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Statistical Computing on Riemannian manifolds

From Riemannian Geometry to Computational Anatomy

X. Pennec

EPIDAURE / ASCLEPIOS team
2004, route des Lucioles B.P. 93
06902 Sophia Antipolis Cedex 
(France)
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Modeling and Analysis of the Human Anatomy
� Estimate representative / average organ anatomies
� Model organ development across time
� Establish normal variability
� Detection and classification of pathologies from 

structural deviations
� From generic (atlas-based) to patients-specific models

� Statistical analysis

Computational Anatomy
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Statistical computing on manifolds

The geometric framework
� (Geodesically complete) Riemannian manifolds

The statistical tools
� Mean, Covariance, Parametric distributions / tests  

� Interpolation, filtering, diffusion PDEs

The application examples
� Rigid body transformations (evaluation of registration performances)

� Tensors: Diffusion tensor imaging, Variability of brain sulci

� Statistics of deformations for non-linear registration
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Overview

�Statistics on point-wise geometric features
�The Riemannian framework and first statistical tool s
� Example on rigid registration performances evaluation

� Fields of geometric features: tensor computing

� Statistics of deformations for non-linear registrat ion

� Conclusion
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Riemannian Manifolds: geometrical tools

Riemannian metric :
� Dot product on tangent space 

� Speed, length of a curve
� Distance and geodesics

(angle, great circles)

Exponential chart (Normal coord. syst.) :
� Development in tangent space along geodesics 

� Geodesics = straight lines
� Distance = Euclidean

� Star shape domain limited by the cut-locus

� Covers all the manifold if geodesically complete
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Reinterpretation of Basic Operations

Riemannian manifoldEuclidean spaceOperation
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Subtraction

Addition

Distance

Gradient descent
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Metric choice on Transformation (Lie) Group

Metric choice: left invariant

� The principal chart (exp. chart at the origin) can be 
translated at any point : only one chart.

Practical computations

� Atomic operations                          and their Jacobian
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Metric choice on Homogeneous manifolds

Metric choice: invariant

� Isotropy group of the origin: 

� Existence condition: 

� Placement function:

Practical computations

� Atomic operations                       and their Jacobian
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Statistical tools on Riemannian manifolds

Metric -> Volume form (measure) 

Probability density functions

Expectation of a function φφφφ from M into R :

� Definition :

� Variance :

� Information (neg. entropy):
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Statistical tools: Moments

Frechet / Karcher mean minimize the variance

Geodesic marching

Covariance et higher moments
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[ Pennec, INRIA Research Report RR-5093, NSIP’99 ]
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Distributions for parametric tests

Uniform density:
� maximal entropy knowing X

Generalization of the Gaussian density:
� Stochastic heat kernel p(x,y,t) [complex time dependency] 
� Wrapped Gaussian [Infinite series difficult to compute]
� Maximal entropy knowing the mean and the covariance

Mahalanobis D2 distance / test:

� Any distribution:

� Gaussian:
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[ Pennec, INRIA Research Report RR-5093, NSIP’99 ]
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Gaussian on the circle

Exponential chart:

Gaussian: truncated standard Gaussian

[. ; .]    rrrx ππθ −∈=

standard Gaussian
(Ricci curvature → 0)

uniform pdf with

(compact manifolds)

Dirac

:∞→r

:∞→γ

:0→γ
3/).( 22 rπσ =
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Overview

�Statistics on point-wise geometric features
�The Riemannian framework and first statistical tool s
� Example on registration performances evaluation

� Fields of geometric features: tensor computing

� Statistics of deformations for non-linear registrat ion

� Conclusion
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MR Image Initial USRegistered US

Per-operative registration of MR/US images

Performance Evaluation?
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Least square registration

� Propagation of the errors from the data to the optimal 
transformation at the first order (implicit function theorem):

Uncertainty of feature-based registration

2
),( ∑ ∗−=
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Matches estimation (landmarks)
� Alignment
� Geometric hashing
� ICP
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Registration of CT images of a dry skull

550 matched frames among 2000

Typical object accuracy: 0.04 mm

Typical corner accuracy: 0.10 mm
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Registration of MR T1 images of the head

860 matched frames among 3600

Typical object accuracy: 0.06 mm

Typical corner accuracy: 0.125 mm
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Validation of the error prediction

[ X. Pennec et al., Int. J. Comp. Vis. 25(3) 1997, MIC CAI 1998 ]

Brigham and Women’s Multiple sclerosis database
� 24 3D acquisitions over one year per patient

� T2 weighted MR, 2 different echo times, voxels 1x1x3 mm
� Predicted object accuracy: 0.06 mm.

