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Abstract 
This paper describes the basis and behavior of segmentation of single figures in 3D by 
deformable m-reps models. Results are given for the segmentation of kidneys from CT and of 
hippocampi from MR images. Special focus is made on multi-scale-level stages of 
segmentation, on intrinsic correspondences under deformation that are provided by m-reps, and 
on the match against model-relative templates provided by both theoretical edge strength 
templates and templates derived from training images. 
 
 
1. Introduction 
 

A variety of authors have described methods of segmentation of anantomic 
objects from medical images by the single scale deformation of boundary models 
[Casseles 1997, Cootes 1999, Montagnat &. Delingette 1998, Kelemen 1999, Staib 
1996] In [Joshi 2001] we have described a method of multi-scale segmentation by 
deformation of models using an m-reps representation. The focus of this paper is not 
the method itself but its basis and results. In this section we sketch the method, for the 
restricted case where the object to be found can be well modeled by a single medial 
mesh, i.e., as a single figure, leaving the details to [Joshi 2001]. In section 2 we 
discuss the theoretical advantages of m-reps models for deformable model 
segmentation. Sections 3 and 4 cover the areas of emphasis of this paper, with section 
3 focusing on one particular advantage of m-reps, that of providing an object-intrinsic 
coordinate system to give positional, orientational, and scale correspondence between 
deformed versions of an object. We explain how this correspondence is used in both 
the geometric typicality term and geometry to image match term in the objective 
function being optimized to accomplish the model deformation. Section 4 discusses 
the results of this segmentation approach on the segmentation of two single-figure 
objects: the union of the kidney parenchyma and renal pelvis as it appears in CT 
images and the hippocampus as it appears in MR images. Quantitative comparisons 
between the results and those of manual segmentation are given for the kidney. 
Because this segmentation method is only a step along the way to the final method that 
we anticipate, section 5 discusses directions in which anticipated further developments 
will be made. 

The method. The deformable m-reps method operates from large to small scale 
levels, at each level deforming the represented object m by optimizing an objective 
function F(m, Itarget) over the set of geometric transformations available at that scale 
level. As with many deformable model based segmentation methods, the objective 
function F is the sum of two terms, one measuring the geometric typicality of m and 
the other measuring the match of m to the target image Itarget. The algorithm for single 
figure objects is as follows. At each stage of this algorithm the geometric typicality 
measures deviation from the deformed model that is the result of the previous stage. 
 



Algorithm 
1a. Manually place the model in the 3D image, thereby choosing a similarity transform 
1b. Find and apply the similarity transform which optimizes F(m, Itarget) 
2. Until convergence, do 
  {For each medial atom in m {Transform the atom to optimize F(m, Itarget)} 
3. For each boundary tile implied by m  
  {Shift the position of the tile along the tile’s normal to optimize  F(m, Itarget)} 
 
The initial models m0 used in this work (Figs. 1 & 4) were developed in one of two 
ways: 

By analysis of the geometry of a training set of hand segmented instances of the 
object over a variety of patients. This automatic analysis uses a method described 
in [Styner 2001]. 

By manual construction on a single training image according to set of rules 
determined by the mathematics of medial geometry [Pizer et al 2001].  

Space limitations do not permit us to detail these model building methods here. 
 
2. Theoretical advantages of m-reps based segmentation 
 
We desire successful segmentation performance that is linear in the number of the 
smallest scale geometric primitives, for example the boundary tiles defining the 
segmented object’s surface or the voxels making up the object. We argue elsewhere 
that a) such behavior is achievable only by multi-scale-level segmentation with rather 
closely spaced scale levels, and b) at each level the diameter of the area or volume 
summarized by the geometric primitives (atoms) at that level and the distance of 
communication used at each geometric transformation of an atom or group of atoms 
are comparable. Either of these two distances can be taken as the measure of the scale 
at that level. 

In our method the scale levels are indicated by the numbered steps in the 
algorithm above: [1] the figural scale levels, [2] the medial atom or figural section 
scale level, [3] the boundary atom scale level. In steps 1 and 2 the object is represented 
by medial atoms, and at step 3 it is represented by boundary atoms. A representation 
of a figure by medial atoms is called an m-rep. 

An m-rep for a generic figure in our system is a quad-mesh of medial atoms (Fig. 
1), where an interior medial atom is a medial position at which two vectors (called 
port and starboard sails) of equal length r share a sail and a mesh-edge medial atom in 
addition is equipped with a bisector vector of the two sails of length greater or equal to 
the common sail length. To allow shape representation and thus magnification 
invariance not only globally but locally, the spacing of the atoms in an m-rep is 
approximately proportional to the sail lengths r of the atom. 

