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Global Shape Models for Computational

Anatomy.

Homogeneous anatomy characterized by (
;H; I; P ).

1. 
: Collection of 0,1,2, and 3-dimensional compact sub-manifolds

M� of IR3,


 =
[
�
M� :

2. H: Family of transformations of 
 accommodating variability.

h 2 H : 
$ 


3. I : set of anatomical imagery fMRI, CT, PET, CRYOSEC-

TIONg .

I� 2 I : 
! IR

N

4. P : probability measures on the space of transformations H.



'

&

$

%Sarang Joshi May 3, 2000 03

Global Shape Models for Computational

Anatomy.

� H constructed from group of di�eomorphisms of coordinate

system 
.

� h 2 H de�ned via vector �elds of displacements.

x = (x1; x2; x3) 2 
 7! h(x) = x� (u1(x); u2(x); u3(x))

� I : Homogeneous space of the group H.

1. Two images I1; I2 2 I are topologically equivalent.

2. 9h 2 H such that I1 = I2(h(x)); x 2 
.

3. 9h�1 2 H such that I2 = I1(h
�1(x)); x 2 
.

4. I : orbit of a single anatomy I0, under the group action H:

I � H � I0

� Anatomical variability understood via empirical construc-

tion of probability measures P on H.

1. Given family of anatomical images fI0; I1; � � � ; INg construct

\registration" transformations fhi; i = 1; � � � ; Ng; hi 2 H

mapping provisory template I0 to the family.

2. Given maps fhi; i = 1; � � � ; Ng estimate P .
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Representation of Sub-Structures of the

Brain.

The surface M of neuro-anatomically signi�cant substructure

is assumed to be a smooth two-dimensional C2 sub-manifold of


 � IR
3.

� Build local quadratic charts.

x
i

ni

b1xi

b2xi

x
j

xp
j

h
j

Txi
(M )
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Shape of 2-D Sub-Manifolds of the Brain:

Hippocampus.

The provisory template hippocampal surfaceM0 is carried onto

the family of targets:

M0

h1�!
 �
h

�1
1

M1
;M0

h2�!
 �
h

�1
2

M2
; � � � ;M0

hN�!
 �
h

�1
N

MN
:

h1

h2

hN

h1 o M0

h2 o M0

M0

Template

hN o M0
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Shape of 2-D Sub-Manifolds of the Brain:

Hippocampus.

� The mean transformation and the template representing the

entire population:

�
h =

1

N

NX
i=1

hi ; Mtemp = �
h �M0 :

The mean hippocampus of the population of thirty subjects.
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Shape of 2-D Sub-Manifolds of the Brain:

Hippocampus.

� Mean hippocampus representing the control population:

�
hcontrol =

1

Ncontrol

N
controlX
i=1

h

control

i
; Mcontrol = �

hcontrol �M0 :

� Mean hippocampus representing the Schizophrenic popula-

tion:

�
hschiz =

1

Nschiz

N
schizX
i=1

h

schiz

i
; Mschiz = �

hschiz �M0 :

Control population Schizophrenic population
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Gaussian Random Vector Fields on 2-D

Sub-Manifolds.

�HippocampiMi
; i = 1; � � � ; N deformation of the meanMtemp:

Mi : fyjy = x + ui(x) ; x 2Mtempg

ui(x) = hi(x)� x; x 2Mtemp :

Vector �eld ui(x) shown in red.

� Construct Gaussian random vector �elds over sub-manifolds.
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Gaussian Random Vector Fields on 2-D

Sub-Manifolds.

� Let H(M) be the Hilbert space of square integrable vector

�elds onM. Inner product on the Hilbert space H(M):

hf; gi =
3X
i=1

Z
M
f

i(x)gi(x)d�(x)

where d� is a measure on the oriented manifoldM.

De�nition 1 The random �eld fU(x); x 2 Mg is a Gaus-

sian random �eld on a manifoldM with mean �u 2 H(M)

and covariance operator Ku(x; y) if 8f 2 H(M), hf; �i is

normally distributed with mean mf = h�u; fi and variance

�
2
f
= hKuf; fi

� Gaussian �eld is completely speci�ed by it's mean �u and the

covariance operator Ku(x; y).

� Construct Gaussian random �elds as a quadratic mean limit

using a complete IR3-valued orthonormal basis

f�k; k = 1; 2; � � � g ; h�i; �ji = 0 ; i 6= j
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Isotropic Stochastic Process on The Sphere:

Oboukhov expansion

� Let H(S) be the Hilbert space of square integrable functions on

the sphere S . Inner product on the Hilbert space H(S):

hf; gi =
Z
S
f(�; �)g(�; �)sin(�)d�d�

where sin(�)d�d� is the measure on the sphere S .

� The Spherical Harmonics Y m

n
are a complete orthonormal ba-

sis of H(S)

De�ne process fu(p); p 2 Sg

u(p) = lim
N!1

in q:m:

NX
n=0

nX
m=�n

ZnmY
m

n
(p) ;

where � Znm are zero mean independent Gaussian random vari-

ables with variance �n with
P
�n <1.

Theorem: The stochastic process fu(p); p 2 Sg constructed

above is an isotropic zero mean q.m. continuous Gaussian process

with covariance

K(x; y) =
1X
n=0

�nPn(cos d(x; y))
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Gaussian Random Vector Fields on 2-D

Sub-Manifolds.

