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Abstract

This paper describes an automatic tissue segmentation method for newborn brains
from magnetic resonance images (MRI). The analysis and study of newborn brain
MRI is of great interest due to its potential for studying early growth patterns and
morphological changes in neurodevelopmental disorders. Automatic segmentation of
newborn MRI is a challenging task mainly due to the low intensity contrast and the
growth process of the white matter tissue. Newborn white matter tissue undergoes
a rapid myelination process, where the nerves are covered in myelin sheathes. It
is necessary to identify the white matter tissue as myelinated or non-myelinated
regions. The degree of myelination is a fractional voxel property that represents
regional changes of white matter as a function of age. Our method makes use of a
registered probabilistic brain atlas. The method first uses robust graph clustering
and parameter estimation to find the initial intensity distributions. The distribution
estimates are then used together with the spatial priors to perform bias correction.
Finally, the method refines the segmentation using training sample pruning and
non-parametric kernel density estimation. Our results show that the method is able
to segment the major brain structures, identifying myelinated and non-myelinated
white matter regions.
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1 Introduction

The segmentation of newborn brain structures from magnetic resonance im-
ages (MRI) is crucial for the study of normal development and comparison to
neurodevelopmental disorders at early stages. The development of new seg-
mentation methods for this age group is driven by the increasing use of MRI
to study newborns, for example our ongoing study of early brain development
in normal and high risk children (Zhai et al., 2003; Gilmore et al., 2004) and
the lack of appropriate segmentation methodology. Manual segmentation of
newborn brains is tedious, time consuming, and lacks reproducibility. There-
fore, it is necessary to use automatic segmentation methods for clinical studies
with multiple subjects. This task is considerably more challenging compared
to automatic segmentation of adult brain MRI due to the early development
process; (Rutherford, 2002) provides an excellent description of newborn MRI
and the dynamic changes seen over the early development period. In newborn
infant brains, the white matter structure still undergoes myelination, where
the fibers are being covered in myelin sheathes. Myelin is vital in the trans-
mission of signals to different parts of the brain. The white matter structure
at birth is generally not myelinated, except a few regions in the posterior limb
of the internal capsule and parts of the brain stem. This is observable in the
MR images, where the white matter appears with two different intensity char-
acteristics (Figure 1). The non-myelinated white matter appears with inverse
contrast compared to fully developed white matter. Over the first year, white
matter becomes increasingly myelinated and shows significant changes of lo-
cal contrast. The myelination process results in a reversal of white and gray
matter contrast, which occurs at different times for different brain regions.

Several methods have been developed for automatically segmenting healthy
adult brain MRI, mostly variations of multi-variate statistical classification
techniques. Wells et al. (Wells et al., 1996) proposed an Expectation-Maximization
scheme that interleaves segmentation and intensity bias correction. This method
was extended by Van Leemput et al. (Van Leemput et al., 1999b) through the
use of a probabilistic brain atlas. Warfield et al. (Warfield et al., 2000) de-
scribed a k-nearest neighbor classification algorithm that is combined with
template matching. Cocosco et al. (Cocosco et al., 2003) uses robust sample
selection through minimum spanning trees for intensity-based classification.
Automatic segmentation methods for healthy adult brain MRI typically fail
in segmenting all the different structures apparent in newborn brain MRI,
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particularly the myelinated white matter regions. A different class of segmen-
tation techniques uses deformable templates that transfer the labeling of a
template to each new subject. For example, the work by Collins et al. (Collins
et al., 1999) which combines neural network classification with nonlinear image
matching.

Previous work in segmentation of infant MRI was shown in (Matsuzawa et al.,
2001), as part of a study of early brain development. Their method does not
identify myelinated white matter and non-myelinated white matter separately.
The results show that their method has difficulties dealing with tissue separa-
tion. Hüppi et al. (Hüppi et al., 1998) showed segmentation results of newborn
infants, using the method of Warfield et al. (Warfield et al., 2000). Their sub-
jects are mostly premature born infants with simpler cortical folding compared
to normal newborns. The segmentation method identifies both non-myelinated
and myelinated white matter.

