

Statistics of Shape in Brain Research: Methods and Applications

Guido Gerig, Martin Styner Department of Computer Science, UNC, Chapel Hill

Contents

Motivation

Concept: Modeling of statistical shapes Shape Modeling

- Surface-based 3D shape model (SPHARM)
- 3D medial models (3D skeletons/ M-rep)

Shape Analysis Conclusions

Neuropathology of Schizophrenia

- When does it develop ?
- Fixed or Progressive ?
- Neurodevelopmental or Neurodegenerative ?
- Neurobiological Correlations ?
- Clinical Correlations ?
- Treatment Effects ?

Noninvasive neuroimaging studies to study morphology and function

Natural History of Schizophrenia

Statistical Shape Models

Drive deformable model segmentation

- statistical geometric model
- statistical image boundary model
- Analysis of shape deformation (evolution, development, degeneration, disease)

Segmentation and Characterization

"Good" segmentation approaches

- use domain knowledge
- generic (can be applied to new problems)
- learn from examples
- generative models
 - shape, spatial relationships, statistics about class
 - compact, parameterized
 - gray level appearance
- deformable to present any shape of class
- parametrized model deformation: includes shape description

Segmentation and Characterization

"Good" shape characterization approaches

- small (minimum) number of parameters
- CORRESPONDENCE
- generic (can be applied to new problems)
- locality (local changes only affect subset of parameters)
- intuitive description in terms of natural language description (helps interpretation)
- hierarchical description: level of details, figure to subfigure, figure in context with neighboring structures
- conversion into other shape representations (boundary ↔ medial ↔ volumetric)

Shape Modeling

Shape Representation:

• High dimensional warping Miller, Christensen, Joshi / Thompson, Toga / Ayache, Thirion /Rueckert, Schnabel

 Landmarks / Boundary / Surface Bookstein / Cootes, Taylor / Duncan, Staib / Szekely, Gerig / Leventon, Grimson / Davatzikos

Skeleton / Medial model Pizer / Goland / Bouix,Siddiqui / Kimia / Styner, Gerig

3D Shape Representations

SPHARM

PDM

Boundary, fine scale, parametric

Boundary, fine scale, sampled

$$\boldsymbol{r}(\boldsymbol{\theta},\boldsymbol{\phi}) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} \underline{\boldsymbol{c}}_{k}^{m} \boldsymbol{Y}_{k}^{m}(\boldsymbol{\theta},\boldsymbol{\phi})$$

Skeleton

Medial, fine scale, continuous, implied surface

M-rep

Medial, coarse scale, sampled, implied surface

$$m = (\underline{x}, r, F, \theta)$$

Modeling of Caudate Shape

Surface Parametrization

Parametrized Surface Models

- Parametrized object surfaces expanded into spherical harmonics.
- Hierarchical shape description (coarse to fine).
- Surface correspondence.
- Sampling of parameter space -> PDM models
- A. Kelemen, G. Székely, and G. Gerig, Three-dimensional Model-based Segmentation, IEEE Transactions on Medical Imaging (IEEE TMI), Oct99, 18(10):828-839

Sampling of Medial Manifold

Model Building

VSkelTool

Medial representation for shape population

Styner, Gerig et al. , MMBIA'00 / IPMI 2001 / MICCAI 2001 / CVPR 2001 / MEDIA 2002 / IJCV 2003 /

VSkelTool PhD Martin Styner

- PDM
- •M-rep

Medial models of subcortical structures

Shape Analysis

Morphometry of brain structures in:

- Schizophrenia
- Twin Studies (MZ/DZ/DS)
- Autism, Fragile-X
- Alzheimer's Desease
- Depression
- Epilepsy

• •••

I Surface Models: Shape Distance Metrics

- Pairwise MSD between surfaces at corresponding points
- PDM: Signed or unsigned distance to template at corresponding points

Shape Distance Metrics using Medial Representation

Local width differences (MA_rad): Growth, Dilation Positional differences (MA_dist): Bending, Deformation

Application I: Shape Asymmetry

PSYCHIATRY RESEARCH NEUROIMAGING

Psychiatry Research Neuroimaging xx (2002) xxx-xxx

www.elsevier.com/locate/psychresns

Amygdala-hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data

Martha E. Shenton^{a,*}, Guido Gerig^b, Robert W. McCarley^a, Gabor Szekely^c, Ron Kikinis^d

MIDAGQUNC

Hippocampal Shape Asymmetry

- Mirror right hippocampus across midsagittal plane.
- Align shapes by first ellipsoid.
- Normalize shapes by individual volume.
- Calculate mean squared surface distance (MSD).
- •15 controls, 15 schizophrenics.

