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ABSTRACT In this work, we propose to use a spherical wavelet shape
We present a novel method of statistical surface-based mor[(_epresentation for statistical shape analysis_ using permU
phometry based on the use of non-parametric permutatiothOn tests. [19’ 11, .12' 13]. T_he -represenFatlon IS a ;urface

arametrization using expansion into a series of spherical

tests and a spherical wavelet (SWC) shape representation. R . } L N
an application, we analyze two brain structures, the Cmdayvavelet basis functions, pro_wdlng a sc_ale space dew"pt.'
nucleus and the hippocampus, and compare the results O%f— shape. V\/_h_en representing shapg.mf(.)rmatlon, spherical
tained to shape analysis using a sampled point represamtati wavelet coefficients have a more intuitive interpretatioart

Our results show that the SWC representation indicates ne
areas of significance preserved under the FDR correction f
both the left caudate nucleus and left hippocampus. Additio . .
ally, the spherical wavelet representation provides arahtu depends on the scale of the coefficient. However coefficients

way to interpret the significance results in terms of scale irj?ret.n(ljlt as I?C?I'Zedh as porllnts ": a I?Dl\/lthretpre.setrxutjﬁpr:, po-
addition to knowing the spatial location of the regions. entially capturing shape characteristics that exis n

Index Terms— Image shape analysis, Wavelet transformsSpatia.I locations and different spat_ial extent, i.e & mgmhf
' a portion of the shape. We use this shape representation for

1. INTRODUCTION statistical shape analysis of two brain structures, thelatzu

r}ucleus and hippocampus, and compare the results obtained

The StUdY of brain morphology has emergeq asa new.fle.ld 0 shape analysis using a SPHARM-PDM representation.
computational neuroanatomy and can provide great insights

into brain pathologies. The aim of our work is to investigate 2 METHODS
wh(_ather there exists morphological differences qf sgtbcte_ 21 SPHARM-PDM
brain structures between groups of neuropsychiatric ipigtie
with neuroanatomic abnormalities and a group of healthy conThe input of the proposed shape analysis is a set of binary
trols. To reach this aim, we compare structures extracted fr segmentations of a single brain structure. These segmenta-
MRI images of different subjects using statistical tests. tions are transformed into a SPHARM-PDM representation
Statistical analysis of brain structures is often based otsing a procedure described in [13]. Here we sketch the ma-
global features, such as volumetric measurements [1]. Howor steps of the algorithm. The binary voxel objects prodide
ever, studies have shown that morphometric analysis ofibray expert slice-by-slice segmentations are first prepsemes
structures provides new information which is not availableto fill any interior holes and to smooth boundary voxel noise.
by conventional volumetric measurements [2]. To conduct he processed binary segmentations are converted to surfac
3D morphometry, various shape representations have be#teshes, and a spherical parametrization is computed for the
proposed, ranging from dense sampled 3D Point Distribusurface meshes using an area-preserving, distortion nzinim
tion Models (PDM) [3, 4] to medial shape descriptions [5, 6,ing spherical mapping. The SPHARM description is com-
2, 7] and surface parametrization using expansion into a sguted from the mesh and its spherical parametrization.dJsin
ries of Fourier [8] or spherical harmonic basis functiors [9 the first order ellipsoid from the spherical harmonic coeffi-
Combined, these representations provide new complenyentagients, the spherical parametrizations are aligned tdksta
measurement tools to answer clinical research questions. ~correspondence across all surfaces. The SPHARM descrip-
hi k is funded by the National Alliance for Medical Inreagom tion is t-hetn sampled into a_tr_ie}ngulated surfaf:e (SPH-ARM-
putinTg (NAMIC), NIH Grant Us4 EBO0S149, as well as NI gramaipar - DOM) via icosahedron subdivision of the spherical paraizestr
RR-13218. The acquisition and segmentation of hippocastiazophrenia  tion (4 subdivisions). These SPHARM-PDM surfaces are all
study was funded by the Stanley Foundation. spatially aligned using rigid Procrustes alignment.

