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Abstract. This paper presents a Bayesian framework for generating
inter-subject high-dimensional transformations between two multi-modal
image sets of the brain. In this framework, the estimated transformations
are generated by using the maximal information about the underlying
neuroanatomy present in each of the different modalities. This modality
independent registration framework is achieved by using the Bayesian
paradigm and jointly estimating the posterior densities associated with
the multi-modal image sets and the high dimensional registration trans-
formation mapping the two subjects. The methods presented do not as-
sume that the same modalities were used to image the two subjects. To
maximally use the information present in all the modalities, relative en-
tropy (or Kullback Leibler divergence) between the estimated posteriors
is minimized to estimate the registration. The high-dimensional registra-
tion is constrained to be diffeomorphic by using the large deformation
fluid formulation.

We also show that the general framework optimally unifies the processes
of segmentation and registration of human brain anatomy. Given a set
of multi-modal intensity images of an individual subject and a geometric
atlas prior, we jointly estimate the posterior that represents the structure
of that subject’s neuroanatomy and the transformation that maps the
space of the atlas prior to the space of the estimated posterior, capturing
high-dimensional local variability.
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1 Introduction

Modern imaging techniques provide an array of imaging modalities which en-
able the acquisition of complementary information representing underlying neu-
roanatomy. Certain imaging sensors, such as MRI, produce inherently registered
multi-modal images. In the case were the images are derived from disparate sen-
sors with differing geometry (e.g. CT and MRI), rigid registration is required to
bring the modalities into correspondence. Multi-modal rigid image registration
has received much attention and a thorough review and comparison of methods
is presented in [18].



Inter-subject high-dimensional image registration has proven to be a power-
ful tool in understanding brain anatomy [5,3,7]. The book Brain Warping [15]
discusses the application of high-dimensional image registration to the under-
standing of neuroanatomy.

Although inter-subject high-dimensional image registration has received much
attention [13,10,6,14], no algorithm exists that uses multi-modal image sets of
subjects to estimate the registration transformation. Most image registration
techniques use a single imaging modality for the generation of high-dimensional
transformations between images of two subjects. An algorithm for cross modal-
ity inter-subject high-dimensional image registration that map image intensities
from one modality to another has been proposed [8]. This algorithm only works
with a single image from each subject.

In this paper, we present a framework based on the Bayesian paradigm that
enables us to generate inter-subject high-dimensional transformations given two
acquired sets of multi-modal images. We assume that each subject has associ-
ated with it a set of imaging modalities (e.g. PET, MRI, CT, etc.). We develop
an algorithm in which the maximal amount of information present in the dif-
ferent modalities is used to generate the transformation. Throughout this paper
we assume that, for each subject, the multi-modal images of that subject are
registered to one another.

The framework is based on the assumption that human brain anatomy con-
sists of finitely enumerable structures such as grey matter (GM), white matter
(WM), and cerebrospinal fluid (CSF). These structures present with varying ra-
diometric intensity values across disparate image modalities. Given multi-modal
image sets representing two studies, we jointly estimate, for each subject, the
posterior distributions associated with each of the structures along with the dif-
feomorphic high-dimensional registration map that relates the coordinate spaces
of the two subjects. The Kullback-Leibler divergence is used as a metric for
the posterior densities to estimate the transformation. The use of the posterior
probability densities provides an image intensity independent approach to image
registration.

In this paper, we also show that the framework described above optimally
unifies the processes of segmentation and registration of human brain anatomy.
Given a set of multi-modal intensity images representing an individual subject,
and a geometric atlas prior, the same framework can be used to jointly estimate
the posterior that represents the structure of that subject’s neuroanatomy and
the transformation that maps the space of the atlas prior to the space of the
estimated posterior.

The remainder of the paper is organized in the following manner. Section
2 presents the high-dimensional multi-modal image registration framework de-
scribing the posterior and transformation estimation. In Section 3, this frame-
work is applied to the problem of atlas-based image registration and segmenta-
tion. In Section 4, we evaluate the performance of the segmentation algorithm.



2 High-dimension Multi-modal Image Registration

We first consider the problem of registering two acquired sets of multi-modal
images. We assume that the underlying neuroanatomy, represented in these im-
ages, consists of N separate structures (or classes), ¢;, i = 1,---, N. Let subject
A be characterized by m multi-modal images so that I4(z) € IR™ and subject
B be characterized by n multi-modal images so that Iz(z) € IR", where c;(z) is
the class associated spatial position = = [z1, T2, 23]T € 24 B, respectively. From
the multi-modal images, I4(z) and Is(zx), for each class ¢; we jointly estimate
the posterior distributions p(c;(z))|14) and pg(ci(z)|Ig) along with the regis-
tration map, h(z), that maps the space of subject A, 24 C IR?, into the space
of subject B, 25 C IR3. This method is independent of the choice of m and n.
Optimal inter-subject multi-modal image registration is estimated by an alter-
nating iterative algorithm which is motivated by an expectation maximization
method used in [17,12]. Our algorithm interleaves the estimation of the posteri-
ors associated with studies A and B and the estimation of the registration map
that maps 24 to 23.