Automatic segmentation of newborn brain MRI is significantly more challeng-
ing than the segmentation of adult brain MRI. This is mainly due to the
biology and the rapid growth process. The specific challenges are:

(1) The white matter and gray matter contrast to noise ratio (CNR) for
newborn MRI can be as low as half of the one for adult brain MRI.
A factor that reduces CNR is the small size of the infant brains. This
requires them to be scanned at higher resolution, which leads to higher
noise levels. The low CNR causes some difficulty in segmenting the partial
volume regions.

(2) Typically, newborn brain MRI exhibits some motion artifacts. The infants
may not stay motionless during the scan period. This problem can be
difficult to solve since the infants are not mentally aware, and healthy
infants should not be sedated or restrained.

(3) The process of myelination separates white matter tissue into two types.
Myelination of white matter is a fractional property, where the dividing
boundaries between regions that are fully myelinated and non-myelinated
are ambiguous (Rutherford, 2002). The myelinated white matter regions
are mostly distributed near the spine (central posterior) and parts of
the internal capsule. We also observed the presence of myelinated white
matter around the regions associated with the sensory and motor cortex.

(4) Each tissue type in newborn brain MRI exhibits significant levels of inten-
sity inhomogeneity and variability, which may be due to a combination of
the RF inhomogeneity and biological properties of the developing tissue
(Kandel et al., 2000).

(5) The different tissues have large overlaps in their intensity characteris-
tics, as shown in Figure 2. The decision boundaries for intensity-based
classification are typically ambiguous and complex.
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We developed an atlas based segmentation algorithm for newborn brain MRI
that addresses the challenges listed above. The method uses the robust clus-
tering method proposed by Cocosco et al. (Cocosco et al., 2003) and the
robust parameter estimation method by Rousseeuw et al. (Rousseeuw and
Van Driessen, 1999) to deal with noisy data. It uses the intensity inhomogene-
ity estimation scheme from spatial classification proposed by van Leemput et
al. (Van Leemput et al., 1999a). The complex decision boundaries are modeled
using non-parametric kernel density estimates, using the efficient method of
Girolami et al. (Girolami and He, 2003). The probabilistic atlas is used as a
spatial prior in the classification process as proposed by (Van Leemput et al.,
1999a).

2 Method

Due to the large overlap in the tissue intensity distributions, we believe that it
is necessary to use spatial priors in the segmentation. The spatial priors that
we use is part of a probabilistic brain atlas of newborn MRI, shown in Figure 5.
The atlas provides voxel prior probabilities for white matter, gray matter, and
cerebrospinal fluid (csf). Myelinated white matter and non-myelinated white
matter are combined as one white matter class in the atlas. This is necessary
because it is difficult to model the different dynamic growth patterns across
subjects with the significant changes during early brain development. With the
combined white matter prior, the discrimination between the two different
white matter classes is primarily driven by the image intensities. The atlas
was created by averaging three co-registered semi-automatic segmentations.
Each segmentation was done by a human rater that selects samples for each
tissue types for k-nearest neighbor segmentation. The output of the k-nearest
neighbor classification is then edited manually to remove possible errors. We
use an additional blurring of the average segmentations to simulate a higher
level of population variability.

Our segmentation framework is composed of three major steps, as shown in
Figure 3. First, it obtains rough estimates of the class intensity clusters. It
then iteratively performs inhomogeneity correction and parametric classifica-
tion. Finally, it refines the segmentation using non-parametric kernel density
estimates.

Before segmentation, we register the atlas to the subject using affine transfor-
mation and the mutual information image match metric (Maes et al., 1997).
The registered images are filtered using anisotropic diffusion (Gerig et al.,
1992).
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2.1 Robust Intensity Distribution Estimation

The segmentation of newborn brain MRI involves classifying each voxel into
different categories C, where C is commonly defined to be {myelinated white
matter, non-myelinated white matter, gray matter, and cerebrospinal fluid}.
The first step in the segmentation process is to determine the rough estimates
of the class intensity distributions. We obtain samples for class Ci at location
~x with high prior probability values, for example Pr(Ci, ~x) > 0.9.

