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Abstract. Anatomical objects often have complex and varying image
appearance at different portions of the boundary; and it is frequently a
challenge even to select appropriate scales at which to sample the im-
age. This motivates Bayesian image-match models which are both mul-
tiscale and statistical. We present a novel image-match model for use in
Bayesian segmentation, a multiscale extension of image profile models
akin to those in Active Shape Models. A spherical-harmonic based 3D
shape representation provides a mapping of the object boundary to the
sphere S2, and a scale-space for profiles on the sphere defines a scale-
space on the object. A key feature is that profiles are not blurred across
the object boundary, but only along the boundary. This profile scale-
space is sampled in a coarse-to-fine fashion to produce features for the
statistical image-match model. A framework for model-building and seg-
mentation has been built, and testing and validation are in progress with
a dataset of 70 segmented images of the caudate nucleus.

1 Why are anatomical objects so hard to segment?

Model-based segmentation has come a long way since Kass and Witkin’s original
snakes [1], but segmentation of anatomical structures from real-world 3D medical
images still presents some difficult challenges for automatic methods. Bayesian
model-based segmentation balances a geometry prior, guided by a model of the
expected object shape, against an image match likelihood, guided by a model of
the expected image appearance around the object. Much has been done on the
shape representation and prior; here we will focus on the image match model.

In many objects, a simple gradient-magnitude based image-match model is
insufficient. The profile of the image across the object boundary can vary sig-
nificantly from one portion of the boundary to another. Some portions of the
boundary might not even have a visible contrast, in which case the shape prior is
needed to define the contour. In real-world medical images, the contrast-to-noise
ratio is often low, and models need to be robust to image noise.

In our study, one of the applications we focus on is the caudate nucleus in the
human brain. From a partnership with our Psychiatry department, we have ac-
cess to over 70 high-resolution MRIs (T1-weighted, 1x1x1mm) with high-quality
manual expert segmentations of both left and right caudates. The manual raters,
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having spent much effort on developing a reliable protocol for manual segmen-
tation, indicate some of the challenges in caudate segmentation, which motivate
a multiscale statistical image-match model for automatic methods.

Portions of the boundary of the caudate can be localized with standard edge
detection (provided the appropriate scales are chosen). However, there are also
nearby false edges which may be misleading. In addition, where the caudate
borders the nucleus accumbens, there is no contrast at the boundary; the manual
raters use a combination of shape prior and external landmarks to define the
boundary. Figure 1 shows the challenge. The caudate and nucleus accumbens
are distinguishable on histological slides, but not on MRI of this resolution.

Fig. 1. Coronal slice of the caudate: original T1-weighted MRI (left), and segmented
(middle). Right and left caudate are shown shaded in green and red; left and right
putamen are sketched in yellow, laterally exterior to the caudates. Nucleus accumbens
is sketched in red outline. Note the lack of contrast at the boundary between the caudate
and the nucleus accumbens, and the fine-scale cell bridges between the caudate and the
putamen. At right is a 3D view of the caudate and putamen relative to the ventricles.

Another “trouble-spot” for the caudate is where it borders the putamen; there
are “fingers” of cell bridges which span the gap between the two. The scale of the
object structure relative to the scale of the image noise may swamp single-scale
image-match models with the noise.

Many other segmentation tasks in medical images present challenges similar
to the caudate; in automatic segmentation methods, this motivates image-match
models which are statistically trained and multiscale. This paper focuses on the
image match likelihood model, not on the shape prior. The shape prior we use
is via the statistical spherical harmonics shape model [2].

2 Related Work

Gradient Magnitude. Perhaps the simplest image match model is simply to op-
timize for high gradient magnitude of the image. This is often used by both
classical mesh-based snakes [1] and implicit (geodesic) snakes [3]. The gradi-
ent magnitude model is global (assumes the boundary appearance is uniform
across the whole object) and static (not statistically trained). Gradient magni-
tude image match performs poorly at weak or nonexistent step edges, or when
the boundary discontinuity is not well-represented by a step edge.



Inside/Outside Classification. Region-competition snakes use global probability
distributions of “inside” intensities vs. “outside” intensities to drive the image
match [4]. van Ginneken et al [5] perform a local inside/outside classification
using not just the raw greylevels but a high-dimensional n-jet feature vector,
which incorporates multiple scales. Leventon et al [6] train a global profile model
that relates intensity values to signed distances from the boundary, incorporating
more information than a simple inside/outside classifier.