An m-rep represents a continuous 2-manifold of medial atoms. Thall and 
Yushkevich have developed two methods for interpolation of this manifold from the 
m-rep that are consistent with first order medial geometry [Fletcher et al. 2001]. The 
method of Thall is used in the results described here. The manifold of medial atoms 
defines a continuous m-rep implied boundary obtained from the union of all the sail-
end positions, together with an interpolation of the crest between the sail tips and 
through the bisector vector tips of each mesh-edge atom. At each such boundary 
position the corresponding medial atom sail is normal to the implied boundary. 
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Figure 1. Top: an m-rep for a hippocampus, viewed from two directions. Each ball 
with two line segment sails forms a medial atom. Center: an internal medial atom and 
a mesh-edge medial atom, each with their implied boundaries. Bottom: The boundary 
implied by the m-rep, viewed from two directions. 
 

M-reps have  four advantages for representing objects to be segmented by 
deformable models. 
1. Each medial atom represents an interior section of a figure, leading to a special 

capability for deformation of the interior. 
2. Since figures typically have anatomic names and each medial atom in the m-rep 

corresponds to an interior slab of the figure bounded by its immediately neigh-
boring medial atoms, the geometric transformations involved in the deformation 
can be described with medical relevance and with appropriate locality. 

3. An m-rep lends itself directly to representation at multiple scale levels. There are 
additional important scale levels besides those already mentioned (figural, figural 
section, boundary). For objects consisting of more than one figure or for sets of 
objects, situations not described in this paper, there are the larger scale multi-
object and object scale levels. Also described elsewhere [Yushkevich 2001], there 
are opportunities for multiple levels of meshing of each figure. 

4. Figures yield an intrinsic coordinate system with space varying frame and 
distance metric. Indeed, multi-figure complexes also yield an intrinsic coordinate 
system, not described in this paper due to lack of space. As described in section 3, 
this leads to correspondences under deformation that are important with 
deformable models.   

 
3. Intrinsic figural coordinates and their use in geometric 

typicality and in geometry to image match 
 
Geometric typicality functions measure the closeness of a deformed model for a figure 
to a mean or most typical form of the figure. Since sensing of the figure is typically at 



the boundary, it is natural for this geometric typicality measure to involve the 
distances of corresponding boundary points between the deformed state of the figure 
and the typical state (Fig. 2). In a medial geometry, allowing shape to be characterized 
at all levels of scale (locality), the distances must be taken in multiples of r (the length 
of the relevant medial sail). In our method as it presently stands, the geometric 
typicality is measured by the mean squared r-proportional offset of the boundary. This 
mean is taken over the section of boundary appropriate for the present level of scale, 
and it is measured between the version of the deformed model produced at the next 
larger level of scale and the newly deformed candidate m. 

As is common, our method measures the match of m to the target image in a 
region near the object boundary that we we call a boundary collar (Fig. 2). A fruitful 
way of looking at matching m to Itarget is that at corresponding positions in the collar, 
before and after deformation of the model into m, a template defined on the model 
must match as closely as possible a template image defined with respect to the model. 
The template can be an ideal image, e.g., defined by directional derivatives of a 
Gaussian, the training image from which the model was built, or the statistics of a set 
of training images from which the model was built. 
 
 
 
 
 
 
 

* *

Fig. 2. Medially implied correspondences between a typical figure and a deformed 
figure for figural boundary positions (leftmost), for positions interior and exterior to 
the boundary (center), and for the boundary collar (right). 
 
The boundary and collar position correspondences required by geometric typicality 
and the image match, respectively, are well provided by the medially based intrinsic 
coordinate system for a figure, as follows. Let the two dimensions of the quad mesh 
forming the m-rep be called u and v. Let the atom positions be taken as integer values 
of u and v. Let the interpolated medial sheet be parametrized by its (u,v) “figural” 
coordinate system in which distances are r-proportional along the medial manifold.  

The medially implied boundary is parametrized via the medial coordinates, but in 
addition a parameter t is needed to select the side of the medial sheet. We let t=1 for 
boundary points touched by port sails and let t= -1 for boundary points touched by 
starboard sails. At the crest, where the boundary switches from the port side to the 
starboard side, t varies smoothly from +1 to –1 such that t=0 at the crest. Then every 
boundary point is parametrized by its figural coordinates (u,v,t). Each boundary point 
thereby carries a normal in the direction of the sail abutting there and a ruler r(u,v). 
The (u,v,t) values are used to produce correspondences for boundary points to measure 
the geometric typicality between the state before and that after deformation and are 
also used in the boundary displacement final stage of the segmentation. 

