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Abstract

In a binary discrimination problem, a linear classifier finds a linear hyperplane
that separates two classes by partitioning the data space. Especially in a High Di-
mension Low Sample Size (HDLSS) setting, there are linear separating hyperplanes
such that the projections of the training data points onto their normal direction
vectors are identically zero, or some non-zero constant. Of interest in this paper is
a linear separating hyperplane such that the projections of the training data points
from each class onto its normal direction vector have two distinct values, one for
each class. This direction vector is uniquely defined in the subspace generated by the
data. A simple formula is given to find this direction. In non-HDLSS settings, this
direction vector is the same as the Fisher Linear Discrimination direction vector.
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Figure 1: Separable toy data in two dimensions, with a separating hyperplane, shown as

the dashed line, and projections onto the normal vector (solid line).

1 Introduction

Suppose we have a data set of sample size n and each data vector is a d-dimensional

vector in Euclidean space Rd, which we call the data space. In a binary classification (i.e.

discrimination) problem, a classifier partitions the data space into two spaces. A simple

partition is done by a linear classifier which creates a separating hyperplane between

two linearly partitioned spaces (see Duda et al. (2000) for further overview.) We say a

training data set is linearly separable if there exists a separating hyperplane that classifies

all training data points into the correct partitioned space. If the underlying distribution

of the data is continuous in the data space and the dimension is larger than the sample

size (High Dimension Low Sample Size (HDLSS)), the data are separable with probability

one. Figure 1 shows a separable toy data set in R2 with a separating hyperplane. It also

shows the projections of the data points onto the normal vector of the hyperplane, which

will be discussed shortly.

In the simplest separable case, the Support Vector Machine (SVM) linear classifica-
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Figure 2: Toy data example illustrating data piling for the Support Vector Machine. The

SVM direction vector is shown as a solid line and the optimal direction vector as a dashed

line.

tion rule seeks a separating hyperplane that maximizes the margin, the minimum distance

between the two convex hulls of data points from each class (see Hastie et al. (2001), Cris-

tianini and Shawe-Taylor (2000) for a more detailed introduction.) In many applications

of SVM in HDLSS settings, we observe that a large portion of the data are support vectors,

i.e. the data points lie on the margin boundaries (Section 2). Thus, if we project the data

points onto the normal vector of the SVM hyperplane, then many of the projections are

identical, which is what we call data piling. Data piling is usually not a desirable property

for a classifier since it indicates that the separating hyperplane may be unduly influenced

by noise artifacts in the data. Figure 2 illustrates data piling for the SVM method. The

toy data set is of size 40, out of which 20 belong to each class. They are generated from

a spherical, unit variance Gaussian distribution with dimension 50, and mean 0, except

that the first coordinate has mean +5.2 for Class +1, −5.2 for Class −1. The left plot

shows the projections of the data onto the 2-d plane generated by the normal vector of the

SVM hyperplane and the normal vector of the optimal hyperplane, which is (1, 0, · · · , 0)T.
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Figure 3: Toy data example illustrating data piling for the Maximal Data Piling. The

MDP direction vector shown as a solid line and the optimal direction vector as a dashed

line.

The upper right plot shows the projections onto the optimal direction, shown with the

dashed line in the left panel, and the bottom right one shows the projections onto the

SVM direction, shown with the solid line in the left panel. Each plot is represented as

a “jitter plot,” (Tukey and Tukey (1990)) with a random vertical coordinate for visual

separation of the data points. Also kernel density estimation curves are drawn to show

how the projections are distributed for each case. The bottom right plot shows that there

are (perhaps) too many support vectors at the margin boundaries, i.e. there is severe

data piling.

Suppose that d > n. In this setting, there are direction vectors where the data

collapse, i.e. the projections of the data points onto those direction vectors are identical.

