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Abstract— One goal of statistical shape analysis is the discrim-
ination between two populations of objects. In this paper, we
present results of discriminant analysis on multi-object sets, a
problem not yet sufficiently explored. Our choice of discriminant
method is the distance weighted discriminant (DWD) because
of its generalization ability in high dimensional, low sample
size settings. Using an unbiased, soft discrimination score we
can associate a statistical hypothesis test with the discrimination
results. Furthermore, via the average discriminating axis, we can
visualize the differences between the populations.

We explored the effectiveness of different choices of features
as input to the discriminant analysis. In a multi-object setting,
it may not be solely shape that is significant in discriminating
between populations. The relative pose of objects to each other
may also be of interest, which implies that the alignment
procedure preceding the shape analysis must be selected carefully.
We have chosen to compare the discrimination results using
features of volume, pose, shape, and the combination of pose
and shape. Our shape features are determined via the medial
object representation m-rep.

We demonstrate our methods in an application to a longitu-
dinal pediatric autism study with object sets of 10 subcortical
brain structures in a population of 70 samples. The results show
that in this study volume performed better than pure shape or
pose in discriminating between diagnosis groups, although all give
statistically significant results. Pure pose information excluding
scale, as well as the combination of pose and shape is non-
discriminating suggesting that the non-scale pose information is
mostly noise. The medial radius or thickness, a pose-independent
shape feature specific to medial descriptions, performs equally
well as volume. This study illustrates that local thickness informa-
tion is likely of higher relevance in shape analysis of multi-objects
sets than the relative pose information.

I. INTRODUCTION

Statistical shape modeling and analysis [1], [2], [3] is
emerging as an important tool for understanding anatomical
structures from medical images. Clinical applications favor
a statistical shape modeling of multi-object sets rather than
one of single structures outside of their multi-object context.
Neuroimaging studies of mental illness and neurolocal disease,
for example, are interested in describing group differences and
changes due to neurodevelopment or neurodegeneration. These
processes most likely affect multiple structures rather than a
single one. A joint analysis of the structures, therefore, should
reveal more than studying them individually. Applications of
multi-object analysis include segmentation and studying group
differences. Litvin et al. [4], for example, have proposed
methodology for building a multi-object shape prior with
application in 2D curve evolution segmentation. Fillard et
al. [5] modeled full brain variation through computation of

sulcal curves. In this manuscript, we will focus on studying
group differences in neuroimaging studies using discrimination
analysis.

A fundamental difficulty in statistical shape modeling is
the relatively small sample size, typically in the range of 20
to 50 samples in neuroimaging studies, compared to a high
dimensional feature space, commonly one to several orders
of magnitude larger than the sample size. Given that we
are describing the shape of several structures instead of a
single one, the dimension of our feature space tends to be
even higher. This difficulty must be considered when choosing
among different methods for discrimination analysis [6]. We
favor the distance weighted discrimination (DWD) [7], which
is similar to Support Vector Machines (SVM), but it suffers
less from data piling problems in high dimensional low sam-
ples size (HDLSS) settings. Previous work in discriminating
single anatomical objects has been done by Golland et al. [8]
using distance transforms for shape features and SVM to
discriminate populations. Yuschkevich et al. [9] also used
SVM to discriminate 2D m-reps of corpora collosa.

Another context-specific choice is the type of features to
use as input to the shape analysis. Most neurological studies
focus solely on volume for the sake of simplicity [10], [11],
[12], [13], [14], [15]. However, Styner et al. [16], [17] have
shown that for particular applications, the shape of an object
can be more useful in discriminating populations than volume.
In a multi-object setting, there may be an additional feature
of interest: the relative pose of objects with respect to each
other. A statistical description of multi-object pose variability
was introduced in Bossa et al. [18]. Since multi-object analysis
of subcortical structures is novel, we have chosen to evaluate
and compare several different features, namely volume, pose,
shape, and the combination of pose and shape.