Profile Model. Cootes and Taylor’s seminal Active Shape Model (ASM) work [7]
samples the image along 1D profiles around boundary points, normal to the
boundary, using correspondence given by the Point Distribution Model (PDM).
Probability distributions are trained for each profile independently. The “hedge-
hog” model in the 3D spherical harmonic segmentation framework [2] can be seen
as a variant of ASMs, and uses a training population linked with correspondence
from that geometric model. Profiles have also been used in 2D cardiac MR im-
ages [8]. Fenster et al [9] use coarse-scale profiles to summarize sectors of the
object boundary.

Active Appearance Models. A different approach is taken by Cootes and Taylor’s
Active Appearance Models [10], which perform a global Principal Components
Analysis on intensities across the whole object after registration (the size of the
PCA feature space is the number of pixels in the region of interest). The global
PCA is particularly well-suited for capturing global illumination changes in their
face recognition applications.

Mutual Information. Tsai et al’s recent work [11] uses mutual-information be-
tween regions of the image and a label map to drive the segmentation. Various
other methods also use mutual information between a template image and the
warped target image.

Image features at the boundary may appear at various scales, which motivates
a multiscale approach. However, traditional multiscale features blur in Euclidean
space, which may blur across the object boundary. In the spirit of Canny [12],
we wish to construct multiscale features where the blurring is along the bound-
ary and not across the boundary. Our approach is to construct a scale-space
on the image profiles, similar to classical scale-spaces [13, 14] but on a curved
non-Euclidean space. We then sample the profile scale-space after the fashion of
Laplacian image pyramids [15], to obtain multiscale features upon which Gaus-
sian models are trained using the training population.

3 Method

We first describe the process of sampling image profiles across the boundary of
the object, in Section 3.1. A scale-space on those profiles is defined in Section 3.2,
blurred only along the object boundary, and not across the boundary. Finally,
Section 3.3 shows the sampling of the profile scale-space to obtain multiscale
features for the statistical model.



3.1 Extracting Image Profiles of the Object

The shape representation we use is based on 3D spherical harmonics [2], and pro-
vides a diffeomorphic mapping from each object to the unit sphere S2. There are
many ways to parameterize the objects [16]; our method would work naturally
with other parameterizations.

A uniform sampling of the object boundary is obtained from a sampling of the
sphere S2. At each point on the object boundary, the image is sampled evenly
along a straight line normal to the boundary, producing an image profile. The
first image in Figure 2 shows 512 profiles taken around one caudate from our
training set. The 1D ordering of the profiles represents a certain traversal of the
2D surface of the object; adjacent profiles in this visualization are not necessarily
adjacent on the surface.

Fig. 2. Intensity profiles from the boundary of a single caudate. At left is a linear
visualization of the profiles; the left half is inside the caudate, and the right half is
outside. At right is an “onionskin” visualization of the profiles mapped onto concentric
spheres. Each sphere represents sampled intensities at a fixed distance away from the
boundary, from -5mm to +5mm, with 1mm spacing.

The right image in Figure 2 shows a different visualization of the same profiles.
We use the diffeomorphic mapping of the object to the sphere S2 to map each
level of the profiles to a sphere. The outermost sphere represents intensities
sampled from an “onionskin” +5mm outside the object boundary. Each profile
is 11 samples long, so there are 11 concentric spheres in the visualization. The
uniform grey matter interior of the caudate can be seen on the interior spheres.

3.2 Profile Scale-Space

To extend the classical single-scale profile models to a multiscale framework, we
define a scale-space on the profiles sampled on the boundary. The “onionskin”
visualization in Figure 2 shows the profiles mapped onto spheres. The intensities
at each onionskin level can be mapped onto the sphere S2, where a scale-space



can be more easily constructed. Each onionskin level is blurred separately, so the
blurring stays within each onionskin without blurring across onionskin levels.

The scale-space on S2 is defined via the orthonormal spherical harmonic basis
on L2(S2). Note that this is separate from the use of spherical harmonics in
the shape representation. Let f ∈ L2(S2) be a scalar-valued function on the
sphere; e.g. the sampled intensities from a single onionskin about the object.
The spherical harmonics {Y m

l } form a complete orthonormal basis of L2(S2), so
the function f has a Fourier expansion in spherical harmonics:

f(θ, φ) =
∞∑

l=0

l∑
m=−l

cm
l Y m

l (θ, φ), (1)

where cm
l are the complex coefficients of the spherical harmonics:

cm
l =

∫ 2π

φ=0

∫ π

θ=0

f(θ, φ)Y m
l (θ, φ) sin θ dθ dφ. (2)

We make use of the well-known fact that the spherical harmonics are eigen-
functions of the Laplace operator on S2, with eigenvalues l(l +1); i.e. 4S2Y m

l +
l(l + 1)Y m

l = 0, where the Laplace operator on S2 is

4S2 =
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
(3)

We define the scale-space of f on S2 to be Φ(f) : S2 ×R+ → R given by:

Φ(f)(θ, φ;σ) =
∞∑

l=0

l∑
m=−l

e−l(l+1)σcm
l Y m

l (θ, φ). (4)

This is the solution to the diffusion equation, ∂Φ(f)
∂σ = 4S2Φ(f).

