation proposes a shape classification method that uses rich Geometric Object Properties
(GOPs) of s-reps, Principal Nested Spheres (PNS) based Euclideanization, and Distance Weighted
Discrimination (DWD) to classify autistic and non-autistic infants at high familial risk of Autism
Spectrum Disorder (ASD) based on shapes of hippocampi or caudate nuclei. In my driving biomedical

problem I demonstrate the following:

1. The classification benefits from rich localized GOPs provided by s-reps. As shown in chapter 6,
the AUC of the s-rep-based classification is 5% higher than that of PDM-based classification

in the context of the autism classification based on the hippocampal shape.

2. The classification benefits from PNS-based Euclideanization for both s-rep-based classification
and PDM-based classification. Therefore, recognizing shapes as a point on a curved manifold
is important. As shown in table 6.1 and table 6.2, the AUC of the Euclideanized s-rep-based
classification is 4.5% and 2.3% higher than the classification method treating s-rep GOPs as
Euclidean features. The benefit is also shown for the PDM-based classification; the PNS-based

Euclideanization yields 0.2% and 0.7% higher AUC.

3. The classification benefits from shape information; both Euclideanized PDM-based clas-
sification and Euclideanized s-rep-based classification perform better than volume-based

classification. As shown in chapter 6, the Area Under the Receiver Operator Characteristics



(ROC) curve (AUC) of the Euclideanized s-rep-based classification is 15% higher than that of
the volume based classification in the hippocampal shape-based classification. The AUC of
the Euclideanized Point Distribution Model (PDM) based classification is 0.5% higher than

that of the volume based classification in the caudate shape-based classification.
The major methodological contributions of this dissertation are as follows:

1. Development of a fully automatic procedure to obtain a set of s-reps fitted to each target
object boundary data with reasonably good correspondence in spokes. As detailed in chapter 4,
I described a general framework that utilizes Mean Curvature Flow (MCF) to establish a
mapping from the target object boundary to an ellipsoid. Given a set of ellipsoids for each
target boundary, I derive a mean ellipsoid. An s-rep for the mean ellipsoid is obtained from
the known analytical expression. Then, the mean ellipsoid s-rep is mapped to each individual
ellipsoid and each deformed mean ellipsoid s-rep is mapped back to the original target object
boundary. I argue that the resulting set of fitted s-reps have reasonable spoke correspondence
because each s-rep is mapped from a common reference s-rep. The method is shown to
be effective in generating a set of fitted s-reps for hippocampi, caudate nuclei, and lateral
ventricle. However, the method failed to produce a fitted s-rep of a mandible, which has a
rather complicated-shape. I discuss below improvements to the flow that may ameliorate this

problem.

2. Development of an extension to the current s-rep modeling framework for appropriately
representing an object with a singular point, e.g., the caudate nucleus. As pointed out in
chapter 5, the current s-rep modeling is limited in representing objects with a cuspidal singular
point. To address this limitation, I used an additional point on the boundary and a direction to
represent the singular point. Then, I described a method to obtain a continuously interpolated
s-rep augmented with the singular point primitive. As shown in chapter 5, the primitive
is beneficial in modeling the sharp tail of the caudate nucleus. In addition, the caudate
classification task also benefits from the additional primitive; the AUC of the classification is

3% higher.

3. Development of a non-Euclidean classification method that uses PNS to obtain the Eu-

clideanized s-rep GOPs on which the DWD classifier is trained. In chapter 6 I showed
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that shape information adds discriminative power by showing that both PDM-based classifica-
tion and s-rep-based classification are superior to the volume-based classification; the AUC of
the s-rep-based classification is 15% higher than that of the the volume-based classification,
and the AUC of the PDM-based classification is 0.5% higher than that of the volume-based
classification. I demonstrated that both PDM-based classification and s-rep-based classification
benefit from PNS-based Euclideanization; the benefit of the PNS-based Euclideanization was
most notable for the s-rep-based classification. The observed benefits to the AUC of the
s-rep-based classification when Euclideanized by PNS are 4.5% and 2.3% for the hippocampal
shape classification and the caudate shape classification respectively. Last but not least, I
further showed that the classification benefits from rich localized Euclideanized s-rep GOPs,
i.e., local object widths and local object directions; as shown in table 6.1, the AUC of the

s-rep-based classification is the highest.