Several different geometric shape representations have been
used to model anatomy, such as landmarks [19], dense col-
lection of boundary points [20], or harmonic coefficients [21],
[22]. Unlike the above explicit description, Tsai et al. [23]
and Yang et al. [24] propose an implicit statistical object
modeling by level-sets with its inherent difficulties of topology
preservation. Another shape-based approach focuses on the
analysis of spatial deformation maps [25], [26], [27], [28]. In
this work, we employed explicit deformable shape modeling
with a sampled medial mesh representation called m-rep, intro-
duced by Pizer et al [29]. Styner et al. [30] have systematically
compared the use of boundary and medial representations for
the analysis of subcortical structures.

The work in this paper could be applied well to other shape



descriptions, but we chose a medial description for several
reasons. First, it gives a more intuitive representation of the
interior of the object. The radius, which describes the distance
from the medial axis to the boundary, serves as a localized
measure related to the object’s volume. This is particularly
interesting for neuroimaging work because of the widespread
use of volume data. Bouix et al. [31] studied hippocampi using
the radius function defined on a flattened 2D medial sheet.
Medial representations are also advantageous when attempting
to describe certain nonlinear shape deformations such as
bending and twisting [32]. Simple boundary representations
have difficulties to account for this type of variability. The
sampled m-rep description is also relatively compact when
compared to other shape representations. We can describe 10
subcortical structures using 210 medial atoms for a total of
1890 features. While this is much higher than the number of
data samples we typically have, it is less than the spherical
harmonic representation that we have also computed and
which uses about 10,000 features. The results of the study
presented will show that the choice of a medial description
was crucial to find relevant shape differences.

In summary, this paper presents results of discriminant anal-
ysis on sets of inter-related 3D objects. We choose the distance
weighted discriminant (DWD) method and feature sets of
volume, pose, and shape. The latter is given by the sampled
medial m-rep shape representation. Driving application is a
longitudinal pediatric neuroimaging study to show the early
growth pattern of different populations.

II. METHODS

In this section, we first discuss the methodology of the
different features we use in our discrimination analysis. These
are the m-rep shape features and the local pose change
features. We then summarize the method of distance-weighted
discrimination, along with the transformation of our raw data
before it is input to the DWD. Finally, we explain our method
for building an unbiased estimator of untrained samples’
classification using DWD.

A. M-rep Shape Description
The m-rep shape description for a 3-D object consists of a

sheet of medial atoms, each of which is defined by a position,
radius, and two unit-length normal vectors to the boundary
(spokes). The radius represents the distance from the atom
position to the corresponding point on the boundary of the
object along the two normal vectors. The medial atom, seen in
Fig. 1, is defined as m = {p, r,U+1,U−1} ∈ M, with M =
R3 × R+ × S2 × S2.

To obtain m-reps describing subcortical structures, we
started with binary image segmentations from well-trained
experts using semi-automated procedures.1 We also needed
a template m-rep that would be deformed to fit the binary
image. We constructed these template medial models using
the modeling scheme developed by Styner et al. [32] to

1See http://www.psychiatry.unc.edu/autismresearch/mri/roiprotocols.htm
for a detailed description of protocols and reliability results.

determine the minimum sampling required for each model.
Given a binary segmentation and a model, the template model
is deformed through an optimization process such that the
model best fits the image without becoming too irregular in its
geometry [33]. This process is applied individually to each of
the 10 anatomical objects using the Pablo tool [34], while the
correspondence across samples is implicitly established by the
deformation process on the template model. Fig. 3 shows the
medial atoms for a set of objects (a) and the implied surfaces
(b).

B. Alignment and Pose
Alignment preceding shape analysis is well defined for

shape analysis of single objects. In a multi-object setting,
however, it must be decided how to remove unimportant shape
variability through alignment. We call aligning the object set
as a whole, where transformations are applied to all objects
jointly, a global alignment. As seen in Fig. 2a and b, after
this global alignment there are still local pose differences
among the individual objects. In our case, we assumed these
single object pose differences were important because they
represent the inter-object changes within the multi-object set.
Therefore, after the global alignment, we perform a second
step referred to as the local alignment. In this step, we take
the globally aligned object sets and align objects individually
as would be done in a single object setting. It is these
local pose changes that we include as part of the overall
variability of the objects. The resulting m-reps after the local
alignment are what we refer to as pure shape and can be
seen in Fig. 2c. For the purposes of this paper, the global
alignment included translation and rotation. This accounted for
any pose differences between the original images. The local
alignment included translation, rotation, and scale to remove
all remaining pose. When we use the local pose changes as
features for discriminant analysis, we have an 8-dimensional
vector consisting of three elements for the translation, four for
the orientation (stored as a quaternion), and one for the scale.
After both global and local alignments have been completed,
the final m-reps are in their mean pose position and are used
as the pure shape features.

