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Application Areas

• Medial representations of shape (m-reps).

• Diffusion tensor MRI.

• Continuous models of solid shape.

The M-rep Shape Space

Medial Atom:

m = {x, r,n0,n1} ∈M(1)

M(1) = R3 × R+ × S2 × S2

M-rep Model with n atoms:

M ∈M(n) = M(1)n

Shape change in terms of local
translation, bending, & widening.



Diffusion Tensors

• DT-MRI produces a 3× 3 symmetric, positive-definite
matrix at each voxel.

D = DT,

xTDx > 0 for x #= 0.

• Represents covariance in Brownian motion model of
water diffusion - fiber tracts in major axis direction.

• What about statistical studies of DTI across subjects?

Geometry of the Diffusion Tensor Space

• Let PD(n) denote the space of all n× n symmetric,
positive-definite real matrices.

• PD(n) is not a vector space (doesn’t contain 0, not
closed under negation).

• PD(n) is a curved manifold, a Riemannian symmetric
space.



Example: PD(2)
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A ∈ PD(2) is of the form

A =
(

a b
b c

)
,

ac− b2 > 0, a > 0.

Similar situation for PD(3) (6-dimensional).

Models of Continuous Solid Shape
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Prevent Shape Self-Intersections

Local Singularity Global Interior Crossing Global Exterior Crossing

Principal Geodesic Analysis

Linear Statistics (PCA) Curved Statistics (PGA)



The Exponential Map
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• Maps tangent vectors to points along geodesics.

• Inverse is the log map – gives distance between points:
d(p, q) = ‖Logp(q)‖.

Intrinsic Means (Fréchet)

The intrinsic mean of a collection of points x1, . . . , xN on
a Riemannian manifold M is

µ = arg min
x∈M

N∑
i=1

d(x, xi)2,

where d(·, ·) denotes Riemannian distance on M .



Computing Means

Gradient Descent Algorithm:

Input: x1, . . . ,xN ∈ M

µ0 = x1

Repeat:

∆µ = 1
N

∑N
i=1 Logµk

(xi)

µk+1 = Expµk
(∆µ)

Computing Means

Gradient Descent Algorithm:

Input: x1, . . . ,xN ∈ M

µ0 = x1

Repeat:

∆µ = 1
N

∑N
i=1 Logµk

(xi)

µk+1 = Expµk
(∆µ)



Covariance

Sample covariance in the tangent space:

S =
1

N − 1

N∑
i=1

Logµ(xi) Logµ(xi)T

Gives a “Gaussian” probability model:

p(x) = k exp
(
−1

2
Logµ(x)TS−1 Logµ(x)

)

Principal Geodesic Analysis

• Find nested linear subspaces Vk ⊂ TpM such that
Expµ(Vk) maximizes variance of projected data.

• First-order approximation: PCA in tangent space of
sample covariance matrix S.



M-rep Shape Statistics in Segmentation

Optimize shape parameters {α1, . . . ,αd}, generating
m-rep models:

M = Expµ

( d∑
k=1

αkvk

)
.

Maximize log-posterior in Bayesian framework.

Tract-Oriented Diffusion Tensor Statistics

Average tensors along a fiber tract.

Corouge et al., Fiber Tract-Oriented Statistics for Quantitative
Diffusion Tensor MRI Analysis, MICCAI 2005.

Part of the NA-MIC project: http://www.na-mic.org



Continuous Solid Shape Geodesics

Velocity

Linear shortest path

Nonlinear geodesic
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