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Abstract The wide variety of statistical shape models avail-
able in image analysis and computer vision calls for some
criteria and procedure to evaluate them for their effective-
ness. In this paper, we introduce a formal correlation mea-
sure called goodness of prediction that allows evaluating
statistical shape models in terms of their predictive power:
the ability to describe an unseen member of the population.
Most applications of statistical shape models such as seg-
mentation and classification rely on their predictive power
particularly heavily. The correlation measure is designed to
analyze statistical shape models that use principal compo-
nent analysis (PCA) to characterize shape variability. As
some geometric shape representations like the m-rep do not
form a vector space, the correlation measure initially defined
in linear vector space is generalized to a nonlinear manifold
by interpreting the measure in terms of geodesic distance
in space. Through a systematic procedure for calculating the
measure, we analyze the predictive power of statistical shape
models as a function of training sample size. Our approach is
demonstrated with two different shape representations: the
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m-rep and the point distribution model. Our experiment re-
sults show the usefulness and the benefit of our evaluation
method.
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1 Introduction

The main objective of statistical shape models is to provide a
probability distribution on the shape that an object can take.
Representation and analysis of geometric form is a difficult
and challenging problem in image analysis and computer vi-
sion. Of special interest are the shape descriptions of 3D ob-
jects such as anatomical objects extracted from 3D medical
image data or new types of 3D models in computer graph-
ics applications. Many efforts have been made to come up
with an effective geometric representation of 2D or 3D ob-
jects. Some of the well-known representations in the liter-
ature are the followings: active contour models (Malladi
et al, 1995a) and its variant geodesic active contour mod-
els (Caselles et al, 1995), parametric deformable contour
models (Staib and Duncan, 1992), diffeomorphisms from
atlases (Joshi, 1997; Christensen et al, 1997), level set mod-
els (Malladi et al, 1995b; Tsai et al, 2003), point distribu-
tion models (PDM) (Cootes et al, 1995), spherical harmonic
models (Brechbühler et al, 1995) and m-reps (Pizer et al,
2003).

Shape is often described in terms of the deformation
from a template. Kendall (1977) originally described shape
as the geometric information that remains after the variation
in location, scaling, and rotational effect is accounted for.
That is, two objects have the same shape if one object can
be transformed into another object by these translation, scal-
ing, and rotation transformations. So normally some align-
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ment methods like Procrustes are applied to sample objects
to remove the effects of similarity transformations existing
in samples before any statistical estimation is done on train-
ing samples. It is assumed in this work that samples are
aligned by a sensible alignment method.

Principal component analysis (PCA) has become a very
popular method used to analyze shape variability. Cootes
et al (1995); Bookstein (1999) were early users of PCA for
shape analysis. The usefulness of PCA is two-fold: 1) de-
composition of population variables into an efficient repara-
metrization of the variability observed on the training data
and 2) dimension reduction of population variables that al-
lows a focus on the subspace of the original space of popu-
lation variables. Especially, #2 is a major advantage of PCA
in shape analysis because most shape representations pre-
sented in the literature have very high dimensional feature
spaces due to the complexity of object shape. On the other
hand, available training samples are limited due to the cost
and time involved in the manual segmentation of images.
This kind of data is called high dimension, low sample size
(HDLSS) in statistics. The measure we propose in this work
applies to statistical shape models that use PCA as their
method to describe shape variability.

Given a set of training samples from a population, PCA
allows us to extract important directions (features) from these
training samples and to use these features to describe new
members of the population. The predictability of statistical
shape models refers to this power of statistical shape models
to predict a new member in the population.

Although there exist in statistics several criteria to judge
the appropriateness of any dimension reduction technique,
we will mainly concentrate on the criteria of predictability in
view of the many practical applications of statistical shape
models. In addition, we will touch on the questions of the
interpretability and the stability of the extracted directions
that are equally important as the predictability: Does the di-
rection have a meaningful interpretation or are they mere
mathematical objects?; How do these directions differ from
sample to sample, and how many training samples do we
need to get a stable estimate of the important directions?

1.1 Motivation, Previous Work, and New Measure

There are several properties that are desired for statistical
shape models. First, for geometric representations of an ob-
ject made from a tuple of spatially sampled primitives there
needs to be reasonably good correspondence of the prim-
itives across training cases. Poor correspondence can add
noise to training samples that masks real variation of shape
of an object, resulting in an unreliable estimation of shape
probability distribution. Second, geometric representations
need to be efficient so that they can describe shape of an
object with minimal number of parameters. For example,

to measure the geometric efficiency of representation for
curves in 2D, Leonard (2007) introduced the concept of ε-
entropy that is the minimum number of ε-balls required to
cover the space of a totally bounded metric space and con-
struct an adaptive coding scheme that allows codewords of
varying lengths for shape elements in a non-compact space.
On the basis of ε-entropy and the adaptive encoding scheme,
she theoretically determined conditions in which the medial
axis is more efficient than the boundary curves. She shows
in her experiments that medial axis holds a tenable position
as a shape model in 2D: for all but three out of the 2,322
2D-shapes she analyzed, the medial representation is more
efficient. The efficiency of the geometric representations of
shape can help to alleviate the HDLSS problem as well as
to avoid the over-fitting problem. Third, an estimated shape
probability distribution needs to be tight. Fourth, it needs
to be unimodal since most statistical data analysis methods
employed in shape analysis are based on the assumption of
Gaussian distribution of the data. Fifth, a statistical shape
model must be able to represent only real instances in the
population of the object. Sixth, it must be able to describe a
member of the population unseen in a training sample.

Among the few studies in which statistical shape mod-
els were evaluated, a key study done by Styner et al (2003)
defines three criteria that can assess some of these prop-
erties and then compares correspondence of shape models
on the basis of the three criteria. The three criteria are de-
fined as follows: compactness as the ability to use a min-
imal set of parameters, generalization as the ability to de-
scribe instances outside of the training set, and specificity
as the ability to represent only valid instances of the object
in its population. Generalization ability is assessed by doing
leave-one-out reconstruction and computing approximation
errors of unseen models averaged over the complete set of
trials. These measures are defined as functions of the num-
ber of shape parameters. Generalization ability and speci-
ficity are defined in the ambient space, where the models lie
physically. In regard to these criteria, Styner et al (2003) ex-
amined and compared four methods: a manually initialized
subdivision surface method for direct correspondence and
three automatic methods - spherical harmonics, minimum
description length, and minimum covariance determinant -
for model-implied correspondence.

To compute the three criteria, (Styner et al, 2003) pro-
posed to use an approximation error based on a small set of
anatomical landmarks that a human expert selects manually
on each object. The approximation error is defined as the
mean absolute distance (MAD) between the manual land-
marks and points corresponding to the same landmarks of
the four shape models.

The approach of Styner et al (2003) in the evaluation of
the correspondence methods is grounded in an important ob-
servation: statistical shape models of good correspondence
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are highly likely to have good compactness, good general-
ization, and good specificity. In fact, these are qualities that a
statistical shape model obtains as results of some optimiza-
tions to establish correspondence. They do not directly indi-
cate the quality of correspondence of statistical shape mod-
els.