To align m-reps, we use a variation of the standard Pro-
crustes method [35]. In a normal Procrustes alignment on a
set of boundary points, the sum-of-squared distances between
corresponding points is minimized. The standard Euclidean
distance serves as the metric. For our purposes, we instead
minimize the geodesic distance between m-reps because prim-
itives do not lie in a Euclidean space. The geodesic distance
d(ma,mb) between two medial atoms ma and mb equals
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where R(x) is the rotation of x to (1,0,0). For more details,
see [36]. The distance between two m-reps is then the sum of
geodesic distances between their corresponding atoms.

C. Distance Weighted Discrimination
Discriminant analysis is concerned with finding the direc-

tion which best separates two populations. An optimization



must be performed that somehow maximizes the distance
between the discriminating hyperplane and the data points
while separating the two classes. It is formulated in a general
way as follows (see Fig. 4): given points xi, class indicators
yi ∈ {+1,−1}, and w the normal to the separating hyperplane,
the distance or residual, r, from the points to the hyperplane
is

ri = yi(x′iw + β) (2)

where β determines the position of the separating hyperplane.
One of the popular methods of discriminant analysis is Support
Vector Machines (SVM). It attempts to maximize the mini-
mum ri. The main problem with this method is it tends to
use only a small subset of the population, those closest to
the separating plane, to completely define the discriminating
axis. In high-dimensional feature space, it is manifested in
the problem of “data piling” (see Fig. 5) where most of the
samples from the same population group, when projected onto
the normal of the discriminating axis, end up very close to each
other. This leads to poor generalization performance when
tested on new samples that were not included in the calculation
of the discriminating axis: it is too specific to the samples from
which it was computed.

Distance weighted discrimination is a method similar to
SVM, but uses all sample points in the calculation of the
discriminating axis.2 It attempts to minimize the sum of the
reciprocals of ri. Through this, each point’s contribution to the
calculation is weighted inversely proportional to the distance
from that point to the opposite population. In this way, the
DWD achieves a higher robustness when presented with new,
untrained samples. This advantage is heightened further in the
context of high dimensional feature spaces with low sample
sizes where it is best to use all information available from the
low number of samples.

D. Transformation of Raw Input Data

The m-rep shape description as well as the pose features
contain rotational elements that are not part of a Euclidean
space. This can lead to reduced performance of methods such
as DWD that attempt to find a linear discriminant. Likewise,
combining features with different units into one long feature
vector can bias results towards features with larger variance.
Finally, our data samples have unequal gender distributions
within the two populations which could create a statistical
bias. We must first account for each of these issues before
running DWD analysis.

While the application of DWD to nonlinear features may
give a reasonable solution, we found through experimentation
that the linearized form of the m-rep features gives a better
discrimination result (see Fig. 6). To obtain a linear instance
of our curvilinear m-rep and pose features, we project them
into the tangent space at the geodesic mean point [36]. This
involves taking the log map of each of the non-Euclidean
features. For the pose rotation, the log map of a unit-length

2See http://www.stat.unc.edu/faculty/marron/marron software.html for a
sample implementation.

quaternion q = (w, v) is defined as

log q =
θ

sin(θ/2)
· v , θ = 2arccos(w) (3)

For the m-rep normal directions U = (x, y, z), the spherical
log map is

log U =
(

x · θ

sin(θ)
, y · θ

sin(θ)

)
, θ = arccos(z) (4)

For the pose scale and m-rep radius factors it is just the
logarithm function.