W)urier or spherical harmonic coefficients due to the laeali
ature of spherical wavelet basis functions. Each coefficie
escribes a portion of the surface and the size of that portio




2.2. Spherical Wavelet Shape Representation (SWC) 8

1 0
The spherical wavelet description is computed from the
SPHARM-PDM surface. Each surface contailisvertices ‘
and has a spherical parametrization. Each shape is exgres: IO I

in the spherical wavelet basis function by representingit a i
three signalsf®, f¥ and f* on the discrete sphere, corre- B2
sponding to the;, y andz coordinates of all vertices. We then . i
expand each signal into a series of spherical wavelet bas l

functions using the forward spherical wavelet transfordj {1

| |
fo(n) = 2. ik(n) (1) : y i =13 .

where¢; ;. is a basis functiohdefined over all vertices in- LEVEL 1 LEVEL 2 LEVEL 3

dexed byn € N, j denotes the scale (spatial extent) arttle

center of the basis function, anﬁk is the associated wavelet Fig. 1. Visualization of spherical wavelet functions and asseclat
coefficient. As a result, each shape is represented by aserimembership regions at three levels (columngpp row : Values
of spherical wavelet coefficients (SWC). The top row of Fig-of single spherical Wavelet Basis Function shown on the repae
ure 1 shows the decreasing spatial support of a single basigales 1 through 3Middle and Bottom row: Membership regions
function at scale§ = 1,5 = 2 andj = 3. Note that the of spherical wavelet basis functions shown on the spherearite
supports of the basis functions overlap across scales smit al°riginal surface, coloring is random.

slightly within a scale. To locate and visualize the influen€

all basis functions at a given scale, each point on the spbere
associated to the basis function with the highest valueadt th
point (see middle and bottom rows of Figure 1).

: 0.8
1 I-0.1
42 162

0 R AN TR

A
X

20,000 and up should yield results that are negligibly differ-

ent from using all permutations for a typical experiments of

40 samples in each group [14]. To calculate a P-value for a

feature, the real group differen@ for that feature is com-

2.3. Shape Analysis pared to the distribution of group diﬁerenc@$ computed

- from random permutations of the group labels for that fea-

2.3.1. Test Jatistic ture. The quantile in th@? histogram associated witfi;

The difference between a multivariate feature in two grasips s called the raw P-value. Given a chosen significance value

computed using a modified Hotellirg* two sample metric «, the hypothesis that the feature value is the same in both

that is less sensitive to group differences than the starifar  groups is rejected if the P-value for that feature is lesa tha

metric. Given a group with n, samples, we calculate the

meany; and covarianc&; of a 3D feature. The modifiefi? ~ 2.3.3. Correction for Multiple Comparisons

for two groups is given by: Since the shape analysis involves testing from a few to many
1 1 thousands of hypotheses (one per feature), it is important t

T? = (g — p2) T (81— + 29— )"Y(u1 —p2) (2)  control for the multiple testing problem. We use a False Dis-

m 2 covery Rate (FDR) estimation, a procedure that controls the

A PDM feature is a point with 3D coordinates. A SWC fea- @XPected proportion of false positives among those tests fo

ture is a basis function; , with 3D coordinates correspond- which a local significance has been detected [13]. FDR allows

ing to the spherical wavelet coefficients, ijk and~?,. an expected proportion (usual§ft) of the FDR-corrected

_ _ significance values to be falsely positive.
2.3.2. Non-parametric permutation tests

We want to test the two groups for differences in the meang.4. Significance Map Visualization

of the T2 metric at each feature. Permutation tests are a valigor ppm features, we visualize both the raw and FDR cor-
and tractable approach for such an application, as they repacted P-values as significance color maps on the surface of
on minimal assumptions and can be applied even when th@ie mean shape of the structure under study. The color at each
assumptions of the parametric approach are untenable. Oppint is the P-value. For SWC features, we would also like to
null hypothesis is that the distribution of the value of eachyylg such a significance map. If a feature (basis functisn) i
feature is the same for every subject regardless of the grougyynd significant, we color all points that are in the support
Givenn, members of the first group., & = 1,...,n1 andna  of that basis function at that scale with the corresponding P
members of the second grotp, k = 1,..., n2, We can cre-  ya|ye. If more than one basis function is found significamt an
ate M < ("11?2”2) permutation samples. A value 8f from  the support of the basis functions overlap, we assign the ove
lapping region to the function with higher value, and colae t
region with the P-value of that basis function.