While these measures offer legitimate criteria to evaluate
correspondence methods of different statistical shape mod-
els, they are short on the predictive power of the statistical
shape models: the ability to describe unseen members of the
population and to describe their frequency of occurrence.
This ability of statistical shape models is critical since most
applications of statistical shape models heavily rely on their
predictive power. One example is model-based segmenta-
tion in maximum a posteriori (MAP) framework, which uses
a prior distribution of shape of an object to extract the ob-
ject from a new image. Another example is classification of
an object on the basis of its shape, using trained shape prior
distributions.

While goodness of fit is of special interest for analytic
goals, goodness of prediction is of more importance for goals
including generative models. Unfortunately in statistics good-
ness of prediction of PCA has received far less attention
than goodness of fit. Muller (2007) presents a novel method
to assess goodness of prediction for principal components.
Muller first shows that PCA can be recast as a multivariate
regression model by treating the observed variables as re-
sponses and principal directions as predictors. Then, good-
ness of prediction is derived from goodness of fit, a standard
statistical measure for second moment accuracy. Finally, he
proves that canonical correlations and related measures of
association degenerate to constants and that the “univariate
approach to repeated measures” test (average squared cor-
relation, generalized variance explained) provides a simple
and useful measure of association. He also suggests another
measure - squared multiple correlation - to provide more
detailed information. Among the several measures he pro-
poses, in this work we adopt the average squared correla-
tion measure to evaluate the predictive power of both linear
and nonlinear statistical shape models. The detailed devel-
opment of this measure is given in sections 2 and 3.

This correlation measure has a clear statistical interpre-
tation in terms of the predictability of statistical shape mod-
els. This feature facilitates evaluation and comparison of dif-
ferent approaches to estimate a shape description or different
statistical shape models. Furthermore, the average squared
correlation is a simple direct measure defined in the shape
feature space and is quick and easy to compute. In contrast,
the generalization measure in (Styner et al, 2003) is an indi-
rect measure defined in the ambient space where the models
lie physically, and it takes a long time to compute.

2 Background

In this section we provide the background necessary to un-
derstand goodness of prediction of PCA in a multivariate re-
gression setting. Section 2.1 explains the decomposition of a
covariance matrix by PCA taken from (Muller, 2007). Sec-
tion 2.2 describes the approximation of sample objects given
by the mean and major principal coefficients. Section 2.3
gives the basic definitions of the general multivariate linear
model and linear regression.

2.1 Decomposition of the Covariance Matrix

Let Y = Y1, . . . ,YN be N sample vectors from a p-variate dis-
tribution. Let Y be a N× p data matrix with Y ′i as rows, and
let Σ be a corresponding p× p variance covariance matrix.

By PCA (equivalently spectral decomposition), Σ can
be written as Σ = ϒ D(λ )ϒ ′, where D(λ ) is a p× p diag-
onal matrix of nonnegative eigenvalues {λi} for i = 1 . . . p
and where ϒ is a matrix of column eigenvectors of the non-
negative symmetric matrix Σ .

Most of the time N ¿ p due to HDLSS situation, i.e., the
sample size is much smaller than the dimension of the shape
feature. In general, some number of principal directions less
than N, say pa, covers most of the sample’s variation, e.g.,
80% or 90% of the total variation. Partly because the esti-
mated principal directions explaining the smaller variation
of the data are unreliable, we usually take the first pa eigen-
vectors to approximate the covariance matrix. For i > pa,
the i-th eigenvector estimated from one sample is likely to
be different from the i-th eigenvector estimated from another
sample, and these later eigenvectors might not appear in the
same order. Also, taking only the first pa eigenvectors re-
duces the dimension of the original shape feature space con-
siderably, which can be useful in applications of statistical
shape models.

Let pb = p− pa. Considering pa and pb columns of ma-
trices ϒ and D(λ ) in two partitions gives ϒ =

[
ϒ a ϒ b

]
, λ =[

λ ′a λ ′b
]′, and

Σ = ϒ D(λ )ϒ ′

=
[
ϒ a ϒ b

][
D(λ a) 0

0 D(λ b)

][
ϒ ′

a
ϒ ′

b

]

= ϒ aD(λ a)ϒ ′
a +ϒ bD(λ b)ϒ ′

b (1)

= ΦaΦ ′
a +ΦbΦ ′

b

= ΦΦ ′ ,

where Φ =
[
Φa Φb

]
, Φa =ϒ aD(λ a)

1/2, and Φb =ϒ bD(λ b)
1/2.

Without loss of generality ϒ ′ϒ = Ip and {λi| i = 1 . . . p} are
sorted from largest to smallest. Hence if rank(Σ) = pa, then
λ b = 0 and Σ =ϒ aD(λ a)ϒ ′

a = ΦaΦ ′
a. ΦbΦ ′

b ≈ 0 and ΣY ≈
ϒ aD(λ a)ϒ ′

a are assumed when the covariance matrix is ap-
proximated with the first pa ¿ p components.
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2.2 PCA for Statistical Shape Analysis

In statistical shape analysis, the N rows of Y correspond to
people or images, and the p columns of Y correspond to
features in shape space. With a p× 1 mean shape feature
vector µ and an N× 1 column vector 1N of 1’s, the full set
of component scores is (Y−M)ϒ , where M = 1N µ ′. Com-
ponent scores for retaining pa components are computed by
(Y−M)ϒ a. Let Yc be the approximating set of component
scores (Y−M)ϒ a. Approximating the data with the com-
ponents gives

Y≈ Ya = M+Ycϒ ′
a (2)

= M+(Y−M)ϒ aϒ ′
a ,

with the N × p matrix Ya of rank pa ¿ p, while ϒ aϒ ′
a is

p× p and of rank pa ¿ p.

2.3 General Linear Multivariate Model

The multivariate linear model allows two or more responses
to be measured on each independent sampling unit. The defi-
nition of the general linear multivariate model given in (Muller
and Stewart, 2006) is as follows.

Definition 1 A general linear multivariate model (GLM) Y =
XB+E with primary parameters B, Σ has the following as-
sumptions:

1. The rows of the N× p random matrix Y correspond to
the independent sampling units, that is, they are mutu-
ally independent with Yi =rowi (Y).

2. The N × q design matrix X has rank(X) = r ≤ q ≤ N
and is fixed and known without appreciable error, condi-
tional on knowing the sampling units, for data analysis.

3. The parameter q× p matrix B is fixed and unknown.
4. The mean of Y is E(Y) = XB.
5. The mean of E is E(E) = 0.
6. The rows of response matrix Y has finite covariance ma-

trix ΣY , which is fixed, unknown, and positive definite or
positive semidefinite.

In the multivariate regression model, B = (X′X)−1 X′E(Y),
and
B̂ = (X′X)−1 X′Ê(Y) = (X′X)−1 X′Y
which is the maximum likelihood estimator of B. More de-
tails about regression analysis and linear models can be found
in (Muller and Stewart, 2006; Kleinbaum et al, 1997; Timm,
2002). The theory of multivariate analysis can be found in
(Muirhead, 1982; Arnold, 1981).

3 Goodness of Prediction

In most applications of statistical shape models, a mean shape
and modes of shape variation (eigenvectors, principal direc-
tions) estimated from a set of training models are used to

approximate a shape in a new image. Considering how esti-
mated shape statistics are used in applications, the prediction
accuracy of estimated shape models can be assessed prop-
erly by using estimates from one set to predict shapes in a
different set of models. We call a set of training models used
for estimating shape statistics a training set and the different
set of models a test set.

