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Abstract. Extracting 3D structures from volumetric images like MRI or CT is 
becoming a routine process for diagnosis based on quantitation, for 
radiotherapy planning, for surgical planning and image -guided intervention, for 
studying neurodevelopmental and neurodegenerative aspects of brain diseases, 
and for clinical drug trials. Key issues for segmenting anatomical objects from 
3D medical images are validity and reliability. We have developed VALMET, a 
new tool for validation and comparison of object segmentation. New features 
not available in commercial and public-domain image processing packages ar e 
the choice between different metrics to describe differences between 
segmentations and the use of graphical overlay and 3D display for visual 
assessment of the locality and magnitude of segmentation variability. Input to 
the tool are an original 3D image (MRI, CT, ultrasound), and a series of 
segmentations either generated by several human raters and/or by automatic 
methods (machine). Quantitative evaluation includes intra-class correlation of 
resulting volumes and four different shape distance metrics, a) percentage 
overlap of segmented structures (R intersect S)/(R union S), b) probabilistic 
overlap measure for non-binary segmentations, c) mean/median absolute 
distances between object surfaces, and maximum (Hausdorff) distance. All 
these measures are calculated for arbitrarily selected 2D cross-sections and full 
3D segmentations. Segmentation results are overlaid onto the original image 
data for visual comparison. A 3D graphical display of the segmented organ is 
color-coded depending on the selected metric for measuring segmentation 
difference. The new tool is in routine use for intra- and inter-rater reliability 
studies and for testing novel automatic machine-segmentation versus a gold 
standard established by human experts. Preliminary studies showed that the 
new tool could significantly improve intra- and inter-rater reliability of 
hippocampus segmentation to achieve intra-class correlation coefficients 
significantly higher than published elsewhere.  

1. Scoring measurement methods  

The computer vision community started several efforts with a number of 
workshops, conferences, and special issues of journals on the topic of 
empirical evaluation technique, see for example [Bowyer 1998], [Niessen 



2000], [Vincken 2000], [Chalana 1997], and [Remiejer 1999]. Measuring 
performance of algorithms or human raters in image segmentation requires an 
appropriate metric, a “goodness” index that gives us a valid measure of the 
quality of a segmentation result. A good source and discussion of techniques 
is found in the most recent book,  Performance Characterization in Computer 
Vision [Klette 2000]. Typical procedures for validation of computer-assisted 
segmentation are listed in [Kapur 1996]: Segmentation results are validated by 
a) visual inspection, b) comparison with manual segmentation, c) tests with 
synthetic data, d) use of fiducials on patients, and e) use of fiducials and/or 
cadavers. The problem is not that there is no ground truth for medical data, 
but that the ground truth is not typically available to the segmentation 
validation system in any form that can be readily used. For some structures or 
parts of structures the boundary can only be known with non-negligible 
tolerance. For other structures, the ground truth/gold standard is in reality 
barely fuzzy.  

The following list covers metrics to measure the differences of 
segmentation results for measuring and comparing the reliability of intra-rater, 
inter-rater and machine-to-rater segmentations. We have developed a new tool 
called VALMET [freely avaible at http://www.ia.unc.edu/public/valmet ] that 
reads an original 3D image to be segmented and a series of 3D segmentation 
results. Valmet calculates different metrics to assess pairwise segmentation 
differences and differences between groups. It further displays volumetric 
images with overlaid segmentations as 3 orthogonal sections with coupled 
cursors and as 3D renderings (see Fig. 2).  

1.1 Volumes 
A feature most easily accessible is the total volume of a structure. This is the 
simplest morphologic measure and often used in reliability studies in 
neuroimaging applications. For binary segmentations, we calculate the 
number of voxels adjusted by the voxel volume. More precise volumetric 
measurements can be obtained by fitting a surface (marching cubes, e.g.) with 
sub-voxel accuracy and calculating the volume by integration. Comparing 
volumes of segmented structures does not take into account any regional 
differences and does not give an answer to the question where differences 
occur. Further, over - and underestimation along boundaries or surfaces cancel 
and can give excellent agreement even if the boundary segmentation is poor 
[Niessen  2000]. 

1.2 Volumetric Overlap (true and false positives, true and false negatives) 
One approach for taking in to account the spatial properties of structures is 

a pair-wise comparison of two binary segmentations by relative overlap. 
Assuming spatial registration, images are analyzed voxel by voxel to calculate 



false positives, false negative, true positive and true negative voxels. Well 
accepted measures are the intersection of subject and reference divided by the 
union, )/()( RSRS ∪∩ , or intersection divided by reference RRS /)( ∩ . 
Both measures give a score of 1 for perfect agreement and 0 for complete 
disagreement. The first is more sensitive to differences since both 
denominator and numerator change with increasing or decreasing overlap. 
The measure gives comparable results if applied at different institutions if 
structures and resolution of image data are standardized. However, the overlap 
measure depends on the size and the shape complexity of the object and is 
related to the image sampling. Assuming that most of the error occurs at the 
boundary of objects, small objects are penalized and get a much lower score 
than large objects.  