Theorem 1 Let fU(x); x 2Mg be a Gaussian random vector

�eld with mean mU 2 H and covariance KU of �nite trace.

There exists a sequence of �nite dimensional Gaussian random

vector �elds fUn(x)g such that

U(x)
q.m.
= lim

n!1
Un(x)

where

Un(x) =
nX

k=1
Zk(!)�k(x) ;

fZk(!); k = 1; � � � g are independent Gaussian random vari-

ables with �xed means EfZkg = �k and covariances EfjZij
2g�

EfZig
2 = �

2
i
= �i;

P
i �i < 1 and (hk; �k) are the eigen func-

tions and the eigen values of the covariance operator KU :

�i�i(x) =
Z
M
KU(x; y)�i(y)d�(y) ;

where d� is the measure on the manifoldM.

If d�, the surface measure on �Mtemp is atomic around the

points xk then f�ig satisfy the system of linear equations

�i�i(xk) =
MX
j=1

K̂U(xk; yj)�i(yj)�(yj) ; i = 1; � � � ; N ;

where �(yj) is the surface measure around point yj.
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Eigen Shapes of the Hippocampus.

� Assume that deformation �elds fui(x); i = 1; � � � ; Ng are

realizations from a Gaussian �eld on the surface of the mean hip-

pocampusMtemp.

� Empirical estimate of the covariance operator given by

K̂U(x; y) =
1

N � 1

NX
i=1

ui(x)ui(y)
T
:

� Numerically compute the eigenfunctions and eigenvalues of

using Singular Value Decomposition:

1. Let f�(i)
; i = 1; � � � ; Ng be vectors of length 3M with

�
(i)
k = �i(xk)

2. � be a diagonal matrix of size 3M � 3M with

�3j;3j = �3j+1;3j+1 = �3j+2;3j+2 = �(yj);

3. K̂U be a 3M � 3M symmetric matrix with

K̂i;j = K̂U(xi; xj):

The system of linear equations in the above theorem becomes

�i�
(i) = K̂��(i)

; i = 1; � � � ; N:

The basis vectors f�(i)
; i = 1; � � � ; Ng are generated by diago-

nalizing the matrix K̂�.
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Eigen Shapes of the Hippocampus.

� Eigen shapes E i; i = 1; � � � ; N de�ned as:

E i = fx + (�i)�i(x) : x 2 �Mtempg :

� Eigen shapes completely characterize the variation of the sub-

manifold in the population.
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Statistical Signi�cance of Shape Di�erence

Between Populations.

� Assume that fuschiz
j

; u
control

j
g; j = 1; � � � ; 15 are realizations

from a Gaussian process with mean �uschiz and �ucontrol and common

covariance KU .

Statistical hypothesis test on shape di�erence:

H0 : �unorm = �uschiz

H1 : �unorm 6= �uschiz

�Expand the deformation �elds in the eigen functions �i:

u

schiz(j)
N (x) =

NX
i=1

Z

schiz(j)
i �i(x)

u

control(j)
N (x) =

NX
i=1

Z

control(j)
i �i(x)

� fZschiz

j
; Z

control

j
; j = 1; � � � ; 15g Gaussian random vectors

with means �
Zschiz and �

Zcontrol and covariance �.

Hotelling's T 2 test:

T

2
N
=
M

2
( �̂Znorm � �̂

Zschiz)
T �̂�1( �̂Znorm � �̂

Zschiz) :

N T
2
N

p-value : PN(H0)

3 9.8042 0.0471

4 14.3086 0.0300

5 14.4012 0.0612

6 19.6038 0.0401
N: number of eigen functions.
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Bayesian Classi�cation on Hippocampus

Shape Between Population.

� Bayesian log-likelihood ratio test: H0: normal hippocampus,

H1: schizophrenic hippocampus.

�N = �(Z � �̂
Zschiz)

y�̂�1(Z � �̂
Zschiz)

+ (Z � �̂
Znorm)

y�̂�1(Z � �̂
Znorm)

H0

<

>

H1

0

� Use Jack Knife for estimating probability of classi�cation:

-6

-4

-2

0

2

4

6

Control Schiz

Lo
g 

Li
ke

lih
oo

d 
R

at
io
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DISTRIBUTION FREE STATISTICAL

TESTING.

� Use Fisher's method of randomization to empirically estimate

the distribution of the test statistics with out the Gaussian as-

sumption.

� Under the null hypothesis H0 the expansion coe�cients

(ZN

i
)schiz; Z

N

i
)control) for i = 1; � � � ;M are independent random

samples from a single population.

� Each of the (
2N
N ) possible permutations of the data are equally

likely and can be used for estimating the distribution of the test

statistics under the hypothesis H0.

� For N = 15 , 1:551175e + 08 di�erent combinations.

� Use monte carlo simulations for estimating the probability

distribution by generating uniformly distributed random combi-

nations.
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DISTRIBUTION FREE STATISTICAL

TESTING.

� Estimate probability distribution of the T 2 statistics under the

hypothesis H0 computed using 100000 monte carlo simulations.

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Number of Simulations = 100,000 P = 0.02320

� The signi�cance level or the p-value becomes:

P =
Z
1

T 2 F̂ (f)df :

� Using 4 eigen shapes the p-value is estimated at 0:0232

� Statistically signi�cant di�erence in the populations.
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