The white matter samples are constrained to have low image gradient mag-
nitude values to avoid choosing samples near the transition regions between
myelinated and non-myelinated white matter and at white/gray matter bound-
aries. The value we use for the gradient magnitude of our 3-D images is the
2-norm of the vector of individual gradient magnitudes, where

G(~x) =
√
|∇I1(~x)|2 + . . . + |∇In(~x)|2

We only retain samples for the white matter class with G(~x) lower than the

average of G(~x) over the white matter prior, γ =
∑

~x
Pr(white matter,~x) G(~x)∑
~x

Pr(white matter,~x)
. The

2-norm gradient magnitude metric is more sensitive to noise compared to the
vector field gradient magnitude metric described in (Lee and Cok, 1991). This
is a desired property since we want to avoid sampling noisy regions.

We then process the obtained samples to remove outliers and false positives.
We use the Minimum Covariance Determinant (MCD) estimator (Rousseeuw
and Van Driessen, 1999) to generate the robust mean and covariance estimates
of the unimodal distributions (gray matter and csf). The MCD estimator
computes the robust mean and covariance that have the smallest determinant
of covariance and covers at least half of the data. For the bi-modal white
matter distribution, we use a robust graph based clustering method, similar
to the one described in (Cocosco et al., 2003). The clustering method creates
the Minimum Spanning Tree (MST) structure (Cormen et al., 2001) of the
sample points and breaks the long edges to form the clusters (Duda et al.,
2001). The removal of high gradient voxels helps in the clustering process, as
shown in Figure 4.

The algorithm estimates the mean and covariance for myelinated white mat-
ter and non-myelinated white matter by iteratively breaking long edges of the
MST. At each iteration, we break an undirected edge e(v, w) that connects
vertices v and w if it is longer than A(v)× T or A(w)× T . A(v) is the aver-
age length of edges incident on vertex v, A(v) = 1

ns

∑
s |e(v, s)|, while T is a

distance multiplier. The iterative algorithm terminates when two clusters are
found with intensity location estimates that are in the proper order. For ex-
ample, the order of intensities for the classes in T2w from darkest to brightest

5



is myelinated white matter, gray matter, non-myelinated white matter, and
csf.

The intensity location are estimated as the robust mean values computed with
the MCD estimator. We use the robust MCD mean values, as opposed to the
standard location estimates such as the mean or median, to make sure that
we obtain reasonable sample clusters. The standard location estimates such
as mean or median may not always be optimal for the noisy newborn MRI
data. The mean value can be skewed by a single outlier sample, while the
median value only uses one sample point and ignores contributions of other
samples. The steps involved in the intensity distribution estimation are listed
in Algorithm 1.

Algorithm 1. Initial intensity distribution estimation

1: Obtain samples by thresholding atlas prior probabilities
2: Remove white matter samples with gradient magnitude higher than γ
3: Compute robust mean intensity values for gray matter and csf (µgm and

µcsf) using the MCD estimator
4: Construct Minimum Spanning Tree from white matter samples
5: T ← 2
6: repeat
7: Break edges longer than T × A, where A is the average length of con-

nected neighbor edges
8: Find largest myelinated white matter cluster, where µmyelinated < µgm

in T2w
9: Find largest non-myelinated white matter cluster, where µgm <

µnon−myelinated < µcsf in T2w
10: T ← T − 0.01
11: until both white matter clusters are found or T ≤ 1
12: Compute white matter Gaussian distribution parameters from detected

clusters

2.2 Inhomogeneity Correction

Newborn brain MRI exhibit higher intensity variability for each tissue and low
intensity contrast compared to adult brain MRI. These two factors severely
hamper the estimation of intensity inhomogeneity. Histogram based inten-
sity inhomogeneity estimation methods, such as the ones proposed by Sled
et al.(Sled et al., 1998) and Styner et al. (Styner et al., 2000), are likely to
have difficulties in obtaining the optimal solution. The histogram of a newborn
brain MR image is generally smooth with weak maximas.

In the case of inhomogeneity correction of newborn brain MRI, the spatial
information is useful to deal with the low intensity contrast. We have chosen
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to use the method developed by Van Leemput et al. (Van Leemput et al.,
1999a). The scheme uses the spatial posterior probabilities to estimate the
intensity inhomogeneity, which helps to overcome problems with low contrast
and high variability. The inhomogeneity estimation method is an iterative
generalized expectation maximization algorithm. It interleaves classification
with inhomogeneity estimation at each iteration. The Gaussian distributions
obtained from the previous segmentation step are used as initial parameters
for the iterative inhomogeneity estimation algorithm.

