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ABSTRACT

QINGYU ZHAO: Surface Registration for Pharyngeal Radiation Treatment Planning
(Under the direction of Stephen Pizer)

Endoscopy is an in-body examination procedure that enables direct visualization of

tumor spread on tissue surfaces. In the context of radiation treatment planning for throat

cancer, there have been attempts to fuse this endoscopic information into the planning CT

space for better tumor localization. One way to achieve this CT/Endoscope fusion is to first

reconstruct a full 3D surface model from the endoscopic video and then register that surface

into the CT space. These two steps both require an algorithm that can accurately register

two or more surfaces. In this dissertation, I present a surface registration method I have

developed, called Thin Shell Demons (TSD), for achieving the two goals mentioned above.

There are two key aspects in TSD: geometry and mechanics. First, I develop a novel

surface geometric feature descriptor based on multi-scale curvatures that can accurately

capture local shape information. I show that the descriptor can be effectively used in

TSD and other surface registration frameworks, such as spectral graph matching. Second,

I adopt a physical thin shell model in TSD to produce realistic surface deformation in

the registration process. I also extend this physical model for orthotropic thin shells and

propose a probabilistic framework to learn orthotropic stiffness parameters from a group

of known deformations. The anisotropic stiffness learning opens up a new perspective

to shape analysis and allows more accurate surface deformation and registration in the

TSD framework. Finally, I show that TSD can also be extended into a novel groupwise

registration framework.

The advantages of Thin Shell Demons allow us to build a complete 3D model of the

throat, called an endoscopogram, from a group of single-frame-based reconstructions. It
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also allows us to register an endoscopogram to a CT segmentation surface, thereby allowing

information transfer for treatment planning.
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CHAPTER 1

Introduction

1.1 Pharyngeal Radiation Treatment Planning

Modern radiation therapy treatment planning relies on imaging modalities such as computed

tomography (CT) to determine tumor location and spread. CT scans are preferred since it is an

x-ray based technique that can capture normal-tissue/tumor characteristics (electron density) as seen

by the treatment beams used in radiation oncology and be used directly for dose calculation (Pereira

et al., 2014). CT images also provide anatomical information necessary for tumor localization and

verification of the treatment plans. However, for head and neck cancer, CT may not fully reveal

tumor locations due to limited spatial and intensity resolution. Specifically, in the case of pharyngeal

cancer, evidence has been shown that the cancer begins in the flat, squamous cells that make up the

lining surface of the anatomical structures in the nasopharynx (Wei and Kwong, 2010). This fact

makes it more difficult for tumor detection and localization in CT because CT inherently does not

image tissue boundaries (Zhang et al., 2014).

Therefore, for pharyngeal cancer, an additional kind of medical imaging modality, namely

endoscopy, is obtained at treatment planning time. A nasopharyngoscopy is a procedure wherein

the physician inserts a flexible scope tube through the patient’s nose, advances it into the back of

the throat, and takes videos of the pharyngeal and laryngeal regions. Endoscopic videos provide

direct optical visualization of the pharyngeal surface and provide information, such as a tumor’s

texture, color and superficial (mucosal) spread, that cannot be seen on CT. However, despite these

advantages, the use of endoscopy for treatment planning is significantly limited by the fact that



the 2D frames from the endoscopic video do not explicitly provide 3D spatial information, thus

prohibiting direct 3D tumor localization. Moreover, reviewing the video is time-consuming, and the

optical views do not provide the full geometric conformation of the throat.

Hence, a data fusion between CT and endoscopy would be helpful in producing improved tumor

localization and likely better treatment plans; this has motivated doing the registration between

the two imaging modalities. In the next section, I will briefly describe the overall pipeline for the

fusion between a 3D CT image and an endoscopic video, and I will point out the need for surface

registration that is used in this pipeline.

1.2 CT/Endoscopy Fusion Pipeline

Given a 3D head-and-neck CT scan of a patient and a nasopharyngoscopic video of the same

patient, the goal of the fusion is to transfer the texture and location information extracted from the

endoscopic video into the CT space.

The general idea is to register an endoscopy-reconstructed 3D surface model with a CT

segmentation surface. Fig. 1.1 shows the overall pipeline. The pipeline can be generally divided

into the two following steps.

i. A 3D surface model, which we call an endoscopogram, is built from the endoscopic video

using many 2D video frames. To do this, a partial 3D surface model is reconstructed for each

Figure 1.1: CT/endoscopy fusion pipeline.
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individual 2D frame. Then multiple single-frame-based partial 3D reconstructions are registered

together to achieve a complete pharyngeal surface model (endoscopogram).

ii. The endoscopogram is registered to the 3D pharyngeal surface segmented out from the CT

scan. The computed deformation between the two surfaces allows the transfer of tumor location

and texture information from the endoscopogram to the CT space.

The above two steps require accurate surface registration. Surface registration is a long-studied

topic (Audette et al., 2000) in the medical image computing field, and many promising methods

have been proposed for various applications (Tam et al., 2013). Unfortunately, none of them suits

the CT/endoscope fusion pipeline. The next section elaborates on some special challenges we have

to face in our surface registration problem.

1.3 Challenges of Surface Registration for the Fusion

Surface Disparity. As mentioned above, the endoscopogram is built from multiple single-frame-

based reconstructions. The challenge here for the surface registration is that all individual single-

frame-based reconstructions are only partially overlapping with each other due to the constantly

changing camera viewpoint across frames. Moreover, the individual reconstructions may have

missing data (holes) due to camera occlusion. Despite the missing data situation, there is also a

significant disparity between the endoscopogram and the CT surface. Because of the partial volume

effect on CT and tissue collapse caused by pharyngeal deformations, there are surface patches in

either the CT surface or the endoscopogram that do not have counterparts. This fact requires us to

have a surface registration method that can handle partial data, different surface topology and other

disparity problems. However, many surface registration algorithms are purely based on matching

intrinsic surface geometry, thereby not suitable in our application.

Large Number of Surfaces. The endoscopogram is fused from hundreds of single-frame

reconstructions. The naive incremental stitching method successively uses pairwise surface regis-

tration to add a new single-frame reconstruction to the current result, but this introduces serious
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bias onto early frames and propagates errors quickly to later frames. A better choice is to use a

groupwise surface registration method that can simultaneously register all the frames to a single

target. Current groupwise methods rely on having a known template or iteratively estimating the

mean surface. However, neither approach is feasible in our application due to the only partially

overlapping nature of the single-frame reconstructions.

Large Nonrigid Deformation. Another challenge in building the endoscopogram is that one

needs to take into account the fact that all single-frame-based reconstructions may be slightly

deformed since the tissue may have deformed between 2D frame acquisitions. Such non-rigid tissue

deformations, often caused by the swallowing motion of the patient during endoscopy, are physical

processes governed by pharyngeal muscles. Other physical deformations in the pharynx come from

the patient’s posture change between the CT scan time and the endoscopy time. During a CT scan,

the patient is lying down on a curved table, whereas during endoscopy the patient is sitting straight

up. Different gravity effects may cause significant shape changes in the pharynx, yielding large

deformations between the endoscopogram surface and the CT segmentation surface. Finally, the

presence of the endoscope can irritate the throat, leading to drastic pharyngeal motion. This mixture

of different sources of deformations poses serious challenges to most current surface registration

methods.

Physical Reality. Following the above argument, we prefer producing physically plausible

deformations in the registration process. Unfortunately, most surface registration algorithms do not

consider the physical properties of the surface material. Moreover, the apparent pharyngeal surface

deformation is affected by the underlying muscles and bones. An accurate physical model there-

fore requires comprehensive anatomical knowledge of the entire head-and-neck region, including

material stiffness parameters of different tissue types. However, patient-specific measurements of

these parameters are not obtainable in our application, which makes realistic physical modeling

extremely challenging.

Alternatively, many statistical frameworks have been applied to produce “realistic” deforma-

tions that are predicted from a set of training deformation examples. However, this statistical
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training/prediction procedure relies on the pure geometric appearance of the training examples, and

physical reality is rarely considered in this line of thinking.

Initial Surface Alignment. The endoscopogram surface and the CT surface live in two

unrelated Euclidean spaces respectively: the camera space and the CT imaging system coordinate

space. They therefore differ by a similarity transform. We need to first determine that transformation

before solving for the aforementioned non-rigid deformation. However, an endoscopogram only

portrays that portion of the pharyngeal surface that is present in the endoscopic video, so the

initial alignment (transformation, rotation, scaling) between this partial surface and a complete CT

segmentation surface is made difficult. Simple alignment methods, such as Iterative Closest Point

(ICP), will not suffice because of the additional large non-rigid deformations.

1.4 A Brief Outline of the Proposed Methods

With all the aforementioned challenges in mind, in this dissertation I investigate the surface

registration problem under the context of CT/Endoscope fusion from three major perspectives:

geometry, physics and statistics. With the consideration of all three aspects, my proposed method,

Thin Shell Demons, can efficiently solve the surface registration problem in our application.

1.4.1 Geometric Feature Descriptor

In our application, surface registration is better understood as matching/aligning corresponding

anatomical structures between the two surfaces. Since different anatomical structures present

distinct geometric appearance, I have designed a novel geometric feature descriptor that can capture

rich curvature information of local shapes. By matching the descriptors between the two surfaces,

we can achieve reasonably good initial correspondences. Moreover, this feature descriptor can

also be seamlessly built into a widely used surface matching framework, named spectral graph

matching. I show that using the descriptor can achieve better matching results compared to the

original spectral graph matching. In addition, this feature descriptor can also be integrated with the
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following Demons-based surface registration method to produce explicit deformation vector fields.

I show that the feature matching strategy for surface registration can effectively handle partially

overlapping surfaces with missing data and topology change.

1.4.2 Thin Shell Physical Model

We seek to produce physically plausible deformations from one surface to the other. This may

require complex 3D physical modeling of the pharyngeal mechanics. To simply the problem, I

propose to approximate 3D mechanics using the thin shell model, which concentrates only on

the physical properties of 2D surface geometry. Results have shown that the thin shell model can

produce reasonable registration results in our application while having a low computational cost.

Based on the thin shell physical model, I propose a pairwise surface registration method, called

Thin Shell Demons (TSD), that can be used to register the endoscopogram to the CT surface. In

general, TSD constructs some virtual attraction forces between the two surfaces using geometric

feature matching and computes a physically plausible deformation under the attraction. The method

is robust against partial data and surface topology change.

1.4.3 Surface Disparity Estimation

The above TSD method only computes surface deformations without explicitly estimating the

disparity between the CT surface and the endoscopogram. However, an explicit quantification of

the disparity regions can be beneficial in handling more complicated situations, such as the partial

volume effect and tissue collapse. To that end, I propose a joint estimation framework that can

simultaneously estimate deformations and incompatible regions between surfaces. On the one hand,

the estimated disparity renders feature matching more robust between surfaces. On the other hand,

it can also be used to assign a certainty measurement to the endoscopy-to-CT tumor transfer for

radiation treatment planning.
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1.4.4 Groupwise TSD

By mimicking the idea of N-body interaction, I extend TSD into a groupwise framework, where the

attraction forces are computed among N surfaces and can gradually deform all the surfaces towards

an implicit mean shape. The advantages of groupwise TSD over other groupwise frameworks

include its template-free nature and the ability to handle partially overlapping surfaces with missing

data and different topology. Groupwise TSD is well suited for registering many single-frame-based

reconstructions into a unified piece of geometry (endoscopogram).

1.4.5 Anisotropic Elasticity Learning

The thin shell model used in TSD assumes the surface to be a homogeneous elastic material,

but we realize that human tissues are mostly inhomogenous and anisotropic, which means the

tissue elasticity varies at different locations and along different directions. A direct stiffness

test is challenging in our application, but the endoscopic video of each patient contains a lot of

throat motion for that specific patient, which can be helpful in inferring possible anisotropic tissue

elasticity. I propose a probabilistic framework to learn local anisotropic elasticity parameters using

deformations extracted from the video. For simplicity the original thin shell model is extended

into the orthotropic case, where 4 stiffness parameters are computed for each local region via an

optimization over a Markov Random Field constructed on the surface. The resulting elasticity

parameters are smoothly varying across the surface and are shown to produce more realistic

deformations compared to the isotropic and homogeneous model. Furthermore, I show that by using

an Expectation-Maximization algorithm we can jointly estimate surface deformations and elasticity

parameters in a groupwise registration setting.
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1.5 Thesis and Contributions

Thesis: Geometric information and physical modeling can improve surface registration results

in the context of CT/endoscopy fusion. The anisotropic parameters in the physical model can be

inferred probabilistically from a set of observed material deformations.

The contributions of this dissertation are as follows:

1. A novel geometric feature descriptor has been designed for discrete triangle meshes. This

high-dimensional descriptor can capture multiscale curvature information of local shapes and

provide the opportunity for advanced feature matching for matching pharyngeal shapes.

2. A geometric-feature-based spectral graph matching method has been proposed to compute

dense correspondences between two partial surfaces. The method makes use of the aforementioned

feature descriptor to produce initial correspondences for an improved joint spectral graph matching.

3. A surface registration method, called Thin Shell Demons, has been proposed to efficiently

deal with partial surfaces with different topology. The method uses both geometric feature matching

and a thin shell deformation model to produce physically plausible surface deformations.

4. A joint estimation framework based on Monte-Carlo Expectation-Maximization has been

proposed to simultaneously estimate deformations and incompatible regions between the two

surfaces.

5. A groupwise surface registration framework based on TSD has been proposed to robustly

register many partially overlapping surfaces with missing patches. The framework mimics the

N-body interaction principle and is template-free to deal with the challenge of mean surface

estimation.

6. An anisotropic thin shell model has been studied, and a discretization of the model has been

designed for triangle meshes. A probabilistic framework has been proposed to infer anisotropic

elasticity parameters from a set of training deformations.
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7. Based on the above elasticity learning framework, a joint estimation framework has been

proposed to simultaneously estimate surface deformations in a groupwise registration setting and

the elasticity parameters.

Besides the above methodological contributions, I have also accomplished the following

engineering contributions:

1. A similarity transform fitting method has been designed to robustly compute an initial

alignment between the partial endoscopogram surface and the complete CT surface.

2. A texture fusion algorithm has been designed to consistently stitch texture patches from

multiple frames into a unified endoscopogram texture.

3. An overall pipeline for building an endoscopogram has been designed to effectively integrate

reconstruction, geometry registration and texture fusion.

With the above scientific and engineering contributions, tumor transfer from an endoscopic

movie to the CT space is enabled. To conclude, this dissertation develops necessary image computing

techniques for making potential improvements in radiation treatment planning of pharyngeal cancer.

1.6 Overview of Chapters

The remainder of this dissertation is organized in the following chapters: Chapter 2 reviews

necessary mathematical, mechanical and registration algorithm backgrounds for understanding

this dissertation. Chapter 3 describes the novel geometric feature descriptor and its use in a joint

spectral graph matching method. Chapter 4 describes the proposed Thin Shell Demons surface

registration method. Chapter 5 describes the endoscopogram reconstruction pipeline with a focus

on the groupwise extension of TSD. Chapter 6 describes two frameworks related to anisotropic

elasticity estimation. Chapter 7 revisits the TSD algorithm with a focus on the CT/endoscopogram

registration problem and describes the joint registration/disparity estimation framework.
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CHAPTER 2

Background

This chapter presents some background required in this dissertation. In particular, mathematical

background of differential geometry is briefly reviewed in Section 2.1. Background for surface

registration algorithms is discussed in Section 2.2. Finally, some basic physics for 2D/3D elastic

materials is reviewed in Section 2.3.

2.1 Geometry of Surfaces

This dissertation has to deal with surfaces represented by noisy discrete triangle meshes. However,

I will first review properties of continuous smooth curved surfaces, which are mathematically

defined as 2-dimensional differentiable manifolds. This will facilitate analysis of practical real-life

problems, and we can in turn draw many useful insights from some of the well-developed theories.

In this section, I will briefly review some mathematical definitions and properties of differentiable

manifolds. Without loss of generality, we assume the manifold is 2-dimensional (surfaces), but the

theories can be applied to higher dimensional manifolds.

2.1.1 Differentiable Manifold

The key entities investigated in this dissertation are smooth curved surfaces, such as endoscopic

reconstruction surfaces and CT segmentation surfaces. Such surfaces are more often mathematically

understood as differentiable manifolds. A Differentiable Manifold is a specific type of topological

manifold. The local surface is constrained to smoothly resemble a 2D Euclidean space, a 2D plane.



Figure 2.1: Charts on a 2D manifold. Two surface patches Uα, Uβ are respectively parameterized
via φα, φβ .

Formally, a differentiable manifold is a topological manifold equipped with an equivalence class of

atlases whose transition maps are all differentiable.

An atlas on a topological spaceM is a collection of pairs {(Uα, φα)} called charts, where the

Uα are open sets that coverM, and for each index α,

φα : Uα → R2 (2.1)

is a homeomorphism of Uα onto an open subset of 2-dimensional real space. In other words, a chart

serves as a 2D parameterization of the local surface onto R2. The transition maps of the atlas are

the functions

φαβ = φβ ◦ φα|φα(Uα∩Uβ) : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ). (2.2)

If the atlas is C1 (all φα, φαβ are C1 differentiable), it is called a differentiable structure of a

differentiable manifold. Intuitively, this definition (Fig. 2.1) reflects the notion of ”patching together

pieces of flat spaces to make a manifold”. Different atlases (patchings) may produce “the same”

manifold.
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Figure 2.2: Local representation of a map between manifolds. f is a differentiable map between
M1 andM2. f̂ is the corresponding map represented on local charts.

2.1.2 Differentiable Maps

In this dissertation I am interested not only in the surface properties themselves but also in the

matching process between two surfaces. The notion of matching, also referred to as registration,

between two surfaces is mathematically understood as a mapping function that associates each

point on the first surface to a point on the second surface. (The background of surface registration

algorithms is given in Section 2.2.) Formally, letM1 andM2 be two 2D differentiable manifolds.

A map f :M1 →M2 is said to be differentiable at a point p ∈M1 if there exist parameterizations

(U, φ) ofM1 at p (i.e., p ∈ φ(U)) and (V, ψ) ofM2 at f(p), with f(φ(U)) ⊂ ψ(V ), such that the

map

f̂ := ψ−1 ◦ f ◦ φ : U ⊂ R2 → R2 (2.3)

is smooth. As Fig. 2.2 shows, this definition decomposes a global mapping function into local

mapping functions parameterized on local pieces (charts).

As coordinate changes are smooth, this definition is independent of the parameterizations

chosen at f(p) and p. A differentiable map f : M1 → M2 between two manifolds is called a

diffeomorphism if it is bijective and its inverse f−1 :M1 →M2 is also differentiable.
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2.1.3 Tangent Spaces

The two previous subsections should have given a sense that the trick to differential geometry is to

parameterize everything on local coordinate systems. For example, as I will study in later chapters,

a mapping between two surfaces is sometimes interchangeable with the notion of a deformation

field. It is a known fact that the global deformation of a surface can be represented by a collection

of local stretching parameters and local bending parameters. It turns out that tangent spaces are the

most commonly used local flat spaces for such local parameterizations.

Recall from elementary vector calculus that a vector v ∈ R3 is said to be tangent to a surfaceM

at a point p ∈M2 if there exists a differentiable curve c : (−ε, ε) such that c(0) = p and ċ(0) = v.

The set TpM of all these vectors is a 2-dimensional vector space, called the tangent space toM at

p, which can be identified with the plane in R3 that is tangent toM at p.

Now we can parameterize a local manifold patch onto the tangent plane. Choosing a parame-

terization φ : U ⊂ TpM→M around p, the curve c on the manifold can be mapped back to the

tangent plane as ĉ(t). Its coordinates on the tangent plane are given by

ĉ(t) := (φ−1 ◦ c)(t) = (x1(t), x2(t))). (2.4)

Taking its derivative at point p, we can write

ċ(0) = ẋ1(0)(
δ

δx1
)p + ẋ2(0)(

δ

δx2
)p, (2.5)

where ( δ
δxi

)p denotes the directional derivative operator associated to the vector tangent to the curve

ci at p. It can be proven that the tangent plane TpM is a 2D plane spanned by {( δ
δx1

)p, (
δ
δx2

)p}

We now can talk about a differential map between two manifolds in terms of the collection of

local transformations defined on the tangent plane. Let f : M1 → M2 be a differentiable map

13



Figure 2.3: The derivative of a differentiable map f is a linear transformation (df)p that maps a
tangent vector v ∈ TpM1 to (df)p(v) ∈ Tf (p)M2.

between smooth manifolds. For p ∈M1, the derivative of f at p is the map

(df)p := TpM1 → Tf(p)M2. (2.6)

It can be proven that (df)p is a linear transformation. In other words, as shown in Fig. 2.3, (df)p

transforms a tangent vector v ∈ TpM1 into another tangent vector (df)p(v) ∈ TpM1.

2.1.4 Riemannian Manifolds

As mentioned in the last subsection, the deformation of a surface can be classified into two categories:

stretching and bending. Between those two, the stretching deformation will always alter the distance

measurement between two points on the surface; this is an important phenomenon in this study. In

the standard 3D Euclidean space the metric properties of distances are determined by the canonical

Cartesian coordinates. In a general differentiable manifold, however, there are no such preferred

coordinates to define distances, angles and volumes. We must rely on a new structure, a special

tensor field called the Riemannian metric.

A Riemannian metric on a manifold M is a function that smoothly assigns to each point

p ∈M a symmetric positive definite 2-tensor g on the tangent space TpM. The tensor g is called a
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metric tensor; it defines how distances are measured locally. If x : V → R2 is a local chart, we have

g =
n∑

i,j=1

gijdx
i ⊗ dxj, (2.7)

in V , where dxi is the 1-norm associated with ( δ
δxi

) and

gij = 〈( δ

δxi
), (

δ

δxj
)〉. (2.8)

A smooth manifoldM equipped with a Riemannian metric g is called a Riemannian manifold,

and is denoted by (M, g).

A Riemannian metric allows us to compute the length ||v|| =< v, v >
1
2 =

√
gp(v, v) of any

vector v ∈ TpM. Therefore we can measure the length of a curve c : [a, b] →M by integrating

along its path

l(c) =

∫ b

a

||ċ(t)||dt. (2.9)

If two manifolds are equipped with identical Riemannian metrics, they are regarded as isometric.

Formally, let (M1, g) and (M2, h) be two Riemannian manifolds equipped with metrics g and

h respectively. A diffeomorphism f : M1 → M2 is said to be an isometry if f ◦ h = g,

i.e., the metrics are identical after the mapping. This also means that f doesn’t change distance

measurement between the two manifolds, i.e., d(p, q) = d(f(p), f(q)), where d(·, ·) is the distance

function between two points on the manifold.

The algebraic form of the metric tensor g is different under different parameterizations. For

a point p ∈ M, a special parametrization φp : U → R2 is called canonical if the metric tensor

gp is the identity matrix. Now let us consider a diffeomorphic map f :M1 →M2 between two

Riemannian manifolds. For a pair of correspondences p→ q, p ∈M1 and q = f(p) ∈M2, let gp

and gq be their respective metric tensors under canonical parameterization. We have the following

transformation:

gp = JTp gqJp, (2.10)
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where Jp is the Jacobian of (df)p (derivative of f at p, which is a linear transformation defined on

TpM1). In particular, the matrix JTp Jp characterizes how an infinitesimal circle is deformed into an

infinitesimal ellipse on the tangent plane. In physics, this matrix is understood as a tensor

ε = JTp Jp − I, (2.11)

which is known as the Cauchy-Green tangential strain tensor. It characterizes how a surface is

locally stretched.

2.1.5 Levi-Civita Connection

In Chapter 5, in order to study the anisotropic directional information for elastic materials, the

notion of smoothness of a vector field has to be defined on a manifold. In the Euclidean space, one

way to measure the “smoothness” of vector fields is through the notion of directional derivatives. To

be more specific, if X and Y are two vector fields in Euclidean space, we can define the directional

derivative ∇XY of Y along X . Parallel transport of a vector v along X is expressed as∇Xv = 0,

which means the direction of v keeps unchanged during the transport. This definition, however, uses

the existence of Cartesian coordinates, which no longer holds in a general manifold. To overcome

this difficulty we must introduce more structures.

The Levi-Civita Connection generalizes the idea of taking directional derivatives to manifolds.

Intuitively, the parallel transport of a vector from one tangent plane to another on a manifold is done

by first “unfolding” the local manifold to a flat space, then transporting the vector in a Euclidean

fashion and finally ”folding” the flat space back to a manifold. Formally, the derivative vector

(∇XY )p ∈ TpM, known as the covariant derivative of Y along X , is computed as

∇XY =
n∑
i=1

(X · Y i +
n∑

j,k=1

ΓijkX
jY k)

δ

δxi
, (2.12)
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where the form X i indicates the ith coordinate of the vector field X, and Γijk are the Christoffel

symbols for the Levi-Civita connection:

Γijk =
1

2

n∑
l=1

gil(
δgkl
δxj

+
δgjl
δxk
− δgjk

δxl
) (2.13)

where gij = (g−1
ij ).

With this definition of the Levi-Civita connection, we can talk about taking the covariant

derivative of a vector field along a differentiable curve c. Let V (t) be a vector field on a differen-

tiable curve c such that V (t) ∈ Tc(t)M. Its covariant derivative along c is given by

DV

dt
(t) := ∇ċ(t)V = (∇XY )c(t). (2.14)

Then a vector field V defined along a curve c is said to be parallel along c if DV
dt

(t) = 0.

With the definition of directional derivative, we can also generalize the notion of a ”straight line”

to manifolds. To that end, a curve c is called a geodesic if ċ is parallel along c, i.e., if Dċ
dt

(t) = 0.