Following [17], for each class ¢; the associated data likelihood is modeled as a
normal distribution with mean, p;, and covariance, X;. That is, the probability
that a voxel at spatial location z having m-dimensional intensity values I(x)
belongs to class c;, is given by
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where c;(z) is the class associated with the voxel at position z = [z, 22, 23] €
R3.

Given a transformation, h(z), mapping the coordinate systems {24 and 23
and current estimates u;, Y;, the posterior densities of the two studies can be
associated with each other by using the posterior of one as the prior for the
other. Using Bayes’s Rule, the posterior of subject A becomes,
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where pg(c;(h(z))|Ip) is the transformed posterior of B viewed as the prior for

A. Similarly, the posterior, under the transformation h=!(z), of subject A is
viewed as the prior for subject B is given by,
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Having defined the posteriors, the parameters ug“, ,uz-B , E;“, and Z’f are up-
dated via their expected values:
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Using the Kullback-Leibler divergence, Dk, (-, ), the transformation is esti-
mated via the minimization
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The transformation h(z) is constrained to be a diffeomorphism following the
fluid formulation of [2]. The whole process is repeated until convergence.

2.1 Kullback-Leibler Divergence

As a distance measure between the distributions p4(¢(z)|I4) and pg(e(h(x))|I5),
Kullback-Leibler divergence (relative entropy), is defined as

From an information theoretic viewpoint [4], this measure can be interpreted as
the inefficiency of assuming that pg(&(h(x))|I5) is true when p4(¢(z)|L4) is true.
That is, if we have a model expressed as a probability density ps(e(h(x))|Ig),
we can then measure how far an observation, also expressed by a probability
density, pa(e(z)|14), deviates from pg(e(h(z))|I5) using Kullback-Leibler diver-
gence. The second equality above simply highlights the notion that Kullback-
Leibler divergence is the expected logarithm of the likelihood ratio of p4(¢(z)|I4)
to ps(c(h(z))|1p).

Kullback-Leibler divergence is non-negative, and is zero if and only if the
probabilities are equal. However, Kullback-Leibler divergence is not a true dis-
tance in the strict mathematical sense since it is not symmetric. We are also
investigating the use of a symmetric generalized form of the Kullback-Leibler
divergence motivated by the work of Renyi [16]. Such a symmetric form would
eliminate the asymmetry in the divergence computation.



2.2 Registration

In this section, we discuss the process of registering the posterior of subject B to
the posterior of subject A. We estimate the transformation h(x) that maps the
space of the prior, {24, into that of the posterior, 25, via the following average
Kullback-Leibler minimization:

h(z) = argmin —— Dir(pa(e(z)|L4), ps(E(h(z))|Ip))dz
n(z) |24 Ja,
where h(z) € IR? is the high-dimensional vector field describing local variation
between the prior spatial coordinate system and the posterior spatial coordinate
system and Dk (-,-) is the Kullback-Leibler divergence.

We apply the theory of large deformation fluid diffeomorphisms of [9,11] to
require that the deformation, h(z), be the solution of the Lagrangian o.d.e.,
ih(x t) = v(h(z,t),t)
dt ) - yV)sb)-

The optimal transformation is found by estimating the velocity field following
the minimization:
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where the second term is the fluid formulated regularization. Following Chris-
tensen’s greedy algorithm for propagating templates [1], we compute the varia-
tion of the average Kullback-Leibler divergence term,
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To compute this variation, we approximate log « near = 1 using the Maclau-

rin series expansion. The point x = 1 is chosen for the expansion as it is the
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Thus, the second order approximation to Kullback-Leibler divergence becomes

Dir(pa(€(z)|14), p5(E(h(2))|Ip)) ~

1 & _
i3 ZPA(Ci(SU)UA)



’ ps(ci(h(@) )\ _ 3| _
) *2(paqwnu)) 2]‘
_L Z [_EIM + 2pp(ci(h(z))|I5) - §] :

2

Therefore, we compute the variation of the average Kullback-Leibler diver-
gence term as follows,
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The velocity field at each iteration is updated by solving the p.d.e.,
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where L = aV?2 + bV - V + ¢l is the Navier-Stokes operator.

3 Atlas-based Image Segmentation

The above framework for multi-modal image registration can be applied to op-
timally unify atlas-based image segmentation and registration. The problem of
high-dimensional multi-modal image registration reduces to the problem of atlas-
based image segmentation where subject B, in Section 2, is replaced by an atlas
prior with known probability densities.

Given a multi-modal image data set, I(z), and a geometric prior p(c;()),
image segmentation lends itself to the Bayesian paradigm in which inference
about a class, ¢;, of each of the voxels is based on the posterior distribution
p(ci(z)|I) given by Bayes’s Rule. To apply Bayes’s Rule, the prior and likeli-
hood need to be in the same coordinate system, and hence, a registration map
is required. If the prior and likelihood are not in the same coordinate system
then the estimation of the posterior is subject to overlap error due to spatial
misalignment. Working within the probabilistic framework defined in Section 2
unifies the approach of estimating both the posterior and the registration map
that matches the coordinate spaces of the prior and posterior.