For example, since the data generate an n-dimensional subspace, the projections of the

data points onto any direction vector in the d−n dimensional orthogonal subspace are all

zeros. Furthermore, the projections of the data points onto any vectors orthogonal to the

hyperplane generated by the data are possibly non-zero constants. It is seen below that
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in the discrimination problem, there usually is a direction vector such that the two classes

project to two different values. This vector is called the Maximal Data Piling (MDP)

direction vector. The term “Maximal” is used to indicate that the MDP direction vector

maximizes the amount of data piling, as discussed in the previous paragraph. Note that

the linear combinations of any vector orthogonal to the hyperplane generated by the data

and the MDP direction vector can maximize the amount of data piling as well, however,

it is seen in Section 3.1 that the MDP direction vector is uniquely defined within the

subspace generated by the data.

The MDP direction vector exists if the data vectors are linearly independent, which is

satisfied with probability one when the underlying distribution of the data is continuous

in Rd. The MDP result for the same toy example in Figure 2 is shown in Figure 3. Note

that the data projections completely pile up at two points and the distance between the

two data piling points is smaller than the distance for SVM, as shown in Figure 2. This

is not surprising, since SVM seeks to maximize this distance. Also note that the angle

between the MDP direction vector and the optimal direction vector is larger than the SVM

- optimal angle shown in Figure 2, which means the MDP has a worse discrimination error

rate than SVM for this Gaussian example. We show in Section 3.1 that the MDP direction

vector lies within the hyperplane generated by all the training samples, yet is orthogonal

to both of the hyperplanes generated by the separate training samples from each class.

In addition, the MDP direction vector is characterized as the product of the generalized

inverse of the global sample covariance matrix and the mean difference vector. Here, the

global sample covariance matrix is obtained by using the global sample mean calculated

from all the samples instead of respective sample means from each class. That is, it is the

Fisher Linear Discrimination (FLD) direction vector with the global sample covariance

matrix instead of the pooled one. It turns out that the MDP and FLD direction vectors

are actually identical in non-HDLSS settings (Section 3.2).

A comparison to other simple linear classification methods such as Mean Difference

(MD) (i.e. centroid method, as in Hastie et al. (2001)), FLD, and Naive Bayes (Bickel

and Levina (2003)) in terms of the classification performances is done by a simulation

study in Section 4. In the simulation we consider various combinations of the sample size,

dimension, and the distance between two classes in a Gaussian setting. It is seen that the

error rates of MDP and FLD are largest when the dimension is close to the sample size

and this phenomenon is discussed in detail there.
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2 Data Piling in a Real Example

In this section a real data example is presented to demonstrate data piling. The data

are microarray gene expressions from the UNC breast cancer data base. See Perou et al.

(2000) for the details regarding this data set. As for many other microarray data sets, this

is a HDLSS setting with 5,705 genes and 105 breast cancer patients, of whom 71 survived

and 34 died. Here we consider a linear classification problem using this data with the

mortality as the target variable and apply the SVM, Distance Weighted Discrimination

(DWD) (Marron et al. (2004)), and the MDP. DWD is a natural method for HDLSS

discrimination because it aims to avoid the data piling problem of SVM.

The projections of the data points onto the MDP, SVM, DWD, and MD direction

vectors are shown on the diagonal panels of Figure 4, and the projections onto the 2-d

planes generated by each pair of the direction vectors are shown on the off-diagonal panels

of the same figure. In each plot, the circles represent the samples that survived and the

plusses are for the samples that died. The first diagonal panel shows that the projections

of each class onto the MDP direction vector pile up completely at two points, one for each

class, and the distance between them is 9.00. The second diagonal panel shows a very

large amount of data piling for the SVM direction vector. The projections of the group

that died piles up completely near 6 and most of the group that survived piles up around

−3, with the distance between the piling points 9.09. The projections of each group onto

the DWD direction vector shown in the third diagonal panel, on the other hand, shows

no piling at all, and the distance between the two peaks is a little more than ten. The 2-d

projections on the off-diagonal panels highlight relationships between these directions. In

particular, MDP and SVM are quite similar to each other (e.g. the angle between them

is small), with only a slight rotation being the difference between substantial data piling

(SVM) and complete data piling (MDP). DWD is rather close to both of those, in terms

of small angle. The fact that the MD direction is very different is reflected in the much

larger relative angles.

The ten-fold cross validation error rates of the four methods are given in Table 1.