Left vs. right hippocampus

Hippocampal asymmetry in schizophrenia

Fig. 5. Statistics of L/R volume index (left panel), L/R shape index (middle panel), and a combined two-dimensional feature space (right panel) with volume index (horizontal axis) and shape index (vertical axis). The ellipsoids represent the quantiles of the two-dimensional distributions for controls (black triangles) and for the schizophrenics (open squares). The two-dimensional plot demonstrates the improved group discrimination obtained by combining the two features.

Hippocampal asymmetry in schizophrenia

Combined analysis of relative volume difference (|L-R|/(L+R) and shape difference (MSD).

Research in collaboration with Shenton/McCarly & Kikinis, BWH Harvard

Significantly higher asymmetry in schizophrenics as compared to controls (p < 0.0017)

Visualization of local effects

Fig. 6. A graphical visualization is presented for the left/right asymmetry of the amygdala-hippocampal complex for healthy controls (top row) and patients with schizophrenia (bottom row). The left and right columns show sagittal and posterior-anterior viewing

ctober 2002 23

Application II: Study of twin pairs

Twin Study

- Monozygotic (MZ): Identical twins
- Dizygotic (DZ): Nonidentical twins
- MZ-Discordant (MZ-DS): Identical twins: one affected, co-twin at risk
- Nonrelated (NR): age/gender matched

Exploratory Analysis: Genetic difference and disease versus morphology of brain structures

MRI MZ/DZ Twin Study

MRI dataset Daniel Weinberger, NIMH [Bartley,Jones,Weinberger, Brain 1997 (120)]

To study size & shape similarity of ventricles in related MZ/DZ and in unrelated pairs.

Goal:

- Learn more about size and shape variability of ventricles
- Results important for studies of twins discordant to illness

Hypothesis:

- Ventricular shapes more similar in MZ
- Shape adds new information to size

Typical Clinical Study: MZ twin pairs discordant for SZ

10 identical twin pairs, ventricles marker for SZ?

Left: co-twin at risk

Right: schizophrenics co-twin

Guido Gerig UNC, October 2002 27

Shape similarity/dissimilarity

Object Alignment / Surface Homology

Group Tests: Shape Distance to Template (CNTL)

Global shape difference S (residuals after correction for gender and age) to the average healthy objects. Table of P-values for testing group mean difference between the groups. Value significant at 5% level are printed in bold typeface.

Result Group Tests

- Both subgroups of the MZ discordant twins (affected and at risk) show significant shape difference
- Ventricular shape seems to be marker for disease and possibly for vulnerability
- But: Same global deviation from template does not imply co-twin shape similarity

Pairwise MSD shape differences between co-twin ventricles

P-value	ΔS L	$\Delta S \ \mathrm{R}$
MZ vs. NR	0.0013	0.0006
$\rm MZ$ vs. $\rm DZ$	0.0082	0.0399
MZ vs. DS	0.28	0.68
DS vs. NR	0.018	0.0026
DS vs. DZ	0.25	0.24
DZ vs. NR	0.050	0.016

MZ healthy and MZ discordant show same pairwise shape similarity

Pairwise tests among co-twins

P-value	ΔV_{rel} L	$\Delta V_{rel} \mathbf{R}$
MZ vs. NR	0.0537	0.0513
MZ vs. DZ	0.82	0.71
MZ vs. DS	0.18	0.42
DS vs. NR	0.0033	0.011
DS vs. DZ	0.069	0.70
DZ vs. NR	0.057	0.027

Trend MZ < DZ < NR: Volume similarity correlates with genetic difference

Group Tests of Ventricular Volumes

0.60

0.91

0.82

Cnt v. DSH

DSS v. DSH

Average distance maps of cotwin ventricles

Figure 5: Average distance maps visualize the pointwise averaged pair-individual distance maps (see Fig. 2) for each group (residuals after correction for gender and age). The distances are color-coded according to the provided colormap.

