Medical Image Synthesis via Monte Carlo Simulation

An Application of Statistics in Geometry & Building a Geometric Model with Correspondence

James Z. Chen, Stephen M. Pizer, Edward L. Chaney, Sarang Joshi, Joshua Stough

Presented by: Joshua Stough Medical Image Display & Analysis Group, UNC midag.cs.unc.edu

Population Simulation Requires Statistical Profiling of Shape

Goal: Develop a methodology for generating realistic synthetic medical images *AND* the attendant "ground truth" segmentations for objects of interest.

Why: Segmentation method evaluation.

How: Build and sample probability distribution of shape.

Basic Idea

New images via deformation of template geometry and image.

Characteristics

- Legal images represent statistical variation of shape over a training set.
 Image quality as in a
 - Image quality as in a clinical setting.

The Process

MTDAGGUNC

Registration

Registration – Composition of Two Transformations
Rinear – MIRIT, Frederik Maes
Affine transformation, 12 dof
Non-linear–Deformation Diffeomorphism, Joshi
For all I_t, I_t ≅ H_t(I₀) and S_t ≅ H_t(S₀)

Image Warp by Fluid Deformation

Consequence of an Erroneous H_t

Generating the Statistics of H_t

MTDAGAUNC

Fiducial Point Model

7 H_t is locally correlated

- Fiducial point choice via greedy iterative algorithm
- H,' determined by Joshi Landmark Deformation Diffeomorphism

7 The Idea: Decrease

$$\frac{1}{T \bullet N_0} \sum_{t=1}^T \sum_{x \in S_0} |H_t(x) - H'_t(x)|$$

FPM Generation Algorithm

- 1. Initialize $\{F_m\}$ with a few geometrically salient points on S_0 ;
- 2. Apply the training warp function H_t on $\{F_m\}$ to get the warped fiducial points: $F_{m,t} = H_t(F_m)$;
- 3. Reconstruct the diffeomorphic warp field H'_t for the entire image volume based on the displacements $\{F_{m,t} F_m\}$;
- 4. For each training case t, locate the point p_t on the surface of S_0 that yields the largest discrepancy between H_t and H'_t ;
- 5. Find most discrepant point p over the point set $\{p_t\}$ established from all training cases. Add p to the fiducial point set;
- 6. Return to step 2 until a pre-defined optimization criterion has been reached.

A locally accurate warp via FPM landmarks

Volume overlap optimization criterion tracks mean warp discrepancy

Under 100 fiducial points, of thousands on surface Warped Image and Warped Segmentation

WARP

TRAINING

ATLAS

Human Kidney Example

- 36 clinical CT images in the training set
- MonotonicOptimization
- 88 fiducial points sufficiently mimick inter-human rater results (94% volume overlap)

Fiducial Point Model Is an Object Representation with Positional Correspondence

7 Positional correspondence is via the H'interpolated from the displacements at the fiducial points **7** The correspondence makes this representation suitable for statistical analysis

Statistical Analysis of the Geometry Representation

Principal Components Analysis of the FPM Displacements

$$\dot{f}_0 = ((x_{f_1}, y_{f_1}, z_{f_1}), (x_{f_2}, x_{f_2}, x_{f_2}), \dots, (x_{f_M}, y_{f_M}, z_{f_M}))$$

$$\vec{f}_t = H_t(\vec{f}_0)$$

$$\vec{f}_s = <\vec{f} > +\sum_{k=1}^n b_k \cdot \vec{p}_k$$

- ↗ Points in 3M-d space
- ∧ Analyze deviation from mean
- Example: first seven modes of FPM cover 88% of the total variation.

Modes of Variation – Human Kidney

I

Ш

MIDAGOUNC

ATLAS

MEAN

Generating Samples of Image Intensity Patterns

Results

Synthesis of CT images of kidney region

Axial

Sagittal

Coronal

James Chen

Results

Miscellaneous

National Cancer Institute Grant P01 CA47982

References

- Gerig, G., M. Jomier, M. Chakos (2001). "Valmet: A new validation tool for assessing and improving 3D object segmentation." Proc. MICCAI 2001, Springer LNCS 2208: 516-523.
- Cootes, T. F., A. Hill, C.J. Taylor, J. Haslam (1994). "The Use of Active Shape Models for Locating Structures in Medical Images." Image and Vision Computing 12(6): 355-366.
- Rueckert, D., A.F. Frangi, and J.A. Schnabel (2001). "Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration." <u>MICCAI 2001, Springer LNCS 2208</u>: 77-84.
- Christensen, G. E., S.C. Joshi and M.I. Miller (1997). "Volumetric Transformation of Brain Anatomy." <u>IEEE Transactions on</u> <u>Medical Imaging</u> 16: 864-877.
- Joshi, S., M.I. Miller (2000). "Landmark Matching Via Large Deformation Diffeomorphisms." <u>IEEETransactions on Image</u> <u>Processing</u>.
- Maes, F., A. Collignon, D. Vandermeulen, G. Marchal, P. Suetens (1997). "Multi-Modality Image Registration by Maximization of Mutual Information." <u>IEEE-TMI</u> 16: 187-198.
- Pizer, S.M., J.Z. Chen, T. Fletcher, Y. Fridman, D.S. Fritsch, G. Gash, J. Glotzer, S. Joshi, A. Thall, G. Tracton, P. Yushkevich, and E. Chaney (2001). "Deformable M-Reps for 3D Medical Image Segmentation." <u>IJCV</u>, submitted.