In this section, we first describe a modified interpreta-
tion of the original approach that is proposed in (Muller,
2007) to meet our need. Our focus here is measuring good-
ness of prediction of the estimated covariance (second mo-
ment accuracy), not of the estimated mean (first moment ac-
curacy). We simplify the original approach to that end. Then
we present the average squared correlation as the measure of
association between the training set and the test set, that is,
the goodness of prediction of the estimated covariance. The
term ”goodness of prediction” here is used in this restricted
sense. Full details and proofs of the original approach can
be found in (Muller, 2007) and in a series of forthcoming
papers.

3.1 PCA as Multivariate Regression

Let Yt and Ys be the training data and the test data matrices
respectively. The subscripts t and s indicate the training and
the test set. Our objective is to measure the degree to which
the probability distribution estimated from Yt describes the
probability distribution that appears in Ys. In this process,
the mean estimated from Yt is considered to be a true mean.
i.e. E(Y ) = M̂t . Hat indicates the random estimator of a pa-
rameter. We assume that the training mean M̂t is already
subtracted from the two data matrices Yt and Ys in the rest
of this subsection.

With pa ¿ p approximating eigenvectors ϒ̂ at estimated
from a training set Yt , the component scores Ycs|t of Ys

on ϒ̂ at are Ysϒ̂ a. Then, a multivariate multiple regression
model can be formulated by treating the test data matrix Ys
as responses and the component scores Ycs|t of the test data
as predictors, i.e., X = Ycs|t = Ysϒ̂ at with

Ys = XBas|t +E . (3)

The inverse of X′X exists when the rank of the data ma-
trix Ys is at least pa. The least squares estimates of Bas|t and
the responses Ys are respectively

B̂as|t =
(
X′X

)−1 X′Ys = (ϒ̂
′
atY

′
sYsϒ̂ at)−1ϒ̂

′
atY

′
sYs and

Ŷs = XB̂as|t = Ysϒ̂ at(ϒ̂
′
atY

′
sYsϒ̂ at)−1ϒ̂

′
atY

′
sYs. (4)

When Yt = Ys, that is, when we take the training data as
responses (thus omitting subscripts t, s in the derivation be-
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low), B̂as|t and Ŷs can be simplified as follows:

B̂as|t = (ϒ̂
′
aY′Yϒ̂ a)−1ϒ̂

′
aY′Y

= (ϒ̂
′
a(N−1)Σ̂ϒ̂ a)−1ϒ̂

′
aY′Y

= (ϒ̂
′
a(N−1)ϒ̂ D(λ̂ )ϒ̂ϒ̂ a)−1ϒ̂

′
a(N−1)ϒ̂ D(λ̂ )ϒ̂

= D(λ a)−1D(λ̂ a)ϒ̂
′
a = ϒ̂

′
a ,

Ŷs = XB̂as|t = Yϒ̂ aϒ̂
′
a ,

which is the usual approximation of the data as described
in (3) for zero mean. Our goal is to measure the association
between the estimates Ŷs of test data set in (4) and the test
data Ys itself.

3.2 Measure of Association: Second Moment Accuracy

To measure of association between Ŷs and Ys, we follow
the approach suggested in (Muller, 2007). Let Sh be the
sample covariance matrix of Ŷs and Sy be the sample co-
variance matrix of Ys. In the multivariate linear regression
model, Sh is the covariance under the regression, and tr(Sh)
is the amount of variance explained by the regression [tr(X)
indicates a trace of X]. Sy is divided into two parts: Sy =
Sh + Se. tr(Sy) is the amount of total variance, and tr(Se)
is the amount of unexplained variance left in Ys. In other
words, tr(Se) represents the amount of variance in Ys that
remains after accounting for the linear effect of X.

Our goodness of prediction measure is the ratio of vari-
ation explained according to the principle of goodness of fit.
A univariate approach to repeated measure of goodness of
fit τ̂ (when t = s) is given by

τ̂ =
tr(Sh)

tr(Sh +Se)
, (5)

and is equivalent to the proportion of generalized variance
controlled as shown below:

τ̂ =
tr

[
ϒ̂ aD(λ̂ a)ϒ̂

′
a

]

tr
[
ϒ̂ aD(λ̂ a)ϒ̂

′
a +ϒ̂ bD(λ̂ b)ϒ̂

′
b

] =
∑pa

k=1 λ̂k

∑p
k=1 λ̂k

.

The property of decomposition of the total variation into Se
and Sh makes this measure very attractive as it now can be
interpreted as the amount of variation explained by the re-
tained directions, whereas Se measures the magnitude of the
remaining variation.

In general, a goodness of fit test τ̂ can be calculated as

τ̂ =
tr

(
(Ŷ−M̂)′(Ŷ−M̂)

)

tr
(
(Y−M̂)′(Y−M̂)

) = ∑N
i=1(Ŷi− µ̂)2

∑N
i=1(Yi− µ̂)2

. (6)

Our goodness of prediction ρ2, a measure of association,
is derived from the goodness of fit by applying τ̂ to the pro-
posed regression model (3) (when t 6= s) and can be written
as follows:

ρ̂2 =
tr

(
(Ŷs−M̂t)′(Ŷs−M̂t)

)

tr
(
(Ys−M̂t)′(Ys−M̂t)

) = ∑N
i=1(Ŷsi− µ̂t)2

∑N
i=1(Ysi− µ̂t)2

eq : tau ,(7)

where µ̂t is the sample mean estimated from a training set.
The numerator and the denominator of ρ̂2 can be factored
into two parts (the derivation is in the Appendix):

ρ̂2 = ∑N
i=1(Ŷsi− µ̂s)2 +N(µ̂s− µ̂t)2

∑N
i=1(Ysi− µ̂s)2 +N(µ̂s− µ̂t)2

=
tr(Sh)+N(µ̂s− µ̂t)2

tr(Sh +Se)+N(µ̂s− µ̂t)2 . (8)

The reason we choose to evaluate the deviation of both
Ŷsi and Ysi from the mean µ̂t estimated from a training set in-
stead of the mean µ̂s estimated from a test set is to be true to
the applications of statistical shape models. In the applica-
tions of statistical shape models, µ̂t becomes a template for
a new object since there is no way of estimating the mean of
objects that are not included in the training set. We can still
interpret ρ̂2 as the amount of variation of a test set explained
by the retained principal directions estimated by a training
set as long as the mean estimated from a training set is close
to the mean estimated from a test set, that is, µ̂s ≈ µ̂t .

ρ2 has a value that is between 0 and 1. High values of
ρ2 indicate that the retained modes of shape variation esti-
mated from a training set capture the shape variation of new
models well because the amount of total variance explained
by the factors in the regression model yields a high value
of tr(Sh) as a proportion of the fixed total variation. On the
other hand, the estimated modes of shape variation that ex-
plain less shape variation of new models give lower ρ2.

The theoretical distribution of ρ2 can be of special in-
terest for further analysis of the measure of association be-
tween Ŷs and Ys: whether ρ2 has a unimodal or bimodal
distribution; whether its mean or median gives a better sum-
mary statistic; whether the distribution is symmetric or skewed.
However, we leave this topic as future research.

3.3 Procedure for Iterative Calculation of ρ2

The goal is to analyze the predictive power of statistical
shape models as the size of training sample changes. For
each training sample size we calculate quartiles of the dis-
tribution of ρ2, as follows.