Pairwise co-twin ventricle shape distance (SnPM statistics)

Figure 6: Statistical maps visualize the locations of significant difference between groups using pair-individual distance maps (residuals after correction for gender and age, also corrected for multiple comparisons). The distances are color-coded according to the provided colormap.

Pairwise co-twin differences of MZ and MZ-DS are not significantly different (global and local stats)

II: Medial Models for Shape Analysis

Medial representation for shape population

Styner and Gerig, MMBIA'00 / IPMI 2001 / MICCAI 2001 / CVPR 2001/ ICPR 2002

Medial model generation scheme

Goal: To build 3D medial model which represents shape population

Guido Gerig UNC, October 2002 37

Simplification VD single figure

- Compute inner VD of fine sampled boundary
- Group vertices into medial sheets (Naef)
- Remove nonsalient medial sheets (Pruning)
- Accuracy: 98% volume overlap original vs. reconstruction

Optimal (minimal) sampling

Find minimal sampling given a predefined approximation error

Medial models of subcortical structures

Shapes with common topology: M-rep and implied boundaries of putamen, hippocampus, and lateral ventricles.

Medial representations calculated automatically (goodness of fit criterion).

Twin Study: Medial Representation

Shape Analysis using Medial Representation

Local width differences (MA_rad): Growth, Dilation Positional differences (MA_dist): Bending, Deformation

43

Similarity of ventricles in MZ/DZ: Radius Difference

10 twin pairs (20 MRI) Groups:

- 5 MZ (identical)
- 5 DZ (non-identical)
- 180 nonrelated pairs
- **Medial representations**
 - mean abs. radius diff.

Results:

- MZ vs. DZ: p<0.0065
- MZ vs. unrel: p<0.0009
- DZ vs. unrel: p<0.86

Similarity of ventricles in MZ/DZ: Positional Difference

10 twin pairs (20 MRI) Groups:

- 5 MZ (identical)
- 5 DZ (non-identical)
- 180 nonrelated pairs

Medial representations

• mean abs. positional diff.

Results:

- MZ vs. DZ: p<0.0355
- MZ vs. unrel: p<0.0110
- DZ vs. unrel: p<0.6698

M-rep thickness

R

- Shapes volume normalized
- Integrated difference in width (radius)

Group Statistics:

	MZ/DZ	MZ/unr	DZ/unr
L,A	p<0.072	p<0.195	p<0.858
R,A	p<0.014	p<0.011	p<0.681

Right: MZ vs unrel. significantly different Right: MZ vs DZ significantly different Left: no significant differences

M-rep analysis: Deformation

- Shapes volume normalized
- Integrated absolute difference in deformation

Group Statistics:

	MZ/DZ	MZ/unr	DZ/unr
L,B	p<0.209	p<0.075	p<0.730
R,B	p<0.035	p<0.006	p<0.932

Right: MZ vs unrel. significantly different Right: MZ vs DZ significantly different Left: no significant differences

Medial Representation: Statistics

Width

Monozygotic

Dizymptic

Non-related

Deformation

н

Non-related

0

^

~

Disvecti

۵

٥

٥

٥

Disymptic

Left Ventricle: No significant differences MZ/DZ

Right Ventricle: Significant Differences MZ/DZ Width (p< 0.014) Deform (p< 0.035)

M-rep: Composite shape statistics

- Shapes volume normalized
- Integrated difference in thickness (x-axis) and position (y-axis)

Towards local analysis

- Integrated shape measures do not reflect locality
- Clinical questions: Where and what is different
- Intuitive description of change

a) Spherical parameter space with surface net, b) cylindrical projection, c) object with coordinate grid.

After optimization: Equal parameter area of elementary surface facets, minimal distortion.