Intuitively, geodesics serve as straight lines in Riemannian geometry. They are locally distance-

minimizing paths; The geodesic distance d(p, q) between two points p and q ofM is defined as the

infimum of the length taken over all continuous, piecewise continuously differentiable curves.

2.1.6 Curvature

Finally, the notion of surface ”curvedness” is constantly used throughout this dissertation. In the

registration task, in order to build correspondences between two surfaces, similarly curved surface

patches have to be first detected. Curvatures are well-defined for spatial curves. However, as

discussed in Section 2.1.3, for a point p ∈M, any tangent vector v ∈ TpM can be associated with

a spatial curve c : (−ε, ε) such that ċ(0) = v, which means that the curvatures are different at p

along different tangent vector directions.
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It turns out that the curvature at a point p can be fully encoded by the second fundamental form

II(u, v), algebraically represented by a 2× 2 symmetric matrix:

[IIij] =

 ω2〈f1〉 ω1〈f1〉

ω2〈f2〉 ω1〈f2〉

 (2.15)

where {f1, f2} stands for two orthogonal coordinate directions spanning the tangent plane, and

ωi〈fj〉 is the curvature component that quantifies the turn of the normal about fi when moving along

fj .

With this definition, II(v, v) gives the curvature along direction v as vT [IIij]v. The principal

curvatures at p, denoted k1 and k2, are the maximum and minimum values of this curvature, and

they are computed as the eigenvalues of [IIij]. The corresponding eigenvectors are the principal

directions, vectors along which the principal curvatures are achieved. Note that both the algebraic

form of [IIij] and the coordinates of principal directions are dependent on the choice of local

parameterization (orthogonal basis).

The Gaussian curvature at p is defined as the product of the two principal curvatures: K = k1k2,

and the mean curvature is defined as the mean of the two principal curvatures: H = (k1 +

k2)/2. Gaussian curvature and mean curvature are both very important curvature measurements, as

Gaussian curvature indicates the local surface type (hyperbolic, flat, elliptic) and mean curvature

indicates local curvedness in average.

2.2 Surface Registration

The goal of surface registration (shape matching or alignment) is to find point-to-point correspon-

dences between two or multiple geometric surfaces. This problem is a key algorithmic component in

various tasks, such as 3D scan alignment and statistical medical shape analysis. Surface registration

methods can be generally classified into two categories: rigid and non-rigid registration. Recently

most research attention has been drawn to the non-rigid case because in many applications a rigid
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transformation can not sufficiently registration deformable objects. In fact, non-rigid registration

problems are more ill-posed and thus require more complicated models. Therefore, this section only

gives the background of existing non-rigid surface registration methods.

2.2.1 Matching-Based Methods.

One major category of surface registration methods relies on explicitly identifying corresponding

points between surfaces. Some early methods design hand-crafted feature descriptors (also called

fingerprints, feature signatures) for surface geometry and perform feature matching to produce a

set of corresponding points (Sun et al., 2009; Gatzke et al., 2005; Zaharescu et al., 2009). These

methods usually can credibly find a set of correspondences at places that yield distinct and matchable

feature descriptors. However, feature matching by itself may produce outliers, which can lead to an

illegal or non-smooth global mapping between surfaces. Therefore, even though feature descriptors

play an important role in the registration process, further mechanisms have to be incorporated to

guarantee the correctness and smoothness of the global mapping. Higher-order graph constraints

(Zeng et al., 2010) or higher-order Markov Random Fields (MRF) (Zeng et al., 2013) have been

proposed, but these algorithms are NP-hard in nature and thus only feasible in small scale problems.

In Chapter 3 I will introduce a new geometric feature descriptor that can help the registration and

will show that it can be combined with other methods to produce smooth mappings.

2.2.2 Embedding-Based Methods.

Another family of surface registration methods is based on surface embedding. The core of such

methods is to embed the two surfaces into some other domain, where the matching can be naively

solved. Usually, these methods are feasible only when the two surfaces to be registered satisfy

certain geometric constraints. For example, when the two surfaces are isometric (Section 2.1.2),

Multidimensional Scaling (MDS) can be adopted (Elad and Kimmel, 2003; Bronstein et al., 2006).

The goal of the classical MDS (Borg and Groenen, 2005) embedding is to place the surface vertices

in a low-dimensional Euclidean space such that the pairwise Euclidean distances among vertices in
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the embedded domain are as close to the original pairwise geodesic distances as possible. This is

usually done by first constructing an N-by-N affinity matrix storing pairwise geodesic distances

for a surface with N vertices. Then an eigendecomposition is carried out on that affinity matrix

(sometimes a transformed affinity matrix) to yield the optimal Euclidean embedding of the N

vertices. When both surfaces are embedded in the same Euclidean space, a simple nearest-neighbor

matching based on the embedded Euclidean coordinates is performed to yield the final matching

results.

MDS along with the idea of eigendecomposition on affinity matrices is indeed a powerful

tool for surface matching. However, MDS requires a dense affinity matrix for preserving geodesic

distances among all pairs of vertices. From Section 2.1.4, we can see that isometry can also be

defined via identical Riemannian metrics. Based on this notion, the spectral matching method has

shown its success by using the Laplace-Beltrami operator instead of the dense affinity matrix to

perform eigendecomposition (Zigelman et al., 2006; Balci et al., 2007; Reuter, 2010). Closely

related to the Riemannian metric, the Laplace-Beltrami operator is defined only from local surface

geometry, so its discrete version has a sparse matrix structure, allowing fast computation for surfaces

with hundreds of thousands of vertices. Other variants along this line of thinking are based on graph

Laplacian (Lombaert et al., 2011; Mateus et al., 2008) and Laplace-Beltrami functional spaces

(Pokrass et al., 2013; Ovsjanikov et al., 2012). Generally speaking, all these methods rely on

surfaces having the same intrinsic geometry (isometry) and can only handle bending deformations

between surfaces. Moreover, they certainly can not handle more complicated issues such as surface

topology change or the existence of missing surface patches (partial data).

Conformal mapping (Gu et al., 2004) and the Möbius transformation (Lipman and Funkhouser,

2009) can be used to deal with near-isometry situations by relaxing the geodesic-preserving con-

straint to the angle-preserving constraint. Quasi-conformal mapping (Lam et al., 2014; Zeng and

Gu, 2011) has also been proposed to handle the most general diffeomorphic situation. However,

these methods mostly require the surface to be genus-zero in order to be embedded into a common
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disc/sphere domain, and they have also not been shown to be effective in dealing with partial data

and complicated topology change.

To summarize, embedding-based methods can be surprisingly robust and fast as long as certain

geometric constraints are satisfied. However, topology change and missing data are the two critical

issues that challenge the feasibility of such methods in our application. In Section 3.3.3, I will

discuss a variant of the spectral matching method that can moderately handle different intrinsic

geometry.

2.2.3 Deformation-Based Methods.

As discussed in the previous section, embedding-based methods are inherently not suitable for

dealing with different intrinsic geometry. A better way to understand our registration problem is to

seek a deformation that carries one surface closer to the other. This will bypass the many geometric

constraints needed in the embedding-based methods. Following this notion, the registration is

formulated as an optimization over the set of possible deformations to minimize a function of two

energy terms: data mismatch and deformation regularity. The first term, also known as data fidelity,

encourages the optimized deformation field to carry one surface as close to the other as possible.

The second term, also known as regularization, prefers to produce “realistic” surface deformations.

Many approaches have been proposed to explore different formulations of these two terms.

Some works in registering 3D range scans (Pauly et al., 2005; Li et al., 2008) have been using

the so-called closest-point rule, which refers to the strategy that each point on a surface is driven

to the closest point on the other surface. Clearly, this strategy suffers with large deformations

and inaccurate point positions. LDDMM (Bauer and Bruveris, 2011) and Currents (Vaillant and

Glaunès, 2005) have provided another elegant mathematical framework that produces diffeomorphic

deformations between surfaces by comparing their normal fields. However, this framework still can

not handle missing surface parts.

Thirion’s Demons registration algorithm (Thirion, 1998) has provides an alternate way for

finding the deformation between object contours. The original concept in the first Demons regis-
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tration paper (Thirion, 1998) states that a moving image can be attracted to a static image by the

so-called virtual forces. (Pennec et al., 1999) further formulated the Demons method as a viscous

fluid registration model that is solved in a greedy way. Yeo et. al. extended the Demons idea to

spherical surfaces (Yeo et al., 2010). Dedner et. al. (Dedner et al., 2007) proposed a Demons

framework for general surface registration using an implicit surface representation and transformed

the surface registration problem into a 3D image registration problem. The Demons forces were

determined from both intensity and intensity-level-surface curvature information, which was shown

to be superior to the closest-point rule. Recently, Iglesias et. al. (Iglesias et al., 2013) developed a

similar framework with implicit surface representation and a physically meaningful smoothness

term by regarding the surface as a layer of an elastic material. However, the implicit presentation in

these works requires embedding a surface into the ambient space using a signed-distance level-set

function. However, voxelizing the 3D space can highly increase the data dimension and lacks the

triangulation flexibility of surface meshes. Moreover, the signed-distance function itself is hard to

track under large deformations.

Nevertheless, the Demons idea is still appealing because it has few assumptions about deforma-

tion/surface properties; it does not require surface completeness and identical topology. Based on

this observation, I will introduce in Chapter 4 a physics-based surface registration method called

Thin Shell Demons.

2.3 Thin Shell Mechanics

The deformation of the pharyngeal tissues are physical processes caused by surrounding muscles

and the forces on these tissues from the endoscope. A realistic physical model is then needed in

a registration framework to produce such deformations. In our case, an endoscopic movie only

sees the pharyngeal surface and the only CT information relevant to registration is that surface.

Therefore, I propose to only model surface deformations. In particular, I adopt the thin shell physical
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model, which has been shown to be effective in the graphics literature (Gingold et al., 2004) to

animate deformations of curved surface structures.

Thin shells are thin flexible structures with a high ratio of width to thickness. While their well-

known counterparts, thin plates, relax to a flat shape when unstressed, thin shells are characterized

by a curved undeformed configuration. To be more specific, the term shell is applied to bodies

bounded by two curved surfaces, where the distance between the surfaces is small in comparison

with other body dimensions (Fig. 2.4). The locus of points that lie at equal distances from these two

curved surfaces defines the middle surface of the shell.

Figure 2.4: A thin shell structure.

For the purpose of analysis, a shell may be considered as a three-dimensional body, and the

theory of linear elasticity may then be applied. However, this will generally be complicated and

computationally demanding. In the theory of shells, an alternative simplified method is therefore

employed. Based on some hypotheses made in the later sections, the 3D mechanics of a shell may

be reduced to the analysis of its middle surface only. This also serves our purpose, which is to

concentrate on the surface deformation instead of the whole 3D body.

For notational convenience in the following, we constrain subscripts denoted by Greek letters

to have values in {1, 2}, and those denoted by Roman letters to have values in {1, 2, 3}.

2.3.1 Strain-Displacement Relation for Thin Shells

General 3D Strain. Strain refers the relative displacement of particles in an infinitesimal area of

an object. Suppose an elastic deformation transforms a vector a = [a1, a2, a3] into x = [x1, x2, x3].

23



(a) (b)

Figure 2.5: (a) General situation: in a infinitesimal local region, a vector a is transformed into x.
(b) Thin shell: the third coordinate direction (z-direction) overlaps with the normal direction.

In engineering, the strain E is a measurement of relative displacement ds2 − ds2
0, where ds0 is the

increment of initial length and ds is the increment of current length. Fig. 2.5 suggests the following

relation

xi = ai + ui, dxi = dai + dui, ds = ||da||, ds0 = ||dx||, (2.16)

where u = [u1, u2, u3] is the displacement vector. Then it is easy to get

ds2 − ds2
0 = (uj,i + ui,j + ui,kuj,k)daidaj = 2εijdaidaj, (2.17)

where Einstein summation is used in the above equation over i,j and k. In Eq. 2.17 the notation

•,i represents the partial derivative with respect to the ith coordinate. From this equation the

Green-Lagrangian strain tensor is defined to be of the following form

E = [εij] =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 (2.18)

where εij = uj,i + ui,j + ui,kuj,k. The notion of strain allows the measurement of local elastic

deformation. In fact, we can see that given an arbitrary vector v, vTEv gives the squared length

change along the v direction.
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Thin Shell Strain Approximation. We place the coordinate system on a thin shell in such

a way that the third coordinate direction (z-direction) overlaps with the normal and the first two

coordinate directions span the tangent plane. We further assume the Love-Kirchhoff hypothesis is

satisfied: the in-plane displacement is a linear function of the z-coordinate (out-of-plane coordinate):

uα = u0
α − zu3,α, where u0

α is the in-plane displacement (stretching) of the middle surface. With

this hypothesis, Eq. 2.18 can be recast in the form (Ventsel and Krauthammer, 2001):

εαβ = εαβ + zκαβ (2.19)

where εαβ = 1
2
(u0

α,β + u0
β,α) is the 2D strain tensor of the middle surface, which is also known

as the Cauchy-Green tangential strain tensor (Eq. 2.11). καβ = II′αβ − IIαβ is the shape operator

(curvature) difference induced by the bending of the middle surface.

It has also been shown in (Ventsel and Krauthammer, 2001) that the strain tensor’s out-of-plane

terms E3α, Eβ3, E33 can be negligible in the thin shell situation. In this way, the 3D strain of a

thin shell can be reasonably approximated using the 2D stretching and bending strain of its middle

surface.

2.3.2 Thin Shell Deformation Energy

Coupled with strain is a physical quantity called stress, which expresses the internal forces that

neighboring particles of an elastic material exert on each other. The existence of stress will induce

potential energy, which I call thin shell deformation energy in our case. The measurement of such

deformation energy plays an important role in my work. As will be discussed later, we prefer in

many situations a low energy configuration of material deformations.

Hooke’s Law. In the modern theory of elasticity, the relation between strain and stress of an

elastic material is summarized by Hooke’s Law:

[σ11, σ22, σ12]T = C[ε11, ε22, ε12]T , (2.20)
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where σαβ and εαβ are the in-plane stress and strain, and C is a 3× 3 positive definite matrix, called

a stiffness matrix, characterizing local elasticity.

In the most common isotropic case, the elastic property of a local point is the same along all

directions, and the stiffness matrix has the following simplified form:

C =
E

1− ν2


1 ν 0

ν 1 0

0 0 (1− ν)/2

 (2.21)

where E is Young’s modulus, which represents the material’s stiffness, and ν is the Poisson’s ratio,

which represents the material’s compressibility.

For the isotropic case, it can be further shown that the local deformation energy of a point on a

thin shell can be classified into two catergories: membrane (stretching) and bending. With Eq. 2.19,

the membrane energy can be computed as

Wmembrane =
Eh

2(1− ν2)
((1− ν)Tr(ε2) + ν(Trε)2), (2.22)

where Tr(·) stands for the trace operation and h is the shell thickness. The bending energy has a

similar form:

Wbending =
Eh3

24(1− ν2)
((1− ν)Tr(κ2) + ν(Trκ)2). (2.23)

Then the total local energyW = Wmembrane+Wbending. Note that the above energy computation

is only related to a single local point on the shell. To get the total deformation energy of an entire

shell, one has to integrate W over the area of the shell:

Wtotal =

∫
S

WdS (2.24)

Orthotropy. In the theory of elasticity mechanics, the term anisotropy, as opposed to isotropy,

implies different elastic properties in different directions. In that case, the stiffness matrix C can be
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an arbitrary 3× 3 positive definite matrix with 6 free parameters. As a matter of fact, human tissue

is mostly anisotropic (Kroon and Holzapfel, 2008). Therefore, the study of anisotropic elasticity

becomes essential in realistic physical modeling.

In particular, we focus on a special type of anisotropic material, called orthotropic material.

For an orthotropic shell, the anisotropy of a point on the shell is symmetric w.r.t. two orthogonal

axes, known as the natural axes, on the tangent plane of the middle surface. This leads to a stiffness

matrix in the following form when σαβ and εαβ are parameterized under this natural-axes coordinate

system:

C =


c1 c2 0

c2 c3 0

0 0 c4

 =
1

1− ν12ν21


E1 ν21E1 0

ν12Ey E2 0

0 0 2G12(1− ν12ν21)

 , (2.25)

where the Eα are the Young’s moduli along the natural axes, the ναβ are the Poisson’s ratios, and

G12 is the shear modulus.

Similar to the isotropic case, the local energy is the sum of the membrane and bending energy:

W =
Eh

2(1− ν2)
εTCε+

Eh3

24(1− ν2)
κTCκ, (2.26)

where ε = [ε11, ε22, ε12]T and κ = [κ11, κ22, κ12]T . Note that Eq. 2.26 only holds when εαβ and καβ

are parameterized under the natural-axes coordinate system. If they are parameterized under an

arbitrary orthogonal frame instead of rotated into the natural axes, a further rotation matrix has to

be incorporated in Eq. 2.26. Details on this will be introduced in Chapter 6.
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CHAPTER 3

Geometric-Feature-Based
Spectral Graph Matching

The goal of surface registration is to seek a 3D deformation field that can align corresponding

regions in the two surfaces. Since a surface represents the boundary of an object of interest, these

corresponding regions are usually identified through distinguishable geometric shapes of local

regions of the object. For example, in both the endoscopogram and CT surface, the epiglottis region

appears as a convex curvy ridge, where the curvature along the sagittal direction is larger than that

along the coronal direction. The pharyngeal wall in both surfaces is approximately cylindrical,

where the curvature along the axial direction is very small. Therefore, the capability of describing

local shapes is a fundamental building block of a successful surface registration method that seeks

to match similar geometric structures.

Image-based feature descriptors (Lowe, 1999; Bay et al., 2006) have been successfully applied

in many computer vision tasks, but they generally cannot be directly applied for triangle meshes.

Spin images (Johnson and Hebert, 1999) and Heat Kernel Signatures (HKS) (Sun et al., 2009)

are the two most widely used surface features that can capture local shape information. However,

spin images are variant to large shape deformations because the feature descriptor is computed in

the 3D ambient space around a local point. HKS is computed purely based on intrinsic geometry,

i.e., geodesic properties between every two points in a patch, so it cannot handle non-isometric

deformations. In the following section, I will present a novel geometric feature descriptor that can

capture rich curvature information of local shapes, and based on that descriptor I introduce a new



spectral graph matching method that can produce accurate dense correspondences between two

surfaces.

3.1 Geometric Feature Descriptor

As discussed in Section 2.1, a surface is mathematically defined as a differentiable manifoldM.

Without loss of generality, we assume the two principal directions and the associated two principal

curvatures can be defined almost anywhere inM, with finite singular points, known as umbilics,

where the curvature is the same along all directions (Koenderink, 1990).

We design a novel feature descriptor f to create a geometric signature f(v) for a given point

v ∈ M. Since local shape can be described by curvatures measured at different scales in a

local region, the feature descriptor f is designed to collect curvature information on both its own

location and a number of surrounding locations. As shown in Fig. 3.1a, for a given point v, we

find 8 surrounding points {vi | i = 1...8} by going along 8 equally angularly spaced geodesic

directions {gi | i = 1...8} from v by a certain distance d. The choice of the value of d will be

discussed in Section 3.4. The two orthogonal geodesic directions g1 and g3 are respectively the two

principal directions p1 and p2. In order to capture curvatures at different scales, the descriptor is

defined based on the curvature and normal information collected at the 9 points in the local patch:

f(v) = (C,S,∆N,∆N1,5,∆N3,7). The signature f(v) is detailed as follows.

The two principal curvatures k1, k2 can uniquely determine the local shape, namely the amount

of surface bends in all directions. On top of that, Koenderink (Koenderink, 1990) defines another

two curvature measures c, s, which are more informative in differentiating different type of shapes

and are derivable from the two principal curvatures k1, k2 in the following way:

c =

√
k2

1 + k2
2

2
(3.1)

s = − 2

π
arctan[(k1 + k2)/(k1 − k2)] (3.2)
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(a) A local surface patch (b) M1 (c) M2

Figure 3.1: (a) Local geometry from which the geometric signature f(v) is computed. (b) A vertex
v, indicated as the cross point, is selected inM1. The feature descriptor (the same one as shown in
part (a)) is deployed on v to get the geometric feature vector f(v). (c) The value of the ith row in
the confidence score array ∆ is plotted onM2 (red indicates large value). v′ ∈M2 is regarded as
the most similar point to v ∈M.

Intuitively, c indicates the level of curvedness, and s indexes shape types, i.e., being convex,

concave, hyperbolic or parabolic. These two curvatures are computed at v and the 8 surrounding

points {vi | i = 1...8} to describe local curvatures, i.e., C = c ∪ {ci | i = 1...8}, S = s ∪ {si | i =

1...8}. Larger scale measures of curvature between each of the surrounding points and the center are

computed as the magnitudes of the normal direction difference between each of the end points and

the center point, i.e., ∆N = {||n− ni||2 | i = 1...8}. Finally, normal direction differences between

two extreme endpoint pairs (v1, v5) and (v3,v7) are computed to describe the general shape structure,

i.e., ∆N1,5 = ||n1 − n5||, ∆N3,7 = ||n3 − n7||.

Discretization. In the discrete setting, a surface is represented as a triangle meshM. With

some abuse of notation, the feature descriptor is applied to each vertex v in the mesh. In this work,

geometric properties like normal directions, principal directions and curvatures are estimated for all

the vertices using the Computational and Geometry Algorithms Library (CGAL). The 8 geodesic

directions are sampled on the tangent plane, and geodesic marching is performed by the discrete

Levi-Civita parallel transport (Crane et al., 2010). Since in the discrete case the end point of a

geodesic path can end up being an arbitrary point on a triangle, whereas curvatures can only be

estimated at triangle vertices, I choose the nearest vertex to the end point of the geodesic path to be

{vi | i = 1...8}. Fig. 3.1b shows a case where the descriptor is deployed on a vertex of a triangle

mesh.
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3.2 Feature Matching

With the novel multiscale curvature feature descriptor f , we can perform traditional feature matching

techniques to find corresponding regions between two surfaces. Here I propose a feature distance

measurement for comparing the similarity between two feature vectors. A naive way is to adopt the

L2 metric on the feature vector space, and the distance between the two feature vectors of v and u is

simply defined as ||f(v)− f(u)||2.

This definition naturally assumes that the order of the 8 surrounding points is consistent between

v and u. However, the two principal directions are only uniquely defined up to a 180-degree rotation,

which means that both {p1,p2} and {−p1,−p2} are valid principal direction pairs. In practice, this

poses a problem that the principal directions might experience a sign change from place to place.

Taking consideration of this, the distance is then defined as

min{||f(v)− f(u)||, ||f(v)− f ∗(u)||}, (3.3)

where f ∗ represents the feature vector computed after rotating the principal directions by 180

degrees.

In our application, when the two surfaces are rigidly aligned, corresponding anatomical regions

shouldn’t be spatially too far apart. Therefore, a soft Euclidean threshold τ is added into the feature

distance measurement, yielding

δ(v, u) = min{||f(v)− f(u)||, ||f(v)− f ∗(u)||}+ α(1 + e−(||xv−xu||−τ))−1, (3.4)

where the second part is a sigmoid function penalizing a too large Euclidean distance ||xv − xu||

between two corresponding vertices and where α is a weighting factor. With this feature distance

measurement, we can construct an N1 ×N2 distance 2D-array D between two surfacesM1,M2

with N1 and N2 vertices respectively.
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Normalizing the Distance Array. Here an additional step is to normalize the distance array

to be a confidence array. When used for computing credible initial correspondences, the distance

measurement is not commensurable across different regions. For example, the matching between

two flat regions is highly ambiguous, but the feature distance is likely to be zero due to the small

local curvatures. Distinguishable curved shapes are less ambiguous to match, but these places tend

to yield larger feature distances. To summarize, in the original distance array D, small feature

distances don’t correlate well with good matchings. To deal with this problem, I propose the

following normalization technique.

The idea is to consider a confidence score that measures how likely {vi ∈M1, uj ∈M2} is a

pair in correspondence. We consider both-way corresponding likelihoods measured by δ1
i,j and δ2

i,j

respectively. δ1
i,j is defined as the likelihood of uj ∈M2 being the most similar vertex of vi ∈M1,

compared to all other vertices inM2. A simple way to compute this quantity is to normalize the ith

row of D to the range of [0, 1].

δ1
i,j = 1− (δ(i, j)−min

k
δ(i, k))/(max

k
δ(i, k)−min

k
δ(i, k)). (3.5)

δ2
i,j is defined and computed vice versa:

δ2
i,j = 1− (δ(i, j)−min

k
δ(k, j))/(max

k
δ(k, j)−min

k
δ(k, j)) (3.6)

Because the two likelihoods are now at the same scale, the confidence score ∆i,j is computed

by taking the sum of δ1
i,j and δ2

i,j . All the confidence scores will form a N1 ×N2 confidence score

array ∆. As shown in Fig. 3.1b and Fig. 3.1c, for the vertex vi selected inM1, the ith row in ∆ is

color-coded inM2. The vertex with the largest value is selected as the corresponding point. The

overall dense correspondences based on this strategy are color-coded as shown in Fig. 3.2ab.

Selecting Most Credible Correspondences. After constructing the ∆ array, I use an iterative

max-row-column approach described in (Lipman and Funkhouser, 2009) to construct an optimal set

of t initial correspondences. In each iteration, I select the largest non-zero element ∆i,j in the array
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(a) M1 (b) M2 (c) M2

Figure 3.2: (a)M1 is uniformly colored. The overall correspondences are indicated by the corre-
sponding color inM2. (b) Correspondences derived from direct feature matching via confidence
scores. (c) Correspondences derived from geometric-feature-based spectral graph matching.