INPUT: A sample pool P of N objects of p geometric fea-
tures

SETTING: Set the following parameters:
1) The test sample size α
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2) The list L of nt training sample sizes
L = {βi|β1 < .. . < βnt ,βnt +α ≤ N, i = 1, . . . ,nt}

3) The number of retained principal directions pa
4) The number of repetitions R

OUTPUT: ρ2 values calculated for R times at each training
sample size βi. R×nt number of ρ2 values is computed.

PROCEDURE:
For i = 1, . . . ,nt

For repetitions = 1, . . . ,R
Step1 Randomly select two disjoint sets:

a test set Ss of size α ,
a training set St of size βi

Step2 Compute µ̂t , eigenvectors ϒ̂at from St
Step3 Construct three α× p matrices:

a data matrix Ys from Ss

an estimate of the response matrix Ŷs in (4), and
a mean matrix M̂t ,

Step4 Compute ρ2 using (7)

The reason that Ss and St must be disjoint is to reduce the
sampling bias.

We use a box plot to visualize the output ρ2 values of the
procedure. As illustrated in Fig. 4, a box plot has lines at the
lower quartile (25th percentile), median (50th percentile),
and upper quartile values (75th percentile). Whiskers extend
from each end of the box to the adjacent values in the data;
by default, the maximum whisker length is 1.5 times of the
interquartile range. (The difference between the upper and
lower quartiles is called the interquartile range.) Outliers,
displayed with a ‘+’ sign, are data with values beyond the
ends of the whiskers.

4 Two Statistical Shape Models: PDM & M-reps

In section 5, we will illustrate the use of the procedure just
described to evaluate two statistical shape models: PDM and
m-reps. In this section we first give brief descriptions of
these models. To produce consistency between the PDMs
and the m-reps that we analyze, we also describe the means
by which a boundary representation (b-rep) PDM is derived
from an m-rep.

4.1 PDM

The “point distribution model” is a well-known statistical
shape model introduced by Cootes et al (1995). Each ob-
ject represented by a PDM is captured by a set of bound-
ary points. These boundary points are manually placed in a
consistent manner on each of training models and are auto-
matically aligned to minimize the sum of squared distances
between corresponding points across the training models.
After the alignment, the PDM is obtained by estimating the

Fig. 1: Left: a single figure m-rep for a kidney and the ob-
ject boundary implied by it. Middle: an internal atom of
two spokes S+1/−1, with τ to parameterize the object interior
along the spokes. Right: an end atom with an extra bisector
spoke S0.

average positions of the points and major modes of variation
by PCA on a training set.

4.2 M-rep

An m-rep is an extension of the Blum medial locus (Blum
and Nagel, 1978); in the extension the medial locus forms
the primitive description. A geometric object of the simplest
form is represented by a single continuous medial sheet with
boundary. Each sheet corresponds to what we call a figure.
On an m-rep, at each point on the sheet two equal length
spokes extend to the implied boundary, where the tangent
plane of the sheet at the point bisects the spokes. The point
with its two spokes is called a medial atom (Fig. 1-left). A
medial atom is thus a 4-tuple {p,r,U+1/−1}, consisting of the
hub position p ∈ R3, the spoke length r ∈ R+, and the two
spoke directions as two unit vectors U+1/−1 ∈ S2 (Fig. 1-
middle). The two spokes of each atom are S+1/−1 = rU+1/−1.

We have developed and implemented three representa-
tions of m-reps. The one we have used primarily, called the
discrete m-rep, represents each sheet by a discrete grid of
atoms, from which we can interpolate a continuous sheet. A
discrete m-rep is formed by sampling the medial sheet over a
spatially regular lattice to form a mesh of medial atoms. The
medial atoms on the edge of the medial sheet correspond
to crests of the object boundary. Such an end atom adds
a spoke S0 of length ηr and direction U0 bisecting U+1/−1,
where η ∈ R+ is a crest sharpness parameter (Fig. 1-right).

4.3 Derivation of B-reps from M-reps

Given an m-rep figure, a subdivision surface method (Thall,
2004) is presently used to generate a smooth object surface.
Thall (2004) modified the Catmull–Clark subdivision sur-
face algorithm to interpolate the boundary positions and the
normals implied by the spokes.
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Deriving a b-rep from an m-rep involves calculating the
spoke ends of the m-rep. That is, for the spokes S+1/−1 in
each medial atom of the m-rep, its spoke ends are com-
puted as b+1/−1 = p+rU+1/−1 (Fig. 1-middle). The crest spoke
ends of the end medial atoms are computed as b0 = p+ηrU0

(Fig. 1-right). Although boundary points other than spoke
end points can be sampled from the surface, we decided to
choose only the spoke and bisector spoke end surface points
from medial atoms so as not to add redundant dimensions to
the derived b-rep. Thus, if an m-rep has n interior atoms and
m end atoms, the dimension of the corresponding b-rep will
be 6×n+9×m while that of the m-rep is 8×n+9×m. These
two representations are not equivalent in the sense that m-
reps cannot be constructed from b-reps. B-reps lack neces-
sary nonlinear information of normal directions at the spoke
ends to compute the hub positions of the medial atoms. In
spite of the inequality, we use the b-rep as the linear repre-
sentation corresponding to the m-rep.

4.4 Statistics of M-reps

Fletcher et al (2004) realized that because the spoke direc-
tions in medial atoms are values on the unit sphere, medial
atoms, and thus the tuples of medial atoms that make up dis-
crete m-reps, can be understood to live not on a flat feature
space but on a curved feature space known as a “symmetric
space” by mathematicians. Fletcher et al (2004) developed
a generalized version of PCA called principal geodesic anal-
ysis (PGA) for probability density estimation of geometric
entities that form a symmetric space. PGA involves com-
puting a Fréchet mean on the actual curved manifold via a
gradient descent method, and then doing PCA on the linear
space which is tangent at the Fréchet mean. The eigenmodes
projected back down onto the curved space make the princi-
pal geodesics.

5 Application of ρ2 on Models in Linear Space

We tested the goodness of prediction measure (7) through
the procedure described in section 3.3 on two data sets. One
set is made up of synthetic objects, b-reps of simulated el-
lipsoid m-reps. The other set is made up of real anatomical
objects, b-reps of m-reps fitted to right hippocampi. We be-
gan with the synthetic ellipsoid data because it allows us to
generate as many samples as we want and control the kind
of deformations in the samples, thus providing a means of
checking properties of the ρ2 such as the convergence.

The simulation of ellipsoid m-reps and the experiment
results are described in sections 5.1 and 5.2. The training of
right hippocampus binaries and the experiment results are
described in the following sections 5.3 and 5.4.

Fig. 2: From left to right, a base ellipsoid m-rep, randomly
bent, twisted, and tapered ellipsoid m-reps are shown reflect-
ing the nonlinear variation in the population.

5.1 Simulated Ellipsoid M-reps

We have a simulation program (Han et al, 2007) for gener-
ating random ellipsoid deformations as illustrated in Fig. 2.
The program applies the composition of random bending,
random twisting, and random tapering to a base ellipsoid m-
rep M0 sampled from the Blum medial axis of a standard
ellipsoid centered at the origin.

