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Study of the Shape of the HippocampusStudy of the Shape of the Hippocampus

Two approaches to study the shape 
variation of the hippocampus in 
populations:

– Statistics of deformation fields using “Principal 
Components Analysis”

– Statistics of medial descriptions using Lei 
Groups:- “Principal Geodesic Analysis”
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Statistics of Deformation FieldsStatistics of Deformation Fields
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HippocampalHippocampal MappingMapping

Atlas Patients
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HippocampalHippocampal MappingMapping

Atlas Subjects
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Shape of 2-D Sub-Manifolds of the Brain:

Hippocampus.

The provisory template hippocampal surfaceM0 is carried onto

the family of targets:

M0

h1�!
 �
h

�1
1

M1
;M0

h2�!
 �
h

�1
2

M2
; � � � ;M0

hN�!
 �
h

�1
N

MN
:

h1

h2

hN

h1 o M0

h2 o M0

M0

Template

hN o M0



'

&

$

%Sarang Joshi May 3, 2000 17

Shape of 2-D Sub-Manifolds of the Brain:

Hippocampus.

� The mean transformation and the template representing the

entire population:

�
h =

1

N

NX
i=1

hi ; Mtemp = �
h �M0 :

The mean hippocampus of the population of thirty subjects.
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Shape of 2-D Sub-Manifolds of the Brain:

Hippocampus.

� Mean hippocampus representing the control population:

�
hcontrol =

1

Ncontrol

N
controlX
i=1

h

control

i
; Mcontrol = �

hcontrol �M0 :

� Mean hippocampus representing the Schizophrenic popula-

tion:

�
hschiz =

1

Nschiz

N
schizX
i=1

h

schiz

i
; Mschiz = �

hschiz �M0 :

Control population Schizophrenic population
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Gaussian Random Vector Fields on 2-D

Sub-Manifolds.

�HippocampiMi
; i = 1; � � � ; N deformation of the meanMtemp:

Mi : fyjy = x + ui(x) ; x 2Mtempg

ui(x) = hi(x)� x; x 2Mtemp :

Vector �eld ui(x) shown in red.

� Construct Gaussian random vector �elds over sub-manifolds.
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Gaussian Random Vector Fields on 2-D

Sub-Manifolds.

� Let H(M) be the Hilbert space of square integrable vector

�elds onM. Inner product on the Hilbert space H(M):

hf; gi =
3X
i=1

Z
M
f

i(x)gi(x)d�(x)

where d� is a measure on the oriented manifoldM.

De�nition 1 The random �eld fU(x); x 2 Mg is a Gaus-

sian random �eld on a manifoldM with mean �u 2 H(M)

and covariance operator Ku(x; y) if 8f 2 H(M), hf; �i is

normally distributed with mean mf = h�u; fi and variance

�
2
f
= hKuf; fi

� Gaussian �eld is completely speci�ed by it's mean �u and the

covariance operator Ku(x; y).

� Construct Gaussian random �elds as a quadratic mean limit

using a complete IR3-valued orthonormal basis

f�k; k = 1; 2; � � � g ; h�i; �ji = 0 ; i 6= j
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Gaussian Random Vector Fields on 2-D

Sub-Manifolds.

Theorem 1 Let fU(x); x 2Mg be a Gaussian random vector

�eld with mean mU 2 H and covariance KU of �nite trace.

There exists a sequence of �nite dimensional Gaussian random

vector �elds fUn(x)g such that

U(x)
q.m.
= lim

n!1
Un(x)

where

Un(x) =
nX

k=1
Zk(!)�k(x) ;

fZk(!); k = 1; � � � g are independent Gaussian random vari-

ables with �xed means EfZkg = �k and covariances EfjZij
2g�

EfZig
2 = �

2
i
= �i;

P
i �i < 1 and (hk; �k) are the eigen func-

tions and the eigen values of the covariance operator KU :

�i�i(x) =
Z
M
KU(x; y)�i(y)d�(y) ;

where d� is the measure on the manifoldM.

