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Abstract. We have developed a method for forming vascular atlases
using vascular distance maps and a novel vascular model-to-image reg-
istration method. Our atlas formation process begins with MR or CT
angiogram data from a set of subjects. We extract blood vessels from
those data using our tubular object segmentation method. One subject’s
vascular network model is then chosen as a template, and its vascular
distance map (DM) image is computed. Each of the remaining vascular
network models is then registered with the DM template using our vascu-
lar model-to-image affine registration method. The DM images from the
registered vascular models are then computed. The mean and variance
images formed from those registered DM images are the vascular atlas.

In this paper we apply the atlas formation process to build atlases of
normal brain and liver vasculature. We use Monte Carlo simulations to
demonstrate the reliability of the underlying registration method. Ad-
ditionally, we explain the clinical potential of those atlases and conduct
z -score analyses to compare individuals with the atlases to detect abnor-
mal vessels.

1 Introduction

Much research has focused on generating tissue atlases. Significantly less time
has been spent on forming vascular atlases. Nevertheless the interest exist, in-
deed if we took all of the blood vessels in the human body and laid them out
in one line, the line would be approximately 100,000 miles long, and it has
been shown that vessels located nearby a tumor presents ”abnormal” attributes
such as radius, concentration, and tortuosity [5]. Similarly, strokes may be pre-
dicted and aneurysms located using a vascular atlas. Furthermore, we hypothe-
size that vascular atlases might even aid in diagnosing mental disorders, such as
schizophrenia, that have a strong genetic component. In particular, researchers
have shown that intra-cranial vasculature actually forms prior to and potentially
drives the development of the brain’s tissues [10]; a vascular atlas may provide
a more direct measure of the genetic component of such mental disorders.

In our previous research, a vascular model-to-image rigid registration method
has been shown to be reliable and accurate [2]. In that research, the aim was



to register the vasculature of the same patient from different scans taken at
different times, e.g., MR scans before, during, or after a surgical intervention.

In this paper, we present our method for making vascular atlases using a
vascular model-to-image affine registration method and a distance map (DM).
A DM is an image in which each voxel’s intensity corresponds to the distance
to the nearest vessel. By registering an individual’s vascular model (cf Fig. 1)
with a DM using multi-scale intensity measures [2], we hypothesize that we can
better localize corresponding functional sites despite inter-patient vascular net-
work variability that confounds model-to-model [4] and image-to-image match
metrics [8, 6]. Thus, for a group of subjects we register each subject’s vascular
network with the DM (the DM is initially defined using one subject’s vascular
network). We then compute the DMs of those registered vascular networks; the
mean and variance images of those DMs form the atlas. We present results from
Monte Carlo simulations that show vascular model-to-image registration using a
DM is reliable and therefore the resulting atlases and their measures are stable.
Because of this stability our vascular atlas can be used to detect vascular anoma-
lies within an individual and to quantify vascular network differences between
populations, e.g., to detect schizophrenia.

Our method has been applied to form atlases of normal brain and liver vas-
culature, and basic statistical analyses have been conducted. Specifically, we
computed z-scores to show that each atlas well represents its populations.

Fig. 1. Brain vasculature and tissue envelope from four different points of view: left,
front, bottom, top. Data is from a normal subject’s MR angiogram. Vessels were ex-
tracted using our tubular segmentation method (cf Section 2.1).



2 Method

2.1 Blood vessels modeling and extraction

The model chosen to represent a vessel is a centerline, constituted of a set of
points. In our N-Dimensional data, each points has as components:
xi ( xi ∈ �N ) Spatial position
ri Radius
mi Medialness; a measure which indicate how well the vessel

section is differentiated from the background[1]
Images issued from CT or Magnetic angiogram scans can be used for our

method. Blood vessels are the bright voxels in these images and are extracted
using the dynamic scale intensity ridge and radius estimation method detailed in
[1]. The process includes three steps: (1) selecting a seed point inside or nearby
a vessel, (2) traversing the centerlines of the tubes as intensity ridges, and (3)
estimating the radius at each ridge point.

2.2 Compute distance map

The computation of the DM gives an image, where the intensity value at each
voxel is the distance from the closest vessel. That calculation is done using the
algorithm developed by Danielsson [7]. The intensity of the DM is also inverted
to get the Inverted Distance Map (IDM) in which the brightest pixels are nearest
a vessel, and the intensity decrease further away from a centerline. This produces
an image of ”blurred vasculature.” This blurriness is illustrated in Fig. 2.