∆ and add (vi, vj) to the initial correspondence set. To avert non-one-to-one correspondences, we

zero out the ith row and jth column of ∆ after each selection. I repeat this procedure t times to

select the t most credible correspondences.

3.3 Geometric-Feature-Based Spectral Graph Matching

My first idea is to investigate the use of spectral graph matching in our application of pharyngeal

surface registration. Spectral graph theory (Chung, 1997) has been applied to the surface matching

problem in various applications (Lombaert et al., 2011). One advantage of the spectral method is

that spectral representations of shapes are in fact invariant in isometry; that is, geodesic-preserving

deformations of a shape preserve its spectral representation. This allows shapes of the same intrinsic

geometry to be perfectly matched in the spectral domain. However, perturbations in shape isometry

can cause inconsistencies in spectral representations and thereby harm the matching accuracy.

Lombaert et al. (Lombaert et al., 2013) proposed a joint spectral graph matching method that

can handle this inconsistency problem. In this section, I will review the method background and

show that the matching accuracy can be further improved by incorporating the previously proposed

geometric feature matching technique. Finally, I will discuss the disadvantage of the conventional

spectral matching method in registering surfaces with different intrinsic geometry and show that the

problem can be moderately solved by my proposed the improvement.
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3.3.1 Spectral Graph Matching on an Association Graph

Two graphs G1 = {V1,E1} and G2 = {V2,E2} can be constructed from the two surfacesM1 and

M2 with the vertices and edges of their triangle meshes. An association graph G = {V,E} is built

by connecting G1 and G2 with a set of initial links. G is equipped with an |N1 +N2| × |N1 +N2|

affinity array W, where the affinities wi,j between vertex i and vertex j are measured using the

Euclidean distance between two vertices in the original 3D space for both intra-surface links and

inter-surface links; that is, wi,j = ||xi− xj||−2 if ∃ei,j ∈ E. With V being the ordered pair (V1,V2),

W takes the form of  W1 W21

W12 W2

 (3.7)

where W1,W2 are intra-surface affinities and W12 and W21 are inter-surface affinities. The graph

Laplacian operator L is defined as L = D−W, where D is a diagonal array with di =
∑

j wi,j .

The spectral decomposition of L provides an orthogonal set of eigenvectors [u1,u2, ...,u|N1+N2|]

with corresponding non-decreasing eigenvalues. The first eigenvector is always constant with an

associated zero eigenvalue; it is not useful for our matching purpose. Then the spectral embedding

of the graph into a k-dimensional Euclidean space (spectral domain) is given by [u2,u3, ...,uk+1].

Formally, we define F = [f1, f2, ..., fk] as an |N1 +N2| × k array. Then the first k eigenmodes with

non-zero eigenvalues [u2,u3, ...,uk+1] is the solution to the following minimization problem:

arg min
f1,f2,...,fk

|N1+N2|∑
i,j=1

wi,j ‖ f (i) − f (j) ‖2, with FTF = I (3.8)

where f (i) is the ith row of F, representing the embedded Euclidean coordiantes (spectral represen-

tation) of the ith vertex. Intuitively, the k eigenmodes define an embedding into a k-dimensional

Euclidean space that tries to respect the edge lengths of the graph. In other words, the distance

between neighboring vertices in the embedded domain, computed by ||f (i) − f (j)||, is close to that

in the original 3D space ||xi − xj||.

34



Moreover, each eigenvector ui, known as the ith vibration mode of graph G, can be separated

into two functions: ui1, the first N1 values of ui, representing the ith vibration mode of G1, and ui2,

the last N2 values of ui, representing the ith vibration mode of G2. In fact, the aforementioned

spectral embedding of the association graph G simultaneously embeds both graphs G1,G2 into the

same spectral domain. As mentioned in (Lombaert et al., 2013), this association-graph-based

spectral embedding provides several advantages over separate spectral embeddings. In particular, it

solves the eigenvector permutation problem, namely that the order of eigenvectors often changes

when they are associated with similar eigenvalues. Here, the inter-surface links of the association

graph ensure that the combined eigenvector ui includes consistent vibration modes (ui1,ui2) from

both graphs.

After knowing the spectral coordinates for all vertices, the final matching between the two

surfaces is accomplished by a nearest-neighbor search in the k-dimensional spectral domain. Note

that this method only yields a dense matching as a result but does not explicitly produce deformation

fields between surfaces.

3.3.2 Geometric-Feature-Based Affinity Matrix

The inter-surface affinity in the Lombaert paper was defined according to the Euclidean distance

between vertices, which is conceptually unnatural, because in most large deformation situations,

two corresponding vertices might have a large Euclidean distance, ending up with a small affinity,

even though there is a clear evidence showing the correspondence is correct and should have a high

affinity. Therefore, I propose to compute the inter-surface affinity based on the confidence score of

the initial correspondences derived by geometric feature matching. With t initial correspondences

selected via the algorithm in Section 3.2, the affinity array W is now defined as

wi,j =


||xi − xj||−2 if vi, vj are in same the surface,

∆i,j if (vi, vj) is in the initial correspondence set,

0 otherwise.

(3.9)
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The final matching result is shown in Fig. 3.2c. As we can see, the correspondences are

smoother than from the feature matching directly.

3.3.3 Different Intrinsic Geometry

In our application, the two surfaces have different intrinsic geometry, such as different boundary

locations and holes. Conventional separated spectral decompositions (Lombaert et al., 2011) in this

situation will yield two totally different sets of eigenmodes. Just think of the simplest partial surface

problem in Fig. 3.3a, in which one surface is a half of the other one. The first eigenmodes have

distinct patterns, because surfaces with different sizes have different vibration modes. However,

if only 5% of all the initial correspondences are assigned between the two surfaces, as shown in

Fig. 3.3b, the first eigenmodes become consistent with each other. Intuitively, a joint vibration can

be achieved by associating the partial surface onto the other one using the initial links, so that the

partial surface is forced to vibrate together with the other. Moreover, it is already obvious in the

objective function (Eq. 3.8) that the energy is minimized when both intra-surface and inter-surface

affinities are preserved in the spectral domain, which means corresponding vertices have similar

embedded coordinates, as well as vibration properties.

(a) (b) (c)

Figure 3.3: (a) Separate spectral decompositions are respectively applied to two surfaces. The top
surface is half of the bottom complete surface. The first eigenmode of each eigendecomposition
is respectively color-coded on that surface. (b) A joint spectral decomposition is applied on an
association graph connected by a sparse set of initial links. The color-coding shows the first joint
eigenmode. (c) A joint spectral decomposition is applied on an association graph with initial links
only on one side. Conclusion: only Fig. b shows the desired eigenmode for the matching between
the two surfaces.
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(a) (b) (c) (d)

Figure 3.4: The color-coded correspondences (a,b) between a complete surface and a partial surface
with a hole and truncation. (c,d) between surfaces with a bridge (circled region).

I found that the initial links have to be scattered all over the surface, but not necessarily densely.

For example, the first vibration modes are as shown in Fig. 3.3c if the initial links are only on one

side of the surface. Intuitively, two pieces of paper won’t be stuck together if there is only one side

glued together.

Therefore, it is essential to find a credible set of initial links. As will be shown in Section

3.4, conventional spectral matching is not able to provide correct correspondences (initial links).

However, the novel geometric feature descriptor has the advantage of providing robust initial links

regardless of whether the surface being partial or not, because the correspondences are derived only

using local geometric features. For the same reason, in most situations where the partial surface has

holes in it, the joint vibration can still be achieved. Figs. 3.4ab show the final matching result for a

partial surface with a hole and a truncated boundary.

This geometric-feature based spectral method can also handle some other simple topology

changes. However, in many cases, regions with complicated topology changes usually yield

inconsistent geometric features, which makes the initial correspondences unstable. For example, as

shown in Figs. 3.4cd, there is a bridge connecting the epiglottis and the pharyngeal wall, and the

matching there is not reasonable.

3.4 Results

I tested different versions of the spectral graph matching method on 12 surface pairs created

from 6 patients’ CT data. The pharyngeal surface from the pharynx down to the vocal cord was
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automatically segmented from each patient’s CT image. Each surface has 2000-6000 vertices, with

an approximately 2cm×3cm elliptical cross section. We manually applied synthetic deformations to

the surfaces with the help of a medical physicist to make them realistic, ending up with 12 surface

pairs, two for each patient. The synthetic deformation includes the distortion and contraction of

the pharyngeal wall and the closing and opening of the laryngeal region and of the epiglottis. We

define the vertex registration error for each vertex as the Euclidean distance between its estimated

corresponding vertex and its ground truth corresponding vertex. The surface registration error for

each surface pair is defined as the average vertex registration error over all vertices.

3.4.1 Synthetic Data

Complete Surface Registration. In the first experiment, the two surfaces in a surface pair are

both complete. In other words, each vertex on a triangle mesh has a corresponding vertex on

the other mesh. In this complete surface registration scenario, I tested 3 different options of the

spectral graph matching method. In the first option, I used the joint spectral graph matching method

proposed in (Lombaert et al., 2013); it first uses separate spectral graph matching to compute

initial correspondences, followed by a joint spectral graph matching using Euclidean-distance-based

inter-surface affinities. In the second option, I used a hybrid method between (Lombaert et al.,

2013) and my proposed method. To be specific, the initial links were estimated by geometric feature

matching (Section 3.3.2). However, the inter-surface affinity associated with these initial links were

still computed as their Euclidean distances (length). The third option is the proposed method; the

inter-surface affinity being the feature matching confidence score.

The average surface registration errors for the 12 surface pairs under the three matching options

are shown in the right column of Table 3.1. The initial error was computed by the closest-point rule;

that is, for each vertex on a triangle mesh, the closest vertex on the other mesh is regarded as its

correspondence. This error metric relates to the amount of misalignment of surfaces before any

registration. We can see that for the complete surface registration scenario the conventional spectral

graph matching method (Option 1) can already produce reasonable results. Our feature-matching-
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based initial links (Option 2) by itself can improve the accuracy by around 25%. The best results

come from the combination of both of my proposed improvements (Option 3): feature-matching-

based initial links and confidence-score-based inter-surface affinity. Fig. 3.5 shows a surface pair

with color-coded correspondence estimation.

Table 3.1: Error for complete surface registration
Average surface registration error (mm)

Initial Error 3.09±1.73
1. Conventional Spectral Graph Matching 1.83± 2.37

2. Feature + Euclidean Distance 1.38±2.55
3. Feature + Confidence Score 0.67±0.96

(a) (b)

Figure 3.5: (a) A CT segmentation surface. (b) A synthetically deformed surface created from the
surface in Figure a. The deformation includes the opening of the epiglottis and the contraction of
the pharyngeal wall.

Partial Surface Registration. In the partial surface matching scenario, I picked one surface

from each pair and manually created holes in large deformation regions, such as the epiglottis, and

truncated the surface outside of a different locus. This simulates the missing data situation in real

endoscopic reconstruction surfaces. The average surface registration errors are shown in the right

column of Table 3.1. We can see that the conventional spectral graph matching method (Option

1) won’t work for partial surfaces due its deficiency in dealing with different intrinsic geometry

(Section 3.3.3). In contrast, the proposed feature-matching-based initial links and confidence-score-

based inter-surface affinity can still produce reasonable results. In addition to Fig. 3.4, Fig. 3.6

shows one more case of partial surface registration.

The Bridging Situation. It has already been shown in Fig. 3.4d that topology change caused by

the bridge between the tip of epiglottis and the pharyngeal wall can yield inaccurate matching results.
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Table 3.2: Error for partial surface registration
Average surface registration error (mm)

Initial Error 3.48±1.79
1. Conventional Spectral Graph Matching 3.26±6.71

2. Feature + Euclidean Distance 1.90±2.15
3. Feature + Confidence Score 1.15±1.36

(a) (b)

Figure 3.6: The same surface pair as shown in Fig. 3.5 except that some holes and truncation were
added to (a).

(a) (b)

Figure 3.7: (a) A CT segmentation surface. (b) A bridge is manually created between the epiglottis
tip and the pharyngeal wall. The circled regions indicate inaccurate matching.

The reason why such topology change is more difficult to handle than the partial surface situation

is that the bridging severely violates the isometry assumption; the geodesic distance between

the epiglottis tip and the pharyngeal wall drastically changes after the bridging occurs; this also

significantly changes the surface’s vibration modes, thereby leading to unmatchable eigenvectors.

Fig. 3.7 further shows a case where the matching fails at the bridging region.

Optimal Algorithm Parameters. I studied the choice of different parameter values. All the

parameters were chosen to produce the lowest average surface registration error on a validation

dataset, which contains two other surface pairs (different from the testing surface pairs). As a result,

15 eigenmodes were used to perform the final matching; the size of the initial correspondence
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set was chosen as half the number of vertices; the geodesic path distance d was set to 4mm; the

Euclidean distance threshold τ was set to 1cm.

3.4.2 Real Endoscopic Reconstruction Surfaces

I applied the improved spectral graph matching method to the registration between CT surfaces and

endoscopic reconstruction surfaces. The algorithm parameters were chosen the same as the ones

used in the synthetic data test. The endoscopic reconstruction surface in Fig. 3.8, which we call an

endoscopogram, was produced by the pipeline introduced in Chapter 5. The endoscopogram was

first rigidly aligned to the CT surface using an initial alignment method that will be discussed in

Section 7.1. The matching result is shown in Fig. 3.8cd. We can see that the matching is generally

reasonable except for the bridging region (circled in Fig. 3.8cd) where the tip of epiglottis touches

the pharyngeal wall. This real data experiment further shows that the method cannot deal with

severe topology change.

(a) (b) (c) (d)

Figure 3.8: (a) A pharyngeal CT segmentation surface. (b) An endoscopic video reconstruction
surface. (c,d) Color-coded correspondences between the CT surface (c) and the reconstruction (d).
The circled regions indicate the bridging situation.

3.5 Conclusion

I have presented an improved spectral graph matching method for pharyngeal surface registration.

A novel geometric feature descriptor along with a feature matching algorithm has been proposed

to estimate a set of initial correspondences between two surfaces. An association graph based on
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such initial correspondences produces more accurate joint spectral graph matching. I showed the

method’s potential to handle partial surface matching and discussed its disadvantages when dealing

with complicated topology change. The results suggest that this approach might be applicable

to other surface registrations with large deformations, holes and truncations but might fail in the

situation of complicated topology change.
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CHAPTER 4

Thin Shell Demons

A useful insight from last chapter is that the spectral-graph-matching-based method is inherently

not suitable for handling complicated missing surface patches and topology change. A more

reasonable solution is to seek a deformation that carries one surface closer to the other. As

mentioned in Section 2.2.3, Thirion’s Demons registration algorithm (Thirion, 1998) provides the

initial motivation to our work. In Thirion’s algorithm, a moving image can be attracted and gradually

deformed to a static image by the so-called virtual forces. Unlike many other registration methods, it

has very few underlying assumptions about deformation properties or surface completeness/topology,

such as isometric invariance (Lombaert et al., 2013), local angle preservation (Lam et al., 2014),

or identical compact support (Vaillant and Glaunès, 2005). Following the Demons algorithm, my

idea is to regard one surface as being static and the other as being deformable. The deformable

surface can be gradually attracted and deformed to the static one. When the two surfaces finally

overlay with each other, the overlaid regions are regarded as corresponding regions. Unlike the

spectral method, where surface intrinsic geometry is being matched in the spectral domain, the

Demons-based method directly seeks a deformation field to align objects in the original 3D space,

and thereby is little affected by surfaces with different topology. With this motivation in mind, we

have to answer three questions.

How to define virtual forces? Dedner et. al. (Dedner et al., 2007) in their work have shown

that curvature-derived demons force produces superior results than the traditional intensity-derived

demons force. Moreover, curvature measures are even more important in our application. The key

reason is that there are many easily identifiable geometric structures in the pharynx, including the



epiglottis, the arytenoids and the larynx. The pharyngeal wall has a less distinctive shape but still

can produce matchable curvature patterns. In addition, our 3D reconstruction method (Price et al.,

2016) is likely to produce more credible local geometry than global point positions. Therefore, I

conclude that curvature information has to be considered in defining the virtual attraction forces.

What is an appropriate surface deformation model? Next, we have to understand how a surface

can be deformed under the attraction forces. Since pharyngeal deformation is a physical process

caused by surrounding muscles, we want our computed deformations to be physically plausible. A

common physical modeling technique is the 3D Finite Element Model (FEM). In order to use FEM,

one has to have extensive prior knowledge about the entire head-and-neck region, including the

structural relationship among different anatomies and their physical properties. To this end, early

work (Ki et al., 2006) has adopted a very coarse approximation to divide the throat into several

cross-sectional regions with different stiffness, but this can hardly characterize different tissue types,

such as the pharyngeal wall, the epiglottis, vocal cords, arytenoids, etc. Since in our application

an endoscopic movie only sees the pharyngeal surface and the only CT information relevant to

registration is that surface, I adopt a physical thin shell model to only simulate deformations for

surface structures. The thin shell model, an essentially 2D model, is simpler to analyze than the 3D

finite element method. Even though it cannot fully characterize tissue mechanics, the lack of 3D

anatomical information for constructing a 3D FEM model makes the thin shell a reasonable choice

that can provide physical reality to a certain extent.

Which surface is static/deformable? We have to determine the attraction direction between the

two surfaces, namely which surface being static (attracting) and which surface being deformable

(attracted). We realize that both the CT surface and the reconstruction surface may have bridges.

Fig. 3.8 has already shown a case where the reconstruction algorithm fails to differentiate between

the tip of epiglottis and the pharyngeal wall. Bridges are also created in the CT surface because fine

geometric structures are blurred out in the CT image under the partial volume effect. However, the

CT surface is more complete and smoother, whereas the reconstruction surface usually has a lot of
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holes and noisy geometry. This fact favors the CT surface to be the deformable one because the

physical deformation energy can be more reliably computed for smooth and complete surfaces.

To combine the above ideas, I propose a surface registration framework, Thin Shell Demons

(TSD), that can leverage both geometry and mechanics. The general idea is to deform the surface

to match geometrically similar structures between the two surfaces in a physically realistic way.

To be specific, the CT surface is regarded as an elastic thin shell and is deformed using Demons

forces determined by the geometric feature matching method introduced in Chapter 3. In addition, I

propose to incorporate the thin shell model with cross-object structural links to preserve structures

that are non-local w.r.t. distance along the shell.

4.1 Thin Shell Deformation Model

As discussed in Section 2.1.2, deformation-based registration methods rely on having a regularization

term to produce smooth deformation fields. In TSD the regularization is formulated as the thin shell

deformation energy; that is, we encourage low deformation energy configurations of the shell. This

section introduces how to compute such energy for a triangle mesh and further proposes a novel

structural energy to the existing thin shell model.

As reviewed in Section 2.3, the thin shell model has been commonly used to produce realistic

deformations for surface structures. The deformation of a shell is regarded as the integration of

local deformations in infinitesimal regions (Eq. 2.24). Local deformations can be further classified

into stretching and bending. With some abuse of notation, we useM to denote both a thin shell and

its middle surface. In the discrete case, a shell is represented as a triangle mesh.

4.1.1 Stretching Strain

Local stretching characterizes the area/length change in an infinitesimal region of the middle

surfaceM. It is quantified by the Cauchy-Green tangential strain tensor ε. Now, let us regard the

deformation ofM as a diffeomorphic map f between its original configurationM and its deformed
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configurationM′. Mathematically speaking, the tensor ε associated with a local point p is defined

by

ε = JTp Jp − I, (4.1)

where I is an identity matrix and Jp is the Jacobian of tangential linear transformation (df)p (see

also Section 2.1.4). Intuitively, it describes how an infinitesimal circle is mapped to an infinitesimal

ellipse.

Figure 4.1: The Cauchy-Green strain tensor ε quantifies how an infinitesimal circle is deformed into
an infinitesimal ellipse.

Figure 4.2: (a) A triangle before deformation. The two edges are represented as v1, v2 under an
arbitrary 2D local coordinate system. (b) After deformation, the two edges are represented as v′1, v′2
under another arbitrary 2D local coordinate system.

In a triangle mesh, we regard each individual triangle as the tangent plane of a local region. The

tensor ε is estimated for each triangle using the method in (Zeng et al., 2013). Consider a triangle in

its original configuration as shown in Fig. 4.2a. With an arbitrary 2D local coordinate system on the

triangle plane, the two vectors associated with the two edges are parameterized by 2D vectors v1

and v2 respectively. After the deformation the triangle ends up with the shape in Fig. 4.2b. With

another 2D local coordinate system, the two deformed edges are parameterized by v′1 and v′2. Then
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it is obvious that the transformation between the vectors is linear: v′1 = Av1 and v′2 = Av2. The

linear transformation matrix A can be computed by A = [v′1, v′2][v1, v2]−1.

In fact, any other vector v in the undeformed configuration (Fig. 4.2a) will be mapped to a new

vector in Fig. 4.2b via the same linear transformation: v′ = Av. We can see that A is an algebraic

realization of Jp under such a discretization. Compared to Eq. 4.1, the Cauchy-Green strain tensor

for a triangle is naturally computed by

ε = (ATA− I). (4.2)

Finally, the local stretching energyWmembrane associated with a single triangle can be computed

based on the stretching tensor ε (see also definition in Eq. 2.22):

Wmembrane =
Eh

2(1− ν2)
((1− ν)Tr(ε2) + ν(Trε)2), (4.3)

where E is the Young’s modulus and ν is the Poisson’s ratio. (Here we assume the shell thickness

h = 1. As will be shown later, this thickness parameter will be considered by additional scaling

factors.)

4.1.2 Bending Strain

The bending of a shell will induce local curvature change. This is quantified by a 2× 2 bending

strain matrix κ, which is computed by the shape operator change. (Normally in the literature the

Greek character κ denotes curvature. Here we use it to denote curvature change.) To be consistent

with the discrete definition of the stretching tensor, we compute κ for each triangle.

Essentially, we need a way to compute discrete shape operators for triangles. I adopted the

method proposed in (Grinspun et al., 2006). Consider a triangle with its 3 neighboring triangles as

shown in Fig. 4.3. θi (i = 1, 2, 3) measures the dihedral angle between adjacent triangles, li is the

length of edge i, ti is a unit tangent vector orthogonal to edge i, and A is the triangle area. Then the
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discrete shape operator is defined as

II =
∑
i=1,2,3

θi
2Ali

ti ⊗ ti, (4.4)

where the summation is over three triangle edges and ⊗ is the outer product. Recall that a shape

operator encodes curvature along every direction around a local point; that is, for any tangent vector

v, vT IIv gives the curvature along that direction. Therefore, by the definition of Eq. 4.4,

vT IIv =
∑
i=1,2,3

θi
2Ali
‖vT ti‖2. (4.5)

Intuitively, the above equation states that the curvature along any direction is computed as a weighted

sum of the three curvatures (the dihedral angle θi) across the three edges.

Figure 4.3: A basis stencil used for computing the discrete shape operator. θi (i = 1, 2, 3) measures
the dihedral angle between adjacent triangles, li is the length of edge i, ti is a unit tangent vector
orthogonal to edge i, and A is the triangle area.

The definition of discrete shape operators may seem straightforward, but the difference between

two shape operators cannot be easily defined. Consider a surfaceM1 and its deformed versionM2.

From Section 2.1.2, a point p ∈ M1 is mapped to f(p) ∈ M2 via the mapping function f . The

two shape operators IIp and IIf(p) are respectively defined on two different tangent planes TpM1

and Tf(p)M2, so they are not directly subtractable. One has to transform IIf(p) from Tf(p)M2 back

to TpM1 via the inverse of the tangential linear transformation (df)p. This is called a “pull-back”

operation. In the discrete case, we can first compute the shape operators II and II′ for the same
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triangle before and after deformation respectively. Then the shape operator change is

κ = II− AT II′A, (4.6)

where A is the algebraic representation of the tangential linear transformation matrix. Finally, the

local bending energy Wmembrane associated with a single triangle can be computed based on the

bending strain κ (see also definition in Eq. 2.23):

Wbending =
Eh3

24(1− ν2)
((1− ν)Tr(κ2) + ν(Trκ)2). (4.7)

4.1.3 Structural Energy

In our problem the surface is a boundary representation of solid tissues that show shape integrity at

certain regions. For example, the epiglottis does not change its thickness. However, the thin shell

model only concentrates on local energy computations without explicitly modeling shape/position

relationships between distant regions. To handle this, I propose to add structural links into the

thin shell model. Cross-object structural links Lc are connected between two subregions of the

Figure 4.4: Five structural links (red) are manually placed between the frontal and posterior wall of
the epiglottis. The structural energy is based on the links’ length change to preserve the epiglottal
thickness.

surface. As shown in Fig. 4.4, five links are manually placed between the frontal and posterior

wall of the epiglottis to preserve the epiglottal thickness. The related structural energy is defined as

WLc =
∑

i(∆|Lic|)2, where ∆|Lic| is the length change of the ith cross-object link.

49



Having introduced all three kinds of energies, the deformation energy of a shell is the integration

of local stretching and bending energies over all triangles, plus the structural energy:

Wshell =

∫
S

(λbendWbending + λmemWmembrane)dS + λlWLc , (4.8)

where λbend, λmem, λl are non-negative weighting factors among different energy terms.

4.2 Thin Shell Demons Algorithm

In Thirion’s Demons algorithm, the notion is that the object boundary in a static image contains a

set of so-called demons that can produce virtual forces to attract the object in a moving image until

the two images are close. This idea is naturally extendable to surface registration. However, several

problems arise when we move from images to surfaces.