The intensity likelihoods are modeled using parametric Gaussian functions,
and the inhomogeneity is modeled using polynomials:

p(~I(~x)|Ci) = φΣi
(~I(~x)− µi −

∑
k

βkqk(~x))

where φ is the Gaussian function, with mean µi and covariance Σi, the intensity
inhomogeneity is the linear combination of the coefficients βk and the basis
polynomials qk. The intensity inhomogeneity is estimated by least squares
fitting of the polynomial coefficients to the log difference of the original image
and the reconstructed image. The reconstructed image is the homogeneous
image computed using the mean values µi and the posterior probabilities. The
posterior probabilities are computed using the atlas prior probabilities:

p(Ci|~I(~x)) =

∑
i p(~I(~x)|Ci)Pr(Ci, ~x)∑

i Pr(Ci, ~x)

2.3 Segmentation Refinement Using Kernel Density Estimation

Modeling tissue intensity distributions as Gaussian probability density func-
tions for the segmentation and inhomogeneity correction are often a first choice
but not always optimal. In the presence of complex classification decision
boundaries, Gaussian distribution functions show significant overlap and are
not properly modeling cluster shapes. In order to refine the classification, we
sample the inhomogeneity corrected images, prune the outliers and false pos-
itives from the samples, and then estimate the intensity distribution using
kernel density functions (Duda et al., 2001; Hastie et al., 2001).

The intensity probability density function for each class is estimated as follows:

p̂(~I(~x)|Ci) =
Ni∑
j=1

wij Kh(~(I(~x)− Tij)

where Kh is the Gaussian kernel with standard deviation h, Ni is the number
of training samples for class Ci, and Tij is the jth training sample for the ith

class. Each training sample has an associated weight wij, where for each class
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Ci,
∑Ni

j=1 wij = 1. The kernel density estimates are used to produce the final
classification result, the class posterior probabilities:

p̂(Ci|~I(~x)) =

∑
i p̂(~I(~x)|Ci)Pr(Ci, ~x)∑

i Pr(Ci, ~x)

The atlas prior probabilities are also used at this stage, to overcome some
of the ambiguities in the decision boundaries for image intensities by using
spatial information.

The set of training samples T for the kernel density estimates are obtained by
sampling the MR images using the previously obtained posterior probabilities.
Each sample Tij is obtained by selecting features at location ~x where

arg max
Ck

p(Ck|~I(~x)) = Ci

The samples are pruned using the robust MST pruning strategy proposed by
Cocosco et al. (Cocosco et al., 2003). This is done to remove the false positives
and outliers that we may obtain by using Gaussian distribution estimates in
the previous step.

The method proposed by Girolami et al. (Girolami and He, 2003) is used
to efficiently estimate the kernel density function. This method speeds up
the density estimation process by reducing the size of the training set. The
weights wij are chosen to minimize the integrated squared error between the
true density function and the estimated kernel density function. Redundant
training features are assigned lower weight values compared to characteristic
training features. This minimization process for the sample weight assignment
is similar to the quadratic optimization process for Support Vector Machines,
for which an efficient solution exists (Schölkopf et al., 2001). The samples
with zero weights are removed from the training set, which effectively removes
the redundant features in the training set. Compared to other fast density
estimation techniques such as pre-binning (Scott and Sheather, 1985) and
multi-scale selection using hyperdiscs (Mitra et al., 2002), this method has
the advantage of having only one user specified parameter: the kernel width
or the standard deviation of the Gaussian kernels.

3 Results

We have applied our segmentation method to four different subjects (Figure
6) , with the results shown in Figures 7, 8, 9, and 10. The volumes for each
segmented structures are listed in Figure 11. These four cases are samples from
a large neonatal study at UNC Chapel Hill to assess early brain development
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in normal and high risk children (Zhai et al., 2003; Gilmore et al., 2004). We
currently have over 50 datasets of neonatal MRI and will collect a total of 125,
with some of them followed-up at the age of one year. As part of the study, we
plan to measure the cortical folding and the cortical thickness of the newborn
brains. Figure 12 shows the 3D view of the relevant structures for one of the
subjects.