Consistent with the above discussions, MDP has a substantially worse error rate. MD is

also substantially worse. The SVM shows slightly better performance than DWD. Hall

et al. (2002) pointed out a need for improvement of DWD with unequal sample sizes of

each class, which may be the reason for the inferior performance of DWD. Since this

data have a large difference in the samples from each class, an improved version of DWD

(Zhang et al. (2004)) may be useful in this problem, which is not pursued further in this
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Figure 4: Projections of microarray data onto MDP, SVM, DWD, and MD direction

vectors, with 1-d projections onto each direction vectors on the diagonal panels and 2-d

projections onto the plane generated by each pair of the direction vectors on the off-

diagonal panels
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paper.

MDP SVM DWD MD

0.4999 0.2811 0.2879 0.3561

Table 1: Misclassification error rates of MDP, SVM, DWD, and MD

For this particular data set, the accuracy of labels is an issue. There are likely to

be some mislabelled samples in the sense that the patients who are about to die were

categorized as survived when their gene expression may be more closely connected with

the patients who died. Johnson et al. (2004) developed a classification method using

DWD in order to deal with gene expression survival data with possible mislabeling error.

3 Maximal Data Piling

In this section we express the MDP direction vector in a closed form and we show it is

uniquely defined in the data space. Also we show it is the same as the FLD direction

vector when the dimension d is less than the sample size −1, i.e., d < n− 1.

Let X = (x1, · · · ,xn1) be the matrix of the training data from Class +1, where xi’s

are iid from a continuous probability distribution in Rd, and define Y = (y1, · · · ,yn2) for

Class −1 in a similar way. Let n = n1 + n2. Define the d× n combined data matrix as

Z := [X, Y ], (1)

where [X, Y ] denotes the horizontal concatenation of X and Y . Denote the global mean

vector of the combined data by z̄. Then the sample covariance matrix of Z is

Σ̃ :=
1

n− 1
[(Z − Z̄)(Z − Z̄)T]. (2)

Here, Z̄ = z̄1T
n, where 1n is a column vector of ones of length n. We will call this matrix

the “global sample covariance matrix” and denote it by Σ̃.

Definition 1. The Maximal Data Piling (MDP) direction vector is defined as

vMDP :=
Σ̃−(x̄− ȳ)

‖Σ̃−(x̄− ȳ)‖
, (3)

where A− is the Moore-Penrose generalized inverse of a matrix A.
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3.1 Specification of MDP Direction Vector in the Data Space

The data vectors in the matrix Z, i.e. the columns of Z, generate a subspace in Rd and

this subspace is expressed as

SZ = {Zw : w ∈ Rn}. (4)

In other words, SZ is the set of all linear combinations of the data vectors. Note that SZ

has dimension n. If we let H̃Z be the hyperplane generated by Z, then we can write

H̃Z = {Zu : uT1n = 1,u ∈ Rn}. (5)

Note that H̃Z is a set of linear combinations of data points of which the sum of the

coefficients is 1. The parallel subspace can be found by shifting the hyperplane so that it

goes through the origin. A natural shift is via the point in H̃Z that is closest to the origin

which is calculated in the following lemma.

Lemma 2. Let vZ be the point in H̃Z that is nearest to the origin. Then,

vZ =
Z(ZTZ)−11n

1T
n(ZTZ)−11n

.

Proof. Since vZ is on the hyperplane H̃Z , it can be expressed in the form vZ = Zu, where

uT1n = 1,u ∈ Rn by (5). The squared distance from the origin to vZ is uTZTZu and we

need to find u that minimizes this distance. The Lagrangian (see Chapter 5 in Cristianini

and Shawe-Taylor (2000)) of this minimization problem is

L(u) =
1

2
uTZTZu− α(1T

nu− 1),

where α > 0 is the Lagrangian multiplier. From ∂L(u)/∂u = 0,

u = α(ZTZ)−1.

From uT1n = 1,

α =
1

1T
n(ZTZ)−11n

.