1. Image-based demons forces are derived from image gradient information, whereas in surface

registration no gradient can be defined in the ambient space.

2. Image similarity can be defined by intensity difference, whereas we use geometry similarity

for surface registration.

3. In order to produce a smooth deformation, the image-based Demons algorithm makes use of

Gaussian smoothing or differential operators (∇,∇2) defined on the deformation function, whereas

we use the thin shell model for producing smooth surface deformations.

Here I introduce Thin Shell Demons for surface registration. We assumeM1 is static andM2

is deformable. The vertices on the triangle mesh ofM1 are considered as demons that can produce

geometry-based forces to attract and deformM2. We then solve for the surface deformation of

M2 according to the augmented thin shell deformation model. In this way, geometrically similar

structures between the two surfaces are attracted closer in a physically plausible way. Similar to the

image-based Demons method, the algorithm can be formulated as the iterative process shown in

Algorithm 1.
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Algorithm 1 Thin Shell Demons
1: Precompute geometric features for the static surfaceM1.
2: k = 0,M(0)

2 =M2.
3: Compute geometric features for the deformable surfaceM(k)

2 , whereM(k)
2 is the deformable

surface in the kth iteration.
4: Compute demons forces {f} betweenM1 andM(k)

2 based on feature matching.
5: Compute the deformation Φk fromM(k)

2 toM1 under {f}. ThenM(k+1)
2 =M(k)

2 ◦ Φk

6: Go back to Step 3 until convergence.

4.2.1 Geometric-Feature-Based Demons Force

In order to effectively match the shapes of the two surfaces, we hope the demons forces can attract

similar geometric structures towards each other. Therefore, we use the feature descriptor introduced

in Chapter 2 to produce demons forces. Assume that some initial rigid alignment ofM1 andM(k)
2

has already been performed and that the feature similarity between u ∈ M1 and v ∈ M(k)
2 is

computed as δ(v, u) (Eq. 3.4). For each vertex v ∈M(k)
2 , we find the most geometrically similar

vertex m(v) ∈M1 as its matching point, such that

δ(v,m(v)) = min{δ(v, u)|u ∈M1}. (4.9)

Then the force vector f(v) = (m(v)− v) defines a virtual force applied on v induced by a demon

m(v) ∈ M1. In other words, f(v) is a vector pointing from v to m(v). Forces computed in

this way may contain outliers, so we associate each force vector f(v) with a confidence score

c(v) = e−δ(v,m(v)) based on the feature similarity, which indicates how likely the force vector is

accurately estimated.

4.2.2 Computing Deformations

Given the set of demons forces {f}, we need to compute the deformation Φk that bringsM(k)
2

closer toM1. Many works (Li et al., 2008; Chang and Zwicker, 2008) have explored a purely

geometry-motivated treatment of the problem, but in our scenario within-patient surface deformation
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is induced by an underlying physical process. Therefore, we regardM2 as an elastic thin shell

equipped with thin shell energies introduced in Section 4.1. Then the problem becomes to solve the

thin shell deformation induced by the external force {f}.

In order to incorporate the confidence score information of {f}, I propose an optimization-

based approach for Thin Shell Demons. The deformation Φk can be approximated by minimizing

the objective function

E(Φ) =

∫
M

c(v)‖Φ(v)− f(v)‖2dv +Wshell(Φ). (4.10)

The first part penalizes the inconsistency between the deformation vector and the force vector

applied on a point and uses the confidence score to weight the penalization. The second part

minimizes the augmented thin shell deformation energy. The minimizer of Eq. 4.10 is taken as the

most physical plausible deformation that can align similar geometric structures between the two

surfaces.

Implementation. The deformation Φ is parameterized by a global deformation vector field

defined on the vertices; that is, Φ(v) is a 3D vector indicating the movement of vertex v. The

stretching and bending strains of a triangle can be derived using such deformation vectors in a local

neighborhood. IfM2 has N vertices, Eq. 4.10 is a high-dimensional function with 3N unknown

variables, which makes the estimation of its Hessian matrix very complicated. Therefore, I solve

this optimization using the L-BFGS (Limited-memory BFGS) method, which is an optimization

algorithm in the family of quasi-Newton methods. L-BFGS approximates the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm using a memory-efficient Hessian approximation. It is often

used for solving high-dimensional problems where the Hessian matrix of the objective function is

hard to explicitly compute.
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4.3 Thin Shell Energy Approximation

4.3.1 Isometric Approximation to the Bending Strain

Eq. 4.6 involves first the computation of the tangential linear transformation A and then the

computation of shape operators II and II′. The composition of the two terms makes the formulation

of Eq. 4.6 so complex that even its gradient is not easily derivable. An optional approximation

here is to neglect the tangential transformation in the computation of the bending strain. While

the stretching component is separately considered by Wmembrane, we assume that the surface is

undergoing an isometric deformation (pure bending and no stretching) when we compute the

bending strain. In other words, we assume a triangle doesn’t change its shape during deformation,

which means the linear transformation matrix A in Eq. 4.6 can be approximated to be an identity

matrix. Therefore, the bending strain can be simplified as

κ =
∑
i=1,2,3

∆θi
2Ali

ti ⊗ ti, (4.11)

where A, li, ti are regarded as constants and only need to be computed once for the undeformed

configuration. In this way, we only need to compute the gradient for the ∆θi term.

4.3.2 Quadratic Approximation

The above approximation facilitates gradient computation, but both stretching and bending strains

are still highly non-linear, which slows down the convergence of the optimization and also increases

the likelihood of converging to local minima. An alternative approach is to adopt quadratic models

for computing stretching and bending energies. (Pauly et al., 2005) proposed to use the length

change of triangle edges to model stretching. (Bergou et al., 2006) proposed a quadratic model for

computing per-edge-based bending energy. With these two approaches, the entire objective function

(Eq. 4.10) can be written as a quadratic function, and the optimization becomes the problem of
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(a) (b) (c)

Figure 4.5: (a) Original tessellation before registration (b) Deformed tessellation after registration
using edge-based stencils (Pauly et al., 2005; Bergou et al., 2006) (c) Deformed tessellation after
registration using triangle-based stencils (Section 4.1.1 and 4.1.2)

solving a sparse linear system. In my experiments I found that quadratic models can give up to

250-times speedup (from several minutes to half a second) in the optimization stage. Despite the

advantage of speedup, a downside of adopting quadratic models is that edge-based stencils for

computing local stretching and bending may overlook the shape integrity of triangles. Fig. 4.5

shows two versions of the deformed surfaces after registration. We can see that triangle-based

stencils well preserve the tessellation, whereas edge-based stencils over-distort the triangle shapes.

4.4 Results

For the TSD algorithm used in this subsection, I adopted the bending strain approximation discussed

in Section 4.3.1 for convenient gradient computation. However, since the registration between CT

and endoscopic surfaces happens during the radiation treatment planning stage and is not time-

critical, I didn’t use the quadratic approximation discussed in Section 4.3.2 to speed the registration

up. In turn using the full energy term will yield more accurate registration results in the following

two synthetic tests.

4.4.1 Synthetic Deformation

Data. I first tested TSD with the same synthetic data as in Chapter 3. To remind the readers, we had

24 surface pairs: 12 for complete surface registration and 12 for partial surface registration. Each
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surface pair includes a CT segmentation surface and its synthetically deformed version. Again, I

used the surface registration error as the metric.

TSD Parameters. I used the same validation set as in Chapter 3 to determine optimal algorithm

parameter values. The Young’s modulus E and Poisson’s ratio ν were set to 2 and 0.25 respectively.

The weighting parameters λbend, λmem were chosen to be 1 and 10. As will be explained later, I left

out the structural energy term in the synthetic test. All the parameters related to geometric feature

construction and matching were chosen to have the same values as in Chapter 3.

Comparison. I compared Thin Shell Demons with three other strategies suggested in other works to

indicate the importance of the choices made in TSD. The first method is my improved spectral graph

matching method discussed in Chapter 3. The second method is a deformation-based method with

thin shell energy as deformation regularization, but it uses the closest point search suggested in (Li

et al., 2008) to drive the deformation instead of geometric feature matching. The third method uses

geometric feature matching, but it only uses the edge-based stretching energy as the deformation

regularization (Pauly et al., 2005). Since the above three methods are fully automatic, I left out

the manually constructed structural links in the synthetic test to make the comparison fair. Also,

the weighting parameters within the energy of the last two methods were re-tuned using the same

validation dataset to produce the best results.

Fig. 4.6 shows the registration error of the 12 complete surface pairs using the 4 methods. We

can see that in several cases the edge-based stretching energy can produce slightly better results

than Thin Shell Demons. This is because without any bending energy regularization it allows more

flexible local deformation to adapt to the target surface. However, as mentioned in Fig. 4.5, the

trade-off is that it may end up with more irregular triangle shapes. Our thin shell energy does a

better job at preserving the triangulation pattern during deformation, which is important for texture

mapping, one of the objectives in the later fusion application. A typical synthetic deformation and

the registration result are shown in Fig. 4.8.
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Figure 4.6: Registration error for 12 complete surface pairs. The center-point of each vertical bar is
the surface registration error, which is defined as the average of vertex registration error; the length
of the error bar denotes the standard deviation of the vertex registration error.

Figure 4.7: Registration error for 12 partial surface pairs.

4.4.2 The Phantom

I also tested TSD on data derived from a 3D-printed phantom. The procedure for producing the

phantom is shown in Fig. 4.9. First, a binary segmentation was performed to separate the airway
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Figure 4.8: From left to right: deformable surface before registration; static surface; initial over-
lay between the two surfaces before registration.; final overlay between the two surfaces after
registration; deformable surface after registration.

from soft tissues of the throat in a patient’s 3D CT image. Then we 3D-printed a cuboid volume

of that binary segmentation with the solid part corresponding to the soft tissues. We used the 3D-

printed model as a real-size static phantom of the throat. We took endoscopy and CT of the phantom

model and produced its reconstruction and CT segmentation surfaces. Finally, we performed TSD

to register those two surfaces.

Figure 4.9: Experimental setup for the phantom case: a real-size static 3D-printed model was
produced from a CT segmentation of a real patient. We took endoscopy and CT of the phantom
model and produced its reconstruction and CT segmentation. TSD was used to find the deformation
caused by reconstruction artifacts.

Figure 4.10: TSD on the phantom case. From left to right: Endoscopic reconstruction; CT surface
before registration; Initial overlay; Final overlay; Registered CT.
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Since the phantom is static, the initial deviation between the two surfaces is mainly caused by

reconstruction artifacts. We can see from Fig. 4.10 that TSD can also handle such non-physical

deformations.

4.4.3 Real Patient Data

(a) The reconstruction surface in this example is derived from ColMap (Schönberger and Frahm, 2016)

(b) The reconstruction surface in this example is derived from a single frame using Shape-from-Shading

Figure 4.11: TSD on the two real patient cases. From left to right: Endoscopic reconstruction; CT
surface before registration; Initial overlay; Final overlay; Registered CT.

In real patient cases, we don’t have ground truth correspondences between CT and endoscopic

reconstruction surfaces. Here I show only some qualitative results for real patient data. In this

chapter, I first show TSD registration results with some early reconstruction surfaces derived from

some other existing techniques (Schönberger and Frahm, 2016; Ahmed and Farag, 2006). After

introducing the groupwise TSD and endoscopogram reconstruction pipeline in Chapter 6, I will

show more results with the latest reconstruction surfaces produced by our own method. Fig. 4.11

shows two cases where the CT surfaces were registered to the endoscopic reconstruction surfaces

produced from patients’ endoscopy. The endoscopic surface in Fig. 4.11a was produced by CoLMap

(Schönberger and Frahm, 2016), and the endoscopic surface in Fig. 4.11b was produced by Shape-
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from-Shading (Ahmed and Farag, 2006). In both cases, the reconstruction surfaces were first rigidly

aligned to the CT surfaces using an initial alignment method that will be discussed in Section 7.1.

The cross-object structural links were added in this test. We can see that after registration (Fig.

4.11iv) the two surfaces are well overlaid with each other compared to the initial overlay results

(Fig. 4.11iii). The final deformed CT surfaces (Fig. 4.11v) geometrically resemble the endoscopic

reconstructions.

Structural Energy. I found that without the cross-subject structural links the quality of the

deformation in the epiglottis was highly compromised in real data registration. This is because the

geometry near the epiglottal area in the reconstruction is less accurate, thus generating more outliers

in the force field {f} that will easily distort the epiglottis. For the same registration in Fig. 4.11b,

the influence of the structural links on the deformed shape of the epiglottis is shown in Fig. 4.12.

Without using the links (Fig. 4.12c), the epiglottis was unreasonably distorted with respect to its

original configuration (Fig. 4.12a).

Figure 4.12: (a) Original epiglottis (b) Deformed epiglottis with structural links. (c) Deformed
epiglottis without structural links.

4.5 Discussion and Conclusion

I have proposed a physics-motivated surface registration framework: Thin Shell Demons. I adopted

the “attraction forces” idea from Thirion’s Demons image registration algorithm to our surface

registration problem. The virtual attraction forces are computed by geometric feature matching. I

also adopted a thin shell physical model to produce physically plausible surface deformations. Novel

cross-object links were proposed to preserve non-local shape structures. Based on an optimization
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formulation TSD can attract similar geometric structures between two surfaces in a physically

realistic fashion. Experiments have shown that the combination of geometric feature matching and

the thin shell model provides superior registration in the context of CT/endoscopy fusion.

Despite the promising results, there are several potential issues of TSD that I need to address in

the future:

Physical Reality. The thin shell model is a simplified physical model only considering tangen-

tial strains (Ventsel and Krauthammer, 2001), so that its energy can be effectively optimized, but

how much the pharyngeal surface would follow this model remains a question. The real surface

deformation is mainly caused by the underlying muscles’ contraction. Therefore, it won’t be fully

characterized by the mechanics of a shell. As mentioned in the beginning of this Chapter, an

alternative way to model the mechanics of the throat is to consider not only the surface but also

the surrounding muscles by 3D finite element method (Xu et al., 2009). However, that requires

complex anatomical knowledge of the throat, which is not available in our application. Considering

different trade-offs, I chose the thin shell model to produce physically reasonable deformations. It

can handle larger scale problems by reducing the problem from 3D to 2D, but I also equipped the

traditional model with structural links, which could be thought of as additional 3D information that

3D FEM can provide.

Structural Links. Currently, the cross-object structural links are only placed into CT surfaces.

It is conceivable to also construct such links in the endoscopic reconstructions. Nevertheless, they

have to be manually constructed in the current stage, and it remains an open question whether the

number and the position of these links can be automatically determined.

Statistical Parameter Learning. In our model we assume uniform elasticity parameters across

the entire surface, which is obviously not realistic. The stiffness of the throat is not only spatially

dependent but also anisotropic. For example, the pharyngeal wall mostly stretches and contracts in

the lateral direction; the epiglottis is extremely bendable along the pharynx. To improve physical

reality, one solution is to statistically learn the stiffness parameters at different places from multiple

known pharyngeal deformations. This idea will be explored in Chapter 6.
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CHAPTER 5

Groupwise TSD
and Its Use in Endoscopogram Construction

TSD is essentially a pairwise surface registration framework, where a deformable surface can be

attracted to a static surface. This framework perfectly suits the purpose of CT-segmentation/endoscopy-

reconstruction surface registration. However, in the endoscopy reconstruction process itself, there is

a geometry fusion step that requires registering multiple partial reconstruction surfaces into a single

and complete surface. The pairwise TSD cannot sufficiently handle such a groupwise registration

problem.

In this chapter, I will propose an extension of Thin Shell Demons, namely the groupwise TSD,

that can be used for geometry fusion in the endoscopy 3D reconstruction pipeline. I will first briefly

describe the entire pipeline and motivate the need for geometry fusion. I will then introduce the

key components of the pipeline, with the concentration on geometry fusion. Finally, I will show

validation results on the groupwise TSD and show some of the final endoscopy reconstruction

results.

3D Reconstruction from Endoscopic Images

Most existing reconstruction techniques heavily rely on two fundamental algorithms: Shape-

from-Shading (SfS) and Structure-from-Motion (SfM). For example, a pilot study (Meisner et al.,

2013) has been applied in laryngeal endoscopic reconstruction using semi-automatic SfM. Even

though the proposed system in that study shows some promising results, it is well known that

SfM can only recover a sparse point cloud without any detail geometry. Therefore, SfS is further



incorporated in some other works (Tokgozoglu et al., 2012; Hong et al., 2014; Wu et al., 2010)

to achieve detail geometry reconstruction using local shading information. The use of the above

two algorithms has achieved remarkable success in applications like colonoscopy inspection (Hong

et al., 2014), laparoscopic surgery (Maier-Hein et al., 2013) and orthopedic surgeries (Wu et al.,

2010). However, it is still the case that most existing techniques can only handle (a) single-image

reconstruction (Hong et al., 2014), (b) non-deformable scenes (Wu et al., 2010) and (c) Lambertian

surfaces (Tokgozoglu et al., 2012).

The novel endoscopic reconstruction pipeline proposed by me and my colleagues aims to

reconstruct a longer video sequence of a deformable scene with complex light reflectance. This is

achieved by a single-frame-reconstruction stage followed by a cross-frame fusion stage. Fig. 5.1

shows the pipeline for reconstructing a surface model, which we call an endoscopogram, from an

endoscopic video sequence. The reconstruction has three major steps:

Figure 5.1: The construction of an endoscopogram involves three major steps: (a) Structure-from-
Motion-and-Shading (SfMS); (b) geometry fusion; (c) texture fusion.

(a). A single-frame reconstruction surface is produced for each individual frame image using

Shape-from-Motion-and-Shading (SfMS).

(b). A geometry fusion step is carried out to geometrically fuse all the single-frame reconstruc-

tions into a single surface.

(c). The surface derived in Step (b) is textured using all the raw frames to produce the final

endoscopogram.
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In the rest of this chapter, I will briefly introduce the techniques used in Step (a) and Step (b). I

will focus on discussing Step (b), which is one of the major methodological contributions of this

dissertation.

5.1 Shape-from-Motion-and-Shading

Figure 5.2: Structure-from-Motion-and-Shading diagram (figure from (Price et al., 2016)).

In this subsection I will briefly introduce the first step in our pipeline, Shape-from-Motion-

and-Shading (SfMS). Details of this method are given in (Price et al., 2016). The diagram of

SfMS is shown in Fig. 5.2. In SfMS, two key algorithms, Structure-from-Motion (SfM) and

Shape-from-Shading (SfS), are combined in an effective way to produce 3D reconstructions. Given

a series of video frames, SfM (Schönberger and Frahm, 2016) is used to simultaneously estimate

camera motions across frames and sparse geometry (a 3D point cloud) of the 3D scene. SfM

provides reasonably accurate sparse point positions, but it does not yield dense geometry. The

other algorithm, Shape-from-Shading (SfS) (Ahmed and Farag, 2006), is a monocular method of

depth estimation that, given a single image viewing a scene, recreates depth for every single pixel

in that image. The formulation of SfS is closely related to local surface geometry but lacks global
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geometry constraints. Moreover, SfS estimation relies on an accurate light reflectance model, which

is usually very difficult to acquire in unknown environments. Therefore, the idea of SfMS is to use

SfM-derived sparse points as global constraints and to iteratively estimate the reflectance model

parameters and the SfM-regularized SfS depth map for individual frames.

The input to SfMS is a video sequence of hundreds of consecutive frames {Fi | i = 1...N}.

SfMS generates for each frame Fi its own individual reconstruction surfaceRi. (Strictly speaking,

Ri is a depth image with a single depth value for each pixel. For post-processing convenience, I

transform Ri to a triangle mesh.) Each surface Ri is transformed into the world space using the

camera position parameters estimated from SfM. Since each image Fi only visualizes a part of the

throat, eachRi is only a partial reconstruction. Therefore, there is an apparent need to fuse multiple

single-frame reconstructions {Ri} into a single geometryR. This fusion step involves both texture

and geometry. We will first discuss geometry fusion in the next section.

5.2 Geometry Fusion

Geometry fusion is a challenging task in our application. Due to the constantly changing camera

viewpoint, all individual reconstruction surfaces {Ri} are only partially overlapping with each

other. Moreover, since the tissue may have deformed between 2D frame acquisitions, there will

be non-rigid deformations among those individual reconstructions. Finally, mesh facets that are

nearly tangent to the camera viewing ray are regarded as occlusion regions and are removed, which

leaves many holes in the surfaces. To summarize, the end result of this is that the surfaces {Ri}

have missing patches and non-rigid deformations and are only partially overlapping with each other.

The goal of geometry fusion is to non-rigidly deform all these surfaces into a consistent geomet-

ric configuration, thus unifying the tissue deformation and minimizing reconstruction inconsistency

among different frames.

The most naive solution would be to apply the pairwise TSD discussed in the previous chapter:

choose a reconstruction surface of one particular frame as the reference and incrementally register
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other surfaces from nearby frames to that reference. However, it has been shown in many cases

(Lyu et al., 2015; Joshi et al., 2004; Geng et al., 2009) that this incremental construction suffers

from the so called “reference selection bias”. Any sort of fusion error made in the early stage can

be easily propagated to later frames.

The above argument has motivated the use of groupwise surface registration, where all surfaces

are treated equally and registered simultaneously. Existing groupwise surface registration methods

often rely on having or iteratively estimating a mean geometry (template) (Durrleman et al., 2009,

2012; Lyttelton et al., 2007; Ramachandran et al., 2014; van de Giessen et al., 2012). However, in

our situation, the topology change and partially overlapping data renders initial template geometry

estimation almost impossible. Therefore, a groupwise registration method that does not require a

template or a mean surface is desired. To that end, template-free methods have been studied for

certain applications (Balci et al., 2007; Lyu et al., 2015), such as 2D images and spherical surfaces,

but it has not been shown that such methods can be generalized to arbitrary surfaces. The joint

spectral graph framework (Arslan et al., 2015; Lombaert et al., 2013) provides an alternative way

for matching a group of surfaces without estimating the mean, but as discussed in Chapter 3, these

methods are naturally not suitable for handling surfaces with different intrinsic geometry.

5.2.1 The N-body Scenario

My insight is that the notion of virtual attraction forces is still valid for every surface pair among

the N surfaces; a surface can attract and be attracted by all other surfaces simultaneously. Thus,

we propose a groupwise deformation scenario as an analog to the N-body problem: N surfaces

are deformed under the influence of their mutual forces. The deformation of a single surface can

be computed based on the overall attraction forces provided from all the other surfaces. With the

physical thin shell model, each single surface’s deformation can be topology-preserving and not

influenced by its partialness. This groupwise attraction strategy can bypass the need of the mean

geometry estimation and can still deform all surfaces into a single geometric configuration. With
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this notion in mind, we now have to define (1) mutual forces among N surfaces; (2) an evolution

strategy to deform the N surfaces.

Mutual Forces. In order to derive mutual forces, correspondences should be credibly computed

among N partial surfaces. Again, the attraction forces between a surface pair are constructed as

the vectors connecting estimated corresponding points between the two surfaces. As discussed in

Chapter 3, geometric feature matching can identify a set of geometrically similar points between two

surfaces. Additionally, in the context of registering endoscopic frame reconstruction surfaces, each

surfaceRi has an underlying texture image Fi. Thus, we can also compute texture correspondences

between two frames using standard computer vision techniques (Hartley and Zisserman, 2004).

In particular, given two frames, SIFT (Lowe, 1999) matching points are first detected using an

exhaustive search. The resulting matching points may contain outliers (false correspondences).

Therefore, assuming the scene undergoes a homographic transformation between the two frames,

we perform a RANSAC (Fischler and Bolles, 1981) algorithm to remove outlier matchings. Since

RANSAC is less robust with too few data items, we perform the above matching procedure only

between temporally close frame pairs, i.e. {Fi,Fj | 0 < |i− j| ≤ T}, to yield a larger number of

matching results. I heuristically set T = 0.5s to guarantee that two frames within that time range

can be robustly matched. Finally, the remaining inlier SIFT matchings on the two frames can be

directly transformed to 3D vertex correspondences on the two surfaces via the SfSM reconstruction

procedure.

In the end, any given vertex v ∈ Ri will have M corresponding vertices in the other surfaces

{Rj | j 6= i}. As mentioned above, these M correspondences are detected by either SIFT matching

or geometric feature matching. (M = 0 means we have not been able to detect any of its corre-

spondences.) Accordingly, we construct M attraction force vectors {fβ(v) = uβ − v | β = 1...M},

where uβ is the βth correspondence of v in some other surface. To remind the readers, the {f}

vectors we call forces are not in any sense real physical forces; they are simply vectors connecting

corresponding vertices between surfaces. Moreover, we associate such force vectors with confidence
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scores {cβ(v)}. They are defined by

cβ(v) =


δ(uβ, v) if {uβ, v} is a geometric correspondence,

1 if {uβ, v} is a SIFT (texture) correspondence,
(5.1)

where δ is the geometric feature distance defined in Chapter 3, Eq. 3.4. Since we only consider inlier

SIFT matchings using RANSAC (Hartley and Zisserman, 2004), the confidence score for texture

correspondences is a constant 1. We then define the overall force exerted on v as a kernel-weighted

average based on confidence scores:

f̄(v) =

∑M
β=1 c

β(v)fβ(v)∑M
β=1 c

β(v)
. (5.2)

The associated overall confidence score is

c̄(v) =
1

M

M∑
β=1

cβ(v). (5.3)

Deformation Strategy. With the attraction forces defined for all vertices from all surfaces, we

want to evolve the N surfaces accordingly to such force interaction. We denote {f̄i} as the set of

attraction forces exerted onRi. Since f̄i already summarize forces induced by all other surfaces,

the deformation ofRi can be solved independently. Again, I use an optimization-based approach to

solve for the deformation field Φi ofRi:

E(Φi) =

∫
M

c̄(v)(Φi(v)− f̄i(v))2dv + Eshell(Φi). (5.4)

Compared to Eq. 4.10, we can tell that the only difference is that the pairwise forces are replaced by

the overall attraction forces.