To concatenate features of different units, we first must
make them commensurate to avoid unwanted bias. For our
purposes, we have chosen to normalize each feature by sub-
tracting the mean and dividing by the standard deviation. This
makes the weighting of points equal among separate features
in the DWD calculation. So for each feature, the input to the
DWD procedure is of the form

Y =
X −X

σ
∀X ∈ Rk (5)

Y =
log

(
X −X

)
σ

∀X 6∈ Rk (6)

The mean X , however, is computed for each gender to
avoid gender differences to become a confounding factor in the
statistical analysis. By subtracting a gender-specific mean, we
eliminate any disproportion in the gender sampling within our
two populations. To build a gender-specific mean, we start with
the lowest level of subcategories within our data and compute
the mean of the samples in each. We then compute the mean
of the subcategory means which are of the same gender. This
gives us a gender-specific mean. Fig. 7 shows the process with
subcategories according to the three criteria of gender, group,
and time.

E. Unbiased Classification using Leave-Many-Out Exper-
iments

To test the performance of the DWD, we conducted a
leave-many-out, cross-validation experiment. We first divided
our data samples into a training set and a testing set. The
discriminating axis was computed using the training set. Each
sample from the test set was then projected onto the DWD axis
where the resulting one-dimensional projected value serves
as the classification score (hence known as the DWD score).
The DWD method produces both a discriminating axis and
a threshold β. The threshold value is the amount by which
the training data, after projected onto the DWD, must be
shifted such that zero becomes the best dividing point between
populations. Therefore, given a DWD axis w and a test sample
feature vector x, the DWD score becomes

s = x′w + β . (7)

The discrete classification into one of the diagnosis groups is
then simply defined as the sign of the DWD score.

In order to make the training set unbiased, we used the
following strategy for selecting training samples (see Algo-
rithm 1). We would alternately choose a random autism or



a random control sample. With this sample from one group,
we chose the sample from the other group that was a best
match according to age and gender to the subject from the
first group. This gave us one sample from each group. Since
our data is longitudinal, we always included each sample’s
counterpart across time. From here, the process was repeated
but starting with a random sample from the opposite group
than in the previous iteration. After several iterations, we end
up with a training set with an equal number of samples from
each group.

After several runs of this experiment, all of the data samples
were included in the testing set of at least a few runs. From
the results of these experiments, we could then build an
unbiased estimate of each sample’s classification. For each
sample, we computed it’s mean DWD score over those runs
of the experiment for which it was in the test set. In this
way, we calculate a classification for a sample only when the
discriminating axis was computed without any knowledge of
that sample. The box plots in the following sections are of
these unbiased mean DWD scores.

Algorithm 1 Training Set T Selection
T = ∅, size = 0, i = 0
while size < n do

if i mod 2 = 0 then
s = random sample from autism group
t = closest matching sample to s from control group

else
s = random sample from control group
t = closest matching sample to s from autism group

end if
s′ = counterpart of s across time
t′ = counterpart of t across time
T = T ∪ {s, s′, t, t′}
size = size + 4
i = i + 1

end while

III. RESULTS

In this section, we describe our data set and the results of
the leave-many-out experiment. We have divided the results
into five sections corresponding to the features used in the
discriminant analysis: volume, pose, shape, shape and pose
combined, and local width represented by m-rep radii. We
then finish with some visualizations of the discriminating
differences between the populations.

A. Motivation and Clinical Data
The driving clinical problem of this research is the need for

a joint analysis of the set of subcortical brain structures, over
and above that of individual structures. The image data used
in this paper is taken from an ongoing clinical longitudinal pe-
diatric autism study [37]. This study includes autistic subjects
(AUT) and typically developing, healthy controls (CONT)
with baseline at age 2 and follow-up at age 4. For the results
shown here, we have selected 23 subjects from the autism

group and 10 from the control group. For all of the autism
subjects and 6 of the 10 controls, we have successful scans at
age 2 and age 4. For the other 4 controls, we paired an age
2 scan of one subject with an age 4 scan of another unrelated
subject. We also have 4 additional control age 2 scans that have
no matching age 4 scan. This gives us a total of 70 samples:
46 autism and 24 control subjects.

In the classifier experiments, we always included all details
of a selected training subject. Thus, the four unpaired control
samples were always left out of the training set. From our
specific data, we chose a training set, in the manner described
above, consisting of 32 out of the 70 available samples. Thus,
it included 16 samples from the control group and 16 from the
autism group. The remaining 38 samples served as the test set.
The experiment was then run 100 times. The number of runs
was chosen heuristically such that each of the 70 samples was
included in the test set for at least a few runs; the minimum
number of runs in the test set for any sample was 4. From
these, we could calculate unbiased mean DWD scores.