Thus,

vZ =
Z(ZTZ)−11n

1T
n(ZTZ)−11n

.
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Now let us shift the hyperplane H̃Z so that it contains the origin and call the new

shifted hyperplane HZ . Because HZ = H̃Z − vZ ,

HZ =

{
Zu∗ : u∗ = u− (ZTZ)−11n

1T
n(ZTZ)−11n

,uT1n = 1,u ∈ Rn

}
= {Zu∗ : u∗T1n = 0,u∗ ∈ Rn} . (6)

Note that HZ is a subspace of Rd with dimension n − 1 and we can decompose SZ into

an orthogonal sum of HZ and {vZ}, i.e. SZ = HZ ⊕ {vZ}.
In the same fashion we can define subspaces parallel to the hyperplanes of X and Y , call

them HX and HY , respectively. They have the following expressions:

HX =

{
Xν∗1 : ν∗1 = ν1 −

(XTX)−11n1

1T
n1

(XTX)−11n1

, νT

11n1 = 1, ν1 ∈ Rn1

}
= {Xν∗1 : ν∗T1 1n1 = 0, ν∗1 ∈ Rn1} , (7)

HY =

{
Y ν∗2 : ν∗2 = ν2 −

(Y TY )−11n2

1T
n2

(Y TY )−11n2

, νT

21n2 = 1, ν2 ∈ Rn2

}
= {Zν∗2 : ν∗T2 1n2 = 0, ν∗2 ∈ Rn2} . (8)

We can show these two subspaces of X and Y are actually the subspace of HZ in the

following lemma.

Lemma 3. Let HZ, HX , and HY be as defined in (6), (7), and (8), respectively. Then

both HX and HY are subspaces of HZ.

Proof. This can be shown by setting the u∗ in (6) to u∗ = [ν∗1;0n2 ] for HX and u∗ =

[0n1 ; ν
∗
2] for HY , where “;” denotes the vertical concatenation of two vectors.

Now we have a theorem regarding where the MDP direction vector vMDP(as defined

at (3)) lies within the data space.

Theorem 4. The maximal data piling vector vMDP is a member of HZ and orthogonal to

the subspaces HX and HY . i.e.

HZ = {HX +HY } ⊕ {vMDP}.
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Figure 5: The illustration of HX , HY , and vMDP when d = 3, n1 = 2, and n2 = 2.

Figure 5 shows the geometric relationship among HX , HY , and vMDP when the di-

mension of the data is three and the number of data points is two for each group, i.e.

d = 3, n1 = 2, and n2 = 2. Note that the subspaces HX and HY are actually one-

dimensional straight lines and they are not necessarily orthogonal to each other. The

hyperplanes H̃X and H̃Y are shifted to HX and HY so they meet each other at the origin.

Note that they do not necessarily cross each other before the shift.

To prove this theorem we need the following lemma:

Lemma 5. Let A be d ×m(m < d) matrix with rank(A) = m − 1 such that the sum of

each row is zero. And let A− denote the Moore-Penrose generalized inverse of A. Then

A−A = Im −
1

m
Jm,

where Jm = 1m1T
m.

Proof. Consider the singular value decomposition of A:

A = UDV T,
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where

U(d×m) = (u1, · · · ,um),

D(m×m) = diag(d1, · · · , dm−1, 0), and

V(m×m) = (v1, · · · ,vm).

Note that the columns of U and V form an orthonormal basis in Rd and Rm, respectively.

Especially, V is obtained from the eigenvalue decomposition of ATA:

ATA = V D2V T.

Here the columns of the eigenvector matrix V span the row space of A. Hence the

sum of the coefficients of vi, (i = 1, · · · , m − 1) is zero and the last column vm is

(m−1/2, · · · , m−1/2)T to satisfy orthogonality condition on columns. Now, since

A− = (v1, · · · ,vm−1)

 d−1
1 · · · 0

0
. . . 0

0 · · · d−1
m−1


 uT

1
...

uT
m−1

 ,

we have

A−A = (v1, · · · ,vm−1)

 vT
1
...

vT
m−1


by the orthogonality of the matrix U . It follows from the fact V V T = Im, that

A−A = v1v
T

1 + · · ·+ vm−1v
T

m−1

= Im − vmvT

m

= Im −
1

m
Jm.