Comparing two transformations 
and their Covariance matrix :

Mean: 6, Var: 12
KS test

2

621

2 ),( χµ ≈TT
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Validation of the error prediction

[ X. Pennec et al., Int. J. Comp. Vis. 25(3) 1997, MIC CAI 1998 ]

Comparing two transformations 
and their Covariance matrix :

Mean: 6, Var: 12
KS test

2

621

2 ),( χµ ≈TT

Bias estimation: (chemical shift, susceptibility effects)

� (not significantly different from the identity)
� (significantly different from the identity)

Inter-echo with bias corrected:             , KS test OK6
2 ≈µ

Intra-echo:            , KS test OK6
2 ≈µ

Inter-echo:             , KS test failed, Bias !50
2 >µ

deg  06.0=rotσ
mm  2.0=transσ
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Bronze Standard: Multiple registration

Best explanation of the observations (ML) :
� LSQ criterion 

� Robust Fréchet mean 

� Robust initialization and Newton gradient descent

Result

( )2
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Data (per-operative US)
� 2 pre-op MR (0.9 x 0.9 x 1.1 mm)
� 3 per-op US (0.63 and 0.95 mm)

� 3 loops

Robustness and precision

Consistency of BCR

Results on per-operative patient images

Success var rot (deg) var trans (mm)
MI 29% 0.53 0.25
CR 90% 0.45 0.17

BCR 85% 0.39 0.11

var rot (deg) var trans (mm) var test (mm)
Multiple MR 0.06 0.06 0.10

Loop 2.22 0.82 2.33
MR/US 1.57 0.58 1.65

[Roche et al, TMI 20(10), 2001 ]
[Pennec et al, Multi-Sensor Image Fusion, Chap. 4, CRC Press, 2005]
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Mosaicing of Confocal Microscopic in Vivo Video Sequences. 

Cellvizio: Fibered confocal fluorescence imaging

FOV 200x200 µm

Courtesy of Mike Booth, MGH, Boston, MA FOV 2747x638 µm

Cellvizio

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760,  Talk on Friday ]
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Common coordinate system
� Multiple rigid registration

� Refine with non rigid 

Mosaic image creation
� Interpolation / approximation

with irregular sampling
MosaicFrame 6

Frame 1

Frame 2

Frame 3

Frame 4Frame 5

Mosaicing of Confocal Microscopic in Vivo Video Sequences. 

Courtesy of Mike Booth, MGH, Boston, MA FOV 2747x638 µm

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760,  Talk on Friday ]
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Overview

� Statistics on point-wise geometric features 

� Fields of geometric features: Tensor computing
�Interpolation, filtering, diffusion
� Morphometry of sulcal lines on the brain

� Statistics of deformations for non-linear registrat ion

� Conclusion
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Diffusion tensor imaging

Very noisy data

Preprocessing steps

� Filtering
� Regularization
� Robust estimation

Processing steps

� Interpolation / extrapolation
� Statistical comparisons

Can we generalize scalar methods?
DTI Tensor field (slice of a 3D volume)
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Tensor computing

Tensors = space of positive definite matrices
� Linear convex combinations are stable (mean, interpolation)
� More complex methods are not (null or negative eigenvalues)

(gradient descent, anisotropic filtering and diffusion)

Current methods for DTI regularization
� Principle direction + eigenvalues [Poupon MICCAI 98, Coulon Media 04]
� Iso-spectral + eigenvalues [Tschumperlé PhD 02, Chef d’Hotel JMIV04]
� Choleski decomposition [Wang&Vemuri IPMI03, TMI04]
� Still an active field…

Riemannian geometric approaches
� Statistics [Pennec PhD96, JMIV98, NSIP99, IJCV04, Fletcher CVMIA04]
� Space of Gaussian laws [Skovgaard84, Forstner99,Lenglet04]
� Geometric means [Moakher SIAM JMAP04, Batchelor MRM05]
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Affine Invariant Metric on Tensors
Action of the Linear Group GL n