B. Volume
Because of its prevalence in neuroimaging studies, we first

assessed the ability of object volumes to discriminate between
the autism and control groups. The volumes were computed
from the implied surface boundary of the m-reps. The 10
subcortical structures gave us a 10-dimensional feature space
to serve as the basis for the discriminating axis. We computed
the mean DWD score for each sample over the runs in which
that sample was in the test set. This gives us an unbiased
average classification score for each sample. Fig. 8 shows
that there is a clear difference between the median score
of the autism group and control group. This difference is
statistically significant with p<0.001. As another measure of
the discrimination performance of the volume, Table I shows
the average percentage (74%) of the 38 test samples that were
correctly classified over the 100 runs of the leave-many-out
experiment. Volume percent change from autism to control of
the mean volumes of each structure is listed in Table III. All
structures show a larger volume in the autism group.

C. Pose
The next step was to explore the significance of local

pose changes. For each sample, these features totaled 70:
three for translation, three for rotation, and one for uniform
scale across 10 objects. The raw features were transformed
as described in section II-D, thus reducing the quaternion
representing the rotation to a three-dimensional vector. The
significance in the volume discrimination led us to believe
that the pose, which includes uniform object scale factors,
would also show significance. This was the case for the mean
DWD scores with p=0.01 (Fig. 9). However, the test sample
classification accuracy was considerably lower than volume as
Table I illustrates. There also were 14 individual runs in which
the classification accuracy was at or below 50%, a result that
would be outperformed by a random coin flip. The translation
and rotation components of the pose seemed to be adding
mostly noise and instability to the DWD calculation because



the same experiment run with only the scale factors gave an
average classification rate of 70% and p<0.001 as opposed
to 54% and p=0.1 using the translations and rotations. From
these results, we conclude that the pose does include some
relevant information for discrimination but it is likely in the
uniform scale factors.

D. Shape
Figure 10 shows the results of using only the m-rep shape

features for the DWD calculations after objects have been
individually aligned and scaled. Unlike with volume and
pose, the mean DWD scores for the test samples were not
significantly different (p=0.92, Fig. 10). The classification
accuracy of shape was less than volume and pose with an
average correctness rate of 53%. Both of these results signify
that there did not exist strong shape differences between the
two population groups. However, as seen with the translations
and rotations in pose, particular subsets of features which
consist mostly of noise can be detrimental to discrimination.
Restricting the analysis to a subset of shape features is
discussed below.

E. Shape and Pose
Finally, the high classification accuracy of the volume and

pose features compared with shape led us to combine the
latter two. This gave us the most complete description of
the variability of the multi-object complex. The differences
between the mean DWD scores were not significant (p=0.21).
Once again, the shape features seem to represent mostly noise
since combining them with pose produced a nonsignificant
result while pose alone was significant. The classification
accuracy (58%) was slightly higher than shape but lower than
pose features alone as seen in Table I.

F. Shape and Scale: Local Width via M-rep Radii
One of the ongoing questions with a discretely sampled m-

rep shape description is the issue of correspondence. Currently,
the correspondence is implicitly defined in the process of
fitting a template model to each binary image. However, it is
not clear that features such as the spokes and atom positions
are sufficiently stable to give a meaningful correspondence
across samples. Out of this arises the question of whether
statistics on these features, which we used as part of our shape
analysis above, could be tighter with a better correspondence.