Therefore, a groupwise deformation scenario is to evolve theN surfaces by iteratively estimating

their mutual attraction forces and solving for their deformations. However, a potential hazard of this
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algorithm is that without a common target template the N surfaces could oscillate, especially in

the early stage when the force magnitudes are large and tend to overshoot the deformation. To this

end, I observe that the thin shell energy regularization weights λbend, λmem control the deformation

flexibility (see Eq. 4.8 for a precise definition of λbend, λmem). Thus, to avoid oscillation, we

start with large regularization weights and gradually tune them down through the iterations. To

summarize, I design the following groupwise registration algorithm:

Algorithm 2 N-body Groupwise Surface Registration

1: Start with large regularization weights: λ(0)
bend, λ

(0)
mem

2: In iteration k, compute {fi} for each surfaceR(k)
i using the current N surface configurations

{R(k)
i | i = 1...N}

3: Optimize Eq. 5.4 independently for each surface to obtainR(k+1)
i

4: λ
(k+1)
bend = σ ∗ λ(k)

bend, λ
(k+1)
mem = σ ∗ λ(k)

mem, with σ < 1
5: Go to step 2 until convergence.

In fact, there is another motivation for gradually downweighting the thin shell energy weights.

As the iterations proceed, the surfaces will get closer, and the attraction force computation will

become more accurate with fewer outliers, so less regularization will be needed. However, a too

small σ will quickly shrink the regularization weights to zero. Therefore, I choose σ = 0.95 and

only run 10 of the above iterations.

In the end, all partial surfaces {Ri} are deformed into a mutually consistent shape configuration.

Letting {R′i} denote this set of registered surfaces, the final step is to create a single surface

geometryR from the registered surfaces {R′i}. This can be easily done via a simple fusion method

proposed in (Curless and Levoy, 1996). This method first creates signed distance functions from

all the surfaces. Then an average signed distance function is computed. Finally, the zero-level-set

surface is extracted from the average signed distance function as the fused geometry. Therefore,

as long as all the surfaces are well aligned, the average signed distance function can be robustly

computed to generate the final fusion.
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5.2.2 Outlier Geometry Removal

The final step of geometry fusion (Curless and Levoy, 1996) assumes the registered surfaces {R′i}

are geometrically consistent with each other. However, this fusion step can be seriously harmed by

the outlier geometry created by SfMS. Outlier geometries are local surface parts that are wrongfully

estimated by SfMS under bad lighting conditions (insufficient lighting, saturation, or specularity).

These sub-surfaces are drastically different from all other surfaces and thereby are carried over by

the deformation process to {R′i} (Fig. 5.3a). This artifact severely violates the aforementioned

geometric consistency assumption in the final fusion step; that is, outlier geometry yields a signed

distance function that is inconsistent with all other functions, so the average signed distance function

is heavily polluted. Fig. 5.3 shows a typical case, where five registered surfaces are overlaid together.

The pink surface has a piece of outlier geometry (circled in black) that doesn’t coincide with the

other four surfaces. A direct fusion by (Curless and Levoy, 1996) will create an undesirable result

(Fig. 5.3b).

(a) (b)

Figure 5.3: (a) 5 registered surfaces are overlaid together with the pink surface having a piece
of outlier geometry (circled in black). (b) A direct geometry fusion with the presence of outlier
geometry creates an unreasonable result.

My observation is that outlier geometry changes a local surface’s topology by creating wrong

branches, which violates many basic differential geometry properties. We know that the local

surface around a point in a smooth 2-manifold can be approximately presented by a quadratic
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Monge Patch h : U → R3, where U defines a 2D open set in the tangent plane, and h is a quadratic

function (Gray, 1997). In simple words, a valid local surface patch without any outlier geometry

resembles the shape of a quadratic function. My idea is that if we fit a local quadratic surface at a

branching place using some robust regression methods (Andersen, 2008), the surface points on the

wrong branch of outlier geometry will be counted as outliers.

(a) (b)

Figure 5.4: (a) Local point cloud N (v) around vertex v. (b) Robust quadratic fitting (red grid) to
normalized N (v). The outlier scores of N (v) are indicated by the color-coding.

(a) (b) (c)

(d)

Figure 5.5: (a) Color-coded outlier scoresW of all vertices in L. (b) The remaining point cloud
after thresholding the ourlier scoresW . (c) The largest remaining component. (d) Fused surface
created from the largest component of the remaining point cloud after outlier geometry removal.
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We define the 3D point cloud L as the ensemble of all vertices in all registered surfaces {R′i}.

The goal is to classify for each vertex v ∈ L whether it is an outlier vertex (a vertex in outlier

geometries) based on its outlier scoreW(v). The idea is to fit a quadratic surface to each local region

of L to produce outlier scores for vertices in that local region. To be specific, for a given vertex v,

N (v) is defined as the set of vertices in its neighborhood, i.e., N (v) = {u | u ∈ L, ||u− v|| < τ}.

We first transform the local point cloud N (v) by taking v as the center of origin and the normal

direction of v as the z-axis. Then, we use Iteratively Reweighted Least Squares (Green, 1984) to

fit a quadratic polynomial to the normalized N (v) (Fig. 5.4b). The method produces an outlier

score for every vertex u ∈ N (v), which is then accumulated into W(u) (Fig. 5.5a). Next, we

remove the outlier vertices by thresholding the accumulative outlier scoresW (Fig. 5.5b). This

thresholding procedure will leave the remaining point could as several detached components (5.5b),

among which the component with most vertices (5.5c) is regarded as the true point cloud and is

used to produce the final single geometryR (Curless and Levoy, 1996) (Fig. 5.5d).

5.3 Texture Fusion

After geometry fusion a single surfaceR is created from the set of registered surfaces {R′i}. The

remaining task is to determine the texture ofR. Remember that each single-frame reconstruction

Ri, as well as its registered version R′i, is associated with a 2D texture image Fi. The goal of

texture mapping then becomes to assign a color to each vertex in R based on the set of texture

images {Fi}. Fig. 5.6 gives a high-level concept of texture mapping. For each vertex v ∈ R, we

find its corresponding vertex in one of the registered single-frame reconstructionsR′i and trace back

its color in the corresponding frame Fi.

The challenge here is that a region (vertex) inR usually has corresponding vertices in multiple

single-frame reconstructions because that region is observed in multiple video frames. This poses

the question of determining which particular frame to draw its color from. It turns out that this

procedure can be formulated as a labeling problem. The label of a vertex v ∈ R, denoted as
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Figure 5.6: Each vertex of the fused surfaceR finds its corresponding vertex in a registered single-
frame reconstruction R′i and traces back the color in the corresponding texture image Fi. Some
vertices (green, yellow, red) inR have ambiguity in choosing the corresponding frame because they
have corresponding vertices in bothR′1 andR′2.

l(v) ∈ {1...N}, indicates that we choose v’s corresponding vertex inR′l(v) as the color source. Our

goal now is to find an optimal label field for all vertices inR. One important factor in doing this is

that we want to encourage regional label consistency. This is because too frequent label switching

between neighboring locations can lead to noisy artifacts due to illuminace change across frames.

Here I design a Markov Random Field (MRF) to optimize the label field. We denote vk as the

kth vertex inR and d(·, ·) as the Euclidean distance between two points. We define Ci(vk) ∈ R′i as

the closest point of vk inR′i, i.e.,

d(vk, Ci(vk)) = min{d(vk, u) | u ∈ R′i}. (5.5)

The color of vk is indicated by a label l(vk) ∈ {1...N}. Specifically, l(vk) = i means that the color

of vk is pulled from Fi by tracing the corresponding pixel of Ci(vk) in Fi. The label field {l} can

be computed by minimizing the following MRF objective function:

E(l) =
∑
k

S(lk) + λsmooth
∑
k

∑
k′∈N (vk)

(1− δ(lk, lk
′
)). (5.6)
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In the above equation, the scoring function S(·) is defined for each individual vertex’s label. It

prefers pulling color from the closest non-boundary points in {R′i}.

S(lk) =


d(vk, Ci(vk)) if Ci(vk) /∈ ∂Ri,

+∞ if Ci(vk) ∈ ∂Ri.
(5.7)

The second term of Eq. 5.6 encourages regional label consistency. N (vk) is defined as the

neighborhood around vk (see also Section 5.4 for its precise definition). δ(·, ·) is the Kronecker

delta function:

δ(i, j) =


1 if i = j,

0 if i 6= j.
(5.8)

Finally, λsmooth plays the role of weighting the two terms. The MRF function is minimized by the

Iterated Conditional Modes method (Besag, 1986).

5.4 Results

Since my major scientific contribution in this chapter is the geometry fusion algorithm discussed

in Section 5.2, I will mainly validate that part in the following. In addition to the thin shell

energy weights λbend, λmem, another important model parameter is the annealing parameter σ in

Algorithm 2. I selected these parameters by tuning on a test patient’s data (separate from the datasets

presented here). They were chosen as λbend = λmem = 1 and σ = 0.95.

Synthetic Data

Similar to the previous two chapters, I first validated our groupwise registration algorithm using

synthetic data. The same dataset of the 6 patients’ CT surfaces was used in this test. To simulate

the group of partially overlapping single-frame reconstructions, I generated for each patient’s

CT surface 20 partial surfaces by taking depth maps from different camera positions in the CT

space. Then I applied synthetic deformations to each of the 20 surfaces. The registration error was

73



measured as the average surface registration error (see Section 3.4 for its precise definition) over all

pairs of surfaces. Since the CT surface is textureless, I only incorporated geometric correspondences

(Eq. 5.1) in computing the mutual attraction forces.

Figure 5.7: Error plots of synthetic data for 6 patients.

Due to the unique template-free nature of groupwise TSD and the aforementioned difficulty in

estimating the mean surface, I only compared groupwise TSD with another method that can match

many partial surfaces without estimating the mean. The method being compared with is based

on the proposed spectral graph matching method in Chapter 3, with an extension from pairwise

surface matching to the groupwise situation. To be specific, geometric-feature-based inter-surface

links were added between every pair of surfaces, and the joint spectral graph matching was carried

out on an affinity graph made of N surfaces. Fig. 5.7 shows the comparison on the 6 patients’

data. My proposed groupwise TSD significantly reduced error and performed better than the

spectral-graph-based method.

Phantom Data

I further tested groupwise TSD with the phantom data. The production of the phantom model

was described in Section 4.4.2. The endoscopic video and 3D CT scan were collected for the model.

I produced SfMS reconstructions for 600 frames in the video, among which 20 reconstructions

were uniformly selected for geometry fusion. They were first downsampled to approximately 2500

vertices. Then they were aligned to the CT space via a similarity transform, whose transformation

parameters were derived by a Monte Carlo method (Murphy, 2012). Since the phantom is rigid,

there is supposed to be no deformation among the single-frame reconstructions, and they should
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all perfectly match the CT surface. Hence, the groupwise registration plays the role of unifying

inconsistent SfMS estimations. No outlier geometry trimming was performed in this test due to the

good lighting condition in the phantom environment.

Figure 5.8: A phantom endoscopic video frame (left) and the fused geometry (right) with color-
coded deviation (in millemeters) from the ground truth CT surface.

The registration error was measured slightly differently in this test. Since we have the CT

surface as a ground truth geometry fusion result, we define a vertex’s deviation as its distance to

the nearest point in the CT surface. The average deviation of all vertices is 1.24mm for the raw

SfMS reconstructions and is 0.94mm for the fused geometry, which shows that the registration

can help filter out inaccurate SfMS estimations. Moreover, I found that more than 20 surfaces for

geometry fusion will not further increase accuracy but will be computationally slower. Fig. 5.8

shows that the fused geometry resembles the ground truth CT surface in general. However, we can

see that the error is significantly smaller in the near-camera regions and larger in the more distant

regions. This is potentially caused by the flawed lighting model that is used in SfMS. Details of this

reconstruction artifact are discussed in (Wang et al., 2017).

Real Patient Endoscopograms

I produced endoscopograms for 8 video sequences extracted from 4 patients’ endoscopies. Each

video sequence has around 150 frames (3-4 seconds long), among which 20 frames were uniformly

sampled for geometry fusion. Outlier geometry trimming was used since lighting conditions were

often poor. Since no registration ground truth is available in this test, I used the overlap distance

(OD) introduced in (Huber and Hebert, 2003) as the accuracy metric. OD measures the average
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(a) (b)

(c) (d)

Figure 5.9: OD plot on the point cloud of 20 surfaces (a) before registration; (b) after registration;
(c) after outlier geometry removal. (d) The final endoscopogram.

surface deviation between all pairs of overlapping regions. A zero OD means that the common

regions among the N surfaces overlay with each other perfectly.

Before any registration, the initial OD of the 8 geometry fusion cases has an average of

1.6±0.13mm. After groupwise TSD, the average OD is 0.58±0.05mm. Finally after outlier

geometry removal, the average OD is 0.24±0.09mm. Fig. 5.9 shows the OD plot for one of the

cases. Fig. 5.10 shows several other produced endoscopograms.

(a) (b) (c) (d)

Figure 5.10: Four endoscopograms produced by the entire pipeline.
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5.5 Discussion

I have described a pipeline for producing an endoscopogram from a video sequence. An essential

step in the pipeline is the geometry fusion. I have proposed a novel groupwise surface registration

algorithm and an outlier-geometry trimming algorithm. I have demonstrated via synthetic and

phantom tests that my proposed N-body scenario is robust for registering partially-overlapping

surfaces with missing data. Finally, I produced endoscopograms for real patient endsocopic videos.

Future Work

1. A current limitation of the pipeline is that the video sequence is at most 3-4 seconds long

for robust SfM estimation. Future work involves fusing multiple endoscopograms from different

sub-sequences of the video sequence.

2. An interesting finding is that the groupwise attraction formulation in Section 5.2.1 can be

potentially interpreted from an entropy-minimization perspective. My observation is that if we

assume a vertex, together with its corresponding vertices, follows a 3D Gaussian distribution, Eq.

5.2 actually defines the entropy-minimizing position for that vertex when all its correspondences’

positions are fixed. This observation is enlightening because it can potentially bridge the gap

between my method with other existing entropy-based groupwise registration methods (Cates et al.,

2007). However, details of this idea need to be further examined.

3. A remaining problem is the convergence property of the groupwise registration; that is,

whether the surface deformations are guaranteed to converge. In Section 5.2.1, I have formulated

the registration in analog to the physical N-body problem. In that original problem, it has been

proven that the N bodies can converge to a stable solution in the limit of time when there is none of

certain types of singularities. However, the proof of the convergence in my proposed approach is

more complicated in two ways:

(a) The forces are simply vectors connecting correspondences rather than real gravity forces.

The vectors are also weighted by the confidence scores in the objective function.

(b) The correspondences change over iterations with geometric feature matching updates.
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For the above two reasons, it is not obvious that the deformations are guaranteed to converge.

However, one can imagine that when the surfaces are close enough, the geometric feature matching

is likely to produce constant correspondences. In that situation, due to the entropy-minimization

nature discussed above, each set of corresponding points will converge to a single location.

Even though the convergence is not theoretically guaranteed, I have not observed any divergence

situation in practice. In fact, the current setting of the algorithm is to stop after a fixed number of

iterations, so the final convergence property becomes less critical.
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CHAPTER 6

Anisotropic Elasticity Estimation

A key factor in Thin Shell Demons is that it uses elastic thin shell deformation energy as the

deformation regularization term. In fact, the idea of adopting elastic models dates back to (Bajcsy

and Kovačič, 1989) and has been extensively studied since then. Even though methods based on

some other regularization formulations (Christensen et al., 1996; Thirion, 1998; Beg et al., 2005)

have also produced reasonable registration results, the elasticity-model-based regularization is

particularly appealing because in many medical applications anatomical deformations are indeed

elastic processes caused by muscles or other forces.

The key to realistic physical modeling is to apply proper elasticity parameters. In the previous

two chapters, there are the only two physical parameters, namely the Young’s modulus E and

Poisson’s ratio ν, and these have been determined empirically and set to be identical everywhere on

the shell. This is equivalent to having two underlying assumptions in the thin shell model:

(1) Isotropy: for any local region in a shell, its elastic property is the same along any direction.

(2) Homogeneity: the elastic property is the same everywhere on the shell.

Eq. 2.21 exhibits the fact that {E, ν} are the only elastic parameters for a homogeneous and

isotropic shell.

In fact, the homogeneity and isotropy assumption has become prevalent in most existing

registration algorithms, where only a single regularization weighting parameter is used for the entire

domain. However, studies have shown that human tissue elasticity is both inhomogeneous (e.g.,

different tissue types show different stiffness) (Miga, 2003) and anisotropic (e.g., different stiffness



along and across the tissue fiber direction) (Kroon and Holzapfel, 2008). In our nasopharynx case,

we also observe such phenomena. For example, in a swallowing motion,

(a) The epiglottis primarily bends in the longitudinal direction and is much stiffer along the

transverse direction (anisotropy);

(b) The pharyngeal wall contracts and expands primarily in the transverse direction (anisotropy);

(c) The arytenoid cartilages are stiffer than the soft tissues (imhomogeneity), etc.

Figure 6.1: Anatomy of the pharynx: the three tissue types shown above have different anisotropic
elasticity properties.

These facts render the simple two-parameter thin shell model unrealistic.

The above argument motivates research interest in studying spatially varying tissue elasticity,

not only for registration, but also for simulation (Schneider et al., 2009) and pathology analysis

(Yang et al., 2016). However, most approaches for non-uniform elasticity estimation have to use a

sophisticated mechanical system equipped with a force generation/measurement capability, which

is not available in our registration setting. In our application, the only accessible data that can reveal

tissue elastic properties are the tissue deformations revealed in an endoscopic movie sequence.

Therefore, it is desirable to have a method that can estimate spatially varying anisotropic elasticity

parameters only using a set of known material deformations.

In this chapter, I will introduce a method for deriving elasticity parameters from deformations

that have happened within a patient (e.g., the above mentioned tissue deformation in a movie

sequence). I first propose to incorporate the thin shell model with orthotropic elasticity (Section

2.3.2). Next I propose the following two statistical frameworks:
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(1) Elasticity Estimation: I show that with some proper prior assumptions, spatially inhomoge-

neous and orthotropic elasticity parameters can be estimated from a set of known shell (surface)

deformations via a novel maximum-a-posteriori (MAP) optimization. This framework will be

discussed in Section 6.3.

(2) Registration and Elasticity Joint Estimation: With the first framework, I show that we can

jointly estimate the shell elasticity parameters and shell deformations in a groupwise registration

setting. Such a joint estimation provides significantly better registration accuracy than the old

groupwise TSD method, where only an isotropic homogeneous thin shell model is used. This joint

estimation framework will be discussed in Section 6.4.

In the geometry fusion step of the endoscopogram construction pipeline, the above two frame-

works can retrieve insightful tissue elastic properties from the deformations among the group of

single-frame reconstructions, and they can in turn improve the geometry fusion result.

6.1 Related Work

Closely related to our work is a research branch known as spatially-varying registration, the idea of

which is to let regularization strength be dependent on location. This can be modeled by spatially-

varying diffusion (Freiman et al., 2011), non-stationary Gaussian processes (Gerig et al., 2014)

or applying a non-stationary metric in the LDDMM setting (Vialard and Risser, 2014). Despite

their theoretical appeal, those methods explore the problem mostly from the computational aspect

and lack physical motivation, and they also don’t handle the anisotropic situation. The notion of

spatially-varying registration has been also used in elastic models (Davatzikos, 1997; Alterovitz

et al., 2006), but the elasticity parameters are only associated with a small number of known

segmented tissue types.

Automatic elasticity estimation has been studied in different medical applications (Misra et al.,

2010; Kroon and Holzapfel, 2008). With tissue displacements and external forces taken as known

values, the elasticity can be computed directly as an inverse problem of the Finite Element Method
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(FEM). Elastography is another widely used non-invasive procedure for determining local elastic

properties, but it either requires a force exertion/measurement device or a vibration actuation

mechanism (Green et al., 2013), which is often not available in other imaging modalities.

Therefore, modality-independent and purely image-based approaches are desired and have

been under investigation for several years. Miga et. al. (Miga, 2003) introduced registration-based

elastography to estimate tissue stiffness of an object given two images of it undergoing an elastic

deformation. Risholm et. al. (Risholm et al., 2011) extended this approach by forming a probabilistic

model over the registration parameters and inhomogeneous isotropic elasticity parameters. While

my proposed framework is related to theirs, mine is different by incorporating anisotropy and by

applying the model to surface data.

In a broader context, Statistical Shape Analysis seeks a statistical distribution or a low dimen-

sional subspace, called a shape space, for describing a given set of shapes (or shape deformations).

Most existing approaches (Bauer et al., 2014; Schulz et al., 2015) construct the shape space by

constraining the shape’s global appearance, such as deformation vector fields, point positions or

normal directions. Our framework provides an alternative perspective in the sense that it seeks the

underlying physical reason that can best explain the given shape deformations.

6.2 Orthotropic Thin Shell

In material science and solid mechanics, orthotropy is referred to as a special kind of anisotropy. In

the most general 3D situation, orthotropic materials have material properties that differ along three

mutually-orthogonal axes of rotational symmetry. In the thin shell situation, when out-of-tangent-

plane strain is neglected, the elastic model is reduced to 2D; that is, for each local point on a shell,

its elastic properties are symmetric with respect to two orthogonal axes (tangent vectors), known as

natural axes. Orthotropy has shown its effectiveness in modeling fibrous tissues in the situations

where the stiffness is usually different in a direction parallel to the fibers than in the transverse

direction (Kroon and Holzapfel, 2008; Schneider et al., 2009). This model is also a reasonable
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choice in our application, because most throat anatomies show different deformation flexibility

along two different directions (the epiglottis and pharyngeal wall usually show different amount of

motion along transverse and longitudinal directions). Moreover, unlike arbitrary anisotropy, the

orthotropic model has fewer model parameters to fit and thus tends to be more stable in producing

simulated deformations (Li and Barbic, 2015).

Details of thin shell mechanics were introduced in section 2.3. To remind the readers, local

elasticity of a point on a shell is characterized by a 3×3 positive definite matrix C, called a stiffness

matrix. The C matrix can be an arbitrary positive definite matrix for general anisotropy. In the

special case of orthotropy, if we parameterize all the quantities using a local coordinate frame made

by the natural axes, the stiffness matrix can be written as the following simplified form with many

zero entries:

C =


c1 c2 0

c2 c3 0

0 0 c4

 =
1

1− νxyνyx


Ex νvuEx 0

νxyEy Ey 0

0 0 2Gxy(1− νxyνyx)

 , (6.1)

where {Ex, Ey} are the Young’s moduli along the natural axes, {νxy, νyx} are the Poisson’s ratios,

and Gxy is the shear modulus. In the following text, I will use C to specifically denote such a

simplified matrix, called the canonical orthotropic stiffness matrix. Such matrices live in the positive

definite matrix space, denoted as SPDC .

Figure 6.2: A thin shell model: for a local point, the elastic properties on the tangent plane (blue)
are symmetric with respect to two natural axes. The local strains may be parameterized by any other
orthogonal frame. The angle, θ, between the two frames is known as the canonical angle.
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With the stiffness matrix, the local thin shell deformation energy is measured by theW function:

W (ϕ, κ, C) = λmemϕ
TCϕ+ λbendκ

TCκ, (6.2)

where ϕ = [ϕxx, ϕyy, ϕxy]
T is the tangential Cauchy-Green strain tensor characterizing local

stretching, κ = [κxx, κyy, κxy]
T is the shape operator difference characterizing local bending (local

curvature change), and {λmem, λbend} are the global mixing weights determined by shell thickness

(the same definition as in Chapter 4).

Rotation of Frame. When σ and ε are parameterized under an arbitrary orthogonal frame (Fig.

6.2) instead of rotated into the natural axes, we have the following relationship:

 εxx εxy

εxy εyy

 =

 cos(θ) sin(θ)

−sin(θ) cos(θ)


 ε′xx ε′xy

ε′xy ε′yy


 cos(θ) −sin(θ)

sin(θ) cos(θ)

 , (6.3)

where {ε′αβ} is the strain tensor parameterized under an arbitrary orthogonal frame and θ is the

rotation angle between the two frames, known as the canonical angle. The same rotational

relationship applies for σ. Combining with Eq. 2.20, the stiffness matrix under an arbitrary frame is

C ′ = R−1CR, where

R =


cos(θ)2 sin(θ)2 2cos(θ)sin(θ)

sin(θ)2 cos(θ)2 −2cos(θ)sin(θ)

−cos(θ)sin(θ) cos(θ)sin(θ) cos(θ)2 − sin(θ)2

 . (6.4)

In other words, the combination of C and θ uniquely determines the local orthotropic stiffness

matrix parameterized under an arbitrary frame. The associated W deformation energy function

becomes

W (ϕ, κ, C, θ) = λmemϕ
TC ′ϕ+ λbendκ

TC ′κ, (6.5)

84



6.3 Elasticity Estimation via MAP

In the registration setting described in Chapters 4 & 5, both the material deformations and material

elasticity are unknown variables. In this section, we first assume the deformations are given and

investigate only elasticity estimation. The joint estimation of deformation and elasticity will be

discussed later in the next section.