1At scale 1, the basis functions are scaling functions.
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Fig. 2. Left Caudate Shape Analysis Results - Significance mapséoPDM features. This figure is best seen in color.
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(a) SWC SCALE 1 (b) SWC SCALES 1-2 (c) SWC SCALES 1-3
Fig. 3. Left Caudate Shape Analysis Results - Significance mapséoBWC features. This figure is best seen in color.
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3. RESULTS superior body and posterior tail. Overall, the SWC raw map

We applied our shape analysis framework using both the PDNAt scales 1-3 displays similar significant areas than the raw
features and SWC features to two studiesThe first is a PDM map. However, unlike the PDM FDR map, the SWC
schizo-typal personality disorder (SPD) study on the ctuda FDR map displays significant area in the anterior superior re
brain structure in female adult patients [15]. 32 SPD subjec 910N (raw P-value 5e-5, FDR P-value 0.0085).

and 29 healthy control subjects were analyzed. The second32. Left Hippocampus

a schizophrenia study on the hippocampus brain structure ihe result for PDM is shown in Figure 4. The raw signifi-
male adult schizophrenia [7]. 56 schizophrenia subjedts ancance map displays significance both in the superior-amteri
26 healthy control subjects were analyzed. The subjects ifind inferior-posterior regions. The FDR-corrected map is a
both studies have same handedness and the structures wgfgre pessimistic estimate and does not show any significance
corrected for difference in head size. The result for SWC are shown in Figures 5(a)-5(c). At scale
For both structures, we analyzed the right and left hemiq | the raw significance map displays significance in the supe-
sphere separately. We present results on left structures f@ior and inferior region, indicating that these differeace-
brevity. For SWC features, the shape analysis is conductegr already at a coarse scale. At scales 1-2 and 1-3, adalition
at various cumulative scales: all features associatedis ba smaller regions of Significance appear in the Superiorpi‘ﬂ]{te
functions up to a given scale are tested for difference amongnd inferior-posterior, similar to the PDM regions, inding
the groups. For all structures we present results up to Scalethose group difference are at a fine scale (small spatial sup-
since no new features were discovered at subsequent scaleport). At scale 1, the FDR map preserves the significance in
most regions, and at scale 1-3 a small region in the medial
3.1 Left Caudate NiJcIeus o ~_ side is preserved (raw P-value 0.0001, FDR P-value 0.016).
The result for PDM is shown in Figure 2. The raw signif- the FDR correction is more severe at higher scales due to

icance map displays an overly optimistic estimate of signif e increasing number of tests, and only preserves themegio
icance in the superior body and anterior head region. Thgjiy, high significance.

FDR-corrected map is a more pessimistic estimate and does o erall. we see that the results for SWC nicely comple-

not show any significance. The result for SWC are shown inent the PDM results by showing similar significance regions
Figures 3()-3(c). For the raw map (top rows), scale 1 disznq providing additional significance regions, even wittRFD

plays significance at the anterior inferior head region. &t ¢ qrrection. Additionally, it provides information aboutet
mulative scales 1-2 and 1-3, the raw map displays additiongl.5je of the group difference.

significance in the anterior superior head region, as well as 4. CONCLUSION

2GE 1.5 Tesla MR system using a 3D IR Prepped SPGR acquisittio-p ~ VWe have presented a novel method for statistical analysis of
col with a 256x256x124 image matrix at 0.9375x0.9375x1.5regolution.  Morphological differences of brain structures based orarsp
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Fig. 4. Left Hippocampus Shape Analysis Results - Significance rfathe PDM features. This figure is best seen in color.
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Fig. 5. Left Hippocampus Shape Analysis Results - Significance rfaghe SWC features. This figure is best seen in color.

ical wavelet (SWC) representation and compared it to a sim-

ilar analysis with a PDM representation. The scale-spaee de
composition of the SWC provides shape features that describ
group differences at a variety of scales and spatial lonatio
providing additional information in addition to local feaes
such as PDM. Indeed the results show that the SWC represe
tation nicely complements the PDM results by indicating new

areas of significance preserved under the FDR correction for
both the left caudate nucleus and left hippocampus. Furthet8]

studies providing correction for age and medication will be
needed to draw clinical conclusions.
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