. A novel technique to compare different shape classification methods. In section 6 I employed a
repeated hold-out strategy to measure the performance of the shape classification methods, i.e.,
the s-rep-based classification and the PDM-based classification. For each fold I first use the
training samples to obtain a polar system from PNS, which yields Euclideanized GOPs from
which DWD learns a class separation direction. From the test sample in each fold I use the
training histograms to derive posterior probabilities of test samples being autistic separately
for the positive test samples and for the negative test samples. Then, I compute the final
AUC by sweeping the collected posterior probabilities. The method allowed a more credible
comparison of shape classification methods than comparing classification methods on the basis

of AUC estimated from a single hold-out round.

. Development of a non-Euclidean classification method for classifying a temporal pair of s-reps
in which the input feature tuple to DWD is formed by taking the difference of the Euclideanized
s-rep GOPs for each time point. In chapter 7 I studied whether the temporal shape difference
is more discriminative than the shape alone in the context of autism classification. I have
adopted the idea of shape difference statistics proposed in [Jared’s dissertation] to obtain
temporal changes in s-reps; s-reps are first Euclideanized by pooling across the classes and

the time points, and then the temporal shape differences are obtained by taking differences
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of the Euclideanized s-reps at two-time points. I examined discriminative powers of the
temporal changes of the hippocampal shape and of the caudate shape between 12 months and
6 months. This produced interesting results that could not have been produced without our
comparison technique. The temporal shape differences of the hippocampus and the caudate
nucleus do not seem to be as predictive as compared to 6-month shape alone or 12-month
shape alone. However, I speculate that information captured by the temporal shape difference
is complementary to information captured by 6-month shape alone or 12-month shape alone;
therefore, I expect the overall prediction can be improved if the temporal shape difference is

used together with either 6-month shape or 12-month shape.

The above contributions support the following thesis:
Thesis: Classification of medically imaged neuroanatomical structures based on their geometric

object properties benefits from the following:

1. An object model providing local object width and orientation in addition to positional informa-

tion

2. An object modeling procedure that efficiently yields geometric correspondence across a

population

3. A classification method capable of learning a classification rule on a curved manifold

In addition to the above methodological contributions, I have also accomplished the following

engineering contributions:

1. Integration of Pablo, the main piece of software used to fit and visualize s-reps into 3D Slicer
for easier distribution of the s-rep modules to the medical image analysis community. During
my involvement in NIH funded project called slicerSALT (Slicer Shape AnaLysis Toolbox), I

achieved following software engineering accomplishments:

* Modernization of the s-rep modules.

* Redesign of the computer representation of the discrete s-rep. I redesigned the computer
representation of a discrete s-rep as networks of spokes using the VTK file format. The

redesigned s-reps allow modeling objects with different topologies including the spherical
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(slabular), the quasi-tubular, and the toroidal. In addition, the redesigned s-reps are more

consistent with the underlying skeletal mathematics at the skeletal fold.
* Implementation of a module that converts a legacy s-rep into the redesigned s-rep.

* Implementation of a module that visualizes a legacy s-rep in 3D Slicer. My colleague,
Zhiyuan Liu has recently extended the visualization module to visualize the redesigned

representation of s-reps.

* The code will be publicly released by the time of the 2018 MICCAI shape workshop and

will be available to download at https://github.com/Kitware/SlicerSALT

2. Improvement of the numerical stability of estimating surface normals and principal curvatures
from the input representation of the object. In Pablo objects are represented as the implicit
representation of the object by a signed distance image. Pablo used the finite difference
method to estimate isovalue surface normals and principal curvatures. I notably improved the
numerical stability in estimating surface normals and principal curvatures by fitting a local

B-spline patch from which those geometric quantities are computed analytically.