Images were acquired on a Siemens head-only 3T scanner (Allegra, Siemens
Medical System, Erlangen, Germany). Two structural imaging sequences were
used: a magnetization prepared rapid gradient echo (MPRAGE) T1-weighted
and a turbo spin echo (TSE), dual-echo (proton density and T2 weighted).
Total scan time for structural scans was approximately 10 minutes. The imag-
ing parameters for the MP-RAGE sequence were: repeat time TR = 11.1 ms,
echo time TE = 4.3 ms, inversion time TI = 400 ms, slice thickness TH =
1 mm, in-plane resolution = 0.898 × 0.898 mm2. A total of 128 sagittal im-
ages were acquired to cover the entire brain. The imaging parameters for the
TSE sequence were: TR = 7 s, TE = 15 and 90 ms, TH= 1.95 mm, in-plane
resolution 1.25× 1.25 mm2, and 56 slices.

Visual inspection shows that the majority of the brain regions are properly
classified, although the distinction between myelinated white matter and non-
myelinated white matter could need improvement in some regions. The myeli-
nated white matter regions are mostly distributed near the spine (central pos-
terior) and internal capsule. We also observed the presence of small regions of
myelinated white matter around the regions associated with the sensory and
motor cortex.

At this point, we are unable to provide quantitative validation of the segmenta-
tion results due to the lack of a gold standard. The common standard, manual
segmentations, would be difficult to obtain since highly convoluted structures
in low-contrast, noisy data are very hard to trace. In addition to that, the
myelinated white matter and the non-myelinated white matter have ambigu-
ous boundaries, which would make manual segmentation results highly vari-
able and difficult to reproduce. This problem is solved for adult brain MRI by
using web-based archives with simulated datasets (Cocosco et al., 1997; Collins
et al., 1998) and manually segmented real datasets (MGH, 2004). Both types
of validation test data are currently not available for newborn brain MRI data.
Reproducibility is optimal since the method is fully automatic.

4 Discussion

We have presented an atlas-based automatic segmentation method for multi-
channel newborn brain MRI. The method uses graph clustering and robust

9



estimation to obtain initial distribution estimates from the noisy data. These
estimates are then used to generate spatial posterior probabilities for correct-
ing the intensity inhomogeneity inherent in the image. The segmentation is
then refined through the use of non-parametric kernel density estimates.

The use of a probabilistic atlas or a template such as the one used in (Warfield
et al., 2000) is essential to overcome the intensity contrast limitations. A prob-
abilistic brain atlas that captures the variability of the large population is
essential for the proposed method, such as the one described in (Evans et al.,
1993) for adult brain MRI. The creation of a true newborn brain atlas requires
the segmentations of a large set of representative data. Also, with the high
level of brain shape variability in infants, it is likely that a non-linear regis-
tration will be required for a reliable atlas formation. These factors make the
creation of a newborn brain atlas highly challenging. The current atlas that
is created from a small set of data seems sufficient for our data. However, we
are working on an improved atlas that shows better population variability.

The results shows that the major structures are properly segmented, while
the separation of myelinated and non-myelinated white matter still lacks spa-
tial coherence in some regions. The segmentations of regions largely affected
by partial voluming is still insufficient and an inherent problem with voxel-
based classification. Problems mostly occur in thin gray-csf cortical bound-
aries falsely classified as white matter. Due to the nature of the data, the
tissue properties are difficult to discriminate and this exacerbates the prob-
lem. Illustrations of segmentations of the four cases demonstrate that the new
method can cope with variable brain shapes. Also, location and shape of the
early myelination structures across the subjects seem quite similar. The new
segmentation technique is currently applied to the whole database of over 50
neonates (age range is 42.7 ± 1.8 weeks of gestational age) to study volume
and structure of brain tissue at this early age.