Proof of Theorem 4. Note that each member of HZ is a linear combination of data points

where the sum of the coefficients is zero. Since

(Z − Z̄) = Z

(
I − 1

n
1n1

T

n

)
,

and

(x̄− ȳ) = Z

(
1

n1

, · · · ,
1

n1

,− 1

n2

, · · · ,− 1

n2

)T

,
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vMDP , defined in (3), is in HZ .

Now let ν be [ν∗1; ν
∗
2] with ν∗1 and ν∗2 as defined in (7) and (8), respectively, and let

Z̃ be the centered version of Z, (Z− Z̄). To show that {vMDP} ⊥ HX and {vMDP} ⊥ HY ,

it suffices to show that the inner product of Z ν and vMDP is zero.

< Zν,vMDP > = νTZTvMDP

∝ νTZT(Z̃Z̃T)−(x̄− ȳ)

∝ νTZT(Z̃Z̃T)−Z[1n1 ;−1n2 ]

= νTZ̃T(Z̃Z̃T)−Z̃[1n1 ;−1n2 ].

By p.222 in Searle (1982),

Z̃T(Z̃Z̃T)−Z̃ = Z̃−Z̃.

Now by Lemma 5,

< Zν,vMDP > = νTZ̃−Z̃[1n1 ;−1n2 ]

= νT(In −
1

n
Jn)[1n1 ;−1n2 ]

= 0.

3.2 Relation to the Fisher Linear Discrimination

In this section we compare the MDP direction vector with the Fisher Linear Discrimi-

nation (FLD) direction vector when d < n − 1. The FLD direction vector is defined as

follows:

vFLD :=
Σ̂−(x̄− ȳ)

‖Σ̂−(x̄− ȳ)‖
, (9)

where A− is the Moore-Penrose generalized inverse of the matrix A and Σ̂ is the pooled

sample covariance matrix, i.e.

Σ̂ =
1

n− 2

[
(X − X̄)(X − X̄)T + (Y − Ȳ )(Y − Ȳ )T

]
, (10)

where X̄ = x̄1T
n1

and Ȳ = ȳ1T
n2

. Note that the only difference between the MDP and

FLD direction vectors, is whether one uses the global sample covariance matrix Σ̃, defined

in (2), or the pooled sample covariance matrix Σ̂, defined in (10).
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The following theorem says the two direction vectors are actually the same in non-

HDLSS settings.

Theorem 6. Let vMDP and vFLD be as defined in (3) and (9), respectively.

If d < n− 1 and the data matrix Z in (1) is full rank, then vMDP = vFLD.

To prove this theorem we need the following lemma, which is a slight variation of

exercise 5.16 in Searle (1982). Note that the Moore-Penrose generalized inverse operation

is equivalent to the ordinary matrix inverse when the matrix is nonsingular.

Lemma 7. Let A and B be matrices with the same number of rows and let c be a constant.

As long as the following inverse matrices make sense,

(B + cAAT)−1A = B−1A(I + cATB−1A)−1.

Proof.

(B + cAAT)B−1A(I + cATB−1A)−1 = (I + cAATB−1)A(I + cATB−1A)−1

= (A + cAATB−1A)(I + cATB−1A)−1

= A(I + cATB−1A)(I + cATB−1A)−1

= A.

Proof of Theorem 6. Note that under the assumption d < n− 1, both the global sample

covariance matrix Σ̃ and the pooled sample covariance matrix Σ̂ are nonsingular so that

the Moore-Penrose generalized inverse matrices are actually the inverse matrices. Let p

and q be the proportion of samples with target +1 and −1, respectively, i.e. p = n1/n

and q = n2/n. Then the centered version of Z is

Z − Z̄ = [X,Y ]− (pX̄ + qȲ )

= [X,Y ]− [X̄, Ȳ ] + [q(x̄− ȳ)1T

n1
,−p(x̄− ȳ)1T

n2
]

= [X − X̄, Y − Ȳ ] + [q(x̄− ȳ)1T

n1
,−p(x̄− ȳ)1T

n2
].