Invariant distance

Invariant metric

� Usual scalar product at identity

� Geodesics

� Distance

( )2121 | WWTrWW T
def

Id
=

Id

def

WWWW 2

2/1

1

2/1

21 ,| ∗Σ∗Σ= −−
Σ

),(),( 2121 ΣΣ=Σ∗Σ∗ distAAdist

TAAA ..Σ=Σ∗

[ X Pennec, P.Fillard, N.Ayache, IJCV 65(1), Oct. 2005 and RR-5255, INRIA, 2004 ]
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Log Euclidean Metric on Tensors

Exp/Log: global diffeomorphism Tensors/sym. matrices
� Vector space structure carried from the tangent space to the manifold

� Log. product

� Log scalar product

� Bi-invariant metric

Properties

� Invariance by the action of similarity transformations only

� Very simple algorithmic framework

� Affine and Log-Euclidean means are geometric

� Log Euclidean slightly more anisotropic

� Speedup ratio: 7 (aniso. filtering) to >50 (interp.)

( ) ( )( )2121 loglogexp Σ+Σ≡Σ⊗Σ

( )( ) ααα Σ=Σ≡Σ• logexp

( ) ( ) ( ) 2

21

2

21 loglog, Σ−Σ≡ΣΣdist

[ Arsigny, Fillard, Pennec, Ayache, MICCAI 2005, T1,  p.115-122, talk on Thursday ]
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Tensor interpolation

Coefficients Riemannian metric

Geodesic walking in 1D

∑ ΣΣ=Σ
Σ

2),(  )(min)( ii distxwxWeighted mean in general

)(exp)( 211
ΣΣ=Σ Σ tt
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Gaussian filtering: Gaussian weighted mean
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Raw Coefficients σ=2 Riemann σ=2
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PDE for filtering and diffusion

Harmonic regularization

� Gradient = Laplace Beltrami operator

� Integration scheme = geodesic marching 

Anisotropic regularization
� Perona-Malik 90 / Gerig 92 
� Phi functions formalism
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u
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i i
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∫
Ω
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x
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Anisotropic filtering

Raw Riemann Gaussian Riemann anisotropic

( ) )/exp()(   with   )(  )()( 22 κttwxxwx
u

uuw −=Σ∆Σ∂=Σ∆ ∑
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Extrapolation by Diffusion

Diffusion without 
data attachment

Original Tensor 
Data

Diffusion with 
data attachment
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Joint Estimation and regularization from DWI

LSQ LSQ + Φ-regulStandard

Estimated

tensors

FA

Clinical DTI of the spinal cord

[ Fillard, Arsigny, Pennec, Ayache, RR-5607, June 20 05 ]
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Joint Estimation and regularization from DWI

Clinical DTI of the spinal cord: fiber tracking

LSQ + Phi-regulStandard
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Overview

� Statistics on point-wise geometric features 

� Fields of geometric features: Tensor computing
� Interpolation, filtering, diffusion
�Morphometry of sulcal lines on the brain

� Statistics of deformations for non-linear registrat ion

� Conclusion
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Morphometry of Sucal Lines

Goal: 

� Learn local brain variability from sulci

� Better constrain inter-subject registration

� Correlate this variability with age, pathologies

Collaborative work between Epidaure (INRIA) and LONI (UCLA)

V. Arsigny, N. Ayache, P. Fillard, X. Pennec  and P. Thompson

[ Fillard, Arsigny, Pennec, Ayache, Thompson, IPMI’05  ]
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Computation of Average Sulci

red : mean curve 

green: ~80 instances of 72 sulci

Alternate minimization of global variance
� Dynamic programming to match the mean to instances
� Gradient descent to compute the mean curve position

Sylvius Fissure
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Extraction of Covariance Tensors

Covariance Tensors 

along Sylvius Fissure 

Currently:

80 instances of 72 sulci

About 1250 tensors

Color codes Trace

October 26, 2005 MICCAI Tutorial - Statistics of Anatomic Geometry 40

Reconstructed Tensors (1250) 

(Riemannian Interpolation)

Compressed Tensor Representation

Representative Tensors (250) Original Tensors (~ 1250)
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Variability Tensors

Color codes tensor trace
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Full Brain 
extrapolation of the 

variability
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Comparison with cortical surface variability