Points inside the figure and outside it but inside the caustic surface can also be put 
into correspondence in a figurally relative manner. Correspondences outside the 
caustic surface have also been defined [Crouch 2001], but this is beyond the scope of 
this paper. In the medial framework distances are measured in an r-proportional 
fashion along the sails, i.e., along boundary normals. Thus if d is the Euclidean 



distance from the medially implied boundary to a point in space, with points interior to 
the figure having negative distances and points exterior to the figure having positive 
distances, (u,v,t,d/r) provides a shape-respecting figural coordinate for a point. 
Correspondences between the collars of a figure and its deformed version used in 
computing geometry to image match are then done according to equal values of the 
these figural coordinates for space. More precisely, at model building time a boundary 
sampling defined by equally spaced samples of u, v, and t is determined and an equally 
spaced sampling of d/r  between –k and +k is specified (k = 0.33 is a typical value). 
These sample positions for the part of the boundary that can be shifted at the 
respective level of scale are used in producing the geometry to image match measure.  

Many segmentation systems use directional derivatives of a Gaussian at some 
scale as a measure of contrast, which is expected to be high at a boundary. This is 
equivalent to correlation with a derivative of Gaussian template in the normal direction 
at each boundary position of the object. This suggests that a correlation method with a 
template related by figural correspondence to the image(s) on which the model is 
based is advisable. Other measures of template match, such as normalized mutual 
information are possible [Willis 2001]. 

A different template is preferable for images in which the object appears at low 
contrast at some boundary positions, the polarity or other form of the contrast changes 
along the boundary (Fig. 3), or either object or the background region in some portions 
of the boundary is quite thin. In these cases, which are more common than not, a 
template made from a training image or the mean of a set of training images is quite 
attractive. Such a template can avoid having the deformation be attracted by a high 
contrast nearby boundary in a region along which the object sought bounds an object 
with similar intensity and thus is known to provide no contrast. 

We have implemented such a training image template for collars of half-width r/3. 
For certain kidneys they provide improved segmentation, and for the hippocampus 
they are essential. 

 
 
 
 
 
 
 
Fig 3.  Intensity profiles for a set of patient’s normal to the boundary at three separate 
locations. Compliments of G. Gerig. 
 
4. Results on single figure objects 
 
We have tested this method for the extraction of three anatomic objects well modeled 
by a single figure: the lateral cerebral ventricle, the kidney parenchyma + pelvis, and 
the hippocampus.  Extracting the lateral ventricle from MR images is not very 
challenging because the ventricle appears with high contrast, so our successful results 
are not shown. Extracting the kidney from CT has some challenge because in certain 
sections of the kidney, where it abuts the liver, there is essentially no contrast and the 
high contrast spine is nearby. Results of a kidney segmentation are visualized in Figs. 
4 & 5. As laid out in Table 1, for 30 kidneys (18 right kidneys and 12 left kidneys, 
with the model having been built on a right kidney) we were able to extract the kidney 



with an median accuracy of boundary position of 1 voxel (2.0 mm) as compared to a 
human manual segmentation. All of the measurements in Table 1are made relative to a 
human segmentation that classified each voxel as in or not in the object and did not 
take anatomic understanding well into account when segmenting the renal pelvis from 
the ureter and other background. Moreover, the measurement tool measures offsets 
and overlaps only to the closest voxel. Therefore, our real median boundary accuracy 
is subvoxel, and the overlap percentatges are understated. Human to human agreement 
is of the same order.  

 
 
 
 
 
 
5. Conclusions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Kidney model and segmentation results.  
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Segmentation results at the m-rep level of scale (i.e., before boundary 
displacement) on kidneys in CT using a single figure model. The three yellow 
curves on the m-rep implied boundary rendered in red in the 3D view above, 
right show the location of the slices shown in the center row. On these slices the 
curve shows the intersection of the m-rep implied boundary with the slices. The 
slices in the lower row are the sagittal and coronal slices shown in the 3D view. 
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Extracting the hippocampus from MRI is very challenging for humans and has great 
variability across human segmenters. This provides a major challenge for automatic 
segmentation, but so far we have achieved 8 successful, reproducible segmentations. 



Fig. 6 shows comparison for our deformable m-reps  segmentation based on a training 
template to human manual segmentation. 

