Statistics of Shape: Eigen Shapes "PCA and PGA"

Sarang Joshi Departments of Radiation Oncology, Biomedical Engineering and Computer Science University of North Carolina at Chapel Hill

Sarang Joshi 10/10/2001 #1

Study of the Shape of the Hippocampus

 Two approaches to study the shape variation of the hippocampus in populations:

 Statistics of deformation fields using "Principal Components Analysis"

 Statistics of medial descriptions using Lei Groups:- "Principal Geodesic Analysis"

Statistics of Deformation Fields

Hippocampal Mapping

Patients

Atlas

Hippocampal Mapping

Atlas

Subjects

Shape of 2-D Sub-Manifolds of the Brain: Hippocampus.

The provisory template hippocampal surface \mathcal{M}_0 is carried onto the family of targets:

Shape of 2-D Sub-Manifolds of the Brain: Hippocampus.

• The mean transformation and the template representing the entire population:

$$\bar{h} = \frac{1}{N} \sum_{i=1}^{N} h_i \quad , \quad \mathcal{M}_{temp} = \bar{h} \circ \mathcal{M}_0 \; .$$

The mean hippocampus of the population of thirty subjects.

Shape of 2-D Sub-Manifolds of the Brain: Hippocampus.

• Mean hippocampus representing the control population:

$$\bar{h}_{control} = \frac{1}{N_{control}} \sum_{i=1}^{N_{control}} h_i^{control} , \ \mathcal{M}_{control} = \bar{h}_{control} \circ \mathcal{M}_0 .$$

• Mean hippocampus representing the Schizophrenic population:

$$\bar{h}_{schiz} = \frac{1}{N_{schiz}} \sum_{i=1}^{N_{schiz}} h_i^{schiz} , \ \mathcal{M}_{schiz} = \bar{h}_{schiz} \circ \mathcal{M}_0$$

Control population

Schizophrenic population

Gaussian Random Vector Fields on 2-D Sub-Manifolds.

• Hippocampi $\mathcal{M}^i, i = 1, \cdots, N$ deformation of the mean \mathcal{M}_{temp} : $\mathcal{M}^i : \{y | y = x + u_i(x) , x \in \mathcal{M}_{temp}\}$

$$u_i(x) = h_i(x) - x, x \in \mathcal{M}_{temp}$$
.

• Construct Gaussian random vector fields over sub-manifolds.

Gaussian Random Vector Fields on 2-D Sub-Manifolds.

• Let $\mathcal{H}(\mathcal{M})$ be the Hilbert space of square integrable vector fields on \mathcal{M} . Inner product on the Hilbert space $\mathcal{H}(\mathcal{M})$:

$$\langle f,g\rangle = \sum_{i=1}^{3} \int_{\mathcal{M}} f^{i}(x)g^{i}(x)d\nu(x)$$

where $d\nu$ is a measure on the oriented manifold \mathcal{M} .

Definition 1 The random field $\{U(x), x \in \mathcal{M}\}$ is a **Gaussian random field** on a manifold \mathcal{M} with mean $\mu_u \in \mathcal{H}(\mathcal{M})$ and covariance operator $K_u(x, y)$ if $\forall f \in \mathcal{H}(\mathcal{M}), \langle f, \cdot \rangle$ is normally distributed with mean $m_f = \langle \mu_u, f \rangle$ and variance $\sigma_f^2 = \langle K_u f, f \rangle$

• Gaussian field is completely specified by it's mean μ_u and the covariance operator $K_u(x, y)$.

 \bullet Construct Gaussian random fields as a quadratic mean limit using a complete $I\!\!R^3$ -valued orthonormal basis

$$\{\phi_k, k=1, 2, \cdots\}, \langle \phi_i, \phi_j \rangle = 0, i \neq j$$

Gaussian Random Vector Fields on 2-D Sub-Manifolds.

Theorem 1 Let $\{U(x), x \in \mathcal{M}\}$ be a Gaussian random vector field with mean $m_U \in \mathcal{H}$ and covariance K_U of finite trace. There exists a sequence of finite dimensional Gaussian random vector fields $\{U_n(x)\}$ such that

$$U(x) \stackrel{\text{q.m.}}{=} \lim_{n \to \infty} U_n(x)$$

where

$$U_n(x) = \sum_{k=1}^n Z_k(\omega)\phi_k(x) ,$$

 $\{Z_k(\omega), k = 1, \cdots\}$ are independent Gaussian random variables with fixed means $E\{Z_k\} = \mu_k$ and covariances $E\{|Z_i|^2\} - E\{Z_i\}^2 = \sigma_i^2 = \lambda_i, \Sigma_i \lambda_i < \infty$ and (hk, λ_k) are the eigen functions and the eigen values of the covariance operator K_U :

$$\lambda_i \phi_i(x) = \int_{\mathcal{M}} K_U(x, y) \phi_i(y) d\nu(y) ,$$

where $d\nu$ is the measure on the manifold \mathcal{M} .

If $d\nu$, the surface measure on $\overline{\mathcal{M}}_{temp}$ is atomic around the points x_k then $\{\phi_i\}$ satisfy the system of linear equations

$$\lambda_i \phi_i(x_k) = \sum_{j=1}^M \hat{K}_U(x_k, y_j) \phi_i(y_j) \nu(y_j) \quad , i = 1, \cdots, N ,$$

where $\nu(y_j)$ is the surface measure around point y_j .