14



Thus,

(n− 1)Σ̃ = (Z − Z̄)(Z − Z̄)T

= (X − X̄)(X − X̄)T + (Y − Ȳ )(Y − Ȳ )T

+n1q
2(x̄− ȳ)(x̄− ȳ)T + n2p

2(x̄− ȳ)(x̄− ȳ)T

= (n− 2)Σ̂ + (n1q
2 + n2p

2)(x̄− ȳ)(x̄− ȳ)T,

since the cross-product term is zero.

Therefore,

Σ̃ =
n− 2

n− 1
Σ̂ +

(n1q
2 + n2p

2)(x̄− ȳ)(x̄− ȳ)T

n− 1
.

Now if we apply Lemma 7 with B = n−2
n−1

Σ̂, A = x̄ − ȳ, and c = (n1q
2 + n2p

2)/(n − 1),

then

Σ̃−1(x̄− ȳ) =

(
n− 2

n− 1
Σ̂

)−1

(x̄− ȳ)

[
I +

n1q
2 + n2p

2

n− 1
(x̄− ȳ)T

(
n− 2

n− 1
Σ̂

)−1

(x̄− ȳ)

]−1

=
Σ̂−1(x̄− ȳ)

n−2
n−1

+ n1q2+n2p2

n−1
(ȳ − ȳ)TΣ̂−1(x̄− ȳ)

=
Σ̂−1(x̄− ȳ)

constant
.

Thus vMDP = vFLD after standardization.

It is not obvious that we get the same classifier whether we use the global sample

covariance matrix or the pooled sample covariance matrix if d < n− 1. Let us consider a

simple example in R2 to get some geometrical understanding of this, and how it can be

seen in terms of the underlying distributions.

Let X and Y be random variables from two bivariate normal distributions with different

means, but with the same covariance matrix, respectively, i.e.

X ∼ N2

((
µ1

µ2

)
,

(
1 ρ

ρ 1

))
, (11)

Y ∼ N2

((
−µ1

−µ2

)
,

(
1 ρ

ρ 1

))
, (12)

where µ1 and µ2 are real numbers and −1 < ρ < 1. Note that by a shift of the data, this

mean structure is quite general.
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The common underlying covariance structure of X and Y , whose estimator is the

pooled sample covariance matrix Σ̂, is

Σp :=

(
1 ρ

ρ 1

)
.

Let Z be the random variable whose distribution is the mixture of the two distributions

(11) and (12) with equal probabilities. We can write

Z =

(
Z1

Z2

)

= B

(
µ1

µ2

)
+ U,

where

B =

{
+1 w.p. 1/2

−1 w.p. 1/2,

U =

(
U1

U2

)
∼ N2

((
0

0

)
,

(
1 ρ

ρ 1

))
,

and B and U are independent.

Then, Z has mean 0 and the variance of Zi is equal to the variance of µiB +Ui, which

is 1 + µ2
i , i = 1, 2. The covariance of Z1 and Z2 is equal to the covariance of µ1B + U1

and µ2B + U2, which is ρ + µ1µ2. Thus, the covariance matrix of Z, whose estimator is

the global sample covariance matrix Σ̃, is

Σg :=

(
1 + µ2

1 ρ + µ1µ2

ρ + µ1µ2 1 + µ2
2

)
.

Note that Σg can be expressed as a sum of Σp and the outer product of the mean difference

vector (2µ1, 2µ2)
T multiplied by a constant:

Σg = Σp +
1

4

(
2µ1

2µ2

)(
2µ1 2µ2

)
.
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The true version of the MDP direction vector can be defined as the product of Σ−1
g and

the mean difference vector, (2µ1, 2µ2)
T:

True vMDP = Σ−1
g ×

(
2µ1

2µ2

)

∝

(
1 + µ2

2 −ρ− µ1µ2

−ρ− µ1µ2 1 + µ2
1

)
×

(
2µ1

2µ2

)
(13)

∝

(
µ1 − ρµ2

µ2 − ρµ1

)
. (14)

Similarly the true version of the FLD direction vector is the product of Σ−1
p and (2µ1, 2µ2)

T:

True vFLD = Σ−1
p ×

(
2µ1

2µ2

)

∝

(
1 −ρ

−ρ 1

)
×

(
2µ1

2µ2

)

∝

(
µ1 − ρµ2

µ2 − ρµ1

)
. (15)

From (14) and (15), we can see the resulting direction vectors are actually the same in

both cases.

