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Computational Anatomy

Modeling and Analysis of the Human Anatomy
Estimate representative / average organ anatomies
o Model organ development across time

o Establish normal variability
[m]

Detection and classification of pathologies from
structural deviations

From generic (atlas-based) to patients-specific models

[m]

[m]

= Statistical analysis
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Statistical computing on manifolds

The geometric framework
o (Geodesically complete) Riemannian manifolds

The statistical tools
o Mean, Covariance, Parametric distributions / tests
o Interpolation, filtering, diffusion PDEs

The application examples
o Rigid body transformations (evaluation of registration performances)
o Tensors: Diffusion tensor imaging, Variability of brain sulci
o Statistics of deformations for non-linear registration

October 26, 2005 MICCAI Tutorial - Statistics of Anatomic Geometry 3

Overview

=> Statistics on point-wise geometric features
= The Riemannian framework and first statistical tool S
o Example on rigid registration performances evaluation

o Fields of geometric features: tensor computing
o Statistics of deformations for non-linear registrat ion

o Conclusion
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Riemannian Manifolds: geometrical tools

Riemannian metric :
o Dot product on tangent space
o Speed, length of a curve

o Distance and geodesics
(angle, great circles)

Exponential chart (Normal coord. syst.) :
o Development in tangent space along geodesics
o Geodesics = straight lines
o Distance = Euclidean
o Star shape domain limited by the cut-locus
o Covers all the manifold if geodesically complete
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Reinterpretation of Basic Operations
Operation Euclidean space Riemannian manifold
Subtraction Xy=y—Xx Xy = logx (y)
Addition y=x+xy y =exp,(xy)
Distance dist (x,y) = ||y - x|| dist(x,y) = ny”
Gradient descent >.=2-4d0%) [.. =exp;, (—dC2)
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Metric choice on Transformation (Lie) Group

Metric choice: left invariant dist(g, h) = dist(f o g,f o h)

o The principal chart (exp. chart at the origin) can be
translated at any point : only one chart.

Practical computations fe=g-f - fg=fog

dist(g,h) = Hf<_15 og

f+5’ - expg(a‘):fog‘

o Atomic operations [foé], [f(—”l and their Jacobian
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Metric choice on Homogeneous manifolds

Metric choice: invariant dist(x, y) =dist(g Lx,gLy)

o Isotropy group of the origin: H={h Lo =0}

o Existence condition: dist(x, 0) = dist(h [ x,0)
o Placement function: f Co=x
Practical computations ~ xy=y—x = xy =f Oy

X+ = exp, (&)Z f, 5%

o Atomic operations lf D;J, [fx] and their Jacobian
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Statistical tools on Riemannian manifolds

Metric -> Volume form (measure) dM(x)
Probability density functions (Y, P(x0X) = [ p(»)d M(y)
bt
Expectation of a function  g@from M into R :
o Definition :  Elgr)] = hj{ @).p, () dM(y)
o Variance : g% () =Eldist(y,x)’|= [ dist(y.2)".p,(2).dM(2)
M

o Information (neg. entropy): I[x] :E[log( px(x))]
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Statistical tools: Moments
Frechet / Karcher mean minimize the variance

E[x] = argmin (E[dist( y, x)z]) -~ E 5;] = jﬁ p(2)dM(z) =0 [P(C)=0]

Geodesic marching

X, =expg (v) with v= El?x]

Covariance et higher moments M
y Ss

=R =[] o ane

Pennec, INRIA Research Report RR-5093, NSIP’99
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Distributions for parametric tests

Uniform density:
o maximal entropy knowing X p.(z)=1Ind,(z)/ Vol(X)

Generalization of the Gaussian density:
o Stochastic heat kernel p(x,y,t) [complex time dependency]
o Wrapped Gaussian [Infinite series difficult to compute]
o Maximal entropy knowing the mean and the covariance

(__)T (__,) r=x —%Ric + 0(0’)+ €(U/r)
NG =k eXp( xx) L)/ 2) k=2n) " det() 21+ 0(0* )+ (o / )