Consistent low variability in phylogenetical older a reas 
� (a) superior frontal gyrus

Consistent high variability in highly specialized a nd lateralized areas
� (b) temporo-parietal cortex 

P. Thompson at al, HMIP, 2000
Average of 15 normal controls by non-

linear registration of surfaces

P. Fillard et al, IPMI 05
Extrapolation of our model estimated

from 98 subjects with 72 sulci.
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Quantitative comparison: Asymmetry Measure

Color Codes Distance between tensors at “symmetric” positions 

2
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Asymmetry Measures

w.r.t the mid-sagittal plane. w.r.t opposite (left-right) sulci

Primary sensorimotor areasBroca’s speech area and 
Wernicke’s language 
comprehension area

Lowest asymmetryGreatest asymmetry
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Overview

� Statistics on point-wise geometric features 

� Fields of geometric features: tensor computing

� Statistics on deformations for non linear registrat ion

� Conclusion
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Non-linear elastic regularization

Gradient descent

Regularization
� Local deformation measure: Cauchy Green strain tensor

� Id for local rotations
� Small for local contractions

� Large for local expansions

� St Venant Kirchoff elastic energy

)(Reg),Images(Sim)( Φ+Φ=ΦC

)( 1 ttt C Φ∇−Φ=Φ + κ

Φ∇Φ∇=Σ .t

( ) ( ) ( )22 Tr
2

)(Tr Reg II −Σ+−Σ=Φ ∫
λµ

[ Pennec, et al, MICCAI 2005, T2, p.943-950, poster #S47 Saturday ]
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Statistical Riemannian elasticity

Problems
� Elasticity is not symmetric
� Statistics are not easy to include

Idea:
� Replace the Euclidean by the Log-Euclidean metric

Statistics on strain tensors
� Mean, covariance, Mahalanobis computed in Log-space

� Isotropic Riemannian Elasticity

( ) 222 )log(),(       )(Tr Σ=Σ→−Σ IdistI LE

( ) ( )ΣΣ=Σ ,2d0,d

( ) ( ) ( )∫ −Σ−Σ=Φ − WWg
T

)log(Vect.Cov.)log(VectRe 1

( ) ( ) ( )22

iso )log(Tr
2

)log(Tr gRe Σ+Σ=Φ ∫
λµ
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Isotropic Riemannian Elasticity Results

Roi 186x124x216 voxels, λ=µ=0.2, 12 PC 2Gh.

� Larger computation times 3h vs 1h

� Slightly larger and better deformation of the right ventricle
without any statistical information yet…

[ Pennec, et al, MICCAI 2005, T2, p.943-950, poster #S47 Saturday ]
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Statistics on the deformation field
• Objective: planning of conformal brain radiotherapy
• 30 patients, 2 to 5 time points (P-Y Bondiau, MD, CAL, Nice)

[ Commowick, et al, MICCAI 2005, T2, p. 927-931, po ster #S45, Saterday ]

Robust
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Introducing deformation statistics into RUNA

1))(()( −∑+= xIdxD λ
Scalar statistical stiffness Tensor stat. stiffness ( FA)Heuristic RUNA stiffness

RUNA [R. Stefanescu et al, Med. Image Analysis 8(3), 2004]
� non linear-registration with non-stationary regularization
� Scalar or tensor stiffness map
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Overview

� Statistics on point-wise geometric features 

� Fields of geometric features: tensor computing

� Statistics of deformation for non-linear registrati on

� Conclusion
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Conclusion : geometry and statistics

A Statistical computing framework on “simple” manifo lds 
� Mean, Covariance, statistical tests…
� Interpolation, diffusion, filtering…
� Which metric for which problem?

Extend to more complex groups and manifolds
� Deformations (Trouvé, Younes, Miller)
� Shapes (Kendall, Olsen) 

Spatially extended features (curves, surfaces, volu mes…)
� Homology assumption (mixtures ?)
� Spatial correlation between neighbors… and distant points
� Probability density for curves and surfaces
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Applications of Riemannian Computing

Registration
� Performance evaluation 

� Introducing a-priori distributions

� Statistical deformations

Diffusion tensor imaging
� Regularization for fiber tracts estimation

� Registration (atlases)

Variability of the brain
� Learn Variability from Large Group Studies

� Statistical Comparisons between Groups

� Improve Inter-Subject Registration
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