1.3 Probabilistic distances between segmentations. 
In a lot of medical image segmentation tasks there are no clear boundaries 

between anatomical structures. Absolute ground truth by manual 
segmentation does not exist and only a `fuzzy’ probabilistic segmentation is 
possible. Manual probabilistic segmentations can be generated by aggregating 
repeated multiple segmentations of the same structure done either by a trained 
individual rater or by multiple raters. We have developed a probabilistic 
overlap measure between two fuzzy segmentations derived from the 
normalized L 1 distance between two probability distributions. The 
probabilistic overlap is defined as  
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where AP  and BP are the probability distributions representing  the two 
fuzzy segmentations and ABP is the pooled joint probability distribution. 

1.4 Maximum Surface Distance (Hausdorff distance) 
The Hausdorff-Chebyshev metric defines the largest difference between 

two contours. Given two contours C and D, we first calculate for each point c 
on C the minimal distance to all the points on contour D, ),( Dcd c , 

}),,(min{),( DsscdDcd psC ⊂= . We calculate this minimal distance for 

each boundary point and take the maximum minimal distance as the “worst 
case distance”, }),,(max{),( CcDcdDCh CC ∈= . The Hausdorff metric is 

not symmetric and ),( DChc  is not equal to ),( CDhc  (see drawn figure), 
which is accounted for by finally calculating 

)},(),,(max{),( CDhDChDCH CCC = . The Hausdorff metric calculation 



is computationally very expensive, as we need to compare each contour point 
to all the other ones. A comparison of complex 3D surfaces would require 
huge number of calculations. The VALMET implementation uses 3D 
Euclidean distance transform calculation on one object and overlay of the 
second object to efficiently calculate the measure. The measure is extremely 
sensitive to outliers and does not reflect properties integrated along the whole 
boundary or surface. In certain cases, however, where a procedure does have 
to stay within certain limits, this measure would be the metrics of choice.  

1.4 Mean absolute surface distance  
The mean absolute surface distance tells us how much on average the two 

surfaces differ. This measure integrates over both over- and under-estimation 
of a contour, and results in an L1 norm with intuitive explanation [Chalana 
1997]. The calculation is not straightforward if point to point correspondence 
on two surfaces is not available. We use a similar strategy as for the 
Hausdorff metric calculation, namely signed Euclidean distance transforms on 
one object and overlay of the second object surface. We then trace the surface 
and integrate the distance values. This calculation is not symmetric, since 
distances from A to B are not the same as B to A (see discussion Hausdorff 
distance above). We therefore derive a common average by combining the 
two averages. The mean absolute dista nce, as opposed to binary overlap, does 
not depend on the object size. As a prerequisite, however, it requires existing 
surfaces and is therefore only suitable for single object comparison.  

1.5 Interclass correlation coefficient for assessing intra-, inte r-rater and rater-
machine reliability 

A common measure of reliability of segmentation tasks is the intraclass 
correlation coefficient. The measure calculates the ratio between the variance 
of a normally population and the “population of measurements”, i.e.  the 
variance of the population 2

bσ  plus the variance of the rater 2
0σ . The 
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variance is small relative to the total, then the variation in measurements 
among different cases will be due largely to natural variation in the population 
and thus close to 1. Hence we can be confident in the rater’s reliability.  
In neuroimaging applications, inter- and intra-rater reliability studies based on 
volumetric measurements have become standard. Commonly accepted values 
range from 0.9 to 0.99 for volume assessments with manual tracing of simply 
shaped subcortical structures or organs like kidneys and liver, for example. 



2 Visualization of intra- and inter-rater reliability 

Visualization of intra- and inter -rater reliability on 2D cross-sections with 
label overlay and by 3D surface renderings is shown in Fig. 1. The concept is 
as follows: We load a 3D volumetric gray level image dataset and a series of 
segmentation results either by different raters or as repeated measurements of 
one rater into the tool. The labels are overlaid onto the original image with 
variable opacity. The 3D rendering reconstructs the 3D surfaces and displays 
either intra-rater or inter-rater variability as color overlays. This tool has 
shown its usefulness to act as a training tool for manual rater’s segmentation. 
The new capability to visually assess rater differences on 2D slices and 3D 
views is new and not available by other packages. 

Fig. 1: Qualitative assessment of intra- and inter-rater reliability. The images show 2D 
orthogonal sections of a region of interest of the interior brain with segmentation of the left and 
the right hippocampal structures. Left: Intra-rater variability of 3 segmentations (observations) 
by one rater with yellow=3, green=2, and blue=1 votes per voxel. The 3D rendering displays 
the regional fuzziness of the boundary. Right: Inter-rater variability between two raters by 
comparison of two average segmentations. Yellow marks the region segmented by both, and 
blue and green regions segmented by only one of them. This displays clearly illustrates the 
agreement/disagreement between the raters, which is dominant in the hippocampus amygdala 
transition area (HATA) and the region of the hippocampal tail.  
 