To explore this question, we chose to run our same analysis
on only the radius feature of each medial atom without any
alignment. This is because the radius is less sensitive to a noisy
correspondence than some of the other medial atom features;
a small change in the atom position or spoke directions will
generally not cause a large change in the radius. It is also
invariant to any object-level translation and rotation, while
including both shape and scale information in the form of
local width. This makes it a more intrinsic measure than the
other medial atom features. Compared to the other features
in Table I, the mean classification accuracy over 100 runs of
the leave-many-out experiment is best with 76% when using

only the atom radii. Fig. 12 shows the mean DWD scores
using only the radii. While the radii give the best classification
rate of any feature we studied, it is difficult to say outright
that they are the best features to use. First, it may be our
specific application that lends itself to a local measure that is
related to volume like the radii. It is known, and evidenced
above, that there are volume differences between autistic and
typically developing brains. Also, Fig. 12 shows that the
overlap between the populations is not drastically smaller
than with volume. However, the improvement in classification
accuracy from using all the medial atom features to only the
radii suggests that there is a certain amount of noise in the
other features which ends up being correlated to the detriment
of the DWD calculation. At the same time, witnessing the
local radii slightly outperform volume as a discriminating
feature suggests additional discrimination power of shape
versus volume and supports the choice of a medial shape
description.

G. Evaluation of Bias
To verify that the mean classification scores were unbiased,

we ran our same experiments using random, normally dis-
tributed input data. We used the same random number seeding
and the exact same training and testing sets. The random data
was generated with the same mean, variance, and dimension
as our actual shape data. The p-value of the mean DWD scores
for this case was 0.22 and the average classification accuracy
was 49%.

H. Discrimination by Age
To complete our analysis, we ran the same experiments as

above, with precisely the same gender-corrected data, but dis-
criminating according to age instead of diagnosis. Through this
we wanted to explore the performance of the discrimination in
the context of presumably more separate groups. And indeed,
as seen in Table II, most of the different features have an
easier time discriminating by age than by diagnosis. Especially
noteworthy is the pose, which does marginally better than the
volume, m-rep radii, and scale factors (see Figs. 13 and 14).
It is important to remember that the latter two are not a total
brain volume or scale, which should be easily separated after
correcting for gender, but not for the individual structures. Our
previous work [38] had shown that the first principal mode
of our pooled data (both time points) aligned very closely
with time. The deformation along this mode showed a large
global scaling effect, with the subcortical structures moving
radially outward. Here, this change across time is represented
in the local translation alignment parameters, which helps to
explain why the entire local pose (translation, rotation, and
scale) performs slightly better than scale or volume alone. Our
conclusion is that since pose does well at discriminating by
age, removing it for the analysis of diagnosis groups (and
witnessing it not aid in the discrimination when included)
leaves us with discriminating differences that are not heavily
influenced by having pooled data across time. However, a
direct method of correcting for age, such as that done for
gender, would be preferable and will be explored in the future.



I. Visualization
To visualize the changes in shape along the DWD direction,

we start with the mean m-rep of the autism group. Then, we
deform the autism mean m-rep along the unit-length DWD
which points toward the control group. The distance along
the DWD direction by which the autism mean is deformed
is defined as the distance between the mean of each group’s
projections onto the DWD line. The final m-rep which has
been deformed this full distance is then used to represent the
control group.

For robustness, we chose to use the mean DWD direction
over all the runs instead of using a single run from the leave-
many-out experiment. We also used all 70 samples to compute
the distance between the projected group means, which gives
us the distance to deform along the DWD direction, and we
used all 46 autism samples for the autism mean m-rep. Fig. 15a
shows colormaps of surface distances between the two multi-
object sets representing each of the two diagnosis groups using
shape only. The measurement is the distance when starting
from the autism group and deforming towards the control
group. Red, green, and blue coloring denote inward, zero, and
outward deformations respectively. In this image, we see that
the amygdala and hippocampus undergo strong shape changes
between the groups relative to the other three structures. There
is a distinct inward deformation of the hippocampus tail (seen
in far right of Fig. 15a) as well as an outward change in the
midsection. A large portion of each amygdala also presents a
difference in shape.

Given that the m-rep radii performed best as a discriminat-
ing feature, we also wanted to visualize these differences. We
used the same procedure as above to obtain a representative set
of radii for each diagnosis group. Fig. 15b shows the surface
distance between m-reps of each group with only the radii
modified. The strongest individual radii changes appear to be
in the hippocampus and the caudate. To assess the overall radii
differences between groups, we calculated 4r = log (rc/ra)
for each corresponding atom with rc the radius of the control
group and ra the radius of the autism group. Fig. 16 shows
spheres plotted at the mean atom positions between the two
groups with size proportional to 4r. The color denotes the
sign of 4r, with red being a decrease in radius from autism
to control and blue an increase. We see a clear decrease
in local widths when deforming from autism to control at
almost all positions across both structures. The hippocampus
shows mainly a large decreases in the posterior head and body
section. These radii decreases are supported by Table III which
lists the percent change from autism to control of the mean
volumes of each structure at ages 2 and 4. All structures show
a larger volume in the autism group.