Fig. 2. Inverted Distance map(IDM) of a vasculature from the liver. The point of view
is axial. On the left picture, a threshold is applied to show the intensity fall-off near the
centerlines. The blurred nature of the DM vasculature network is obvious. The middle
image is the same IDM, with a higher threshold; only the voxels close to a centerline
point have an intensity value �=0. The right image depicts the vessel centerlines.

2.3 Vessel-to-image Affine Registration

In registration the critical parts are the transform, the optimization method,
and the match metric. Our atlas formation system uses an affine transform.
It has a 12-dimensional parameter space. The one-plus-one evolutionary opti-
mizer has been developed by Styner et al. [11]. It uses a normal distribution



to randomly walk in parameter space to find a global maximum and updates
the covariance matrix of the normal distribution to converge to a solution. The
vessel-to-image match metric measures how well an affine matrix R and an off-
set vector o, applied to a vascular model, align that model with an image. For
our system, the metric is maximal when the centerline points xi of the model
map to the scaled brightest pixels in the IDM.

F (R,o) =
1∑n

j=1 wj

n∑

i=1

wiIkri(Rxi + o) (1)

Therefore, the metric depends on the centerline sampling (xi and n) and the
scale (kri) of the Gaussian used to blur the IDM (reducing the influence of noise
[9]). Additionally, the parameter wi is used to weight samples depending on their
radius ri; weighting increases from wi=0 at ri=0 to an asymptote of wi

∼= 1 at
ri

∼= 3. These parameters have been analyzed in [2] and [3].

2.4 Atlas formation

The processing pipeline of the atlas formation can be divided in three steps:
First, among the m+1 different vascular networks (Vi), one is chosen as

a template. The chosen network’s IDM is computed (cf Section 2.2) to de-
fine IDMtemplate. The remaining vascular networks are then registered with
IDMtemplate using the vessel-to-image registration method (cf Section 2.3). Those
registrations provide m transformation parameter sets (Ti), each containing a
translation vector and an affine matrix.

Second, the parameters (Ti) are applied to each IDMi to transform them
into a common coordinate system, aligned with the template IDMtemplate.

Third, the mean and the variance images from the (IDMTi) are calculated
to form the atlas. The entire pipeline is shown on Fig. 3.

Fig. 3. Processing pipeline of the atlas formation

3 Results

Three tests were conducted using liver and brain data. These tests quantify (1)
the reliability of the affine registration process for vascular model to DM reg-



istration across patients, (2) the generalization ability of the atlases to accept
subjects from the same population, and (3) the ability of the atlases to discrim-
inate subjects from different populations.

Monte Carlo simulations were used to quantify the reliability of the affine
registration process. We repeated 100 registrations of a vascular model from one
patient’s liver (cf Fig. 4) with another patient’s IDM. For each registration, the
vascular model was initially displaced by an offset up to ±10 voxels (1 cm) and a
rotation up ±0.15 rad (8.5 degrees). The vascular networks of the patients were
very different in terms of the number and the position of their liver vessels.

Liver vasculature is comprised of two venous systems: the portal system
(shown as bright vessels in Fig. 4) brings blood into the liver; the blood is then
transported out of the liver by the hepatic system (shown as dark vessels in Fig.
4). Our initial experimentation led us to separate the these vasculature networks
to form two different atlases, one for the hepatic and the other for the portal
system. Indeed, for some subjects, these networks were so different that it was
impossible to match both hepatic and portal vessels together. Separating these
systems resulted in very repeatable registrations (discussed next) and perhaps
will allow the atlases to detect more subtle venous system dependent anomalies
such as accessory renal veins.

Fig. 4. Liver030(left) and Liver032(right) issued both from normal subjects. The hep-
atic system appears in dark and the portal in bright. These vasculatures clearly differ
in vessel number and locations.

Results from the Monte Carlo simulations are given in Fig. 5 and show that
only five of the one hundred instances failed to converge to a consistent solution
for the hepatic system and only eight failed for the portal system. The statistics,
below the two plots on the Fig. 5, indicate a low standard deviation for the
offset, even for the wide range of initial mis-registrations used.

Monte Carlo simulations were also conducted using intra-cranial vascular
networks from two patients; there was no need to split the vascular trees within
the brain; the repeated registrations of the complete intra-cranial networks were
as reliable as those of either of the venous systems in the liver.