Starting from the base ellipsoid m-rep M0 = {pi,ri,U
+1/−1
i |

i = 1, ...,N }, where pi = (xi,yi,zi) and N is the number of me-
dial atoms of M0, the three deformations are applied to the
medial atoms of M0 in the order of bending, twisting, and
tapering.

1. Bending: each atom is translated by δ |xi|2 along the z−axis,
and then rotated around the y−axis by the angle between
(1,0,0) and the tangent vector (1,0,2δ |xi|);

2. Twisting: each atom is rotated around the tangent vector
(1,0,2δxi) of a parabola (x,0,δx2) at xi. The rotation angle
is εxi;

3. Tapering: the radius ri is scaled by a factor of eζ xi , where
|xi| is the distance from the the center of the ellipsoid to
each atom along the x−axis,;

where δ ,ε,ζ are three independent random variables follow-
ing Gaussian distributions with zero means. Each set of (δ j,ε j,ζ j)
sampled independently from Gaussian distributions deter-
mines a deformed ellipsoid m-rep M j where j is the index to
the series of deformed ellipsoid m-reps.

5.2 Experiments on Simulated Ellipsoid B-reps

The base ellipsoid m-rep M0 consists of a 3× 7 grid of me-
dial atoms, where 16 of them are end atoms and 5 of them
are internal atoms. The dimension of the m-rep features is
16 ∗ 9 + 5 ∗ 8 = 184, and that of its corresponding b-rep fea-
tures is 16∗9+5∗6 = 174. The radial lengths of the principal
axes of the base ellipsoid M0 are (0.2625,0.1575,0.1181) with
a ratio of 10:6:4.5. The three parameters δ ,ε,ζ were sampled
from three independent Gaussian distributions of standard
deviations 1.5, 1.047, and 2.12 respectively. We generated 5000
warped ellipsoid m-reps and made warped ellipsoid b-reps
from those m-reps.



8

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Eigenvalues in percentage

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100
CumulativeSeparate

Number of Eigenvectors

Fig. 3: Two bar graphs of the first 10 eigenvalues in percent-
age estimated from 5000 simulated warped ellipsoids b-reps.
Left: each eigenvalue per mode. Right: cumulative eigenval-
ues.
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Fig. 4: Box plots of ρ2 vs. training sample sizes βi for PCA
on warped ellipsoid b-reps with 3 and 6 eigenmodes. 100 in-
dependent trials R for each training sample size βi from 20 to
220 were done using a fixed test sample of size α = 100.

Fig. 3 shows the variances of the first ten modes of vari-
ation estimated from the 5000 simulated warped ellipsoid b-
reps. As there are three independent transformations - bend-
ing, twisting, and tapering - applied to the base ellipsoid,
PCA on the b-reps of 174 feature dimensions produces three
major principal eigenmodes with two trailing eigenmodes.
The first three principal eigenmodes explains more than 90%
of the total variance.

Fig. 5: From left to right, landmark points of hippocampus
and three fitted m-reps are shown.

Fig. 4 shows two box plots of ρ2 where the test set size
α is 100. One box plot is for the probability distribution cap-
tured by 3 principal modes, and the other is for that captured
by 6 principal modes. For each of these box plots the train-
ing sample sizes βi range from 20 to 220 with the increment
of 10. A training sample of size βi and a test sample of size α
are randomly drawn 100 times. ρ2 is computed at each draw.

As expected, the values of ρ2 are higher at 6 modes than
at 3 modes. ρ2 reaches near convergence at approximately 80
training samples for 3 modes and at about 60 training sam-
ples for 6 modes. Since there are only three true deforma-
tions in these synthetic data, we can see that ρ2 converges
at a training size much smaller than the feature space di-
mension. We can also see that ρ2 values in the box plot
(Fig. 4) correspond to the cumulative estimated eigenvalues
in Fig. 3. The median ρ2 starts around 0.91 and converges to
around 0.93 for 3 modes, and the median ρ2 starts a little bit
above 0.98 and converges to around 0.99 for 6 modes. More-
over, the range of ρ2 values (interquartile range) is more
spread out at 3 modes than at 6 modes, which indicates that
the variation of new cases is captured more stably by 6 modes
than by 3 modes.

5.3 Right Hippocampus M-reps

We ran the procedure on real anatomical object models, 290
right hippocampi b-reps. To have such a large number of
samples, we pooled manually segmented binaries of hip-
pocampi from many people regardless of their ages, their
mental conditions, or their medications. An m-rep template
was fitted into the binaries to extract hippocampus m-rep
models through several steps.

The goal of fitting (Merck et al, 2008) is to find a model
M that best describes the target object in a given binary im-
age I. In our m-rep framework, fitting is an optimization pro-
cess minimizing an objective function Fob j(M, I) that is a
weighted sum of two data match functions and of two ge-
ometry penalties.

The two data match functions are an image match func-
tion Fimg and a landmark match function Flmk. Fimg forces
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the implied surface of M match with the boundary voxels of
the binary. Flmk enforces explicit correspondences between
the landmarks in the binary image either identified by ex-
perts or by some programs and the matching surface points
of the model.

The two geometry penalties are an irregularity penalty
function Freg and an illegality penalty function Fleg. Freg pe-
nalizes non-uniform spacing of the grid of medial atoms and
non-uniform changes in spoke lengths and spoke directions
of medial atoms. Freg implicitly contributes to establish cor-
respondence of medial atoms across the training cases. Fleg
is a penalty unique to a discrete m-rep, making use of a
shape operator called Srad introduced by Damon (2003) for
medial geometry. The illegality penalty function tries to pre-
vent local self-intersections or creases from happening in the
implied surface of a discrete m-rep.

Given 8 landmarks per binary (Fig. 5-left), we followed
steps described as follows to fit hippocampus binaries.
Hippocampi Fitting Steps:

Step1 Fit an initial template model to binaries with
high weight on Flmk, Freg, and Fleg,
resulting in roughly fitted models.

Step2 Discard bad fits resulting from Step1.
Train a mean model and a shape space with
the remaining fits.
Fit the mean model by deforming over the shape
space using the same configuration as Step1.

Step3 Refine the fits from Step2 by
deforming each medial atom separately with
low weight on Flmk, Freg, and zero weight on Fleg.

The fitted m-reps are used by PGA to produce the final shape
space.

5.4 Experiments on Right Hippocampus B-reps

The hippocampus m-rep consists of a 3× 8 grid of medial
atoms, where 18 of them are end atoms and 7 of them are
internal atoms. The dimension of m-reps is 18∗9+6∗8 = 210,
and that of the corresponding b-reps is 18 ∗ 9 + 6 ∗ 6 = 198.
Three panels on the right side of Fig. 5 show the boundary
surfaces of the 3 fitted right hippocampus m-reps.

Fig. 6 shows the variances of the first 40 modes of vari-
ation estimated from the 290 right hippocampus b-reps. Un-
like the simulated warped ellipsoids, PCA on the right hip-
pocampus produces principal eigenmodes of slowly decreas-
ing variances. It takes more than 30 modes to reach 90% of
the total variance.

Fig. 7 shows two box plots of ρ2 when α =100 and R =
100. One box plot is for the probability distribution captured
by 18 principal modes, and the other is for that captured by
36 principal modes. The training sample sizes βi range from
40 to 200 with the increment of 10.
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Fig. 6: Two bar graphs of the first 40 eigenvalues in percent-
age estimated from 290 right hippocampus b-reps. Left: each
eigenvalue per mode. Right: cumulative eigenvalues.
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Fig. 7: Box plots of ρ2 vs. training sample sizes βi for PCA
on right hippocampus b-reps with 18 and 36 eigenmodes. 100
independent trials for each training sample size were done
using a fixed test sample of size α = 90.