IV. CONCLUSION

This research presents work in progress towards shape
analysis and group discrimination of multi-object complexes.
Traditionally, shape analysis is mostly concerned with rep-
resentation and statistical analysis of single objects, mostly
following a well developed mathematical framework that
proposes linear alignment and subsequent statistical analysis

of corresponding features. Statistical analysis of complexes
of interrelated shapes has not yet been sufficiently studied
and is not just to be seen as a straightforward extension of
methodologies for single shape analysis.

In a multi-object setting, the alignment step has to be
reconsidered. Linear alignment of a population of sets of
objects will remove global translation, rotation and scale, but
will not account for relative object pose variability. A joint
analysis of only globally aligned sets of shapes will therefore
include these residual pose differences into the statistical shape
model. Here, we discuss and explore various options for
global and local alignment of sets of shapes. We propose an
initial global alignment with rotation and translation to map
each dataset into a common coordinate frame. This step is
followed by a local alignment of each object individually,
but the alignment parameters translation, rotation and scale
are kept as pose parameter vectors. Shape analysis of the
joint set of objects will therefore use pure shape features
not affected by any residual pose differences. Features are
mapped into Riemannian symmetric space, the appropriate
choice for features that include rotational frames and positive
reals. Features used here include medial atoms and the vectors
of the joint pose parameters of the multi-object complexes. It
is then straightforward to chose pose, shape, or pose and shape
as features for statistical group discrimination.

Our results, given the clinical pediatric imaging application,
show that pose features do not give statistically significant
discrimination. Shape features also did not show significance,
except when isolating a particular feature of the m-rep shape
description, namely the radius measure of local width. This
feature combines the locality of a shape description with the
scale information known to be discriminating in our particular
application. Using this local size parameter results in better
generalized discrimination performance.

Although sampled medial representations use a lower num-
ber of features than densely sampled surfaces, we still face
the HDLSS problem (high dimensionality low sample size).
This problem is even more pronounced with the analysis of
object sets, resulting in a feature space dimensionality which
is magnitudes larger than the number of samples. In typical
applications similar to the one described here, two populations
of 25 samples are each represented by 2000 features to provide
a sufficiently detailed representation for 10 3-D objects. For
classification, we applied the distance-weighted discrimination
(DWD) method, which is a variant of support vector machine
discrimination but is designed to be robust for HDLSS data
analysis problems. Unbiased statistical analysis by repeated
leave-many-out experiments finally results in classification
rates and significance values (p-values).

The driving application is a pediatric autism study with
autistic and typically developing children imaged at 2 and
4 years of age. We focus on a joint analysis of five left
and right subcortical structures represented as sampled medial
representations after model fitting. Please note the discrepancy
of relatively low classification rates in the presences of highly
significant population differences. This might possibly be
explained by the nature of the underlying clinical problem.
Morphologic phenotypes in neurodevelopmental disorders are



often reflected by only subtle differences and increased het-
erogeneity. In the future, we will explore multi-variate classi-
fication by selection of a best-separating subspace rather than
a single axis. Further, we will have to develop a technique
to explore the covariance structure of sets of shapes in order
to explain their interrelationship. This will help clinicians to
explore links between morphological changes and underlying
biological processes.
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TABLE I
CLASSIFICATION ACCURACIES FOR TEST SAMPLES OVER 100 RUNS OF

LEAVE-MANY-OUT EXPERIMENT

Feature Mean Std. Dev.
Volume 74 % ± 8 %
Pose 61 % ± 8 %
Pose (Scale Only) 70 % ± 8 %
Shape 53 % ± 6 %
Shape and Pose 58 % ± 8 %
Shape and Scale (Radii Only) 76 % ± 7 %



Fig. 10.
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TABLE II
CLASSIFICATION ACCURACIES FOR DISCRIMINATION BY AGE