Fig. 2 shows the screen of VALMET applied to hippocampus 
segmentation. Repeated 3D manual segmentations of the hippocampus 
provided by several experts are compared to qualitatively and quantitatively 
assess the intra- and inter-rater reliability. The tool displays three orthogonal 
cuts with overlay of labeled regions and a 3D surface rendering of the object 
boundaries. The hue indicates the local surface direction either inwards (blue, 
see color bar in Fig. 2) and outwards (red, again see color bar in Fig. 2) 
relative to the reference object and the distance between the surfaces, 
according to the metric chosen.  



Fig. 2: User interface of VALMET. The tool calculates overlap measures, 
Hausdorff distance, mean absolute (and signed) surface distances, and probabilistic 
overlap. The 3D rendering provides a color display of both intersecting surfaces 
(green and red), showing regional differences between two surfaces. The application 
shows the result of a inter- and intra-rater hippocampus segmention study.  

3. Segmentation Validation: Manual hippocampus segmentation 

Unlike some anatomical structures the hippocampus as imaged through MRI 
has no clear boundaries, and it is very difficult to establish ground truth by 
manual segmentation. Hence it is very important to quantify variability in 
manual segmentations done by trained raters. As part of a large schizophrenia 
neuroimaging study, intra-  and inter-rater reliability were tested with blind 
studies of series of 3D image data. For each series, we randomly selected 5 
cases from an ongoing schizophrenia. The 5 cases were replicated 3 times and 
numbered randomly resulting in 15 image datasets, numbered differently for 
each rater. Trained raters go through all theses cases and segment left and 
right hippocampal structures using a new 3D segmentation tool IRIS [IRIS, 
1999] developed by our group. The tool allows triplanar region editing and 
graphical 2D/3D interaction between image planes and segmented objects. 
We used an intraclass correlation program written in SAS (SAS Institute Inc.) 
to calculate intra- and inter-rater reliability.  



Table 1 shows the reliability of two of the raters. We tested the 
reliability in two series, a first series after raters have been trained with the 
tools and became familiar with the instructions for hippocampus, and a second 
series after they evaluated and compared their results using the new tools 
described above. The results of the first series show that the reliability of 
raters A and B differs significantly between right and left hippocampus, each 
achieving a high reliability for one of the structures. The inter-rater reliability 
of 0.75 for the right and 0.62 for the left hippocampus suggest that the left 
hippocampus is more difficult to segment than the right hippocampus. The 
second series was measured after the two raters visualized their segmentations 
using VALMET and revised the protocol. Interestingly, they both are 
becoming very reliable. This is reflected in reliabilities up to 0.95 and in the 
pooled intra-rater reliability of 0.93 and 0.96. However, the reliability 
between raters (inter-rater) became worse and dropped significantly from 0.75 
to 0.67 for the right and from 0.61 to 0.48 for the left hippocampal structures. 
The second series used 5 different cases with 3 replications. In conclusion, we 
find that the intra-rater reliability for manual hippocampus segmentation was 
very high in comparison to studies done at other sites (Hogan 2000). A 
reliability of 0.95 for the manual segmentat ion of a structure as difficult as the 
hippocampus has to be considered excellent. We attribute this performance to 
the 2D/3D capabilities of the IRIS segmentation tool and VALMET. The 
inter-rater reliability is insufficient and reflects that both raters do excellent 
but different segmentations.  

Table 1: Reliability of manual hippocampus segmentation. 

Intraclass Correlation: Manual Hippocampus Segmentation  
      

Study design: 2 raters, 5 cases, 3 observations each    
Analysis: Individual and pooled analysis    

      
First reliability series     

  individual analysis pooled analysis 
  intra-rater intra-rater intra-rater inter-rater 
  rater A rater B A and B A vs. B 

right hippocampus 0.89067 0.66422 0.77241 0.75062 
left hippocampus 0.69061 0.85157 0.81391 0.61923 

      
Second reliability series     

  individual analysis pooled analysis 
  intra-rater intra-rater intra-rater inter-rater 
  rater A rater B A and B A vs. B 

right hippocampus 0.96073 0.88145 0.93229 0.67325 
left hippocampus 0.95416 0.94822 0.96094 0.48218 

 



4. Discussion 

No consensus exists regarding a necessary and sufficient set of 
measures to characterize segmentation performance. We plan to provide a 
suite comprising a reasonable variety of geometric and statistic al methods. In 
addition to the measures already implemented in the prototype validation tool 
VALMET, we will consider providing a number of others including moments 
and volume of error voxels normalized by the surface area. Measures 
implemented in VALMET and other geometric measures reported in the 
literature tend to favor least squares measures. Measures in this class are 
intuitive and work well for noise-free data. However real medical images have 
structure noise and random noise that can lead to high spatial frequencies in 
segmented surfaces. Methods based on least-squares measures are very 
sensitive to even a small number of extreme data values in the sense that a 
small number of outlier voxels can disproportionately bias a measure and 
make an otherwise good segmentation appear to compare poorly with truth. 
Statistically robust methods include quantiles of distance, which are robust to 
extreme values. A next version of VALMET will include the calculation of a 
surface distance histogram and choice of arbitrary quantiles. 
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