As expected, the values of ρ2 are higher at 36 modes
than at 18 modes. The interquartile range of ρ2 values is
slightly more spread out at 18 modes than at 36 modes as
well, which indicates that the estimated shape subspace cap-
tures the shape variation in the population more stably at 36
modes than at 18 modes. As for the convergence of ρ2, it
is hard to determine from Fig. 7 the training sample size at
which ρ2 begins to converge within the range of the training
sample size tested. However, we can judge the trade-off be-
tween the training sample size and the increase of ρ2 value
from Fig. 7. For example, we can see that for 18 modes about
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100 samples are enough to estimate the shape variation since
ρ2 value increases very slowly after βi = 100.

6 Distance Measures for ρ2 Evaluation

It is important to assess the validity of our new measure, ρ2.
While it measures the closeness of estimated populations to
the real population in the feature space, it is desirable to ver-
ify whether the measure’s indications in the feature space
concur with what happens in the ambient space. To that end,
in this section we present other measures based on the stan-
dard surface-to-surface distance in the ambient space. With
both the correlation measure and the distance measures as
function of training sample sizes, the relation between the
predictive power measured in the shape feature space and in
the ambient space is analyzed.

For a shape model Y , let B(Y ) be the set of vertices of
its corresponding b-rep in triangle 3D meshes. Let S(Y ) be
its surface. The mean absolute surface-to-surface distance of
two shape models Yi and Yj (Aspert et al, 2002) is defined
as follows:

dmad(Yi,Yj) =
1

Ni +N j
( ∑

v∈B(Yi)
min

p′∈S(Y j)
‖v− p′‖

+ ∑
v′∈B(Y j)

min
p∈S(Yi)

‖v′− p‖ ) ,

where Ni and N j indicate the numbers of points in B(Yi) and
B(Yj) respectively, and ‖∗‖ represents the usual Euclidean
norm. The surface-to-surface distances from S(Yi) to S(Yj)
and from S(Yj) to S(Yi) are averaged since they are not equal.

We compute two kinds of surface-to-surface distance mea-
sures. One measure is the minimum of all squared mean ab-
solute distances between a model Y in a test set Ss and all
models in a training set St :

d2
m(Y,St) = min

Y ′∈Ss

(
d2

mad(Y,Y ′)
)

.

Another measure is the squared mean absolute distance be-
tween a model Y in a test set Ss and its projection Ya (3) on
the shape space estimated from a training set St :

d2
p(Y,St) = d2

mad(Y,Ya) .

We compute these two distance measures following the
same procedure for ρ2 computation described in section 3.3.
In applying the procedure, we need a summary statistic for
these distance measures to see their change as the training
sample size increases since at each iteration d2

m and d2
p are

computed for every model in a test set. The output of the
procedure at the end of each iteration is α numbers of d2

m
and d2

p values. So, we use the median as a summary statistic:

D2
∗(St ,Ss) = median

Y∈Ss

(
d2
∗(Y,St)

)
,

40 60 80 100 120 140 160 180 200

0.22

0.24

0.26

0.28

0.3

0.32

D2
m

Training Sample Size β
i

Hippocampus b−reps

Fig. 8: A box plot of D2
m vs. training sample sizes βi with the

same setting as in section 5.4.
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Fig. 9: Two box plots of D2
p vs. training sample sizes βi for

PCA on right hippocampus b-reps with 18 and 36 eigen-
modes with the same setting as in section 5.4.

where ∗ indicates subscripts m or p for d2
m or d2

p respectively.
D2

p is more interesting to us than D2
m. D2

m indicates how
close the test models are to training models and depends
only on the choice and the size of St . On the other hand,
D2

p indicates the ability of the estimated shape space to ap-
proximate a new model in its ambient space. D2

p depends not
only on the choice and the size of St but also on the number
of retained principal directions from St .

6.1 Application of D2∗ to Right Hippocampus B-reps

We tested the two distances measure on the right hippocam-
pus b-reps. Figs. 8 and 9 show box plots for D2

m and D2
p

respectively. Since D2
m is independent of the number of re-
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tained eigenmodes, Fig. 8 has only one box plot of D2
m. As

the training sample size increases, we can see that values
and the interquartile range of D2

m decreases. Fig. 9 clearly
indicates that with more principal modes and larger train-
ing samples we get more accurate approximations of new
instances in the population, which is consistent with what
we have observed in the ρ2 plot (Fig. 7). The tests with D2∗
distance measures provide empirical evidence that our pro-
posed goodness prediction measure defined in the shape fea-
ture space reflects the shape variation appearing in the am-
bient space.

7 Goodness of Prediction ρ2
d for Curved Manifolds

7.1 Two Possible Extensions of ρ2

Our goodness of prediction measure (7) (equivalently (8))
does not directly apply to models such as m-reps that live in
a nonlinear curved manifold. However, as already indicated
in the equation (7), the numerator and the denominator of (7)
can be interpreted via distances from an estimated training
mean µ̂t . The following two equations simply show rewrit-
ing of (7) and (8) in terms of a more general metric function
d:

1. from (7)

ρ̂2
d = ∑N

i=1 d2(Ŷsi, µ̂t)
∑N

i=1 d2(Ysi, µ̂t)
, (9)

2. from (8)

ρ̂2
d = ∑N

i=1 d2(Ŷsi, µ̂s)+Nd2(µ̂s, µ̂t)
∑N

i=1 d2(Ysi, µ̂s)+Nd2(µ̂s, µ̂t)
. (10)

These two expressions for ρ̂2
d show a natural extension of the

distance decomposition of the total variance Sy into Sh and
Se. However, the equality of these two expressions, which
holds for linear feature spaces, does not strictly hold for
nonlinear spaces. Also, for nonlinear spaces the numerator
and the denominator in equation (9) cannot be interpreted as
tr(Sh)+ N(µ̂s− µ̂t)2 and tr(Sh + Se)+ N(µ̂s− µ̂t)2 respec-
tively, as they can for linear spaces (equations (7) and (8)).

7.2 Riemannian Symmetric Spaces and Tangent Space at a
Point of a Manifold

The nonlinear shape models that we deal with in this paper
are elements of curved differential manifolds called “Rie-
mannian symmetric spaces” with an associated Riemannian
metric d(·, ·). The main property of differential manifolds is
that locally they behave like Euclidean space. Thus, for ev-
ery point p in a given differential manifold M ∈Rd , a linear
subspace that best approximates a neighborhood of p in M
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Fig. 10: (a) Two sets of 20 random vectors chosen from a
multivariate normal distribution. Hollow blue dots indicate
training points from which the mean and the first principal
direction are estimated. Red dots indicate test points pro-
jected onto the first principal direction going through the es-
timated mean. Green dots on the first principal directors are
projections of test points (red dots), that is, approximations
of test points with the training mean and the first principal
component. (b) Zoomed plot of (a). This plot shows the dis-
tances in the numerator and denominator of the correlation
measure formula for one test point P.

can be associated. The linear subspace is called a tangent
space at the point p and is denoted by TpM.