The scale-space on the sphere defines a scale-space on the image profiles, via
the diffeomorphic mapping provided by the shape representation. If the diffeo-
morphism were an isometry, the Laplacian on S2 would map to the Laplace-
Beltrami operator on the surface of the object, and our scale-space would be
equivalent to Laplace-Beltrami blurring on the object surface. In general, such
an isometry is impossible to obtain, but we have an approximation, since the
mapping provided by the spherical harmonic shape representation preserves area
exactly and approximately preserves angles. The scale-space on image profiles is
constructed using a spherical harmonic basis for the image intensities on each
“onionskin”, analogous to the use of the spherical harmonic basis for the (x, y, z)
coordinates of the boundary.

3.3 Multiscale Features and Statistical Model

With a scale-space defined on the image profiles about the object boundary,
we sample features from the scale-space in a coarse-to-fine fashion, and build a



statistical model on the multiscale tree of features. The coarse-to-fine sampling
follows the recursive triangular subdivision of the sphere. In our implementation,
we use 512 samples at the finest σ scale, down to 8 samples at the coarsest scale,
with a total of four scale levels. A schematic of the sampling scheme is illustrated
in the left image in Figure 3. The node at the top of the tree represents a single
coarse-scale profile summarizing an eighth of the boundary.

Fig. 3. At left, a visualization of the coarse-to-fine sampling of the profile scale-space.
Distance away from the grey sphere indicates coarser scale in the scale-space. At right,
average profiles across the training population, at four scales, fine to coarse.

These blurred profiles are calculated for each object in the training population.
The right image in Figure 3 shows the mean profiles at multiple scales, where the
mean is taken at corresponding locations over the training population. Corre-
spondence is established via the spherical harmonic parametrization [2]. Again,
in this visualization, the ordering of the profiles from top to bottom represents a
traversal of the object boundary; this blurring is not the same as a simple y-axis
blur.

Finally, the features used to build the statistical model are scale residuals:
differences between each profile at scale (each node in the tree in Figure 3) and
its parent profile (parent in the tree, at coarser scale). The eight profiles at
the coarsest scale are included unchanged as features. This is analogous to the
classical Laplacian image pyramid [15] in Euclidean space. Each scale-residual
profile is then modelled with a Gaussian. With profiles 11 samples long, we have
(512+128+32+8) Gaussian models, each 11-dimensional. The local Mahalanobis
distances are summed to produce a global goodness-of-fit. This model is similar
to the single-scale profile model in Active Shape Models, which would have 512
Gaussians, each 11-dimensional, and in contrast with Active Appearance Models,
which would have a single very high dimensional Gaussian.

4 Ongoing/Future Work

4.1 Segmentation

We have implemented a self-contained framework in Mathematica for building
this model and using it for segmentation. The shape representation and prior is



from Brechbühler and Kelemen, et al [2]. The Bayesian segmentation is just an
optimization of the posterior, the product of the shape prior and the image-match
likelihood. We use Mathematica’s built-in NMinimize optimization routines. The
dimension of the search space is only 18; we search over the 12 main eigenmodes
of shape variation, and let translation and rotation be unconstrained. Test seg-
mentations, initialized at the mean shape and pose, have been run on a couple
test images, with promising results.

4.2 Validation

Validation is in progress on the new image match model, as well as its use in
segmentation. It is anticipated that due to increased robustness to noise and
better modelling of population variability, our new multiscale profile model will
yield segmentations closer to the manual expert than those from the single-scale
profile model. We have access to a large database of over 70 segmented images, as
well as intra- and inter-rater reliability figures for the manual raters. Evaluation
of specificity/compactness and generalizability of the profile model itself is also
planned.

5 Conclusions

We present a new multiscale statistical image profile model for use in Bayesian
segmentation. The complex image appearance of anatomical structures in noisy
medical images motivates a multiscale approach to modelling image profiles. We
make use of the spherical harmonic shape representation to map the bound-
ary profiles onto the sphere, where we define a scale-space which blurs image
intensities along the object boundary, but not across the boundary. From the
continuous scale-space, profiles are sampled at various locations and scales, and
scale residuals akin to the Laplacian image pyramid are used as features in the
statistical model. We have built the model and run preliminary segmentation
tests; in-depth validation is in progress.
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