Mahalanobis D2 distance / test: ,Uf(y) = i?/t.z;;l).fy
o Any distribution: E[,uf (x)J =n
o Gaussian: £ 0 ) +0(0*) +e(o/r)
Pennec, INRIA Research Report RR-5093, NSIP’99 |
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Gaussian on the circle

Exponential chart:  x=r8 O |-7n.r; nr

Gaussian: truncated standard Gaussian

r — 0 : standard Gaussian
Vatiance on the ok (Ricci curvature — 0)

y — 0: uniform pdf with
o’ =(mr)’/3
(compact manifolds)

Valiahce oh the teal line

y — oo :Dirac

Ly T ¥ B 3 +f
[
Unifolin distlibutioh Ditac
——— —
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Overview

=> Statistics on point-wise geometric features
v The Riemannian framework and first statistical tool S
= Example on registration performances evaluation

o Fields of geometric features: tensor computing
o Statistics of deformations for non-linear registrat ion

o Conclusion
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Per-operative registration of MR/US images

Regisiitial US

MR Image

Performance Evaluation?
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Uncertainty of feature-based registration

Matches estimation (landmarks)
o Alignment
o Geometric hashing
o ICP

Least square registration C(T,x) = Z”J’ -T Dxi”Z

o Propagation of the errors from the data to the optimal
transformation at the first order (implicit function theorem):

2
>,=0°1d = |¥,=0"H" |with H :%
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Typical object accuracy: 0.04 mm
550 matched frames among 2000 Typical corner accuracy: 0.10 mm
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Registration of MR T1 images of the head
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Typical object accuracy: 0.06 mm
860 matched frames among 3600 Typical corner accuracy: 0.125 mm
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Validation of the error prediction

fac,

e ——

faB, fac,

Comparing two transformations
and their Covariance matrix :

Echo 1

2 _ 2

M (T, T,) = X

Mean: 6, Var: 12
KS test

Acquisition A ) fA Acquisition B

Echo 2

Brigham and Women'’s Multiple sclerosis database
o 24 3D acquisitions over one year per patient

o T2 weighted MR, 2 different echo times, voxels 1x1x3 mm
o Predicted object accuracy: 0.06 mm.

[ X. Pennec et al., Int. J. Comp. Vis. 25(3) 1997, MIC CAI 1998 ]
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Validation of the error prediction

fac,

m

—
) |:| ) D
) fA Acquisition B ) fB Acquisition C ) fC

faB, fac,

Intra-echo: > =6, KS test OK — =
Inter-echo: 1° > 50, KS test failed, Bias ! he:

Comparing two transformations
and their Covariance matrix :

Echo 1

2 _ 12

M (T, T,) = X

Mean: 6, Var: 12
KS test

Acquisition A

Echo 2

Bias estimation: (chemical shift, susceptibility effects)
o 7, =0.06 deg (not significantly different from the identity)
o g = (0.2 mm(significantly different from the identity)

trans

Inter-echo with bias corrected: 1/* =6 , KS test OK

[ X. Pennec et al., Int. J. Comp. Vis. 25(3) 1997, MIC CAI 1998 ]
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Bronze Standard: Multiple registration
MN(N-1) registrations (observations) ?
mj
11 12 13 14 15
T T W T P T T
T1,2 Tigs T:M T4,5
N-1 free transformation paramseters
Best explanation of the observations (ML) : C= Z_,dz(ﬂj,fzj)
. . )
o LSQ criterion !
2 —_nl 2 2
o Robust Fréchet mean d"(1,,T,) = mln(/,{ (1,,1), x )
o Robust initialization and Newton gradient descent
Result
T;',j 4 Urat > Utrans
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Results on per-operative patient images

Multi - view 0128 428: O

Data (per-operative US)
o 2 pre-op MR (0.9 x 0.9 x 1.1 mm)
o 3 per-op US (0.63 and 0.95 mm)
o 3loops

Robustness and precision

Success | var rot (deg) | var trans (mm)

MI 29% 0.53 0.25
CR 90% 0.45 0.17
BCR| 85% 0.39 0.11

Consistency of BCR

var rot (deg) var trans (mm) var test (mm) i & : &
Multiple MR 0.06 0.06 0.10 - =] A '
Loop 2.22 0.82 2.33 !
MRIUS 1.57 0.58 1.65 1 i
Dpacit
[Roche et al, TMI 20(10), 2001 ] 000
[Pennec et al, Multi-Sensor Image Fusion, Chap. 4, CF%Press, 2005]
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Mosaicing of Confocal Microscopic in Vivo Video Sequences.