Two key functions that map points between TpM and M
are the Riemannian exponential map and the Riemannian
log map. The Riemannian exponential map at p∈M denoted
by Expp : TpM → M is a diffeomorphism in a neighbor-
hood U ⊂ TpM mapping a point x ∈U to a point Expp(x) ∈
M along the geodesic from p to Expp(x). A geodesic in a
manifold M is the shortest smooth curve segment between
two points in M. In the Euclidean space a straight line is
the geodesic path between two points. Its inverse mapping
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Fig. 11: A (128×128×128) bent and tapered binary ellipsoid

is called the Riemannian log map and denoted by Logp :
Expp(U)→ TpM.

It is useful to select a metric on TpM such that distances
to p on the Riemannian manifold are equal to those on TpM.
That is, distances from a point x on the tangent plane to p de-
noted as ||x|| are equal to the geodesic distance d(Expp(x), p)
on the manifold.

7.3 ρ2
d for Nonlinear Shape Models

(9) and (10) provide the two possible extensions of ρ2 to
a curved manifold suggested in section 7.1. Recall that (9)
and (10) are not equivalent in the curved manifold. We choose
to use (9) as the goodness of prediction for nonlinear shape
models in the curved manifold because it has a nice interpre-
tation in the tangent space: the geodesic distance d2(Y, µ̂t)
for Y ∈M is equal to ||Logµ̂t (Y )|| in Tµ̂t M. Also, the decom-
position of the total variance Sy holds in the tangent space
Tµ̂t M.

Fig. 10 shows the graphical view of the equation (9).
One set of points indicates a training set, and the other set
of points indicates a test set. The line is the first principal
direction going through a mean estimated from the training
set. In the subspace (line in this example) spanned by the
first principal direction, points in a test set are approximated
by their projections on the first principal direction. The de-
nominator in equation (9) is the sum of the distances from
the training mean to each point in a test set, and the numer-
ator is the sum of the distances from the training mean to
projections of points in a test set onto the subspace.

8 Application of ρ2
d on Models in Nonlinear Space

8.1 Deformed Binary Ellipsoids

A synthetic test population was created from an ellipsoid
deformed from the original ellipsoid x2

a2 + y2

b2 + z2

c2 ≤ 1 by a
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Fig. 12: Two box plots of ρ2
d vs. training sample sizes βi for

PGA on m-reps fits to deformed binary ellipsoids with 3 and
6 eigenmodes (left y-axis). 100 independent trials for each
training sample size were done using a fixed test sample of
size α = 100. Two box plots of D2

p vs. training sample sizes
βi with the same setting (rigth y-axis).

set of 1000 diffeomorphisms of the form (Han et al, 2007)

Ψδ ,ε ,ζ (x,y,z)≡



x
eζ x(ycos(εx)+ zsin(εx))

eζ x(ycos(εx)+ zsin(εx)+δx2


 ,

where δ ,ε, and ζ are parameters to control bending, twist-
ing, and tapering respectively. δ , ε, and ζ follow N(0,(1.5)2),
N(0,(1.047)2), and N(0,(2.12)2) respectively, where N(µ,σ2) is
the normal distribution with mean µ and standard deviation
σ . In this experiment, we again used a standard ellipsoid
with axis lengths of (0.2625,0.1575,0.1181) centered at the ori-
gin, i.e., a = 0.2625, b = 0.1575, c = 0.1181. These parameters
were sampled 1000 times from the three normal distributions,
and the resulting deformations were applied to the standard
ellipsoid. The results were 1000 (128× 128× 128) binary im-
ages of warped ellipsoids. Fig. 11 shows a case of deformed
ellipsoid binaries.

The deformed binary ellipsoids are different from the de-
formed ellipsoid m-reps described in section 5.1. The differ-
ence lies in whether the deformations are applied to medial
atoms of the base ellipsoid m-rep or to the ambient space of
the base ellipsoid.

The fitting of m-reps to the binary ellipsoids follows
the same steps taken for fitting the right hippocampus (sec-
tion 5.3). Six landmarks are used for the fitting: two end
points of three ellipsoid axes.
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Fig. 13: Two box plots of ρ2
d vs. training sample sizes βi for

PGA on m-reps fits to deformed binary ellipsoids with 18
and 36 eigenmodes (left y-axis). 100 independent trials for
each training sample size were done using a fixed test sam-
ple of size α = 90. Two box plots of D2

p vs. training sample
sizes βi with the same setting (right y-axis).

8.2 Experiment on M-rep Fits to Deformed Binary
Ellipsoids

The fitted ellipsoid m-reps consist of a 3× 7 grid of medial
atoms. The settings of the procedure here are the same as the
settings for the simulated warped ellipsoid b-reps.

The results here are consistent with those for the sim-
ulated warped ellipsoid b-reps. As shown in Fig. 12, the
values of ρ2

d are higher at 6 modes than at 3 modes, and
the values of D2

p are smaller at at 6 modes than at 3 modes.
Both measures begin to converge at approximately 60 train-
ing samples. The convergence starts at the training size much
smaller than the feature space dimension since there are only
3 true deformations in population of this synthetic data. The
interquartile range of ρ2 and D2

p values is more spread out at
3 modes than at 6 modes, as well.

8.3 Experiment on Right Hippocampus M-rep

ρ2
d was tested through the procedure (section 3.3) on the 290

right hippocampus m-reps (section 5.3). Fig. 13 shows the
results of the procedure as two box plots of ρ2

d and D2
p when

α =90 and R =100. One box plot is for the probability dis-
tribution captured by 18 principal modes, and the other is
for that captured by 36 principal modes. The training sample
sizes βi range from 40 to 200 with the increment of 10.

The results of ρ2
e on the right hippocampus m-reps are

very similar to the results of ρ2 on the corresponding b-reps.
The values of ρ2

d are higher at 36 modes than at 18 modes and
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Fig. 14: (a) Four simulated ellipsoids with local deformation
(bump - circle). (b) Two box plots of ρ2

d vs. training sample
sizes βi for multiscale PGA on 3 object modes followed by 4
atom modes.

the values of D2
p are smaller at at 36 modes than at 18 modes.

It is still difficult to determine when ρ2
d and D2

p converges
within the range of the training sample size tested.

8.4 Evaluation of a Coarse-to-fine Shape Prior

Our goodness of prediction measure ρ2
d has also proven to

be effective in the evaluation of the multiscale shape priors.
Liu et al (2008) proposed a coarse-to-fine shape prior for the
probabilistic segmentation to enable local refinement in the
m-rep framework, which aims to capture the small level of
detail components of the object shape variation that PCA-
based approximations are likely to miss out, as pointed out
in (Nain et al, 2005) and (Davatzikos et al, 2003). The ap-
proach developed in (Liu et al, 2008) is to decompose the
variation space into two scale levels: object-scale and atom-
scale prior. As the object-scale prior describes the shape
changes of the object as a whole, the atom-scale prior cap-
tures the small level of detail components of the shape changes
that are left from the object-scale shape space. The atom-
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scale prior is constructed using the residual space, that is,
the remainders of the actual shape space from the shape sub-
space described by the object-scale prior.

To show the robustness of the estimated coarse-to-fine
shape prior, Liu et al (2008) adopted our procedure and viewed
ρ2

d against training sample sizes. Ŷsi in (9) becomes the mul-
tiscale projection that refines the object-scale approximation
of Ysi by adding each atom-scale approximation in the resid-
ual space.