Feature Mean Std. Dev.
Volume 72 % ± 5 %
Pose 74 % ± 6 %
Pose (Scale Only) 69 % ± 6 %
Shape 60 % ± 7 %
Shape and Pose 73 % ± 6 %
Shape and Scale (Radii Only) 70 % ± 6 %



Fig. 13.
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TABLE III
VOLUME PERCENT CHANGE FROM AUTISM TO CONTROL

Object %42 %44

Left Amygdala -19.85 -15.41
Right Amygdala -21.05 -18.19
Left Caudate -14.38 -3.84
Right Caudate -13.96 -5.49
Left Hippocampus -10.92 -7.98
Right Hippocampus -10.29 -6.69
Left Globus Pallidus -10.19 -16.17
Right Globus Pallidus -2.57 -8.27
Left Putamen -6.43 -3.66
Right Putamen -4.54 -2.24

%4A = V olcont−V olaut

V olcont
× 100, at age A



Fig. 1. Medial atom: position (p), radius (r), two normals
to boundary (U)

Fig. 2. Multi-object alignment. a) Global translation and
rotation. b) Global translation, rotation, and scale. c) Local
translation, rotation, and scale after initial global translation
and rotation.

Fig. 3. M-reps of a multi-object complex. a) Medial atoms.
b) Implied boundary surfaces of medial description.

Fig. 4. Illustration of two-class discrimination with
separating hyperplane and residuals. The samples marked
with boxes would act as the support vectors in SVM, whereas
all samples are included in DWD.

Fig. 5. Left: Projection onto normal of optimal separating
hyperplane. Right: Projection onto normal of separating
hyperplane which exhibits data piling.

Fig. 6. Separation of 70 multi-object m-reps into two
populations given by DWD axis. a) Raw, nonlinear medial
atom data. b) Atom data after projection into tangent space
and subtraction of mean.

Fig. 7. Illustration of gender-specific mean calculation
given subcategories of gender, group, and time. The same
process is applied to obtain a female mean.

Fig. 8. Volume features: Box plot (median, 25 and 75
percentiles, min/max) of mean DWD scores of each group
over those runs in which the samples were in the test set.
Greater than zero classified as autism, less than zero classified
as control. p<0.001.

Fig. 9. Pose features: Box plot (median, 25 and 75
percentiles, min/max) of mean DWD scores of each group
over those runs in which the samples were in the test set.
Greater than zero classified as autism, less than zero classified
as control. p=0.01.

Fig. 10. Shape features: Box plot (median, 25 and 75
percentiles, min/max) of mean DWD scores of each group
over those runs in which the samples were in the test set.
Greater than zero classified as autism, less than zero classified
as control. p=0.92.

Fig. 11. Shape and pose features combined: Box plot
(median, 25 and 75 percentiles, min/max) of mean DWD
scores of each group over those runs in which the samples
were in the test set. Greater than zero classified as autism,
less than zero classified as control. p=0.21.

Fig. 12. M-rep radii features: Box plot (median, 25 and 75
percentiles, min/max) of mean DWD scores of each group
over those runs in which the samples were in the test set.
Greater than zero classified as autism, less than zero classified
as control. p<0.001.

Fig. 13. Pose features (by age): Box plot (median, 25 and
75 percentiles, min/max) of mean DWD scores of each group
over those runs in which the samples were in the test set.
Greater than zero classified as age 2, less than zero classified
as age 4.

Fig. 14. M-rep radii features (by age): Box plot (median,
25 and 75 percentiles, min/max) of mean DWD scores of
each group over those runs in which the samples were in the
test set. Greater than zero classified as age 2, less than zero
classified as age 4.

Fig. 15. Colormap of surface distances from autism mean
m-rep to deformed m-rep along DWD direction using a) shape
only, b) m-rep radii only. Red, green, and blue are inward
distance, zero distance, and outward distance respectively.

Fig. 16. Visualization of radii change from autism to
control in a) right amygdala, b) right hippocampus, c) right
caudate. Size of ball at an atom position is proportional
in size to the log change in radius from control to autism.
Red signifies that radii in autism are larger than in controls
(log(rc)− log(ra) < 0), and blue the opposite.
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