We assume some observed tissue deformations are the realization of tissue elasticity of a single

patient. Then a common way to estimate elasticity parameters is to solve an inverse problem

given such deformations and given external force measurements (how much force is applied to the

material to induce the deformation). However, when only the material deformations are available,

the parameter estimation can be highly ill-posed. Therefore, I opt for energy-based models that are

commonly used in statistical mechanics (Jaynes, 1957). In these models high probability states

are associated with low energy configurations. Here I propose a Physical-Energy-Based Markov

Random Field (MRF) model. The idea is to find a set of elasticity parameters to “best explain” the

observed deformations from a probabilistic point of view, which indicates that the associated total

deformation energy has to be minimized.

6.3.1 Problem Statement

Given a reference shellM and a set of N observed deformations Φ = {Φα :M→ R3|α = 1...N},

our goal is to find the canonical orthotropic stiffness matrix function C : M → SPDC and the

canonical angle function θ : M → S1, namely the orthotropic elasticity parameters of every

location on the shell. To simplify the problem, the continuous shell M is first discretized to a

triangle-mesh {T j|j = 1...M} with M triangles. Then each triangle T j is associated with its own

local elasticity parameters (Cj, θj). Each deformation Φα is reparameterized locally on the tangent

planes (triangles); that is, for each deformation Φα, each triangle T j has its own local stretching

strain ϕαj and bending strain καj . In other words, the group of deformations {Φα|α = 1...N}

are represented by the set of local strains {ϕαj, καj|α = 1...N, j = 1...M}. Finally, the goal is
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to estimate the set of elasticity parameters (C,θ) = {Cj, θj|j = 1...M} for all triangles from the

given set of strains {ϕαj, καj|α = 1...N, j = 1...M}.

6.3.2 The MRF Model

My idea is that the local elasticity parameters for a triangle should yield small deformation energy

for the associated local strains. Meanwhile, we assume the parameters should vary smoothly across

the shell. Therefore, I build an MRF model on the dual graph of the triangle mesh as shown in Fig.

6.3. Each node on the graph represents the elasticity parameters to be estimated for the underlying

triangle. We want to find (C,θ) to maximize the posterior distribution p(C,θ|Φ):

p(C,θ|Φ) ∝ p(Φ|C,θ)p(C,θ). (6.6)

Figure 6.3: A Gaussian MRF model with nodes (white) defined on the dual graph (blue) of a triangle
mesh. Node j (triangle T j) is associated with unknown variables (Cj, θj) and a set of observed
variables {ϕαj, καj|α = 1...N}

Likelihood. The likelihood p(Φ|C,θ) is associated with the total deformation energy of

all observed deformations. Assuming local deformation energy follows independent Boltzmann

distributions, I design the likelihood as the following:

p(Φ|C,θ) =
∏
α

∏
j

p(ϕαj, καj|Cj, θj) ∝
∏
α

∏
j

exp(−W (ϕαj, καj, Cj, θj)) (6.7)
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We can see that after taking the negative logarithm of the above equation, this is equivalent to

the discrete version of Eq. 2.24, i.e., the total energy being the integration of local energies over all

triangles.

Prior. Now consider the prior distribution of p(C,θ), the second term of Eq. 6.6. In Bayesian

frameworks, having proper prior assumptions plays an important role in handling noisy data

observations. Here I make two types of heuristic prior assumptions: each node has its own per-

node prior function ψj , and each edge has an edge potential function ψij . Then the overall prior

distribution is designed in the form:

p(C,θ) ∝
∏
j

ψj(C
j)
∏
i,j

ψij(C
i, θi, Cj, θj). (6.8)

Per-Edge Prior. The ψij function models the spatial smoothness nature of the shell’s or-

thotropic property by penalizing the difference of stiffness matrices between neighboring nodes and

the smoothness of the natural-axes direction field. We assume C and θ are independent and design

ψij(C
i, θi, Cj, θj) ∝ exp(−d(Ci, Cj)2) · exp(−(pij(θ

i)− θj)2). (6.9)

In the first factor on the right-hand side, d(·, ·) is a proper distance metric for SPDC , which

encourages neighboring stiffness matrices to be similar. I use the Log-Euclidean metric (Arsigny

et al., 2006) for its computational convenience. Some other commonly used metrics include the

Affine-invariant (Pennec et al., 2006) and the Scaling-rotation metric (Jung et al., 2015).

In the second factor on the right-hand side, p(·) is the Levi-Civita parallel transport operation

(Crane et al., 2010) that transports the vector associated with θi on T i to the neighboring triangle

T j . Fig. 6.4 illustrates this discrete parallel transport on neighboring triangles. In that figure, we

use the x-y frame to denote the two natural axes. The natural axes are transported from T i to T j

to be compared with the ones in T j . The angle of rotation, (pij(θ
i) − θj), is measured by either

the x-axis rotation or the y-axis rotation. In doing this, we assume that the correspondence of the

two axis directions is well defined between neighboring locations; that is, in the above figure, the
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Figure 6.4: Illustration of discrete parallel transport between two neighboring triangles. The black
frames are the parametrization frames, and the colored frames are the natural axes. The natural axes
of T i (blue) are transported into T j and are compared with the natural axes of T j (green).

blue x-axis corresponds to the green x-axis. However, this assumption ignores the existence of

singularities, i.e., points that have isotropic elasticity. The mechanism in Fig. 6.4 does not apply to

those singular points because they don’t have preferred natural axes with the same stiffness along all

directions (Crane et al., 2010). In this dissertation, I leave this situation as an open problem and will

further study it in the future. In our application, we only deal with surfaces with boundary. Such

surfaces theoretically don’t have to have singularities. Therefore, we assume there is no singular

point, so Eq. 6.4 can be applied everywhere in the surface.

Per-Node Prior. A common challenge for image-based elasticity estimation without force

measurements is the scale ambiguity. For example, observing a large deformation can either indicate

a small material stiffness or a large force being applied. Thus, a direct energy minimization of

Eq. 6.7 without any scale constraint will lead to a trivial solution (zero-stiffness). To avoid this,

existing methods (Yang et al., 2016; Risholm et al., 2011) usually set a heuristic scale based on

prior knowledge and recover elasticity parameters only relative to that given scale. In my work, I

formulate this scale prior as the per-node prior function ψj . To be specific, I assume anisotropy is

distributed in a Gaussian sense with the isotropic case being the mean situation. Therefore, given an
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isotropic prior Young’s modulus E and Poisson’s ratio ν, I design

ψj(C
j) ∝ exp(−d(Cj, C̄)2), (6.10)

where C̄ is the commonly used isotropic stiffness matrix derived from E and ν. In this way, the

estimated orthotropic parameters are only relative to the given isotropic C̄.

MAP Analysis. Finally, we optimize the negative log posterior in the following form:

−log p(C,θ|Φ) =
∑
i,j

[λ1d(Ci, Cj)2 + λ2(pij(θ
i)− θj)2]+

∑
α

∑
j

W (εαj, καj, Cj, θj) +
∑
j

λ3d(Cj, C̄)2,

(6.11)

where the λ parameters are the global weights. Because the stiffness matrices are represented in the

Log-Euclidean form (Arsigny et al., 2006), the objective function is differentiable everywhere with

respect to (C,θ) and can be minimized via any gradient descent method.

6.3.3 A Toy Example.

In this subsection, I illustrate the use of the above elasticity estimation framework via a simple

toy example. We consider a bar-shaped surface shown in Fig. 6.5a. The ground truth elasticity

parameters on the surface, including both the orthotropic canonical stiffness matrices and natural

axes directions, were manually designed. Fig. 6.5b visualizes the two Young’s moduli along the two

natural axes directions respectively. The bar is more elastic at the center (inhomogeneity) and more

elastic along the vertical direction (orthotropy). The other elasticity parameters were set to satisfy

νxyνyx = 0.252 and Gxy = 2kPa. I simulated 20 synthetic deformations to the bar (Fig. 6.5d) by

first fixing its two ends at random positions as boundary constraints and then optimizing Eq. 6.7 to

solve for the deformations using ground truth elasticity. The resulting synthetic deformations were

taken as the group of observed deformations.
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Figure 6.5: (a) A reference bar-shaped surface. (b) The two ground truth Young’s moduli are
respectively color-coded across the surface. Red regions indicate smaller Young’s moduli (more
elastic). Each local Young’s modulus is associated with a natural axis direction (black vector fields)
(c) A surface deformation can be derived by first fixing its two ends at designated positions and by
optimizing Eq. 7 using ground truth elasticity. (d) The group of simulated deformations Φ.

Now we can perform the elasticity estimation using Eq. 6.11. The weighting parameters

{λ1 = 1, λ2 = 10, λ3 = 0.1} were chosen empirically to best fit this toy problem. I found that

the natural axes first have to be accurate to yield meaningful anisotropy, so I set a larger λ2 to

regularize the vector field. Other model parameters {λmem = 80, λbend = 10} and the isotropic

prior {E = 2kPa, ν = 0.25} were chosen the same as before.

I mainly investigated the estimation accuracy of the three most important parameters in the

orthotropic model: the canonical angle gives major anisotropic directions, and the two Young’s

moduli characterize the corresponding stiffness along the two directions. Fig. 6.6a shows the two

estimated Young’s moduli and the estimated natural axes directions. The average canonical angle

error is 0.74 degree, which shows we can successfully estimate the natural axes directions. Fig. 6.6b

shows that with the estimated orthotropic elasticity parameters the simulated deformation is more

accurate in the sense that the center-elastic part has a larger bending effect than the one simulated
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Figure 6.6: (a) Estimated Young’s moduli and the associated estimates of natural axes. (b) Simulated
surface deformations derived from ground truth elasticity (blue wireframe), estimated elasticity
(gray surface) and isotropic elasticity (red frame). (c) The two ground truth Young’s moduli (the
orange curves) and the two estimated Young’s moduli (the blue curves) on all faces.

from isotropic elasticity under the same boundary constraints. Finally, Fig. 6.6c quantitatively

shows the estimation error of the two Young’s moduli on all triangles. It is worth mentioning that

the magnitude of the estimation is dependent on the given scale of C̄, which means we will see

vertical fluctuation of blues curves given different choices of C̄.

6.4 Joint Estimation of Registration and Elasticity

In the groupwise registration analysis in Chapter 5, both the material deformations and elasticity

parameters are unknown variables. Formally, we want to investigate the joint probability of the

group of deformations Φ and elasticity parameters (C,θ), given a reference shellM and its many

deformed versions {Mα|i = α...N}. A common approach is to treat one set of variables, e.g.,

(C,θ), as latent variables and perform an Expectation-Maximization algorithm to estimate the

marginal posterior

p(Φ|M) =

∫
C,θ

p(Φ,C,θ|M), (6.12)

where M denotes the combination of the given dataM and {Mi|i = 1...N}.
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The EM algorithm (Murphy, 2012) seeks to find the mode of the above marginal posterior by

iteratively applying these two steps:

Expectation step (E step): Calculate the expected value of the log marginal posterior function,

with respect to the conditional distribution on latent variables (C,θ) under the current estimate of

the deformations Φ(k). Construct a so-called Q-function in the following form:

Q(Φ|Φ(k)) = EC,θ|M,Φ(k) [log p(Φ,C,θ|M)] (6.13)

Maximization step (M step): Update the deformations by maximizing the Q-function:

D(k+1) = arg max
Φ

Q(Φ|Φ(k)) (6.14)

The challenge in this EM algorithm is that the integral required in the expectation operation

of the E-step is intractable, so we cannot differentiate the objective function in the M-step. Many

existing works (Risholm et al., 2011; Zhang et al., 2013) proposed to first draw a large number

of samples from the conditional distribution on (C,θ) and then to use the sample average to

approximate the expectation operation. However, this Monte-Carlo-based approximation leads

to challenges in reliable and efficient sampling: for example, Gibbs sampling is computationally

expensive, and determining an appropriate burn-in period poses serious theoretical challenges.

Therefore, in this work, I opt to use the “mode approximation” trick to approximate the conditional

distribution on (C,θ). More precisely, I adopt the following approximation:

p(C,θ|M,Φ(k)) ≈ δ(C∗,θ∗), (6.15)

where

C∗,θ∗ = arg max
C,θ

log p(C,θ|M,Φ(k)). (6.16)
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In other words, the probability density over the entire distribution is aggregated to the position of its

mode. In this way, the Q function in the E-step can be approximated by

Q(Φ|Φ(k)) ≈ Q̂(Φ|Φ(k)) = log p(Φ,C∗,θ∗|M), (6.17)

and the M-step then becomes another MAP analysis on Φ:

D(k+1) = arg max
Φ

Q̂(Φ|Φ(k)) (6.18)

= arg max
Φ

[log p(Φ|C∗,θ∗,M) + log p(C∗,θ∗)] (6.19)

= arg max
Φ

[log p(Φ|C∗,θ∗,M)] (6.20)

The above approximations lead to a variant of the EM algorithm, which known as alter-

nating optimization or hard EM (Murphy, 2012). When applied in our application, we get our

registration/elasticity joint estimation framework:

1. Input: a reference shellM and a set of deformed shells {Mα|α = 1...N}. Initialize the

elasticity parameters to be C̄ everywhere.

2. In iteration (k), with the current estimate of (C(k),θ(k)), perform MAP to update Φ:

Φ(k) = arg min
Φ

[−log p(Φ|C(k),θ(k),M)] (6.21)

This step is essentially to perform surface registrations betweenM and {Mα|α = 1...N}

given the current estimate of the inhomogeneous and orthotropic elasticity. We assume this

groupwise registration can be decomposed into a group of independent pairwise registrations,

which means

p(Φ|C(k),θ(k),M) =
N∏
α=1

p(Φα|C(k),θ(k),M,Mα) (6.22)
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Therefore, we can update the deformation Φα of each registration independently. The pairwise

registration can be accomplished using Thin Shell Demons algorithm with the orthotropic

energy as deformation regularization.

3. Given the current estimate of Φ(k), perform the elasticity estimation framework introduced in

the previous section,

(C(k+1),θ(k+1)) = arg min
C,θ

[−log p(C,θ|Φ(k),M)], (6.23)

to update the elasticity estimation.

4. Iterate Steps 2 and 3 until convergence.

6.5 Experiments

Synthetic Head-and-Neck Data. I tested the two frameworks, namely the elasticity estimation

framework and the joint estimation framework, with synthetic deformations on 5 real patients’

head-and-neck CT data. For each patient, the CT segmentation surface was used as the reference

surface. The construction of simulated surface deformations was similar to the toy example: for

each patient’s CT surface,

(1) I manually assigned ground truth orthotropic elasticity parameters and natural axes directions

to the reference surface to reflect known anatomical facts: the epiglottis being stiffer than the

vallecula and the pharyngeal wall being more elastic cross-sectionally (Fig. 6.8).

(2) I simulated 20 synthetic deformations from 20 manually constructed boundary conditions.

These deformations include the expansion/compression of the pharyngeal wall and the opening/-

closing of the epiglottis.

Fig. 6.7 shows a CT surface and one of its deformed versions. To test the elasticity estimation

framework alone, I estimated the elasticity parameters of the reference surface directly from the
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Figure 6.7: A reference surface (gray surface) and one of its synthetic deformations (red wireframe).

(a) (b)

Figure 6.8: (a) Ground truth Young’s moduli along the two natural axes. The epiglottis (blue region
in the top figure) is set to be stiffer than the vallecula (yellow region in the bottom figure). (b)
Estimated elasticity using ground truth deformations.

above 20 simulated deformations. I tuned λ1 down to 0.1 to avoid overly smoothing the estimation.

All the other algorithm parameters were kept the same as in the toy example.

Fig. 6.8 shows the results for one case. We can tell that the general pattern of the two

Young’s moduli and the natural axes can be reasonably recovered, but the scale difference with the

ground truth suggests the proposed method only recovers parameters up to a scale relative to the

prior isotropic elasticity, which is consistent with our expectation in Section 6.3.2. Moreover, the

elasticity-smoothness term in Eq. 6.7 tends to yield blurred estimation. Due to these artifacts, the

average error over all facets for the two Young’s moduli are 0.41kPa and 0.38kPa respectively. The

average canonical angle error is 12 degrees.

To test joint estimation accuracy, I performed one iteration of the framework introduced in

Section 6.4. The 20 simulated deformations were used as ground truth deformations for the

registration. To be more specific, I first performed 20 independent registrations between the

reference CT surface and the 20 simulated surfaces using isotropic elasticity, followed by an
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elasticity estimation using the 20 resulting deformations. This gives estimated orthotropic elasticity

on the reference surface for second round registrations. Fig. 6.9 gives accuracy measurement under

different registration options. The error is computed as the average surface registration errors over

all 5 cases. The abscissa (x-axis) in Fig. 6.9 denotes the iterations within the Thin Shell Demons

registration, not to be confused with the overall joint estimation iteration.

Figure 6.9: Registration accuracy over registration iterations under different options. The 2nd-round
orthotropic registration (blue curve) performs better than the 1st-round isotropic registration (black).
Meanwhile, it is only slightly worse than the results derived using ground truth elasticity parameters.
This means further iterations won’t improve the accuracy too much.

The four curves give registration accuracy derived from four registration options.

(1) The cyan curve is the registration accuracy using ground-truth orthotropic parameters.

However, this is unachievable in situations where we can not get access to perfect elasticity

parameters.

(2) The red curve is the registration accuracy using orthotropic parameters estimated from

ground-truth (simulated) deformations. Since deformations are also unknown quantities in the joint

estimation setting, we can never be able to recover more accurate elasticity parameters with the

proposed elasticity estimation framework. In other words, this curve gives the accuracy upper-bound

for the joint estimation framework.

(3) The black curve is associated with the traditional isotropic registration. The isotropic

elasticity parameters were set to be C̄.
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(4) The 2nd-round orthotropic registration (blue curve) performs better than the 1st-round

isotropic registration (black). Meanwhile, it is only slightly worse than the red curve, which means

that further elasticity update won’t improve the results too much.

Figure 6.10: The 2nd-round orthotropic registration performs better than the isotropic registration
under different levels of noise.

I also tested the robustness of this joint estimation framework under the effect of noise. Different

levels of white Gaussian noise were added to all vertices. Fig. 6.10 shows that the 2nd-round

orthotropic registration performs better than the isotropic registration in all 4 cases.

Real Endoscopic Data. I further used the elasticity framework to investigate the pharyngeal

deformations contained in live nasopharyngoscopy. An endoscopic video provides direct visualiza-

tion of a patient’s pharyngeal surface and usually captures its rich swallowing motion. Elasticity

estimation on this frame-by-frame surface deformation can help us better understand tissue charac-

teristics and facilitate further analysis, such as the registration between the endoscopy and CT of the

same patient for radiation treatment planning.

With the pipeline introduced in Chapter 5, I first reconstructed the endoscopogram surface from

the video as the reference surfaceM. Using groupwise TSD, the endoscopogramM was fused

fromN individual single-frame reconstructions {Mα|α = 1...N} produced by Shape-from-Motion-

and-Shading. Groupwise TSD also yielded the set of deformations Φ = {Φα|α = 1...N} from

the endoscopogramM to each single-frame reconstruction. (Actually, groupwise TSD produces

a deformation field from each individual surface to the fused surface, but here I simply took its

inverse deformation field as Φα.) Finally, I applied the elasticity estimation framework to estimate
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orthotropic parameters from Φ andM. The algorithm parameters used in this experiment were

kept the same as before.

I tested on two patients’ endoscopic video data. For each video sequence I sampled 20 individual

frames focusing on the laryngeal region to produce the endoscopogram. Fig. 6.11 shows the results

are consistent with throat anatomy: the epiglottis and the arytenoid cartilage be stiffer than the

laryngeal region, the larynx being more elastic along the patient axial direction.

There are two potential uses of the estimated orthotropic parameters.

(1) The orthotropic parameters in the endoscopogram can be mapped back to each individual

single-frame reconstruction to perform a 2nd-round groupwise TSD with orthotropic energy function.

This is exactly the joint estimation framework discussed in 6.4, with the pairwise TSD replaced by

groupwise TSD. However, the mapping of orthotropic parameters between surfaces is beyond the

scope of this dissertation.

(2) The orthotropic parameters provide an improved regularization term for the registration to

the CT surface.

Figure 6.11: (a) 3D endoscopogram surfaces reconstructed from video. Red circles indicate the
arytenoid cartilage. Green circles indicate the epiglottis. (b)(c) Estimated Young’s moduli and the
associated natural axes.
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6.6 Discussion

I have introduced a statistical framework to estimate inhomogeneous and anisotropic elasticity

parameters of a thin shell structure from a set of its known deformations; An MAP analysis on a

novel MRF-based probability distribution can automatically recover both the orthotropic stiffness

matrix and natural axes directions of every location on the shell. I have shown that this framework

can be further used as a part in a joint registration and elasticity estimation framework. Both the

elasticity estimation framework and the joint estimation framework can be helpful in studying

within-patient deformations of anatomical surfaces. Despite the promising results shown in the

experiments, future work still has to address the following concerns:

1. In many situations anatomical surfaces are deformed by the underlying muscles, so it is not

appropriate to simply model the surface as a shell structure. The framework should be generalized

to the 3D volume situation.

2. I assume the observed deformations are the realization of tissue elasticity of a same pa-

tient. The framework is not applicable for cross-patient deformations, or any other non-physical

deformations.

3. The physical energy minimization part in Eq. 7 tends to produce stiffness that is less than the

prior. However, this may not be an issue in registration because only relative elasticity is needed for

spatially-varying registration.

4. In some applications, it is possible to also assign priors to natural axes directions. For

example, bone structures usually have different stiffness along the longitudinal and transverse

directions.

5. Umbilic points (isotropic regions) are not explicitly handled in this work.

6. Model parameters’ selection needs to be further studied.

7. In several real endoscopic cases, real tissue deformations were dominated by other non-

physical deformations (e.g., reconstruction errors). The applicability of the proposed framework in

this situation needs to be further examined.
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CHAPTER 7

CT/Endoscopy Surface Registration Revisited

The goal of CT/endoscopy fusion is to transfer the tumor-related information from the endo-

scopic video space to the 3D CT image space. As introduced in Chapter 1, the final step of such

data fusion is to register the endoscopic reconstruction surface with the CT segmentation surface.

Chapters 3 & 4 have respectively introduced two potential methods for this surface registration

task. In those two chapters, I have shown reasonable registration results with some early endoscopy

reconstructions derived from (Ahmed and Farag, 2006) and (Schönberger and Frahm, 2016). We

concluded that the quality of those reconstructions were poor, and I introduced in Chapter 5 our

improved reconstruction surface, named the endoscopogram. To work with our new reconstruction

data, we should revisit the CT/endoscopy registration problem while taking special properties of

endoscopograms into account.

Challenges. There are two major challenges we have to face in registering CT surfaces with

endoscopograms:

(1) The CT segmentation surfaces exists in the 3D space defined by the imaging system, and

their coordinates have an absolute scale measured in millimeters. The endocopogram, however, is

derived from Structure-from-Motion, which uses a reference camera coordinate system and only

recovers geometry up to a relative scale. Therefore, assuming that the endoscopogram is perfectly

reconstructed up to scale, there is a similarity transformation (rotation, translation, scaling) between

the CT space and the endoscopogram space. Such a transformation is only related to the two

imaging spaces and has nothing to do with patients’ tissue deformations. Furthermore, as will be

shown later, the depth-scale error in in the endoscopogram requires two more scaling parameters



in addition to the basic similarity transformation. Therefore, such parameters are essential for an

accurate computation of the later non-rigid tissue deformations.

(2) The throat conformation in the CT image might differ significantly from that in the en-

doscopic video. We observe in many cases that the throat is in a much more open position in

CT than in endoscopy. This is primarily because during the endoscopy time the presence of the

endoscope causes drastic swallowing motion of the patient. Another source of throat conformation

change comes from the patient’s posture change between the CT scan time and the endoscopy time.

During a CT scan, the patient is supine on a curved table, whereas during endoscopy the patient

is sitting straight up. Different gravity effects may cause significant shape change in the entire

pharyngeal region, thereby yielding large deformations between the endoscopogram surface and the

CT segmentation surface. Therefore, we should take gravity into consideration in the registration

process.

(3) I have briefly mentioned the missing patch and topology change situation in previous

chapters. Now let’s comprehensively summarize different sources of disparity between CT surfaces

and endoscopograms.

i Due to camera occlusion, some regions are not observed in the endoscopic video, leaving holes

in the endoscopogram. Therefore, there are surface patches in the CT surface that do not have

counterparts in the endoscopogram (Fig. 7.1 red).

ii The low-resolution CT image can not resolve fine anatomical structures due to the partial volume

effect, whereas in the high-resolution endoscopic frames, those structures can be identified and

reconstructed. In this situation, there are structures in the endoscopogram that do not have

counterparts in the CT surface.

iii The aforementioned patient posture change at the CT scan time can lead to large deformations

(usually large expansion of the pharynx), which can cause the tissues to collapse together.

Combined with the partial volume effect, such collapsed regions can not be easily segmented
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from the image. Depending on different situations, there will be missing patches either in the

CT surface or the endoscopogram surface.

(a) (b)

Figure 7.1: Different kinds of disparity between an endoscopogram and a CT surface. Red: missing
patches in the endoscopogram due to occlusion. Blue: missing parts in the CT surface due to the
partial volume effect. Green: missing parts in the CT surface due to tissue collapsing.

To conclude, we call all the above situations the disparity between the two surfaces. Both

surfaces have incompatible regions, which are surface patches that do not have corresponding parts

in the other surface. We should take such disparity into consideration in the registration process.