 
Median boundary offset: Median case: 2.0* mm.  Worst case: 2.0* mm 
3rd quartile boundary offset:  Median case: 2.0* mm.  Worst case: 3.4† mm  
Percent volume overlap:         Median case: 89%         Worst case: 81% 

Table 1. Comparison of deformable m-reps segmentation to manual segmentation of 
four kidneys from CT, using a Gaussian derivative template. *distance between face-
adjacent voxels, †distance between corner-adjacent voxels  
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Fig 5. The result of 3D boundary displacements on the kidney. Grey 
curves: before displacement. White curves: after displacement.  
Left three: on three orthogonal slices. Right: surface rendered.
 

 

  

 

   

 
Sagittal slice Axial slice Coronal slice 

ig. 6. Hippocampus results. In the left image of each pair the grayscale image is 
verlaid with the implied boundary of the m-rep hippocampus segmentation using the 

age template match.  In the right image of each pair the match with a manual 
egmentation of a human expert is visualized in a zoomed version of the same slice as 
e greyscale image.  

he time required for a segmentation is as follows. The manual initial placement, 
rientation, and magnification requires less than a half minute for a human. Steps 1b 
the figural similarity transform) and 3 (the boundary displacement) each require a few 
econds each; the total computing time is dominated by step 2, the atom by medial 
tom optimizations. For the conjugate gradient optimization algorithm that we use and 
e atom spacing of between 0.5r and r that we use, we find that between 2 and 5 

asses of optimization of all the atoms are needed for convergence. The time for the 
ptimization of an atom is roughly proportional to the area of implied boundary 
overed by that atom and its immediate neighbors. Put another way, a full pass 
ptimizing all the atoms via 5 steps of the conjugate gradient process requires time 
roportional to the implied surface area of the whole figure, in a way only slightly 



related to the number of atoms. For the 3 × 5 atom kidney and the 3 × 8 hippocampus 
models, this requires time of about 40 seconds per full pass of the atoms, for a total 
time of 1.5-3 minutes for convergence on a 700MHz PIII PC with 128MB RAM.  We 
have not optimized our code, nor have we taken advantage of the multiple processors 
available on our standard PCs.  

Segmentation by deformable m-reps appears to work effectively and efficiently on 
single figure objects, even for challenging image situations of variable contrast. While 
no comparison to alternative techniques have been made and the reproducibility of 
these results against variable manual placement of the model has not yet been 
adequately studied, this method seems to have peculiar advantages. More results can 
be found at the website www.cs.unc.edu/Research/Image/MIDAG/defmreps. 

We ascribe the good quality of these results to three factors: 1) the multiple scale 
level approach with geometric typicality at each stage depending on the result of the 
previous stage, 2) the ability of the m-rep representation to provide object-intrinsic 
correspondences at the figural and figural section stages, 3) the availability of the 
training intensity template for the more difficult cases. While we have only a few cases 
of the kidney and all (but still only a few) cases of the hippocampus where we have 
used this training image template, we have found that success with the training image 
template in all cases if the match was successively made against a highly blurred 
version of the target image, then a moderately blurred version of the target image, and 
then the target image. 

The method described here is by no means fully developed. The metrics, the 
segmentation algorithm, and the visualizations and user interface, and the program 
code have already been extended to deal with objects made up of multiple attached 
figures which must be kept in the correct geometric relations as they deform. 
Examples are the cerebral ventricle, the vertebra, and the kidney parenchyma. 
Extension has also been made to deal with multiple nonoverlapping figures which 
must be kept in the right geometric relations and to remain noninterpenetrating. 
Examples are the pubic bones, bladder, prostate, and rectum in the male pelvis and the 
full set of cerebral ventricles. Early, incomplete trials of the extended versions of the 
code suggest that m-reps have particular advantages also with multiple attached 
figures and multiple nonoverlapping figures. 

Two important directions to improve deformable m-reps based segmentation are 
the following. Applying the segmentation at multiple levels of medial meshing, in 
coarse to fine order, is expected to speed the method for any level of effectiveness. 
This multiscale approach will overcome the question of what is the best level of 
meshing and replace it by the question of the spacing between the scale levels.  

The replacement of the geometric distance measures for geometric typicality and 
average intensity correlation or mutual information for the geometry to image match 
measure by log probability measures [Cootes & Taylor 1999] has two important 
advantages. First, the probabilities reflect the modes of variability in the respective 
population. Second, the arbitrary, manually selected weight between geometric 
typicality and geometry to image match is no longer necessary. We will soon begin 
work on methods for measuring these probabilities from training sets, at each of the 
relevant scale levels based on a Markov random field model, and for using them in the 
model deformation process. 
 
 
 
 

http://www.cs.unc.edu/Research/Image/MIDAG/defmreps
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