As described in Section 2, the data likelihood associated with each of the N
classes is modeled as a normal distribution with mean, u;, and covariance, X;.
That is, the probability that a voxel at spatial location = having m-dimensional
intensity values I(x) belongs to class ¢;, is given by
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Given a registration transformation, h(z), mapping the coordinate system
of the atlas, 24445, into that of the study, {2544y, the posterior distribution,
Pstudy (Ci(T)|Istudy ), is given by Bayes’s Rule:
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The atlas-based image segmentation algorithm interleaves the estimation of
the posterior, psiudy (¢i(z)|Istudy) by using a fixed atlas with the estimation of the
registration map h(z). In this algorithm the parameter estimation is considered
only for the study. Given h(x), the parameters of the likelihood are estimated
via the empirical expectations:
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Given these parameter estimates, the registration map is estimated to minimize
the Kullback-Leibler divergence between the posterior and prior,

h(z) = argmin / Dk 1 (Pstudy (€(@)| Istudy), Patias (€(h(x))))dz.
h(z) |'Qstudy| Rstudy
As with the inter-subject registration, the transformation h(z) is constrained
to be a diffeomorphism using the fluid formulation. Again, the whole process is

repeated until convergence.

4 Results

To evaluate the performance of the algorithm we define a geometric prior, a
known transformation, and two synthetic images whose radiometric characteris-
tics are statistically similar to actual T1- and T2-weighted MR images. A four
class atlas prior comprising of concentric ellipses was generated using Matlab.
A composite label image is given by the superposition of the individual classes.
Both the atlas and composite label image are shown in Figure 1. Additionally, a
transformation, h(x), was constructed using sinusoidal displacements which was
then applied to the composite label image. The deformed label image is shown in



the left panel of Figure 2. The two synthetic images were simulated by sampling
from a multi-variate Gaussian distribution with different means and covariances
for each of the classes in the deformed label image. These means and covariances
are given as follows,

_ [182.28 _[11405]  _ [341.7543.20]  _ [900.25 —78.51
e = 15012 He2 T | 67.62 |0 71 T | 43.20 58.05 | T2 T | —78.51 641.67 |’

30.11 30.11 450.8 1375 447.3 255.9
Mz = |:11752:|7NC3: |: :|7263= |: :|7a'ndEc4= |: :|

117.52 1375 7286.3 255.9 352.1

Fig. 1. Geometric Atlas Prior

Manually generated geometric four class atlas prior (first four images) and the corre-
sponding composite labeled image.

Fig. 2. Synthetic Images
Deformed label image (left), synthetic image derived from T1 samples (middle), and
synthetic image derived from T2 samples (right).

The algorithm was was run for fifty iterations with ten steps of the high-
dimensional registration per iteration. The final segmentation and deformation
estimates shown in Figure 3.

In order to evaluated the success of the high-dimensional registration the
algorithm is run, again with fifty iterations, holding the transformation fixed to
the identity map. The final estimated segmentation is then compared to the one



Fig. 3. Estimated deformation (left) and segmentation (right) following fifty iterations
of the algorithm.

based on registration, with results shown in Figure 4. By examining the regions
where the two segmentations differ from the ground truth label image it is clear
the registration has improved the segmentation.

In both invocations of the algorithm, the class means and covariances were
collected and compared. Table 1 shows the final relative norms for the esti-
mated and actual means and covariances at the final iteration. For all classes
the registration has improved estimates for both the means and covariances. The
convergence of the means and covariance estimates using registration is shown
in Figure 5. From this figure we see that the estimation of the means and covari-
ances have converged quickly when the transformation is fixed to the identity
map. When registration is added the estimates of the means and covariances
continue to improve as estimation of the transformation between atlas and the
subject converges. This exemplifies the effectiveness of the alternating nature of
the algorithm.
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Class i w/ reg. ToerTl w/o reg. 5T w/ reg. TS w/o reg.
c1 0.0047 0.1216 0.0450 7.0588
Co 0.0152 0.1168 0.2104 1.8164
c3 0.0960 0.0939 0.0206 0.0811
4 0.0046 0.0046 0.0081 0.0266

Table 1. Relative Norm Statistics

The first two columns of numbers are the relative means using registration (left) and
fixed identity map (right) as the final iteration. The last two columns show the same
for the relative covariances.

From these results we see that the registration improves the segmentation by
accommodating local variability. The multi-modal inter-subject image registra-
tion results are currently being developed and will be available by the time of
the conference.



Fig. 4. Final Segmentation
The image in the upper left is the ground truth label image. The second column
shows the final segmentation estimation using registration and the regions where this
segmentation differs from the ground truth. The right column shows the same where
the transformation is fixed to the identity map.
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Fig. 5. Convergence
The left column shows the convergence of means and covariances using registration.
The right column shows the same using the fixed identity transformation.
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