The two scale shape priors were first tested on a syn-
thetic data set of 1000 warped ellipsoids m-reps. These model
ellipsoids shown in Fig. 14a were produced by applying a
relatively small amount of local perturbation on the hub po-
sition of one selected atom on top of the three global defor-
mations described in section 5.1.

Fig. 14b shows the two box plots of ρ2
d computed us-

ing the object-scale shape prior vs the coarse-to-fine shape
prior. One box plot shows the ρ2

d values for the shape prior
captured by three object-scale principal modes, and the other
shows those for the multiscale shape prior captured by three
object-scale principal modes followed by a few eigenmodes
of the selected atom. ρ2

d cleary indicates the improvement
of the predictability when the coarse-to-fine shape prior is
used.

Liu et al (2008) then examined the advantage of the
coarse-to-fine shape prior on simulated real anatomical struc-
tures. The simulation took 51 eigenmodes estimated from the
290 well-fitted right hippocampus m-reps described in sec-
tion 5.3 and did Gaussian random sampling on the 51 eigen-
modes. The 51 eigenmodes explain 95% of the total variation
observed in the 290 fitted right hippocampus m-reps. With
this data, the object-scale shape prior (the 33 object eigen-
modes) was compared with the coarse-to-fine shape prior
(the 10 object eigenmodes followed by the 9 atom eigen-
modes) using the ρ2

d and the volume overlap measure. The
Dice Similarity Coefficient (Crum et al, 2006) on the vol-
umes of the test models and the corresponding object-scale
and atom-scale approximations was used as the volume over-
lap measure. Fig. 15a shows the comparison.

We can clearly see not only the benefit of the coarse-to-
fine shape prior over the object shape prior by ρ2

d but also the
consistency between the volume overlap measure and the ρ2

d

measure. In addition to the distance measures we introduced
in section 6 to show the validity of our ρ2

d measures in am-
bient space, this consistency demonstrated between the the
volume overlap measure and the ρ2

d measure confirms that
our goodness of prediction measure ρ2

d defined in the fea-
ture space does indeed reflect what happens in the ambient
space.
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Fig. 15: (a) Two box plots of ρ2
d vs. training sample sizes βi

for multiscale PGA on simulated hippocampus m-reps with
10 object modes followed by 9 atom modes. (b) Correspond-
ing box plots of volume overlap between the test models and
their projected models.

9 Conclusion & Discussion

Our work has been motivated by the need to have a quan-
titative measure to evaluate the predictive power of a sta-
tistical shape model. We proposed a novel statistical cor-
relation measure ρ2 called the goodness of prediction. It
is designed to judge the predictive power of a PCA-based
statistical shape model to analyze the major shape variation
observed in the training sample. The measure is formally
derived by interpreting PCA in terms of the multivariate lin-
ear regression model, and it is interpreted as a ratio of the
variation of a new data explained by the retained principal
directions estimated from a training data.

The major shift of our perspective in evaluating a sta-
tistical shape model is that we are more concerned about
evaluating how well an estimated shape model fits the new
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data rather than how well an estimated shape model fits the
parameters of the population probability distribution. It is a
reasonable stance to take considering that the ability of an
estimated shape probability distribution to describe a new
object is the major concern in most applications of statisti-
cal shape models.

The novelty of the measurement lies in its being com-
puted using two disjoint sets of samples. One set of samples
is used for the estimation of a shape space by PCA, and the
other set of samples is used for the evaluation of the esti-
mated shape space, which exactly reflects the situation hap-
pening in the applications of statistical shape models.

Moreover, we proposed a procedure to compute the good-
ness of prediction against the training sample sizes, which
allows inferring the training sample size that ensures cap-
turing certain amount of shape variation present in objects
unseen from training samples. The procedure was experi-
mentally evaluated on synthetic warped ellipsoid b-reps and
real anatomical right hippocampus b-reps. The results were
visualized using box plots that show the median and the in-
terquartile range of the ρ2 values of a large number of inde-
pendent trials.

We tested a slight variation of the proposed procedure al-
though we did not report the results in this paper. We further
aligned each training set to tighten the distribution before
doing PCA (Step2 in section 3.3) since we were concerned
the use of pre-aligned data might bring a bias in our estima-
tion of ρ2. This additional alignment on the right hippocam-
pus data did not bring any noticeable difference in ρ2 values.
Thus we did not include this additional alignment step in the
procedure, concluding that the pre-alignment on the pooled
data is sufficient to remove any non-shape related transfor-
mations in the models.

We extended ρ2 for linear shape representations to ρ2
d

for nonlinear shape representations that form Riemannian
symmetric spaces. ρ2

d carries the same statistical meaning as
ρ2 because the geodesic distance from a training mean in
a Riemannian space is equivalent to the Euclidean distance
in a corresponding tangent space at the training mean. ρ2

d

was also tested on the synthetic ellipsoid m-reps and real
anatomical right hippocampus m-reps. The results of ρ2

d on
these m-rep data are consistent with those of ρ2 on the cor-
responding b-rep data.

The ρ2
d measure was also empirically verified by two sur-

face distance measures and a volume overlap measure to
prove that ρ2

d really reflects what happens in the ambient
space where the model lies.

Our experiments showed the usefulness and the versatil-
ity of the procedure. It yields an appropriate training sample
size for some retained number of eigenvalues and judging
the trade-off between training sample size and the amount of
variation explained by the retained number of eigenvalues.
However, the major drawback of the proposed procedure is

that it needs many data samples to see the convergence of
median ρ2

d values and of the interquartile range of ρ2
d val-

ues with respect to the training sample size . Another issue
with the procedure is the number of independent trials R.
In Bayesian statistics, R must be several thousand to have a
statistical significance, which is impractical in many appli-
cations.

In spite of these disadvantages, the measure itself is easy
and fast to compute, and its statistical interpretation is sim-
ple to understand. It is also quite flexible to apply for any
statistical shape model. We already showed in other work
that applying the measure to evaluate multiscale shape pri-
ors is straightforward. We hope this measure will be found
to be useful in evaluating other statistical shape models and
will motivate further exploration in the evaluation of statis-
tical shape models.

Appendix

We can break the numerator of (7) into two parts as follows:

(Ŷsi− µ̂t)2 = (Ŷsi− µ̂s)2 +(µ̂s− µ̂t)2

+2(Ŷsi− µ̂s)(µ̂s− µ̂t) ,
(11)

N

∑
i=1

(Ŷsi− µ̂t)2 =
N

∑
i=1

(Ŷsi− µ̂s)2 +
N

∑
i=1

(µ̂s− µ̂t)2

= tr(Sh)+N(µ̂s− µ̂t)2 ,

where µ̂s is the sample mean estimated from a test set. The
cross product term of (11) disappears after summation since
∑N

i=1(Ŷsi− µ̂s) = ∑N
i=1 Ŷsi−Nµ̂s = 0 and µ̂s− µ̂t is constant.

Similarly, its denominator is decomposed into two parts as
follows:

N

∑
i=1

(Ysi− µ̂t)2 =
N

∑
i=1

(Ysi− µ̂s)2 +
N

∑
i=1

(µ̂s− µ̂t)2

= tr(Sy)+N(µ̂s− µ̂t)2

= tr(Sh +Se)+N(µ̂s− µ̂t)2 .
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