Cellvizio: Fibered confocal fluorescence imaging

Cellvizio
@ Mauna Kea Technologies

FOV 200x200 pym
FOV 2747x638 pm

Courtesy of Mike Booth, MGH, Boston, MA

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760, Talk on Friday ]
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Mosaicing of Confocal Microscopic in Vivo Video Sequences.

Common coordinate system
o Multiple rigid registration
o Refine with non rigid

Mosaic image creation

o Interpolation / approximation
with irregular sampling

Courtesy of Mike Booth, MGH, Boston, MA ~ FOV 2747x638 pm

-

[ T. Vercauteren et al., MICCAI 2005, T.1, p.753-760, Talk on Friday ]
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Overview

v/ Statistics on point-wise geometric features

= Fields of geometric features: Tensor computing
= Interpolation, filtering, diffusion
o Morphometry of sulcal lines on the brain

o Statistics of deformations for non-linear registrat ion

o Conclusion
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Diffusion tensor imaging

Very noisy data

Preprocessing steps
» Filtering
» Regularization
» Robust estimation

Processing steps
» Interpolation / extrapolation
» Statistical comparisons

Can we generalize scalar methods?
DTI Tensor field (slice of a 3D volume)
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Tensor computing

Tensors = space of positive definite matrices
o Linear convex combinations are stable (mean, interpolation)

o More complex methods are not (null or negative eigenvalues)
(gradient descent, anisotropic filtering and diffusion)

Current methods for DTI regularization
o Principle direction + eigenvalues [Poupon MICCAI 98, Coulon Media 04]
o Iso-spectral + eigenvalues [Tschumperlé PhD 02, Chef d’Hotel IMIV04]
o Choleski decomposition [Wang&Vemuri IPMIO3, TMI04]
o Still an active field...

Riemannian geometric approaches
o Statistics [Pennec PhD96, JMIV98, NSIP99, IJCV04, Fletcher CVMIA04]
o Space of Gaussian laws [Skovgaard84, Forstner99,Lenglet04]
o Geometric means [Moakher SIAM JMAPO04, Batchelor MRMO5]
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Affine Invariant Metric on Tensors

Action of the Linear Group GL | AE = A3 A"

Invariant distance dis{ ALZ,AL2)) =dis{(Z,,2,)
def _ _

Invariant metric m1m,), :<Z CowE EWz>,d

def

o Usual scalar product at identity ww,), = Tr(WlTWz)

o Geodesics  exp,(ZW) =3 expE TP ?)z!?

o Distance | disZW) =(ZW|TW) =[log@ W)

2
L,

[ X Pennec, P.Fillard, N.Ayache, IJCV 65(1), Oct. 2005 and RR-5255, INRIA, 2004 ]
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Log Euclidean Metric on Tensors

Exp/Log: global diffeomorphism Tensors/sym. matrices
o Vector space structure carried from the tangent space to the manifold

« Log. product 2,02, = exp(log(21)+ log(Zz))

« Log scalar product aes= exp(a’ log(Z)) =3

o Bi-invariant metric dist (ZI 3, )2 = Hlog (Zu ) ~log (Zz )H2
Properties

o Invariance by the action of similarity transformations only
o Very simple algorithmic framework

o Affine and Log-Euclidean means are geometric
« Log Euclidean slightly more anisotropic

o Speedup ratio: 7 (aniso. filtering) to >50 (interp.)

