Model-based segmentation of radiological images
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Abstract

Segmentation is in many cases the bottleneck when trying to use radiological image data in many
clinically important applications as radiological diagnosis, monitoring, radiotherapy and surgical plan-
ning. Especially in case of large 3D medical data sets is the availability of efficient segmentation meth-
ods is a critical issue. While manual image segmentation is regarded up to now as a gold standard, its
usage is not acceptable in some clinical situations due to unjustifiable amount of user interaction or
the poor reproducibility of the results, making automatic segmentation is a very important issue in
medical image analysis. This paper gives a short overview of efforts to automatize anatomical object
identification in radiological images with special emphasis on model-based methods. The underlying
principles are illustrated using selected examples of segmentation systems.

1 Introduction

Segmentation is in many cases the bottleneck when trying to use radiological image data in many clin-
ically important applications as radiological diagnosis, monitoring, radiotherapy and surgical planning.
Especially in case of large 3D medical data sets as obtained today by the routine use of 3D imaging
methods like magnetic resonance imaging (MRI), computer tomography (CT) and ultrasound (US) the
availability of efficient segmentation methods is a critical issue.

While manual image segmentation is regarded up to now as a gold standard, its usage is not acceptable
in some clinical situations. In some applications such as computer assisted neurosurgery or radiotherapy
planning e.g., a large number of organs have to be identified in the radiological data sets. While a
careful and time-consuming analysis may be acceptable for outlining complex pathological objects, no
real justification for such a procedure can be found for the delineation of normal, healthy organs at risk.
Delineation of organ boundaries is also necessary in various types of clinical studies, where the correlation
between morphological changes and therapeutical actions or clinical diagnosis has to be analyzed. In
order to get statistically significant results, a large number of data sets has to be segmented. For such
applications manual segmentation becomes questionable not only because of the amount of work, but
also with regard to the poor reproducibility of the results.

Due to the above reasons, automatic segmentation is a very important problem to be solved in
medical image analysis. This paper gives a short overview of efforts to automatize anatomical object
identification in radiological images. Due to the importance of the topic, a huge collection of methods
have been developed during the past decades approaching this problem and a detailed overview of the
proposed methods would by far blow the limits of a short overview. Instead, this paper just tries to
analyze the underlying principles and provide a few selected examples from the previous experience of
the authors as illustrations.

2 Early approaches

Early approaches for automatic segmentation fundamentally use the assumption, that radiological im-
ages are basically “self-contained”, i.e. they contain most of the information which is necessary for the
identification of anatomical objects. In some limited applications such techniques can be very successful,
as the automatic segmentation of dual-echo MR images [12], e.g. This example will be used here as an
illustration as it addresses most aspects of intensity-based medical image segmentation. The method uses



Figure 1: Spin-echo MR image pair (an early echo is shown on the left, a late echo on the right). In the
middle the two dimensional intensity distribution is given

two perfectly registered echos of a spin-echo MR acquisition as illustrated by Figure 1(a,c). The applied
procedure can be regarded as a generalized thresholding, aiming at the identification of areas in a feature
space, i.e. in the two-dimensional intensity distribution (Figure 1b), which uniquely characterize the
different tissue classes (as gray or white matter of the brain). These areas are usually determined during
a training phase, where the user identifies examples for each tissue class (e.g. in the form of regions of
interest as illustrated on Figure 2a). Standard pattern recognition procedures [9] can be used to derive a
corresponding tessellation of the feature space (Figure 2b) leading to the classification of the entire image
(Figure 2c).
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Figure 2: Segmentation of the dual-echo MR image using training. The left image shows user-defined
training regions for the different tissue classes. The corresponding tessellation of the feature space is show
in the middle, resulting in the segmentation on the right

An important limitation of this procedure is, that it handles pixels in the image completely inde-
pendently. Spatial correlation between the single pixels can be introduced using more or less complex
interaction models as Markov random fields, e.g. [24, 2], or by post-processing techniques as mathematical
morphology [14], The latter is illustrated on Figure 3.

The success of the segmentation basically depends on the assumption, that tissue classes can perfectly
be separated in the feature space provided by the measurements. Beside physiologically induced overlaps
between features of different tissue classes, limitations of the acquisition process as the presence of noise
and global intensity inhomogeneity can seriously compromise the efficiency of the method. Several pre-
processing techniques have been developed for efficient, structure-preserving noise reduction [11] and



bias field correction [26, 13], which lead in many cases to impressive results based on this very simple
segmentation paradigm.
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Figure 3: Brain segmentation based on morphological post-processing. Image (a) shows the result of
thresholding, which has been eroded (b) in order to break up unwanted connections between different
organs. Brain tissue has been identified by connected component labeling (c) and has been dilated back
to its original extent (d).