Another significant challenge in newborn brain MRI segmentation is the cre-
ation of a standard for validation. To our knowledge, there is no standard
dataset available to the community to measure and compare the performance
of segmentation methods. We are currently working on contour-based segmen-
tation with subsequent manual interaction to provide standardized test data
for segmentation validation.
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Figures

Fig. 1. MR images of a newborn brain (subject 0096, coronal view). Left: T1w
image, right: T2w image. The arrows show the white matter structure. The arrow
with the solid line indicates myelinated white matter, the arrow with the dashed
line indicates non-myelinated white matter. Early myelination in white matter is
shown as bright regions in the T1w image and dark regions in the T2w image.
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Fig. 2. MR intensity characteristics of a newborn brain (subject 0096, coronal view).
Top, from left to right: T1w image, T2w image, and segmentation labels. Purple is
myelinated white matter, yellow is gray matter, green is non-myelinated white mat-
ter, and blue is cerebrospinal fluid. Bottom: the scatterplot of the tissue intensities,
the horizontal axis represents T1w intensities and the vertical axis represents T2w
intensities. There is significant overlap between the intensities of different tissues,
and there are ambiguities in the decision boundaries.
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Fig. 3. The segmentation framework.
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Fig. 4. Illustrations of the Minimum Spanning Trees for white matter obtained using
different sampling strategies. Left: Samples with high probability values. Right:
Samples with high probability values and low gradient magnitude. Choosing only
samples with low gradient magnitude helps to remove samples from the transition
regions between myelinated white matter and non-myelinated white matter and
gray/white boundary voxels. This is crucial for clustering based on edge breaking.
As seen on the right picture, breaking the longest edge marked by the arrow would
give two well separated clusters.
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(a) (b) (c) (d) (e)

Fig. 5. The probabilistic brain atlas of a newborn brain. From left to right: (a)
the T1w average image, (b) T2w average image, and prior probability values for (c)
white matter (either myelinated or non-myelinated), (d) gray matter, and (e) csf.
Top: axial view. Bottom: coronal view.
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(a) (b) (c) (d)

Fig. 6. MR images of the four different subjects. From left to right: (a) axial view
of the T1w images, (b) coronal view of the T1w images, (c) axial view of the T2w
images, and (d) coronal view of the T2w images. From top to bottom: subject 0096,
0117, 0118, and 0123.
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(a) (b) (c) (d) (e)

Fig. 7. The segmentation results for subject 0096. From left to right: (a) T2w
image and the class posterior probabilities for (b) myelinated white matter, (c)
non-myelinated white matter, (d) gray matter, and (e) cerebrospinal fluid. Top:
axial view. Bottom: coronal view.
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(a) (b) (c) (d) (e)

Fig. 8. The segmentation results for subject 0117. From left to right: (a) T2w
image and the class posterior probabilities for (b) myelinated white matter, (c)
non-myelinated white matter, (d) gray matter, and (e) cerebrospinal fluid. Top:
axial view. Bottom: coronal view.
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(a) (b) (c) (d) (e)

Fig. 9. The segmentation results for subject 0118. From left to right: (a) T2w
image and the class posterior probabilities for (b) myelinated white matter, (c)
non-myelinated white matter, (d) gray matter, and (e) cerebrospinal fluid. Top:
axial view. Bottom: coronal view.
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(a) (b) (c) (d) (e)

Fig. 10. The segmentation results for subject 0123. From left to right: (a) T2w
image and the class posterior probabilities for (b) myelinated white matter, (c)
non-myelinated white matter, (d) gray matter, and (e) cerebrospinal fluid. Top:
axial view. Bottom: coronal view.
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Subject ICV
Myelinated

WM

Non-myelinated

WM
Gray Matter CSF

0096 504724 15353 157160 289133 43078

0117 527885 12678 234706 250161 30340

0118 514760 11480 193307 255849 54124

0123 499775 28487 170227 252056 49005

Fig. 11. The volumes of the segmented structures for the four subjects. These
include the intra cranial volume (ICV) and the volumes of the individual struc-
tures (myelinated white matter, non-myelinated white matter, gray matter, and
cerebrospinal fluid). All volumes are measured in cubic millimeters.
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(a) (b) (c) (d)

Fig. 12. Surface renderings of the segmented structures of subject 0096. From left
to right: (a) intra cranial volume, (b) gray matter, (c) non-myelinated white matter,
and (d) myelinated white matter.
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