Contribution of This Chapter. In this chapter, I propose a quick engineering solution to

handle the first two challenges. For the disparity situation, Chapters 3 & 4 have discussed methods

that are moderately robust to missing patches (mostly represented as holes and truncations) without

explicitly estimating them. However, an explicit quantification of the disparity in the registration

process can provide the following two advantages:

(1) Having the disparity estimation, we can forbid feature matching in the incompatible regions,

thereby rendering the registration more robust. In addition to holes, this can also handle more

complex disparity situations, such as the tissue collapsing situation and the partial volume artifact,

both of which can not be sufficiently handled by the previous methods.

(2) In transferring the tumor location from the endoscopogram to the CT surface, we can relate

the disparity estimation with the certainty of the tumor transfer; that is, we are more certain about

the transfer in the compatible regions because these regions can be explicitly registered. We can still

predict deformations for the incompatible regions, but we are less certain about the tumor transfer

there.
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With the above motivations in mind, I propose a joint estimation framework that can simul-

taneously estimate registration (deformations between two surfaces) and disparity (incompatible

regions). The rest of the chapter will first briefly introduce several engineering solutions to the

CT/endoscopogram initial alignment problem and then elaborate on the novel joint estimation

framework.

7.1 Initial Alignment

This section proposes an engineering solution to initially align the endoscopogram into the CT space.

I particularly choose this endoscopogram-to-CT alignment direction because the later transferred

tumor will be in the CT space and thus will be directly usable for radiation treatment planning.

This initial alignment is designed to account for (a) the similarity transformation between the CT

imaging surface and the endoscopy camera space; (b) the general shape change of the throat caused

by the gravity.

A standard similarity transformation contains a 3D translation vector, a 3D rotation and a scaling

factor. However, I observe that a single scaling factor will not suffice in our situation. Therefore,

I propose to fit three factors for 3 coordinate axes respectively. The resulting initial alignment

therefore contains a translation, a rotation and three scalings. The reasons will be explained in the

following steps:

(1) Setting the z-axis. The coordinate system for the CT surface is well defined; the z-axis

direction corresponds to the patient’s longitudinal direction (along the throat). We assume the

longitudinal direction (z-axis) for the endoscopogram can be manually designated. After setting the

z-axes of the two surfaces, the remaining transformation parameters are a 3D translation vector,

three scaling factors and a rotation about the z-axis.

(2) Scaling and shifting of the z-axis. (Wang et al., 2017) have shown that the depth estimation

of the endoscopogram has a flawed scale, so I propose to fit a scale factor separately for the z-axis

to approximately correct for the depth scale in the endoscopogram. We assume the z-coordinates of
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Figure 7.2: The initial alignment pipeline.

two anatomical landmarks, namely the tip of epiglottis and the anterior commissure, are available

for both surfaces. Then the z-coordinates of the endoscopogram can be linearly scaled and shifted

such that the z coordinates of the two landmarks can match with those of the CT surface.

(3) Shifting in the x-y plane. The endoscopogram surface is shifted on the x-y plane, such

that the mean (x, y) coordinates match with those of the CT surface.

(4) Rotation about the z axis. A 2 × 2 second-moment matrix for each surface is derived

from the (x, y) coordinates of all vertices from that surface. An eigendecompostion on the second-

moment matrix yields two orthogonal eigenvectors, indicating the two major elliptical directions on

the x-y plane. A rotation is then applied to the endoscopogram to match its two eigendirections to

the ones of the CT surface.

(5) Scaling of the x-y axes. We assume the general shape change in the throat conformation

induced by the gravity can be approximated by an elliptical deformation on the x-y plane. Since

the major elliptical directions are already aligned in the previous step, we only need to scale the
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endoscopogram along the x-y axes respectively to match the corresponding eigenvalues; that is, the

two scaling factors on the x− y plane are

{

√
uxct
uxendo

,

√
uyct
uyendo

} (7.1)

where the u variables are the eigenvalues; for example, uxendo is the x-axis eigenvalue derived from

the second moment matrix of the endoscopogram.

Finally, Fig. 7.2 shows all the initial alignment steps. The output is a transformed endosco-

pogram, which will be non-rigidly registered to the CT surface.

7.2 Surface Registration with Disparity Estimation

As mentioned in the beginning of this chapter, disparity between the two surfaces will lead to

incompatible regions, surface patches that do not have correspondences in the other surface. This

section proposes a novel joint estimation framework that can simultaneously estimate registration

and incompatible regions.

To quantify the incompatible regions, we define two indicator functions I1, I2 for the two

surfaces S1, S2. An indicator function is a binary random field defined on vertices. The function

value (0 or 1) indicates whether a vertex has a correspondence in the other surface; that is, I1(x) = 0

means S1(x) does not have a correspondence in S2. To make the entire formulation symmetric,

I define correspondingly two deformation fields Φ1,Φ2 for the two surfaces. With the indicator

functions being latent variables, the goal of registration is to determine the two deformation fields

Φ1 and Φ2 that can align the compatible regions between S1 and S2. In other words, we only want

to register surface patches where the indicator function equals 1. In doing this, we also want to

determine the latent indicator functions, namely the incompatible regions.
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7.2.1 MAP via EM

In this chapter, I use α = {1, 2} to denote the combination of a quantity for both surfaces, i.e.,

Sα = {S1, S2}, etc.

Similar to the joint estimation framework discussed in Section 6.4, I propose to use the EM

algorithm to find the mode of the posterior on the deformation fields. This subsection describes the

high-level recipe for the EM procedure. Details of different terms in the following formulation will

be further explained in the next subsection. First, the posterior we want to optimize is

p(Φα|Sα) =
∑
Iα

p(Φα, Iα|Sα). (7.2)

This posterior models the probability of having Φα as the registration results given the surfaces. It

can be marginalized over the latent indicator functions. Since in our application an indicator function

is a finite-dimensional binary field, the integral associated with the marginalization becomes a

discrete summation. To find the mode of the above posterior, the EM algorithm first constructs

a Q-function, which is the expected value of the log posterior with respect to the conditional

distribution on Iα under the current estimate of the deformations Φα:

Q(Φα|Φ(k)
α ) = EIα|Sα,Φ(k)

α
[log p(Φα, Iα|Sα)]. (7.3)

When we assume the deformations Φα and Iα are independent, the Q-function can be rewritten as

Q(Φα|Φ(k)
α ) = EIα|Sα,Φ(k)

α
[log p(Sα|Φα, Iα) + log p(Φα) + log p(Iα)]− log p(Sα). (7.4)

Then we iterate between the following two steps:

E-step. The E-step computes the conditional distribution on Iα, given the current estimate of

the deformations Φα:

p(Iα|Sα,Φ(k)
α ) =

1

Z0

p(Sα|Φ(k)
α , Iα)p(Iα), (7.5)
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where Z0 is the partition function that is used to normalize the distribution. (In the following text, I

will always use Z0 to denote the partition function.)

M-step. Using the above conditional distribution, the M-step maximizes the Q-function (Eq.

7.4) to update the deformations:

Φ(k+1)
α = arg max

Φα
Q(Φα|Φ(k)

α ) (7.6)

= arg max
Φα

EIα|Sα,Φ(k)
α

[log p(Sα|Φα, Iα) + log p(Φα) + log p(Iα)] (7.7)

= arg max
Φα
{EIα|Sα,Φ(k)

α
[log p(Sα|Φα, Iα)] + log p(Φα)}. (7.8)

7.2.2 Likelihoods and Priors

The above EM formulation involves the computation of several probability distributions.

i. Likelihood p(Sα|Φα, Iα): This likelihood term is required in both the E-step (Eq. 7.5) and

the M-step (Eq. 7.8). In traditional image registration (Zitová and Flusser, 2003), the likelihood

term models how well an image deformation aligns a moving image with a target image. Similarly,

our likelihood term also models data matching. In particular, it models how well the deformations

align the compatible regions between the two surfaces. In other words, given the deformations, the

two deformed surfaces S ′1 = S1 ◦ Φ1 and S ′2 = S2 ◦ Φ2 should be close in the compatible regions.

Therefore, for a point x ∈ S ′1, where S ′1(x) gives its 3D coordinates, we define C1(x) as its

closest point in S ′2. Then the squared distance ‖S ′1(x) − C1(x)‖2 gives the quality of alignment

for that point. We define C2 vice versa. Finally, the likelihood is constructed as a Boltzmann

distribution:

p(Sα|Φα, Iα) =
1

Z0

exp(−γL(Sα,Φα, Iα)), (7.9)

L(Sα,Φα, Iα) =
∑
x∈S1

(I1(x) · ‖S ′1(x)− C1(x)‖2) +
∑
x∈S2

(I2(x) · ‖S ′2(x)− C2(x)‖2). (7.10)

In other words, we only penalize misalignment in the compatible regions.

In principle, the definition of this likelihood term should be identical for both E-step and M-step.

In the E-step (Eq. 7.5), the deformations Φα are taken as fixed values, and the indicator functions
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Iα are the unknowns, so the closest point operations only need to be computed once. In the M-step,

however, the deformations Φα are unknown variables to be optimized. This yields a challenge that

the likelihood term of Eq. 7.10, particularly the closest point operators Cα, is not differentiable with

respect to Φα, thereby preventing the use of any gradient-descent-based optimization method.

To this end, I observe that the likelihood term defined in Eq. 7.10 is closely related to the

likelihood term (Eq. 4.10 and Eq. 5.4) in the previous TSD formulation; instead of using the

closest point for measuring the quality of alignment, e.g., ‖S ′1(x) − C1(x)‖2, Eq. 5.4 uses the

geometric feature matching result, namely ‖Φ1(x)− f1(x)‖2. Recall that in the original groupwise

TSD formulation f1(x) denotes the attraction force vector exerted on x ∈ S1 derived by feature

matching. The computation of f can be predetermined based on the given surfaces Sα in their

original configurations and thus is independent of Φα. In the current situation, given the indicator

functions Iα, the feature matching should be performed only between the compatible regions, and

the associated resulting force vector should be denoted as f1(x; Iα). Therefore, the likelihood based

on geometry feature matching is

L̂(Sα,Φα, Iα) =
∑
x∈S1

(I1(x) · ‖Φ1(x)−f1(x; Iα)‖2)+
∑
x∈S2

(I2(x) · ‖Φ2(x)−f2(x; Iα)‖2). (7.11)

The advantage of the above likelihood over the likelihood in Eq. 7.10 is that it can be easily

differentiated with respect to Φα: given a set of indicator functions Iα, the above likelihood

becomes a quadratic function only on Φα. In other words, as long as Iα are fixed, the attraction

forces fα will be determined.

By comparing the above two likelihoods, my insight is that both likelihood definitions essen-

tially model the deviation between a vertex and its correspondence. In the E-step, with the fixed

deformations Φα estimated from the previous M-step, the two surfaces are already overlaid with

each other. Therefore, closest points more accurately determine correspondences. On the other

hand, the M-step is essentially re-performing a registration to compute the surface deformations

Φα, so correspondences derived from geometric feature matching are more reliable. Therefore, I
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propose to use Eq. 7.10 as the likelihood in the E-step and to use the Eq. 7.11 as the likelihood in

the M-step (Eq. 7.8).

ii. Prior on Indicator Functions p(Iα)

In computing the conditional distribution p(Iα|Sα,Φ(k)
α ), p(Iα) models our prior knowledge

of the indicator functions. Similar works (Chitphakdithai and Duncan, 2010; Pohl et al., 2006)

have been assuming that the prior distribution of indicator functions is spatially independent and

factorizable:

p(I) =
∏
x∈S

p(I(x)), (7.12)

where p(I(x)) defines a Bernoulli distribution on a single vertex x. The Bernoulli distribution is

the probability distribution of a binary random variable, which takes the value 1 with probability q

and the value 0 with probability 1− q, i.e.,

p(I(x)) =


q if I(x) = 0,

1− q if I(x) = 1.
(7.13)

The spatial independence assumption suggests the indicator function value (0 or 1) on a vertex is

not related to the function values of neighboring locations. The advantage of such an assumption

is that the expectation operation in the objective function (Eq. 7.8) becomes tractable. However,

for the same reason, the estimated indicator function is usually noisy, i.e., has frequent transitions

between 0s and 1s between neighboring locations. Therefore, it is desirable to have spatially smooth

estimations. With this motivation in mind, I formulate the prior as a Boltzman distribution in the

following form:
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p(I) =
1

Z0

exp(−βH(I)− λB(I)), (7.14)

H(I) =
∑
x

(1− p(I(x))), (7.15)

B(I) =
∑
x,y

(1− δ(I(x), I(y))). (7.16)

In the above equations, theH(I) function encourages the indicator function value of each individual

vertex to follow its own Bernoulli distribution. One has the flexibility in defining p(I(x)) according

to the application. For example, a reasonable Bernoulli prior for the endoscopogram would

encourage the function value of high curvature places to be zero because those places are likely to

be absent in the CT surface due to the partial volume effect. As a first trial, I simply applied the

same Bernoulli distribution to all the vertices.

In the B(I) function (Eq. 7.16), the Kronecker-Delta function (δ(i, j)) encourages the function

values to be consistent between neighboring vertices. This B(I) function can help producing

smooth indicator functions, but it also adds complexity to the overall conditional distribution (Eq.

7.5) and makes the expectation operation in the M-step (Eq. 7.8) not tractable anymore. In the next

subsection, I will discuss two approximations to handle such intractability.

ii. Prior on Deformations p(Φα): The prior of deformation fields is again formulated as the

thin shell energy. This term is independent of Iα, which means the deformation regularization is

applied to the entire surface domain. Even though we care mostly about the registration in the

compatible regions, this prior term can still predict the most probable deformation for the remaining

surface parts. Therefore, tumor transfer can still be achieved even if the tumor is located in the

incompatible regions.
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7.2.3 Two Approximations in EM

Consider the conditional distribution

p(Iα|Sα,Φ(k)
α ) =

1

Z0

exp(−γL(Sα,Φα, Iα)− βH(I)− λB(I)). (7.17)

Due to the spatial smoothness term B, this distribution cannot be factorized onto individual vertices,

so the expectation operation in the objective function of Eq. 7.8 is not tractable. Now, I will

introduce two approximations to handle such intractability.

Mode Approximation (Hard EM)

Adopting the same mode approximation trick discussed in Section 6.4, I use the mode of

p(Iα|Sα,Φ(k)
α ) to represent the whole probability distribution (see details of the mode approximation

idea in Section 6.4). This yields the following registration/disparity joint estimation framework:

1. Input: The two indicator functions I(0)
α are set to 1 everywhere on the two surfaces.

2. M-step: In iteration k, with the current estimate of I(k)
α , the M-step becomes

Φ(k+1)
α = arg max

Φα
{EIα|Sα,Φ(k)

α
[log p(Sα|Φα, Iα)] + log p(Φα)} (7.18)

≈ arg max
Φα

[log p(Sα|Φα, I(k)
α ) + log p(Φα)] (7.19)

≈ arg max
Φα

[−γL̂(Sα,Φα, I(k)
α ) + log p(Φα)] (7.20)

The above objective function is equivalent to a groupwise TSD registration between the two

surfaces. As explained in the last subsection, the negative log likelihood L̂ is essentially a

data matching term derived from attraction forces between the compatible regions. In other

words, we only want to register the compatible regions indicated by I(k)
α .
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3. E-step: With the new update of deformations Φ
(k+1)
α , find the mode of p(Iα|Sα,Φ(k+1)

α ):

I(k+1)
α = arg max

Iα
logp(Iα|Sα,Φ(k+1)

α ) (7.21)

≈ arg max
Iα

[−γL(Sα,Φ
(k+1)
α , Iα)− βH(Iα)− λB(Iα)]. (7.22)

The above optimization can be solved by Iterated Conditional Modes (Besag, 1986).

4. Iterate to Step 2 until convergence.

In the end, besides the estimated deformations, the indicator functions I(k)
α in the last E-

step are taken as the final estimation of the latent variables. The advantage of using a mode

approximation is that it can achieve fast expectation computation by considering only the mode of

a distribution. However, for the same reason, the mode cannot adequately characterize the entire

probability distribution and cannot model the distribution uncertainty. These facts can lead to

inferior expectation approximation. For example, (Allassonnière et al., 2007) have shown that the

mode approximation scheme for diffeomorphic atlas building performs poorly under image noise.

Therefore, I will discuss another expectation approximation method next.

Monte-Carlo Approximation (Monte-Carlo EM)

The Monte-Carlo approximation has been extensively used in the EM algorithm for intractable

expectations. The idea is that in the E-step, we first sample a large number of samples, usually

by a Markov-chain Monte-Carlo (MCMC) sampler, from the conditional distribution of Eq. 7.17.

Then in the M-step, the expectation can be effectively approximated by the sample average. It

can be proven that with sufficient samples the sample average converges to the true expectation.

This variant of EM is known as Monte-Carlo EM. It is worth mentioning that the Monte-Carlo

approximation is more preferable in this situation than in the previous registration/elasticity joint

estimation framework because

(a) We only need to estimate a binary variable for each vertex, whereas we need to estimate 5

continuous variables per vertex in the previous elasticity/registration joint estimation framework.

The sampling space is much smaller in this case.
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(b) A Markov-chain Monte-Carlo (MCMC) sampler for continuous random fields requires an

effective proposal distribution, which is theoretically challenging to obtain. Moreover, elasticity

parameters live on the manifold of positive definite matrices, and MCMC samplers are generally

not well developed for manifold data. However, MCMC for binary random fields can be effectively

carried out with the “single-flip” trick that is commonly used in sampling the Ising model (Newman

and Barkema, 1999) (flipping the state of a random single vertex at each time).

To apply Monte-Carlo EM in our situation, we get the following registration/disparity joint

estimation framework:

1. Input: The two indicator functions I(0)
α are initially set to 1 everywhere on the two surfaces.

The deformations Φ
(0)
α are initially computed by

Φ(0)
α = arg max

Φα
{−γL̂(Sα,Φα, I(0)

α ) + log p(Φα)}. (7.23)

The above initialization step essentially computes a groupwise TSD registration between the

two surfaces without considering disparity.

2. E-step: In iteration k, with the current estimate of deformations Φ
(k)
α , we sample a large

number of samples from p(Iα|Sα,Φ(k)
α ). In the end, we get {I1

α, ..., INα }, where N is the

number of samples. Precisely speaking, each sample I iα contains two indicator functions

defined for the two surfaces. The Metropolis-Hastings algorithm (Newman and Barkema,

1999) is a popular method for sampling from a distribution in the form of Eq. 7.17.

3. M-step: With the N samples, the M-step becomes

Φ(k+1)
α = arg max

Φα
{EIα|Sα,Φ(k)

α
[log p(Sα|Φα, Iα)] + log p(Φα)} (7.24)

≈ arg max
Φα
{ 1

N

N∑
i=1

[log p(Sα|Φα, I iα)] + log p(Φα)} (7.25)

≈ arg max
Φα

[
−γ
N

N∑
i=1

L̂(Sα,Φα, I iα) + log p(Φα)] (7.26)
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The first term in Eq. 7.26 is the average likelihood over all sampled indicator functions.

4. Iterate to Step 2 until convergence.

Unlike the previous mode-approximation, in the last E-step, we do not use any single-point

estimation of p(Iα|Sα,Φ(k)
α ). Instead, the sample mean 1

N

∑N
i=1 I iα is used as the expectation of the

indicator functions.

7.3 Tumor Transfer

The ultimate purpose of the CT/endoscopogram registration is tumor transfer. To be specific, a

tumor is first circled on the endoscopogram surface. Then its location is carried over to the CT

space using the deformation fields computed by the proposed registration method. Now we assume

that S1 is the endoscopogram and S2 is the CT surface, and that we have computed the deformations

Φ1 and Φ2 between the two surfaces. In other words, the two deformed surfaces S ′1 = S1 ◦ Φ1 and

S ′2 = S2 ◦ Φ2 are well aligned in the compatible regions. In order to transfer the location of a point

x ∈ S1 from S1 to S2, we essentially need to compute the deformation field Φ1 ◦ Φ−1
2 . In other

words, the location S1(x) is first carried over by a forward deformation Φ1 onto S ′1(x). Since S ′1 and

S ′2 are already registered, the location of S ′1(x) is further carried over by the inverse deformation

Φ−1
2 onto S2.

One problem in doing this is that the inverse deformation field Φ−1
2 is defined on the discrete

vertex domain of S ′2, thereby not directly applicable to S ′1. To that end, I simply use a kernel

regression (Bierens, 1994) to interpolate the deformation field Φ−1
2 into the domain of S ′1.

A special case is that the circled tumor is located in the incompatible regions of the endosco-

pogram. Even though the deformation field is computed for the entire endoscopogram domain,

we are less certain about the deformation in the incompatible regions because those regions are

not explicitly registered to any part of the CT surface, and the deformation estimation in those

regions is only based on the thin shell regularization. For the clinical purpose, a potential solution is

to associate the transferred location with a “certainty” or “tolerance” measurement based on the
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indicator function values. This part of work is still under investigation and will be integrated into

the software under development for the upcoming clinical test.

7.4 Results

In this section, I will first show the strength of the proposed joint estimation framework with

synthetic tests and then demonstrate its use in real patient cases.

Model parameters of the conditional distribution.

We first need to determine the q parameter of the Bernoulli distribution (Eq. 7.13). It controls

how likely a vertex is classified to be an incompatible vertex without using any knowledge of the

surface registration quality.

Another three important model parameters include the three weighting factors γ, β, λ in the

conditional distribution p(Iα|Sα,Φ(k)
α ). Respectively they weight the likelihood, the per-node

Bernoulli prior and the smoothness prior. In both hard EM (mode-approximation) and Monte-Carlo

EM, the relative scale among the three parameters is critical because it reflects our beliefs about the

indicator functions; as examples, should the prior dominate the likelihood, or how smooth do we

want our binary field to be.

Besides the relative scale of the three parameters, their overall magnitudes also play an important

role. A simple rearrangement of Eq. 7.17 yields

p(Iα|Sα,Φ(k)
α ) =

1

Z0

exp(−s(γ
s
L+

β

s
H +

λ

s
B)). (7.27)

We can see that sum of the three parameters, s = γ + β + λ, determines the concentration of the

probability density function. In other words, s reflects how much uncertainty is built into the above

conditional distribution.

All the above parameter-selection criteria are conceptually reasonable but quantitatively vague,

so it is complicated to find the optimal model parameters. The computational complexity of

Monte-Carlo EM also renders it impossible to exhaustively traverse the model parameter space.
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In this research, I have not had time to further explore the parameter-selection part. However, an

observation is that under various parameter settings all the following quantitative results show a

similar relative pattern. Therefore, using the more time-efficient mode-approximation approach, I

tuned the parameters to achieve the best registration accuracy on a separate synthetic surface pair.

In the following experiments, I set the parameters to be q = 0.9, γ = 1, β = 5, λ = 2.

7.4.1 Synthetic Tests

This subsection presents synthetic experimental results. Four surface pairs were respectively created

from four patients’ CT data. For each CT segmentation surface, a synthetic deformation was

manually applied based on the same principles discussed in previous chapters. Then incompatible

regions were manually placed in both the original surface and the deformed surface. The simulated

disparity included the following:

(a) Removal of high curvature regions to simulate the partial volume effect;

(b) Bridging anatomical structures to simulate tissue collapse;

(c) Creating truncations and holes to simulate camera occlusion.

Since both the deformation and the incompatible regions were manually constructed, the ground

truth for both entities was available. Here I tested three registration options: (a) registration without

disparity estimation (groupwise TSD), (b) joint estimation via mode approximation (Hard EM) and

(c) joint estimation via Monte-Carlo approximation (Monte-Carlo EM). To remind the readers, a

straight groupwise TSD (option (a)) directly estimates the two deformation fields. The two joint

estimation approaches (option (b) and (c)) iterate between groupwise TSD and the modeling of the

conditional distribution of Eq. 7.17 via mode-approximation or Monte-Carlo approximation. I will

show in the following that the two joint estimation approaches are superior.

Registration Accuracy

The following table gives the registration accuracy of the three registration options. For the two

joint estimation approaches, I performed 10 iterations of the EM algorithm. The registration results
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Table 7.1: Surface registration error (mm)
Registration Options Patient 1 Patient 2 Patient 3 Patient 4

Initial Error 3.64±1.42 3.4±1.8 5.0±1.5 4.8±1.44
Groupwise TSD 0.67±0.42 0.93±0.39 1.52±0.85 1.38±0.98

Hard EM 0.59±0.4 0.75±0.45 0.85±0.46 1.05±0.64
Monte-Carlo EM 0.54±0.36 0.63±0.4 0.71±0.43 0.95±0.51

Figure 7.3: Convergence curves of the average surface registration error.

of the last iteration are given in the following table (the last two rows). The error was measured as

the surface registration error.

We can see that registration/disparity joint estimation achieved much more accurate registration

results than groupwise TSD alone. Meanwhile, for the two joint estimation approaches, Monte-Carlo

EM performs slightly better than hard EM. As explained before, this accuracy improvement comes

from the fact that the Monte-Carlo approach models the uncertainty of the conditional distribution

of Eq. 7.17 and better approximates the expectation by performing a sample average operation

instead of considering just the mode.
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For the two EM variants, I further plotted the surface registration error averaged over the four

patients. The blue curve in Fig. 7.3 shows that the error measurement of the Monte-Carlo EM

approach converges nicely through EM iterations. However, the slight rise of the orange curve after

iteration 6 indicates that the hard EM approach might not converge to the ground truth.

Disparity Estimation Accuracy

For the two joint estimation approaches, I have also investigated their performance in estimating

the incompatible regions. For the hard EM approach, the mode of the conditional distribution Eq.