[ Arsigny, Fillard, Pennec, Ayache, MICCAI 2005, T1, p.115-122, talk on Thursday ]
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Tensor interpolation
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Gaussian filtering: Gaussian weighted mean

n

S(x)=min Y G,(x-x,) dist (£,Z,)°

i=1

=2

Riemann o
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PDE for filtering and diffusion

Harmonic regularization C(2)= j“DZ(x)“;(x) dx
Q

o Gradient = Laplace Beltrami operator UC(x) = —2A2(x)

A (=Y 05 -3 (0,5) 5 (o,5) = Y 2= T w) +00|u||2)

et
.
o Integration scheme = geodesic marching
Z (%) = expy, (- EICE)())

Anisotropic regularization
o Perona-Malik 90 / Gerig 92
o Phi functions formalism
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Anisotropic filtering
AZ(x)=> w(0,2(x)) A,Z(x) with w(t)=exp(~t>/k>)
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Extrapolation by Diffusion

2

1 n . /]
@)= [ 226, (x=x)dist(3(x),Z,)’ dx +EIHDZ(x)\ .
Q i=l Q
g 7077777 L0777 77 (
=///7/ =///777
=///{ ==//0/
= 7
B | |t Sy
IS’ . —_— !
=>\\\\ =<\\\\
. NN NN\ ¥ FENNNNNN
Original Tensor Diffusion without Diffusion with
Data data attachment data attachment

I
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2

C(2)= Izl (Si =S, exp(—b giTz(x) gi))2 + q)mmz(x)"zm

Clinical DTI of the spinal cord

Joint Estimation and regularization from DVB/I

FA

Estimated

tensors

Standard LSQ LSQ + ®-regul

Fillard, Arsigny, Pennec, Ayache, RR-5607, June 20 05 ]
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Joint Estimation and regularization from DWI

Clinical DTI of the spinal cord: fiber tracking

Standard LSQ + Phi-regul
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Overview

v/ Statistics on point-wise geometric features

= Fields of geometric features: Tensor computing
v Interpolation, filtering, diffusion
= Morphometry of sulcal lines on the brain

o Statistics of deformations for non-linear registrat ion

o Conclusion
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Morphometry of Sucal Lines

Goal:
o Learn local brain variability from sulci
o Better constrain inter-subject registration

o Correlate this variability with age, pathologies

Collaborative work between Epidaure (INRIA) and LONI (UCLA)
V. Arsigny, N. Ayache, P. Fillard, X. Pennec and P. Thompson

[ Fillard, Arsigny, Pennec, Ayache, Thompson, IPMI'05 ]
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Computation of Average Sulci

Alternate minimization of global variance
o Dynamic programming to match the mean to instances
o Gradient descent to compute the mean curve position

red : mean curve
green: ~80 instances of 72 sulci

Sylvius Fissure
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Extraction of Covariance Tensors

Currently:
80 instances of 72 sulci
About 1250 tensors

Covariance Tensors

Color codes Trace along Sylvius Fissure
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Compressed Tensor Representation

Representative Tensors (250) RecOmsgmeted chsossis-(1250)
(Riemannian Interpolation)
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Variability Tensors

Color codes tensor trace

I B ——
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N

Full Brain
extrapolation of the
variability

October 26, 2005 MICCAI Tutorial - Statistics of Anatomic Geometry 42

21



Comparison with cortical surface variability

P. Thompson at al, HMIP, 2000 P. Fillard et al, IPMI 05
Average of 15 normal controls by non- Extrapolation of our model estimated
linear registration of surfaces from 98 subjects with 72 sulci.