The second analysis of the atlas focused on its ability to describe the popu-
lation from which it was formed. We formed an atlas from nine MR angiograms
of normal subjects and then computed the fit between those individuals and the



Registration ox oy oz

Hepatic-Hepatic µ = 14.8, σ = 0.24 µ = 4.2, σ = 0.26 µ = 8.2, σ = 0.24
Portal-Portal µ = 5.5, σ = 0.46 µ = 7.1, σ = 0.48 µ = 12.1, σ = 0.47

Fig. 5. Results of the Monte Carlo simulation for the registration of the hepatic and
the portal system. The two plots show, for the 100 instances,(x-axis) the euclidean
distance from the offset o to the average value of o -versus- (y-axis) the metric’s
value. The left plot comes from Hepatic-Hepatic registration, and the right one from
Portal-Portal registration. Both reveal few non-optimal registrations (on the right side
of each plot) with smaller metric’s value. The table shows that, after rejecting the
non-optimal registrations, in both registrations the standard deviation is low which
indicates consistent registrations.

atlas. To quantify the fit, we computed the voxel-by-voxel z-scores for all the
subjects using the atlas’ mean and variance estimates. The z value indicates by
how many standard deviations σ the intensity value at a voxel of an individual’s
DM differs from the mean intensity value µ at that voxel as capture by the atlas.

zi = (xi − µi)/σi (2)

With xi being the intensity of the voxel i, µi and σi being respectively the atlas’
mean and the standard deviation at the same position. The z-score calculations
are limited to the volume covered by an individual’s scan. Having a z-score value
at each voxel allows local statistical anomalies to be detected. Calculating the
histogram of z-scores within an individual’s scan supports global comparisons
across individuals as well as the verification that the population is well repre-
sented by a normal distribution.

The z-score distributions for the individuals that were used to form the at-
las are given in Table 1. These results indicate that the atlas represents the
population well, and the population has a normal distribution; however, an ab-
normal distribution of z-scores was measured in one individual. A review of that
individual’s anatomic and vascular data suggest a small physical deformation.

As a further test of how well the atlas represents the population, a 10th
normal subject was registered with the atlas and given z-scores. This individual
was also considered to have normal vasculature by a neurosurgeon but was not
used to form the atlas. The z-scores for this individual are also indicated in Table
1. Those scores are well correlated with the scores from the individuals who were
used to form the atlas. This indicates that the atlas does effectively represent
the population.



The third validation of the atlas focused on its ability to differentiate an
individual that belongs to a different population. This was tested using the
MRA data from an individual in whom an arterio-venous malformation had been
embolized. That data was registered with the atlas, and corresponding z-score
values were calculated. Those results are also reported in Table 1 and illustrated
in Fig. 6 The AVM manifested as both global and localized anomalous z-score
values.

Table 1. This table show percentage of voxels, for different subjects, whom the zvalue
is under 0.4, 1 and 2 standard deviation of the atlas. AVM was a patient’s images
were acquired six months after surgery. Results indicate that normal subjects are well
represented by the atlas, but a subject, even after treatment, is flagged.

Percentage of voxels basing their z -score z ≤ 0.4σ z ≤ 1σ z ≤ 2σ

Normal001 61% 93 % 100 %
Normal002 43% 98 % 100 %
Normal003 46% 86 % 93 %
Normal004 47% 98 % 100 %
Normal005 30% 89 % 99 %
Normal006 47% 96 % 100 %
Normal007 44% 94 % 100 %
Normal008 51% 96 % 99 %
Normal009 49% 99 % 100 %

New Normal 51% 97 % 99 %
AVM Case 10% 36 % 80 %

Fig. 6. Image on left shows z-score values z=0, z=1, and z=2 for respectively black,
gray, and white voxels. These suggest an anomaly on the left side of the brain which
is verified within the MR angiogram on the right

4 Discussion and Conclusions

In this paper we introduce the concept of a vascular atlas formed by registering
vascular models. The basis of the registration is the calculation of a vascular



distance map and the application of a multi-scale vascular model-to-image affine
registration technique.

The application of our inter-patient vascular registration and atlas formation
method is demonstrated using portal venous networks, hepatic venous networks,
and intra-cranial vasculatures. Monte Carlo experiments quantify the reliability
of the registration process for liver and intra-cranial networks. Furthermore, the
intra-cranial atlas is able to correctly differentiate the vascular network from a
healthy individual from a vascular network from an individual who previously
had an arterio-venous malformation; the location of that lesion within the indi-
vidual was also correctly identified via the atlas.

Much additional work remains to truly validate and demonstrate the utility of
vascular atlases. However, this paper represents an important first step in that
process. Future work will focus on the application of these atlases to identify
vascular fill regions to help predict the development of collateral flow during
recovery from strokes. There is also great potential in the application of the
intra-cranial atlas to the early detection of mental disorders that have strong
genetic components.

This project used the NLM’s Insight Toolkit for Medical Image Segmentation
and Registration, http://www.itk.org. This work was supported in part by the
following grants: NIH/HLB R01 HL69808, Whitaker Foundation RG010341, and
NLM N01 LM03501.
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