If d�, the surface measure on �Mtemp is atomic around the

points xk then f�ig satisfy the system of linear equations

�i�i(xk) =
MX
j=1

K̂U(xk; yj)�i(yj)�(yj) ; i = 1; � � � ; N ;

where �(yj) is the surface measure around point yj.
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Eigen Shapes of the Hippocampus.

� Eigen shapes E i; i = 1; � � � ; N de�ned as:

E i = fx + (�i)�i(x) : x 2 �Mtempg :

� Eigen shapes completely characterize the variation of the sub-

manifold in the population.
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Statistical Signi�cance of Shape Di�erence

Between Populations.

� Assume that fuschiz
j

; u
control

j
g; j = 1; � � � ; 15 are realizations

from a Gaussian process with mean �uschiz and �ucontrol and common

covariance KU .

Statistical hypothesis test on shape di�erence:

H0 : �unorm = �uschiz

H1 : �unorm 6= �uschiz

�Expand the deformation �elds in the eigen functions �i:

u

schiz(j)
N (x) =

NX
i=1

Z

schiz(j)
i �i(x)

u

control(j)
N (x) =

NX
i=1

Z

control(j)
i �i(x)

� fZschiz

j
; Z

control

j
; j = 1; � � � ; 15g Gaussian random vectors

with means �
Zschiz and �

Zcontrol and covariance �.

Hotelling's T 2 test:

T

2
N
=
M

2
( �̂Znorm � �̂

Zschiz)
T �̂�1( �̂Znorm � �̂

Zschiz) :

N T
2
N

p-value : PN(H0)

3 9.8042 0.0471

4 14.3086 0.0300

5 14.4012 0.0612

6 19.6038 0.0401
N: number of eigen functions.
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Bayesian Classi�cation on Hippocampus

Shape Between Population.

� Bayesian log-likelihood ratio test: H0: normal hippocampus,

H1: schizophrenic hippocampus.

�N = �(Z � �̂
Zschiz)

y�̂�1(Z � �̂
Zschiz)

+ (Z � �̂
Znorm)

y�̂�1(Z � �̂
Znorm)

H0

<

>

H1

0

� Use Jack Knife for estimating probability of classi�cation:
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Statistics of Medial descriptionsStatistics of Medial descriptions

Each figure a quad mesh of medial 
atoms: 

Medial atom parameters include angles 
and rotations.
Medial atoms do not form a Hilbert Space
– Cannot use “Eigen Shape” for 

statistical characterization!!
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Statistics of Medial descriptionsStatistics of Medial descriptions
Set of all Medial Atoms forms 
Lie-Group
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Lie GroupsLie Groups

A Lie group is a group G which is also a differential 
manifold where the group operations are differential 
maps.
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Lie Group MeansLie Group Means

Algebraic mean not defined on Lie Groups
Use geometric definition:
– Remanian Distance well defined on a Manifold.

Given N medial atoms
the mean        is defined as the group element that 
minimizes the average squared distance to the data.

No closed form solution need to use Lie-Group 
optimization techniques.
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Geodesic Curves Geodesic Curves 

Medial manifold is curved and hence no straight lines.
Distance minimizing Geodesic curves are analogous to 
straight lines in Euclidian Space.
Geodesics in Lie Groups are given by the exponent map:

Geodesics are one parameter sub-groups analogous to 
1-dimensional subspaces in 

)exp()( tAtg =

NR
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Principal GeodesicsPrincipal Geodesics

Since the set of all medial atoms is a curved manifold 
linear PCA is not defined as well.

Principal Geodesics are defined as the geodesics that 
minimize residual distance.
– No closed form solution: Needs non linear optimization.


	Statistics of Shape: Eigen Shapes“PCA and PGA”
	Study of the Shape of the Hippocampus
	Statistics of Deformation Fields
	Hippocampal Mapping
	Hippocampal Mapping
	Statistics of Medial descriptions
	Statistics of Medial descriptions
	Lie Groups
	Lie Group Means
	Geodesic Curves
	Principal Geodesics