Consistent low variability in phylogenetical older a reas
o (a) superior frontal gyrus

Consistent high variability in highly specialized a nd lateralized areas
o (b) temporo-parietal cortex
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Quantitative comparison: Asymmetry Measure

Color Codes Distance between tensors at “symmetric” positions

dist(%,5) :<E | E> :“log(z—l/z‘z'z—l/z)“i
s 2
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Asymmetry Measures

w.r.t the mid-sagittal plane.

w.r.t opposite (left-right) sulci

Greatest asymmetry

Lowest asymmetry

Broca'’s speech area and

Primary sensorimotor areas

Wernicke's language
comprehension area

I L ———
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Overview

v/ Statistics on point-wise geometric features

v’ Fields of geometric features: tensor computing

= Statistics on deformations for non linear registrat ion
o Conclusion
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Non-linear elastic regularization

Gradient descent
C(®) =Sim(Images, P) + Reg(P)
D, =P, -«LUC(P))
Regularization

o Local deformation measure: Cauchy Green strain tensor
« Id for local rotations
« Small for local contractions 2 =00 00
« Large for local expansions

o St Venant Kirchoff elastic energy
Reg(®)= [ Tr((= —1)2)+%Tr(2 -1}

[ Pennec, et al, MICCAI 2005, T2, p.943-950, poster #S47 Saturday ]
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Statistical Riemannian elasticity

Problems
o Elasticity is not symmetric d(Z,O) = d(Z,ZZ)
o Statistics are not easy to include

dea: Te(E-17) - dist,, (5.1) =|log®)
o Replace the Euclidean by the Log-Euclidean metric

Statistics on strain tensors
o Mean, covariance, Mahalanobis computed in Log-space

Re g(®) = [ Vect{log(z) - ) Cov™ Veet(log(z) -
o Isotropic Riemannian Elasticity

Reg., (¢)= [ uTr{log(z)’ )+ 2 Trllog())
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Isotropic Riemannian Elasticity Results

Source image Elastic result Riemann res. Target image Elast.4target Riem.4target
Roi 186x124x216 voxels, A=y=0.2, 12 PC 2Gh.

o Larger computation times 3h vs 1h

o Slightly larger and better deformation of the right ventricle
without any statistical information yet...

[ Pennec, et al, MICCAI 2005, T2, p.943-950, poster #S47 Saturday ]

October 26, 2005 MICCAI Tutorial - Statistics of Anatomic Geometry 49

Statistics on the deformation field
» Objective: planning of conformal brain radiotherapy
« 30 patients, 2 to 5 time points (P-Y Bondiau, MD, CAL, Nice)

Deformations
(one field / database image)

o Y Dkl Robust
a se . .
Affine and elastic = Statistics Stiffness
- . —_— W~
I 1 registrations . Map
mage
4 Def N (Scalar or tensorial)
1
Image N Def'(x) =+ zi abs(log(‘ Ho, (x)‘))

Y(x) = > abglogE, (x))

[ Commowick, et al, MICCAI 2005, T2, p. 927-931, po ster #S45, Saterday |
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Introducing deformation statistics into RUNA

RUNA [R. Stefanescu et al, Med. Image Analysis 8(3), 2004]
o non linear-registration with non-stationary regularization

o Scalar or tensor stiffness map D(x)=d +/]§(x))"1

Heuristic RUNA stiffness ~ Scalar statistical stiffness Tensor stat. stiffness ( FA)
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Overview

v/ Statistics on point-wise geometric features

v Fields of geometric features: tensor computing
v' Statistics of deformation for non-linear registrati on

= Conclusion
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Conclusion : geometry and statistics

A Statistical computing framework on “simple” manifo Ids
o Mean, Covariance, statistical tests...
o Interpolation, diffusion, filtering...
o Which metric for which problem?

Extend to more complex groups and manifolds
o Deformations (Trouvé, Younes, Miller)
o Shapes (Kendall, Olsen)

Spatially extended features (curves, surfaces, volu  mes...)
o Homology assumption (mixtures ?)
o Spatial correlation between neighbors... and distant points
o Probability density for curves and surfaces
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Applications of Riemannian Computing

Registration
o Performance evaluation
o Introducing a-priori distributions
o Statistical deformations

Diffusion tensor imaging
o Regularization for fiber tracts estimation
o Registration (atlases)

Variability of the brain
o Learn Variability from Large Group Studies
o Statistical Comparisons between Groups
o Improve Inter-Subject Registration
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