Eigen Shapes of the Hippocampus.

• Eigen shapes $\mathcal{E}^i, i = 1, \cdots, N$ defined as: $\mathcal{E}^i = \{x + (\lambda_i)\phi_i(x) : x \in \overline{\mathcal{M}}_{temp}\}$.

• Eigen shapes completely characterize the variation of the submanifold in the population.

Sarang Joshi May 3, 2000

Statistical Significance of Shape Difference Between Populations.

• Assume that $\{u_j^{schiz}, u_j^{control}\}, j = 1, \cdots, 15$ are realizations from a Gaussian process with mean \bar{u}_{schiz} and $\bar{u}_{control}$ and common covariance K_U .

Statistical hypothesis test on shape difference:

$$H_0: \bar{u}_{norm} = \bar{u}_{schiz}$$
$$H_1: \bar{u}_{norm} \neq \bar{u}_{schiz}$$

•Expand the deformation fields in the eigen functions ϕ_i :

$$u_N^{schiz(j)}(x) = \sum_{i=1}^N Z_i^{schiz(j)} \phi_i(x)$$
$$u_N^{control(j)}(x) = \sum_{i=1}^N Z_i^{control(j)} \phi_i(x)$$

• $\{Z_j^{schiz}, Z_j^{control}, j = 1, \cdots, 15\}$ Gaussian random vectors with means \bar{Z}_{schiz} and $\bar{Z}_{control}$ and covariance Σ .

Hotelling's T^2 test:

$$T_N^2 = \frac{M}{2} (\hat{\bar{Z}}_{norm} - \hat{\bar{Z}}_{schiz})^T \hat{\Sigma}^{-1} (\hat{\bar{Z}}_{norm} - \hat{\bar{Z}}_{schiz}) .$$

	Ν	T_N^2	p-value : $P_N(H_0)$	
	3	9.8042	0.0471	
	4	14.3086	0.0300	
	5	14.4012	0.0612	
	6	19.6038	0.0401	
Ľ	N: number of eigen functions.			

Sarang Joshi May $3,\,2000$

Bayesian Classification on Hippocampus Shape Between Population.

 \bullet Bayesian log-likelihood ratio test: H_0 : normal hippocampus, H_1 : schizophrenic hippocampus.

$$\begin{split} \Lambda_N &= -(Z - \hat{\bar{Z}}_{schiz})^{\dagger} \hat{\Sigma}^{-1} (Z - \hat{\bar{Z}}_{schiz}) \\ &+ (Z - \hat{\bar{Z}}_{norm})^{\dagger} \hat{\Sigma}^{-1} (Z - \hat{\bar{Z}}_{norm}) \mathop{\leq}\limits_{H_1}^{H_0} 0 \end{split}$$

• Use Jack Knife for estimating probability of classification:

Statistics of Medial descriptions

• Each figure a quad mesh of medial atoms:

$$\{m_{i,j}^{0}: i = 1 \cdots N, j = 1 \cdots M\}$$
$$m_{i,j}^{0} = (x_{i,j}, r, F, \theta)$$

 Medial atom parameters include angles and rotations.

• Medial atoms do not form a Hilbert Space

– Cannot use "Eigen Shape" for statistical characterization!!

Statistics of Medial descriptions

 Set of all Medial Atoms forms Lie-Group

$$m = (x_{i,j}, r, F, \theta)$$

$$m \in \mathbb{R}^{3} \times \mathbb{R}^{+} \times SO(3) \times SO(2)$$

R³:Position *x* R⁺:Radius *r SO*(3):Frame *SO*(2):Object angle

Lie Groups

• A Lie group is a group G which is also a differential manifold where the group operations are differential maps.

$$\mu : (x, y) \mapsto xy : G \times G \mapsto G$$
$$\iota : x \mapsto x^{-1} : G \mapsto G$$

•Both composition and the inverse are differential maps

$$R^{3}: \mu(x, y) = x + y, x^{-1} = -x$$

R⁺: Multiplica tive reals $\mu(x, y) = xy, x^{-1} = \frac{1}{x}$

SO(3):3×3 Orthogonal Matrix Group SO(2):2×2Orthogonal Matrix Group

Lie Group Means

- Algebraic mean not defined on Lie Groups
- Use geometric definition:
 - Remanian Distance well defined on a Manifold.
- Given N medial atoms $\{m_i : i = 1 \cdots N\}$ the mean \overline{m} is defined as the group element that minimizes the average squared distance to the data.

$$\overline{m} = \arg \min \frac{1}{N} \sum_{i=1}^{N} |d(m, m_i)|^2$$

 No closed form solution need to use Lie-Group optimization techniques.

Geodesic Curves

- Medial manifold is curved and hence no straight lines.
- Distance minimizing Geodesic curves are analogous to straight lines in Euclidian Space.
- Geodesics in Lie Groups are given by the exponent map:

 $g(t) = \exp(tA)$

 Geodesics are one parameter sub-groups analogous to 1-dimensional subspaces in R^N

Principal Geodesics

 Since the set of all medial atoms is a curved manifold linear PCA is not defined as well.

 Principal Geodesics are defined as the geodesics that minimize residual distance.

No closed form solution: Needs non linear optimization.