8.2 Discussion and Future Work

8.2.1 S-reps Fitting
8.2.1.1 Optimization

A set of the fitted s-reps obtained from the method described in chapter 4 was improved via spoke
length refinement to tighten their fits to the original object boundary. The spoke length refinement
is formulated as a posterior optimization problem. The optimization is carried out via conjugate
gradient descent where the gradient is numerically estimated. Recently a gradient-free optimization
method called NEWUOA (Powell, 2006) is being employed to replace conjugate gradient descent.
Some preliminary results of using NEWUOA to refine lengths of the spokes of the fitted s-reps are
encouraging. My colleague, Zhiyuan Liu, is currently implementing NEWUOA to optimize skeletal

point locations, spoke directions, and spoke lengths all together.
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8.2.2 Different Geometric Flows for Automatic S-reps

As noted in section 4, my MCF-based method fails to produce the fitted s-rep for a rather complicated
shaped mandible. MCEF fails in two aspects: 1) throughout the surface evolution vertices on the
condyles end up being clustered on the ellipsoid, and 2) the sharp bend at the jaw does not unbend
fast enough before introducing singularities on other places on the mesh. These problems could
potentially be solved by employing different types of flow, e.g., Willmore Flow or Ricci Flow,
combined with remeshing to prevent vertices from clustering. Interesting alternative curvature
measures to use in evolving the surface are C and S described in (Koenderink, 1990).

Another aspect of the method that can be improved is the use of different means of computing the
reverse MCF deformation that maps from an ellipsoid to the original object. The TPS transformation
is not guaranteed to yield a diffeomorphic transformation, which is why the method currently works
with a small time step. Evolving the surface by a small time step increases the number of the pairwise
TPS transformations to be computed. Instead, different diffeomorphic surface registration methods
can be explored to allow faster convergence to an ellipsoid. Recently a learning-based method has
been reported (Yang et al., 2017) to produce a transformation that is comparable to the one produced
by traditional LDDMM with a fraction of the computational cost. Using such a learning-based

method could improve the computational performance.

8.2.3 Modeling Objects with a Singular Point

In chapter 5 I introduced an additional geometric primitive to model an object that has a sharp
narrowing tail such as the caudate nucleus with an s-rep. The primitive can be used to model other
sharp points such as the tip of the horn of the lateral ventricle or a sharp place on condyles of a
mandible. When modeling these sharp places, the emanating directions need to be interpolated along
a different side of the skeleton.

The method currently requires a user to specify the boundary point and the direction. An
optimization-based strategy can be used to refine both the singular point and the s-rep fit.

As it currently stands, the primitive is designed to model a cuspidal singular point; the object
narrows very fast toward the cuspidal singular point. However, there exist different types of singular

points, e.g., a corner. There are other factors to consider when modeling an object with a corner. First,
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the rate at which an object gets narrowed is not as fast as compared to the one with a cuspidal singular
point. Therefore, one may need to specify the desired rate of narrowing at each base skeletal points
when modeling this type of singular point. In addition, different emanating curves can converge to
the corner in different directions. Therefore, one may also need to specify a set of desired converging

directions at the corner.

8.2.4 Non-Euclidean Shape Classification

In chapter 6 I have shown that the autism classification based on hippocampal shape or on caudate
shape benefits from rich localized s-rep GOPs when the non-Euclidean nature of s-rep GOPs is
handled by PNS. However, there are three aspects that can be further investigated: 1) object models,
2) Euclideanization methods, and 3) classification methods.

In this work I have compared the s-rep-based classification against the PDM-based classification.
However, an interesting comparison on the same data would be the s-rep-based classification against
other shape classification methods that use object models, e.g. a tuple of normals, spherical harmonics
coefficients, spherical wavelets, and atlas deformation representation. Preliminary work has been
conducted in comparing the s-rep-based classification against the classification method that uses
a tuple of normals representation called Square Root Normal Fields (SRNF) (Jermyn et al., 2012)
in a different application problem. The s-rep-based classification seems to be more discriminative
than the SRNF-based classification in that particular application problem. However, it still remains
to be seen if this is the case in the autism classification problem. Another interesting comparison
would be comparing our discrete s-reps against the continuous medial representation called c-
mreps (Yushkevich et al., 2006).