7.17 in the last EM iteration is computed as the final estimation of the latent variable Iα. For the

Monte-Carlo EM approach, the sample mean of Eq. 7.17 in the last EM iteration is first computed

and then the final binary field is derived by thresholding the sample mean at 0.5. The error is

measured as the total number of wrong estimations on the binary variables. Assuming the I∗α give

the ground truth binary fields,

error =
∑
x

|I1(x)− I∗1 (x)|+
∑
x

|I2(x)− I∗2 (x)|. (7.28)

Table 7.2: Disparity estimation accuracy of the two joint estimation approaches
Patient 1 Patient 2 Patient 3 Patient 4

Number of vertices 2088 3119 4721 5012
Number of incompatible vertices 823 580 1199 1236

Hard EM 143 125 243 239
Monte-Carlo EM 111 113 206 195

We can clearly from Table 7.2 see that Monte-Carlo EM is better at modeling the latent variables

by the sampling procedure. Fig. 7.4 further shows that the disparity estimation error averaged over

the 4 patients reduces through EM iterations.

Fig. 7.5 shows a set of qualitative results for a synthetic surface pair. The final estimations of the

two binary fields derived from hard EM and Monte-Carlo EM are respectively shown in Fig. 7.5ii

and Fig. 7.5iii. In particular, we can see from surface 2 that the Monte-Carlo-based estimation is

smoother and more accurate (reflected in the circled regions). Furthermore, the sampling procedure
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Figure 7.4: Convergence curves of the average disparity estimation error.

(a) Surface 1:

(b) Surface 2:

Figure 7.5: The upper row and the bottom row respectively show two surfaces to be registered in
one synthetic case. From left to right: ground truth indicator functions, mode-derived indicator
functions, Monte-Carlo-derived indicator functions, uncertainty maps.

of the latent binary fields in Monte-Carlo EM yields a byproduct, which is the sample covariance.

The sample covariance of a binary random field forms a covariance matrix. The diagonal entries of
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that matrix are the variances (uncertainty) of the indicator function values on each vertex. When

plotted on a surface, this gives the so-called uncertainty map. Fig. 7.5iv shows a pair of uncertainty

maps associated with the two surfaces. We can see that the largest uncertainty exists along the

boundary between the 0-regions and 1-regions. In other words, we are not certain about the places

where the transitions between 0 and 1 happen.

One significant drawback of Monte-Carlo EM is that computing the sample average of the

likelihood is extremely slow because it involves N times of geometric feature matching for the

N samples. It took around 4 hours on a i7-3770k@3.5GHz CPU CPU to run 10 EM iterations

with each surface having around 2000 vertices, whereas the hard EM approach only took around

5 minutes. Therefore, depending on the application, one needs to determine whether to sacrifice

computational efficiency or registration accuracy in choosing between hard EM and Monte-Carlo

EM. In our case, radiation treatment planning does not require real-time computation, so in the

following real patient experiments, Monte-Carlo EM was always used to produce registration

results.

7.4.2 Real Patient Data

CT/endoscopogram registration was carried out for 4 real patients. For each patient, the endosco-

pogram was first aligned to the CT space using the method introduced in Sect 7.1. Then Monte-Carlo

EM was performed to estimate the non-rigid deformations. The resulting deformations of the 4

cases are ready to be used for a upcoming clinical test. Results of the clinical test will be reported

when available. Here, I show some qualitative results for one of four patients in Fig. 7.6 and

Fig. 7.7. This case is special in the sense that the left arytenoid in the endoscopogram was not

successfully reconstructed. This fact is reflected by the incompatible regions (circled in green in

Fig. 7.7) estimated in both the CT surface and the endoscopogram.
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Figure 7.6: left: an endoscopogram. Middle: a stripe pattern is plotted on the endoscopogram
surface. Right: The stripe pattern is transferred to the CT surface using the resulting deformations
Φ1 ◦ Φ−1

2 . The cyan regions correspond to incompatible regions in the CT surface that do not have
counterparts in the endoscopogram.

(a) Endoscopogram (the missing left arytenoid is circled in green)

(b) CT segmentation

Figure 7.7: (a) Upper row: an endoscopogram of a patient. (b) Bottom row: a CT segmentation
surface of the same patient. Left: Original endoscopogram and CT surfaces. Middle: the estimated
indicator functions. Right: the two uncertainty maps. Conclusion: in this case, the major incom-
patible regions were estimated to be on the arytenoids, especially the left one. This is because the
arytenoids in the endoscopogram were badly reconstructed.

7.5 Discussion

In this chapter, I have particularly dealt with the registration between a CT surface and an endosco-

pogram for the purpose of tumor transfer. First, an initial alignment strategy has been proposed

to incorporate a translation, a rotation and three scaling factors to align the endoscopogram to the

CT space. Then different sources of disparity between the two surfaces have been summarized.
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To handle disparity, I have extended groupwise TSD into a joint estimation framework, where

both registration and incompatible regions can be estimated. Based on hard EM and Monte-Carlo

EM, I have developed two different variants of the joint estimation approach. I have shown with

synthetic data that the two joint estimation approaches performs better than groupwise TSD alone.

In particular, Monte-Carlo EM can produce superior accuracy in both registration and disparity

estimation. However, the major drawback of Monte-Carlo EM is that it usually takes hours of

computation.

Remaining Problems

(1) Usually in an EM framework, the prior on the latent variables can significantly affect the final

estimation. In this dissertation, I have simply applied a non-informative prior (a uniform Bernoulli

distribution) on the binary indicator functions. One can imagine curvature-related priors can be

assigned to the endoscopogram indicator function to model the partial volume effect. Moreover, I

have observed that certain anatomical regions (the tip of epiglottis and the pyriform sinus) are more

likely to collapse under deformations. Such observations can also be formulated as a prior on the

incompatible regions.

(2) One theoretical problem is that the formulation of the likelihood is different in the E-step

and M-step. Future work should investigate how much this will affect the estimation.

(3) The inefficiency of Monte-Carlo EM comes from repetitive feature matchings for all sampled

indicator functions. The power of parallel computing needs to be explored to the maximum extent.

There are two major computational steps in Monte-Carlo EM that can be paralleled: (a) The feature

matching procedure itself involves extensive but independent pairwise vertex matchings. (b) Feature

matchings for different sampled indicator functions are entirely independent and parallelizable.

(4) Currently the effect of gravity is modeled by the proposed ad-hoc solution, namely the

different scaling factors in the x-y plane. A more complex anatomical model of the head-and-neck

region should be explored to simulate the deformations caused by gravity.
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(5) Model parameter selection needs to be further investigated. Some existing methods (Zhang

et al., 2013; Awate and Radhakrishnan, 2015) have formulated the model parameters also as latent

variables and estimated them automatically. Such methods can be considered in our case.

(6) From the 4 synthetic cases, we can observe slight improvements from Monte-Carlo EM.

However, it is not clear whether such improvements are statistically significant. Further statistical

hypothesis tests should be carried out.
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CHAPTER 8

Conclusion and Discussion

This chapter reviews the contributions of this dissertation in Section 8.1. This is followed by a

discussion of several important issues related to this dissertation in Section 8.2. Section 8.3 lists

some remaining theoretical and technical questions that need to be solved in the future.

8.1 Summary of Contributions

This section revisits the thesis and claims laid out in Chapter 1 and presented through Chapters 3-7.

Each contribution is restated along with a discussion of how it was applied in the application of

CT/Endoscopy fusion.

1. A novel geometric feature descriptor has been designed to capture rich curvature information

around a local patch.

Anatomical structures in the throat have distinguishable shapes. A reliable registration of

pharyngeal surfaces should be able to recognize similarity between such geometric structures.

A geometric feature descriptor has been proposed in Chapter 3 to collect multi-scale curvatures

in a local region. Along with some other informative geometric entities, such as principal

and normal directions, the proposed descriptor can successfully generate distinct geometric

signatures at different throat regions. A simple synthetic example has shown that a direct

pairwise feature matching strategy can already reasonably estimate a small set of matching

points between surfaces. With these matchings, the following two proposed registration



methods, namely the joint spectral graph matching method and Thin Shell Demons, have

achieved successful registration results.

2. An improved spectral-graph-matching method has been proposed for matching partial sur-

faces with complete surfaces.

Based on a recently proposed joint spectral graph matching method, an improvement has

been developed in Section 3.3 by incorporating the above geometric feature matching points.

The matchings were added as inter-surface links of a joint affinity graph. The improved

method has been tested with the registration between a CT segmentation and an endoscopic

reconstruction. Experiments have been performed on 24 synthetic surface pairs and 3 real

patients’ endoscopic reconstructions and CT surfaces. Results have shown that geometric-

feature-based links outperform the traditional Euclidean-distance-based links.

Spectral graph matching for surfaces with different intrinsic geometry was an untouched

area. My results have first indicated that the improved joint spectral matching is robust for

partial surfaces with holes and truncations but that the method still fails under severe topology

changes, such as bridging.

3. A novel physics-motivated registration method, named Thin Shell Demons, has been proposed.

The method incorporates both geometric feature information and a thin shell physical model

to produce realistic deformations between surfaces.

There is usually a significant intrinsic geometry difference between CT and endoscopic

surfaces, caused by the partial volume effect, camera occlusion and tissue collapsing. This fact

suggests that spectral methods are inherently not applicable. A deformation-based registration

method should be adopted instead. Chapter 4 introduced a novel surface registration method,

Thin Shell Demons (TSD), that directly seeks a deformation between two surfaces. Energy

based on the thin shell model has been adopted as a deformation regularization term for

producing physically plausible surface deformations. The above feature matching results

were formulated as virtual forces that attract geometrically similar regions. I have further
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proposed to add novel structural links in the traditional thin shell model to preserve non-local

shape structures. When applied to the same 24 synthetic surface pairs, results have suggested

that TSD can produce superior results compared to the spectral graph matching method.

TSD alone has been primarily used for registering a patient’s endoscopogram to the CT

surface of that patient. To that end, results have shown that TSD can work with reconstruction

surfaces derived from various algorithms. Moreover, I have also shown that the proposed

structural links can help preserve the thickness of the epiglottis during the registration. As

will also be mentioned later, an extension of the pairwise TSD has been used in registering

many single-frame reconstructions for endoscopogram construction.

4. A novel groupwise surface registration algorithm has been proposed to register multiple

partially overlapping surfaces. The method has been applied for registering cross-frame

reconstructions in the task of endoscopogram reconstruction.

A pipeline for reconstructing a surface model from an endoscopic video sequence has been

developed in Chapter 5. Particularly, a novel groupwise registration method has been proposed

as an extension of the pairwise TSD. Groupwise TSD can simultaneously register a group of

partially overlapping surfaces without having or estimating the mean/template surface. This is

achieved by formulating an N-body attraction scenario in which each surface’s deformation is

determined by the virtual attraction forces from all other surfaces. Experiments on synthetic

partial surfaces from 6 patients’ CT data have achieved an average surface registration error

less than 1mm. Groupwise TSD has been successfully applied to 8 real endoscopic video

sequences for fusing the geometry of multiple single-frame reconstructions into a single

surface.

5. An elasticity estimation framework has been developed to automatically learn orthotropic

elasticity from a group of known deformations. I have further shown that a joint estimation ap-

proach can simultaneously learn orthotropic elasticity parameters and estimate deformations

in a groupwise registration setting.
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A deformation-based registration approach relies on having a reasonable regularization

term. In this dissertation, a thin shell model is adopted as regularization for producing

physically realistic deformations. I have argued that a common homogeneous and isotropic

thin shell cannot sufficiently model tissue mechanics. Chapter 6 has introduced a novel

statistical elasticity estimation framework that can automatically estimate inhomogeneous

and anisotropic elasticity parameters from a group of given deformations. In particular, an

orthotropic elasticity model has been adopted to model different tissue stiffness along two

orthogonal natural axes directions. I have shown how both the elasticity (stiffness) parameters

and the natural axes directions can be estimated using an MAP analysis. A toy example and

synthetic tests based on 5 patients’ CT surfaces have shown its effectiveness in recovering

elasticity parameters up to a given scale. Tests on two patients’ endoscopic data focusing

on the laryngeal region have shown that the elasticity estimation results are consistent with

throat anatomy.

With the above elasticity estimation, a joint registration/elasticity-estimation framework has

been further developed to iteratively estimate deformations and elasticity parameters. Such

a framework can be applied to learn tissue elastic properties from frame-to-frame tissue

deformations contained in the endoscopic video. The learned elasticity has been shown in

turn to improve the registration between the endoscopogram and the CT surface.

6. A joint registration/disparity estimation approach has been proposed to deal with the CT/en-

doscopogram registration.

Chapter 7 summarized three major causes for the significant difference between the CT and

endoscopogram surfaces. I have argued that such disparity needs to be explicitly modeled

during the TSD registration process. A hard EM approach and a Monte-Carlo EM algorithm

have been introduced to jointly estimate registration and disparity. Experiments on 4 synthetic

cases have shown that the two proposed approaches can reasonably recover disparity regions.

Meanwhile, the registration accuracy is also improved with the consideration of disparity.
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7. Several engineering steps have been accomplished in completing the pipeline for tumor

transfer between endoscopy and CT. These engineering contributions include the following,

all detailed in Chapter 7:

i. An initial alignment method has been designed to compute the translation, rotation and

three scaling factors between an endoscopogram and a CT surface. This step allows further a

non-rigid registration between the two surfaces.

ii. A texture fusion algorithm has been designed to put texture on an endoscopogram using

many 2D frames’ texture. The algorithm uses an MRF to pull color from a nearby vertex

of a registered single-frame reconstruction and also to encourage color consistency between

neighboring vertices.

iii. An overall pipeline for building an endoscopogram has been designed to effectively

integrate reconstruction, geometry fusion and texture fusion.

8. A clinical study in the throat region has been initiated based on the proposed technical

solutions.

The above scientific and engineering contributions have enabled tumor transfer from en-

doscopy to CT. As a result, a clinical study is about to start in order to validate whether

endoscopy-derived tumor locational information can indeed help making effective radiation

treatment plans. Therefore, besides the contributions made in the image computing field, this

dissertation plays a critical role in making potential improvements in the current practice of

pharyngeal radiation treatment planning.

The successful use of my methods in the pharynx case has led to a preliminary study in

the colon, where 3D reconstructions are derived from colonoscopic videos for detecting

uninspected regions and colonoscope retargeting.

On the basis of the above contributions and their successful use in CT/endoscopy fusion, I have

established the following thesis:
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Thesis: Geometric information and physical modeling can improve surface registration results

in the context of CT/endoscopy fusion. The anisotropic parameters in the physical model can be

inferred probabilistically from a set of given material deformations and can in turn improve the

registration.

8.2 Discussion and Future Work

This section further discusses several important topics involved in this dissertation and some

potential future research directions.

1. Surface registration vs. volume registration.

In the task of CT/endoscopy fusion, the CT image is a 3D volume image, whereas the

endoscopic video only contains information on the tissue surface. To match the two modalities,

I chose to discard the 3D information in the CT image and to only use its segmentation surface.

This leads to a surface-to-surface registration problem. However, it is also conceivable to

construct a 3D volume image, e.g., a signed distance image, from the endoscopogram surface

and perform a volume-to-volume image registration. In fact, several works (Iglesias et al.,

2013; Dedner et al., 2007) have been following this line of thinking. In particular, some

narrow-band formulations have been adopted to register 3D level-set images associated

with two surfaces. This dissertation lacks any serious consideration of the volume-based

approach. Nevertheless, it is conceivably challenging as well to handle missing data in a

volume-based registration; for example, how to create a 3D signed-distance image from a

partial endoscopogram surface in order to be matched to the CT volume image.

2. Applicability of spectral methods on different intrinsic geometry.

To the best of my knowledge, spectral methods for different intrinsic geometry had been

an uncharted territory. This dissertation first shows that some simple situations (holes and

truncations) can be handled by the improved spectral graph matching method. To further
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handle more complex situations, it is conceivable to incorporate the disparity estimation

and to modify the surfaces, such as breaking bridges or patching holes, to make them have

similar intrinsic geometry. However, the motivation for further exploration in this direction is

arguable, because the essence and advantage of spectral methods lie in the nature of isometry.

For handling different intrinsic geometry, one should seek a deformation-based method

instead.

3. Physical reality of the thin shell model.

The question has been mentioned several times in the dissertation: to what extent can the

proposed physical model reflect real tissue mechanics? An accurate physical modeling of

human tissues is still an open research problem. In my work, the thin shell model can only

approximate the mechanics of surface-like structures, and it is obviously a flawed model for

pharyngeal muscles. To this end, my opinion is that the merit of the thin shell model should

be judged by the specific application; in our case, the question to ask is whether the thin

shell model can produce registration that is sufficiently good for radiation treatment planning

(errors within 3mm). To that end, we are about to start a clinical research, in which we will

validate whether the tumor transfer results derived from my registration algorithm will help

tumor localization and thus help radiation treatment planning. The outcome of that clinical

research will further indicate the usability of the thin shell model.

4. The need for an anatomical model.

As mentioned before, an alternative to the thin shell model is the 3D finite element model,

but the challenge lies in the fact that 3D FEM requires a comprehensive anatomical model

for pharyngeal reconstruction and registration, namely the 3D anatomical composition in the

head-and-neck region and the structural relationship between anatomies. This dissertation has

not been devoted in constructing that model. However, further exploration in that direction is

likely to improve our understanding of the pharyngeal shape change caused by gravity, the

swallowing motion, pharyngeal pathology, etc.

130



A 4D CT recorded during a swallowing motion is another data source that can potentially be

used to study the statistical deformation space and the elasticity parameters in the pharynx.

However, the clinical motivation of using 4D CTs is not clear because current practice in

radiation treatment planning only uses conventional CT.

5. Applicability of probabilistic elasticity estimation.

The use of probabilistic elasticity estimation is still premature in various applications. The

major problem is the ambiguity caused by the lack of force measurements. Therefore, in a

probabilistic Bayesian formulation, elasticity estimation is not likely to succeed unless at

least one of the following conditions is satisfied:

(a) When the data is limited, e.g., with only a reference object and a deformed object

available, elasticity estimation can easily overfit to that particular deformation. In that case, a

comprehensive prior knowledge of anatomical elasticity should be used to avoid overfitting

and to handle noise. In statistics, this kind of prior is known as an informative prior or a

subjective prior, a prior that is not dominated by the likelihood and that has an impact on the

posterior distribution.

(b) In contrast, a prior distribution is noninformative or objective if the prior is ”flat” relative

to the likelihood function and has minimal impact on the posterior distribution. As suggested

by its name, many statisticians favor noninformative priors because they appear to be more

objective. In my proposed elasticity framework, the uniform isotropic elasticity prior serves

as a noninformative prior because it only determines the estimation scale, and the estimated

elasticity patterns are mostly related to the likelihood. Therefore, to work with a noninforma-

tive prior, it is favorable to have a large number of observed tissue deformations to yield a

meaningful likelihood; for example, the frame-by-frame endoscopic reconstructions provide

rich deformations that can accurately reveal tissue elasticity.
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Some other works (Yang et al., 2016; Lee et al., 2012) can also estimate elasticity from

limited data by reducing the number of unknown variables. However, these methods are less

interesting for our spatially-varying registration purpose.

6. Use and extension of probabilistic elasticity estimation.

In this dissertation, the proposed elasticity estimation framework is mainly used as a regular-

ization term in registration. However, it is also conceivable to be used as a prior for image

segmentation. Other preliminary experiments have been performed with the intention of

using the estimated elasticity for cancer grading or tumor detection. In a broader context,

pharyngeal elasticity estimation is of interest to physiological and biomedical researchers; the

estimated elasticity can provide insights in studying swallowing motion.

One limitation of the current elasticity estimation framework is that it can only be applied

to single-patient deformations, but the framework can be potentially generalized to a cross-

patient situation by either performing elasticity parameter transfer or deformation transfer

between two patients’ surfaces. Such an extension is coupled with serious theoretical chal-

lenges. For example, different patients’ surfaces may have different topology; also, surface

deformations are not Euclidean quantities and cannot be easily transported.

7. Probabilistic elasticity estimation vs. shape-appearance statistical models.

The proposed thin shell elasticity estimation provides a new perspective to traditional shape

analysis. Instead of fitting a probability distribution on shape appearances (Loncaric, 1998;

Nitzken et al., 2014), the proposed method seeks the underlying physical reasons for shape

deformations. Therefore, it is conceivably better at “extrapolating” deformations. For example,

in our application, endoscopy-derived elasticity parameters can be also used to produce

realistic endoscopogram-to-CT deformations, whereas in shape-appearance statistical models

the probability distribution specifically fitted to endoscopic throat conformations cannot be

used for other kinds of deformations.
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However, shape-appearance statistical models are more generalizable because they can be

also applied to study cross-patient shape variance or general shape variance not induced by

elastic deformations. However, as mentioned in item 5, even though probabilistic elasticity

estimation has the potential to be extended into the cross-patient case, it is still limited to

elastic deformations.

8. Atlas-based approaches

Atlas-based or template-based approaches have been widely used in image segmentation

(Iglesias and Sabuncu, 2014) and registration (Sotiras et al., 2013). The idea is that information

of interest, such as anatomical segmentations, can be transferred or adapted to the new data

item from one or multiple given templates (single-atlas or multi-atlas). In our case, it is

conceivable to apply an atlas-based approach for endoscopogram reconstruction. Assuming

anatomical conformations are similar across patients, the reconstruction will be based on

patient-specific endoscopic video as well as anatomical structural information transferred

from an endoscopogram atlas or multiple atlases. Alternatively, we can adopt a CT-model-

based reconstruction approach, in which a patient’s endoscopic reconstruction is guided by

the CT surface of that patient. Of course, in doing this, one has to consider the resolution

difference and large anatomical deformations between CT and endoscopy, but it is likely

that the CT-model-based approach can yield more accurate global geometry than the current

approach. One might also consider constructing an elasticity atlas (or multiple atlases) for

probabilistic elasticity estimation; that is, instead of using a noninformative prior, the elasticity

will be derived by considering both patient-specific deformations and atlas-based priors.

9. Clinical extension

The methods developed in this dissertation have been primarily used in the context of

nasopharyngoscopy. However, the methods are generalizable enough to be applied to the

reconstruction tasks of other endoscopies, such as gastrointestinal endoscopy, laparoscopy,

etc. Although there are many other reconstruction algorithms published for handling those
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tasks, my novel registration methodology suggests that it is specifically preferable in the

situations where there are notable tissue deformations across frames.

In particular, the work in this dissertation has stimulated a study in colonoscopy reconstruction.

The goal of colonoscopy reconstruction includes efficient visualization and review, identifying

uninspected colon patches, camera retargeting, polyp detection, etc. Preliminary results have

shown that similar techniques (Wang et al., 2017) based on groupwise TSD can reconstruct

short segments of the colon. An additional need in the colon case is that the reconstruction

has to be achieved in real time. Since there is no speed requirement in the context of radiation

treatment planning, I have not explored the parallel computing aspect to the maximum

extent. Currently, pairwise TSD runs within 2 seconds on an Intel i7-3770k@3.5GHz CPU.

Groupwise TSD among N surfaces is computationally equivalent to N independent and

parallelizable pairwise TSD registrations, which means the running time will further scale up

when the number of surfaces exceeds the number of CPU processors. In addition, there are

certain algorithmic components, such as curvature computation for every vertex, that can be

deployed to a many-core GPU. Therefore, a future direction is to design a mixed CPU/GPU

parallelization framework to effectively handle large number of surfaces.

8.3 Remaining Technical Issues

Besides the high-level future work mentioned in Section 8.2 ,this section revisits some remaining

theoretical and technical problems that need to be solved in the future.

1. Model parameter selection.

In this dissertation, we accomplished model parameter selection primarily by using a val-

idation set containing several synthetic data cases (usually less than 3). This can lead to

serious overfitting. Automatic model parameter selection should be studied as an alternative

approach.
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2. The construction of structural links.

Chapter 4 has shown that structural links can help preserve shapes of non-local structures.

However, these links have to be manually placed. It would be interesting to statistically learn

the optimal locations for placing these links.

3. The formulation of elasticity priors.

In the elasticity estimation framework, the isotropic stiffness matrix prior is conceptually

regarded as the mean of all anisotropic stiffness matrices. However, the physical energy term

in the objective function tends to produce stiffness that is always smaller than that isotropic

prior. A potential solution is to constrain that prior to be the mean of all estimated anisotropic

matrices during the optimization process.

4. Singularities in orthotropic elasticity estimation.

The natural axes directions essentially form a frame field on the surface domain. Differential

geometry theory tells us that in a close surface there must be singular places where the frame

cannot be uniquely defined. In our case, these singularities correspond to isotropic locations.

This dissertation has not explicitly modeled such singularities because our surfaces are always

open, but we need to solve this hidden trouble in the future.

5. Transferring orthotropic elasticity between surfaces.

The last subsection has explained the need for transferring elasticity parameters between

surfaces. To the best of my knowledge, orthotropic elasticity transfer between two triangle

meshes has not been studied. Assuming the two surfaces are well aligned, one needs to solve

an interpolation problem with certain spatial smoothness constraints.

6. Temporal consistency across single-frame reconstructions.

All the single-frame reconstructions can be ordered in time. Since temporally adjacent frames

have little deformation in between, this temporal order can be used as an additional regulariza-

tion term in both SfMS reconstruction and geometry fusion. Based on this motivation, (Wang
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et al., 2017) has proposed a fusion-guided SfMS approach that incorporates cross-frame

consistency, but the temporal order is still not explicitly modeled. Future work should place a

temporal regularizer on both reconstruction depth values and lighting model parameters.
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Dedner, A., Lüthi, M., Albrecht, T., and Vetter, T. (2007). Curvature guided level set registration
using adaptive finite elements. Pattern Rcognition, 4713:527–536.

138
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