One possible interpretation is that the effect of the mean difference vector on the

global covariance matrix Σg is negated when we take the inverse (13), which cancels out

when we multiply the mean difference vector by Σ−1
g to obtain the direction vector. Note

that this is only true for the non-HDLSS case.

4 Simulation Study and Open Problems

For a comparison of the MDP direction vector with other linear methods in terms of

classification performance, a simulation study in a very simple setting is done here. Each

class has a d-dimensional multivariate Gaussian distribution with unit variance. The two

classes only differ in their means: Class +1 has mean µ1d and Class −1 has mean −µ1d.

We generate n = 100 training data vectors from this distribution, 50 for each class, from

Euclidean spaces of dimensions d = 1, 3, 10, 30, 100, and 300. We also took µ to have

values .1, .2, .5, and 1, and for each combination of (d, µ), 1, 000 repetitions are done.
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The test sets of size 200 are used to evaluate the misclassification error rates. The linear

classification methods considered were the MD, FLD, MDP, Naive Bayes, as well as the

theoretically optimal Bayes rule.

Figure 6 shows the error rates with error bars for each method with different d and µ.

Because of the large number of repetitions, the error bars here are very small. The top

four panels show the error rates in the original scale and the bottom ones show them in

the log10 scale which allows a closer look at the small error rates. Note that MD and Naive

Bayes show nearly identical error rates in all cases. Also note that since a larger d results

in a larger distance between the two classes in this particular setting, all the methods

show generally better performances for higher dimensions. This also can be explained

by the asymptotics in Hall et al. (2002), who showed that when d � n, under a mild

assumption, the pairwise distances between each pair of data points are approximately

identical so that the data points form an n-simplex. Thus in discrimination, we have

two simplices for each class so that every reasonable classification method finds the same

direction in the end, which leads to data piling for all methods.

The FLD and MDP have exactly the same error rates up to d = 30, as expected from

Theorem 6. The most interesting feature of Figure 6 is that, however, when d reaches

100, which is equal to the sample size, the error rates of both FLD and MDP jump up

significantly. Here the error rate of the MDP is worse than that of FLD, with the larger

differences for the larger values of µ. Afterwards, their error rates plummet down when

d = 300 where MDP is better than FLD. This can be explained by the following: As d

gets close to n, the estimation of the covariance structure becomes unreliable due to the

lack of the data points, which yields increasing error rates. The effect of this unreliable

covariance estimation problem peaks at d = n and remains until d is somewhat higher

than n. Meanwhile, as d increases past n, the asymptotics in Hall et al. (2002) begins to

take effect as discussed earlier, resulting in decreasing error rates.

For a zoomed-in view of this anomaly, we repeated the same simulation with a finer

range of d, d = 90, · · · , 110 and the result is shown in Figure 7. The error rates of the

FLD and MDP increase as d grows close to the sample size, having the same error rates

up through d = 99. They differentiate when d = 100 and subsequently both error rates

decrease as d increases. The FLD performs better than MDP for dimensions slightly

larger than the sample size, however, the gap between them diminishes as d increases and

eventually MDP performs much better than FLD as shown in Figure 6.

Explanation of this behavior is an open problem. For more theoretically rigorous

explanation, the (d, n)-asymptotics developed by Johnstone (2001) and Fujikoshi et al.
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(2003) should be useful.
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Figure 6: Misclassification error rate for the Bayes, MD, FLD, MDP, and Naive Bayes

method from simulation, n = 100, d = (1, 3, 10, 30, 100, 300), and µ = (0.1, 0.2, 0.5, 1),

shown in the original scale in the top panels, log10 scale in the bottom panels.
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Figure 7: Misclassification error rate for the Bayes, MD, FLD, MDP, and Naive Bayes

method from simulation, n = 100, d = (90, 91, · · · , 110), and µ = (0.1, 0.2, 0.5, 1), shown

in the original scale in the top panels, log10 scale in the bottom panels.
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