In this dissertation I only considered PNS as a means of handling the non-Euclidean nature
of s-rep GOPS. However, different means of Euclideanization can be further explored. Benjamin
Eltzner (Eltzner et al., 2015) has proposed Polysphere PCA (PPCA) in order to account for the
correlation directly among the Cartesian product of spheres, i.e., polyspheres. There is an on-going
work to compare the s-rep-based classification Euclideanized by PNS against the one Euclideanized
by PPCA. An interesting perspective of analyzing non-Euclidean GOPs in all dimensions at once
has been proposed by Xavier Pennec (Pennec, 2015); a Euclideanization method based on this

perspective would be an interesting future project.
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Instead of learning a classification rule based on Euclideanized GOPs, an alternative approach is
to directly work on the shape manifold. (Arnaudon et al., 2017) has proposed a method of estimating
the shape probability distribution directly on the shape manifold obtained via a stochastic process.
Then, two shape probability distributions can be estimated for each class. Given the two shape
probability distributions, a shape can be classified on the basis of class likelihoods. In addition, there
has been an early work on developing DWD that directly works on the original manifold by Suman
Sen (Sen, 2008).

In this dissertation I have used DWD to learn a classification rule in the Euclideanized feature
space. However, different classification methods, e.g., Random Forest and Deep Learning, can be
explored. Especially, deep learning based methods have been quite successful in various medical
imaging tasks, e.g., image segmentation, classification, and registration [refs]. Deep learning has
been reported to learn and extract lower dimensional, task-relevant features from original high
dimensional features. (Hazlett et al., 2017) used deep learning to learn a lower dimensional latent
space of a high dimensional cortical shape feature vector. Recently, there has been work to apply
deep learning for non-Euclidean data (Masci et al., 2015; Boscaini et al., 2016; Bronstein et al.,
2017). For Alzheimer classification,(Mostapha et al., 2018) have applied a geodesic Convolutional
Neural Network (geodesic CNN) to learn discriminative features from cortical brain surfaces with
cortical shape features defined at each vertex. An interesting future direction is to investigate whether
a deep learner can learn and extract discriminative Euclidean features from highly non-Euclidean

data such as s-rep GOPs.

8.2.5 Understanding Morphological Changes Associated with Growth

In this dissertation I have adapted the idea of shape difference statistics from (Vicory, 2016) for
classifying autistic and non-autistic infants based on temporal shape changes. I speculate that the idea
can be extended to perform a classification based on developmental trajectories of shapes involving
more than two time points.

However, as noted in (Vicory, 2016), when the shapes undergo relatively large deformations
between the two time points, pooling-based PNS Euclideanization would not be particularly repre-
sentative of respective classes and therefore would not be an effective means of Euclideanizing the

s-rep GOPs. Instead, a Euclideanization method that computes respective polar systems for each

66



class at each time point and then transports the polar systems to a common place, e.g., a mean of
all shapes, on the manifold can be used. This approach can be also viewed as a type of domain
adaptation problem.

Instead of Euclideanizing temporal shape pairs, longitudinal shape analysis frameworks (Ni-
ethammer et al., 2011; Fletcher, 2013) that recognize the non-Euclidean nature of shapes can be
utilized to understand morphological differences in developmental trajectories between the two

groups of subjects.

8.2.6 Further Clinical Studies

There are several interesting future directions with respect to the driving application problem behind
this dissertation. Firstly, as previously noted in section 6.5, the effects of the global volume of
hippocampi and caudate nuclei in the autism classification could have been controlled using measures
such as the intracranial volume (ICV) and the body length to remove factors not related to ASD, e.g.,
the nutrition. It would be interesting to see if the same conclusion can be drawn after controlling
the effect of the global volumes in these structures. Secondly, in the literature, the gender of ASD
subjects is predominantly male; therefore, it would be interesting to investigate the gender effect in
classifying HR-ASD infants and HR-Neg infants. Lastly, it would be an interesting future project to
use s-rep GOPs to predict clinical measures such as the Autism Diagnostic Observation Schedule

(ADOS).

8.2.7 Conclusion

While this chapter discusses limitations and potential future directions for proposed methodologies,
the proposed shape classification method that uses DWD to learn a class separation based on rich
s-rep GOPs that are Euclideanized by PNS seems sound and effective in discriminating autistic
and non-autistic infants based on shapes of the hippocampus or the caudate nucleus. It would be
interesting to see if the conclusion that I have drawn in this dissertation holds for different shapes

and different shape classification tasks.
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