3 Model-based segmentation

Even the most sophisticated pre- and post-processing techniques cannot, however, overcome the inherent
limitation of the basically intensity-based methods, namely the assumption that segmentation can be
carried out solely based on information provided by the actual image. This assumption is fundamentally
wrong, and the radiologist uses a broad range of related knowledge on the field of anatomy, pathology,
physiology and radiology in order to arrive at a reasonable image interpretation. The incorporation of
such knowledge into the algorithms used is therefore indispensable for automatic image segmentation.

Different procedures have been proposed in the literature to approach the problem of representation
and usage of prior knowledge for image analysis. Due to the enormous complexity of the necessary prior
information, classical methods of artificial intelligence as the use of expert systems [18, 21] can offer only
limited support to solve this problem.

During the past few years, the usage of deformable anatomical atlases has been extensively investi-
gated as an appealing tool for the coding of prior anatomical information for image interpretation. The
method is based on a representative deterministic [1] or probabilistic [10] image volume as an anatomical
model, which is then registered with the actual patient data. The applied registration procedure ranges
from simple parametric methods [1] to complex physically-inspired algorithms as elastic deformation or
viscous fluid motion [5]. In the latter he transformations are constrained to be consistent with the physical
properties of deformable elastic solids or those of viscous fluids. Viscous fluid models are less constrain-
ing than elastic models and allow long-distance, nonlinear deformations of small subregions. In these
formulations, the deformed configuration of the atlas is usually determined by driving the deformation
using only pixel-by-pixel intensity similarity between the images in case of fully automatic procedures.

The usage of deformable atlases seems to be a very elegant way to use prior anatomical information in
segmentation, as it allows to gain support from the success of current image registration research. Once
the spatial mapping between the atlas and the individual data has been established, it can be used to
transfer all spatially related information pre-defined on the atlas (as organ labels, functional information,
etc.) to the actual patient image.

This approach is, however, fundamentally dependent on the anatomical and physiological validity of
the generated mapping. It has to be understood, that a successful morphing of one dataset into the other,
does not guarantee, that it also makes sense as an anatomical mapping. In other words, the fact, that
the registration result looks perfect (in the sense of computer graphics) offers no guarantee, that it makes
sense from the image analysis point of view. To morph a leg into a nose is perfectly possible, but will
not allow any reasonable physiological interpretation.

To make the results of the registration sensible, i.e. useful for image segmentation, one has to solve



the correspondence problem. This means, that we have to ensure, that the mapping establishes a corre-
spondence between the atlas and the patient which is physiologically and anatomically meaningful. For
the time being, purely intensity driven registration cannot be expected to do so in general. Therefore, in
the praxis such correspondence usually has to be strongly supported using anatomical landmarks [3, 10].
Landmark identification needs, however, in most cases tedious manual work, compromising the quest for
automatic procedures.

Figure 4: The corpus callosum from an anatomical atlas (a) and the corresponding region of interest in a
midsaggital MR image (b). On the left image the connecting line between the anterior commissure (AC)
and the posterior commissure (PC) which is used for normalization is also shown.

4 Statistical models

Statistical shape models offer a way to incorporate the (large, but still strongly limited) variability of
organ shape into the basically static view of the anatomy provided by the atlases described above. The
idea is to code the variations of selected shape parameters in an observed population (the training set),
and characterize this in a possible compact way.

Such methods fundamentally depend on the availability of parametric models suitable to describe
biological shapes. Several methods have been proposed for such parametric shape descriptions, as de-
formable superquadrics augmented with local deformation modeling [23, 25], series expansions [19, 4] or
simply using the coordinates of selected organ surface points (point distribution models [7]).

Once the parametrization is selected, the anatomical objects of interest are fully described (at least
from the point of view of the envisioned segmentation procedure) by the resulting parameter vector
¢ ={c1,¢a,...,c}, where n can of course be fairly large for complex shapes. Possible variations of the
anatomy can be precisely characterized by the joint probability function of the shape parameters ¢;, which
information can be integrated into a stochastic Bayesian segmentation framework as a prior utilizing the
knowledge gained from the training data for constraining the image analysis process [25, 20]. It has to be,
however, realized that the usually very limited number of examples in the training set forces us to very
strongly limit the number of parameters involved in a fitting procedure. A very substantial reduction of
the number of parameters can be achieved based on the fact, that the single components of the vector
c are usually highly correlated. A simplified characterization of the probability density is possible based
on the first and second order moments of the distribution (for a multivariate Gaussian distribution this
description is exact). The resulting descriptors are

e the mean shape:
L N
e=3D ¢
=1
where the training set consists of the IV examples described by the parameter vectors c;;

e the covariance matrix of the components of the parameter vectors:

1 _ \T
E:m;(%‘—c)'(ci—c)



0.0175

0.015

Figure 5: Building the active shape model for the corpus callosum. a shows the 71 outlines of the training
set normalized in the anatomical coordinate system defined by the anterior and posterior commissures
(AC/PC). The eigenvalues resulting from the principal component analysis are plotted on b, while the
eigenvectors corresponding to the three largest eigenvalues are illustrated on ¢, d and e. The deformations
which correspond the eigenmodes cover the range —v/2\; (light gray) to —v/2\ (dark gray)

Figure 6: Segmentation of the corpus callosum. The first image shows the initialization, resulting from
the average model and a subsequent match in the subspace of the largest four deformation modes. The
other images illustrate the deformation of this model during optimization using all selected deformation
modes, allowing fine adjustments. The black contour is the result of a manual expert segmentation

The existing correlations between the components of the vectors ¢ can be removed by principal
component analysis, providing the matrix P, constructed from the eigenvectors c;, where ¥P, = AP,
and A is the diagonal matrix of the eigenvalues of 3. Experience shows, that even highly complex
organs can well be characterized by the first few eigenvectors with the largest eigenvalues. This results
in a description called active shape model [6], which allow to reasonably approximate the full variability
of the anatomy by the deviation from the mean shape as a linear combination of a few eigenmodes of
variation. The linear coefficients provide a very compact characterization of the possible organ shapes.

The automatic extraction of the outline of the corpus callosum on midsaggital MR, images [22] nicely
illustrates the basic ideas of using active shape models for segmentation. Figure 4 shows the region
of interest covering the corpus callosum on a brain section (a) and on an MR image slice (b). Several
examples have been hand-segmented, providing a training set of 71 outlines, which have been parametrized
by Fourier coefficients up to degree 100. In order to incorporate not only shape-related but also positional
variations into the statistical model, the contours have been normalized relative to a generally accepted
neuroanatomical coordinate system, defined by the anterior and posterior commissures (Figure 4). The
training data used and the shape model resulting from the principle component analysis is illustrated by
Figure 5. Asimage b nicely illustrates, the largest 12 eigenvalues (defined by the 400 original parameters)
already reasonably represent the variability (covering about 95% of the full variance).

This statistical description can easily be used as a parametric deformable model allowing the fully
automatic segmentation of previously unseen images. Based on the concept of deformable contour models
or snakes [17], the corpus callosum outline can be searched in the subspace spanned by the selected



Figure 7: Intensity profiles along the boundary of a 2D (a) and a 3D (b) object

number of largest eigenmodes using the usual energy minimization scheme as illustrated on Figure 6 .
The efficiency of the fit can be vastly increased by incorporating information about the actual appearance
of the organ on the radiological image, for example in the form of intensity profiles along its boundary,
as illustrated on Figure 7a, leading ultimately to the usage of integrated active appearance models [8]
incorporating the shape and gray-level appearance of the anatomy in a coherent manner.

The illustrated ideas generalize conceptually very well to three dimensions, as illustrated on the
anatomical model of the basal ganglia of the human brain shown on Figure 8. The corresponding ac-
tive shape model has been successfully applied for the segmentation of neuroradiological MR, volumes
[15]. Remaining interactions needed for the establishment of the anatomical coordinate system can be
eliminated using automatized adaptation of the stereotactical coordinate system [16].
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Figure 8: 3D model of the basal ganglia of the human brain. On the left an individual anatomy from the
training set is shown, while the the average model is presented on the right image

It should be noted, that the establishment of correspondence is still a major matter of concern while
the training set is created, which further complicates the generation of suitable data collections for
training. The intensive manual work needed is, however, limited to the training phase, while the actual
segmentation of the unseen data is fully automatic. The correspondences including the behavior of the
anatomical landmarks are integrated into the statistical model and will be transfered to the new images
during the fitting process.



5 Conclusions

While first results demonstrate the power of the above discussed model-based techniques, generic seg-
mentation systems capable to analyze a broad range of radiological data cannot be expected in the near
future. The discussed methods allow to work within a very narrow, specialized problem domain and
fundamental difficulties have to be expected if trying to establish more generic platforms. The practically
justifiable number of examples in the training sets can only cover very limited variations of the anatomy
and usually only applied today to analyzing images without large pathological changes (which is still very
relevant in many clinical applications such as radiotherapy planning or psychiatric studies). It still needs
a long way to go, before the computer representation and usage of the prior knowledge involved in the
interpretation of radiological images can be represented and used in a computer in complexity which is
sufficient to reasonably imitate the everyday work of an experienced clinical radiologist.
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