Mapping surfaces to 2D maps

A special case of a cylindrical equal-area projection with standard parallel of $\phi_s=0^\circ$.

$$x = k' \cos \phi \sin(\lambda - \lambda_0)$$

$$y = k' [\cos \phi_1 \sin \phi - \sin \phi_1 \cos \phi \cos(\lambda - \lambda_0)],$$

Mapping

Guido Gerig UNC, October 2002 52

3

Mapping

Shape distance properties of individual shape,

Mapping surfaces to 2D patches

Pairwise co-twin ventricle shape distance (SnPM statistics)

Figure 6: Statistical maps visualize the locations of significant difference between groups using pair-individual distance maps (residuals after correction for gender and age, also corrected for multiple comparisons). The distances are color-coded according to the provided colormap.

Pairwise co-twin differences of MZ and MZ-DS are not significantly different (global and local stats)

Towards local analysis

Thickness

0.10 - not significant

significant - 0.05

MIDAGEUNC

Application III: Stanley Schizophrenia Study

- Datasets
 - 26 controls (age, gender matched)
 - 56 schizophrenics
 - 28 treatment responsive
 - 28 treatment non-responsive

Hypothesis:

- Hippocampal morphology (size/shape) differs in SZ as compared to NCL.
- Shape more sensitive than size.
- Severity of disease (patient outcome) reflected by hippocampal morphology.

Manual Expert's Segmentation

- IRIS: Tool for interactive image segmentation.
- Manual painting in orthogonal sections.
- 2D graphical overlay and 3D reconstruction.
- 2D/3D cursor interaction between cut-planes and 3D display.
- Hippocampus: reliability
 > 0.95 (intraclass corr.)

Hippocampal Volume Analysis

- Statistical Analysis (Schobel/Chakos)
 - Left smaller than right
 - SZ smaller than CTRL, both left and right
 - Variability SZ larger than CTRL

Shape Analysis Problem

CTRL 2222 2222 22 22 2 2 \sim 2222222 222

- Left hippocampus of 90 subjects
 30 Controls
 60 Schizophr.
- variability
- ? Metric for measuring subtle differences

Parametrization with spherical harmonics

Shape Difference between CTRL and SZ shapes

62

Left and right hippocampus: Overlay mean shapes cyan: SZ yellow: CTRL

Shape Difference CTRL vs. SZ shapes

Left and right hippocampus: Surface distances between SZ and CTRL mean shapes:

Reference shape: SZ

red/yellow: out green: match blue/cyan: in

Boundary Analysis: PDM

Shape change between aligned CTRL and SZ average shapes

Flat tail: SZ

Curved tail: CTRL

Shape Analysis using Medial Representation

Local width differences (MA_rad): Growth, Dilation Positional differences (MA_dist): Bending, Deformation

Hippocampus M-rep: Global Statistical Analysis

Right Hippocampus: Integrated difference to reference shape (mean template), volume normalization.

Width (p<0.75)

Deformation (p<0.0001)

MIDAG@UNC

Local Statistical Tests

Medial representation study confirms: Hippocampal <u>tail</u> is region with significant deformation.

Statistical Analysis of M-representations

- *Work in progress Keith Muller, UNC Chapel Hill
- systematic embedding of interaction of age, duration of illness and drug type into local statistical analysis
- correction for multiple tests

encouraging results on Schizophrenia hippocamal study

*Repeated measures ANOVA, cast as a General Linear Multivariate Model, as in Muller, LaVange, Ramey, and Ramey (1992, JASA). Exploratory analysis included considering both the "UNIREP" Geisser-Greenhouse test and the "MULTIREP" Wilks test.

Difference in hippocampus shape between SZ and CNTRL as measured by M-rep distance

Figure C : Pt-Control Distance Difference at Age 40

Figure B : Pt-Control Distance Difference at Age 30

Figure A : Pt-Control Distance Difference at Age 20

M-rep 3x8 mesh

Goal: Multi-Scale Representation: Figurally relevant spatial scale levels

Whole Body/Head

Multiple Objects

(lateral ventricles, 3rd ventricle, caudates, hippocampi, temporal horns)

Individual Object: Multipe Figures:

ventricles: lateral, Individual Figure: Medial occipital, <u>Primitives, coarse to fine</u> temporal, atriumGuidgarApjärkyC, October 2002 71

