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Abstract. Diffusion tensor imaging (DTI) has become the major modality to
study properties of white matter and the geometry of fiber tracts of the human
brain. Clinical studies mostly focus on regional statistics of fractional anisotropy
(FA) and mean diffusivity (MD) derived from tensors. Existing analysis tech-
niques do not sufficiently take into account that the measurements are tensors,
and thus require proper interpolation and statistics based on tensors, and that re-
gions of interest are fiber tracts with complex spatial geometry. We propose a
new framework for quantitative tract-oriented DTI analysis that includes tensor
interpolation and averaging, using nonlinear Riemannian symmetric space. As a
result, tracts of interest are represented by the geometry of the medial spine at-
tributed with tensor statistics calculated within cross-sections. Examples from a
clinical neuroimaging study of the early developing brain illustrate the potential
of this new method to assess white matter fiber maturation and integrity.
Keywords: Diffusion tensor interpolation, diffusion tensor statistics, DTI analy-
sis, fiber tract modeling.

1 Introduction
Diffusion tensor imaging of brain structures measures diffusion properties by the lo-
cal probability of self-motion of water molecules. A tensor field is calculated from di-
rectional gradient images and characterizes amount and locally preferred directions of
local diffusivity. While diffusion can be considered isotropic in fluid it appears highly
anisotropic along neural fiber tracts due to inhibition of free diffusion of intra- and extra-
cellular fluid. DTI has become the preferred modality to explore white matter properties
associated with brain connectivityin vivo. The literature proposes a variety of DTI pro-
cessing techniques, ranging from tensor field computation to quantitative analysis, and
including visualization, regularization, registration, tractography and population statis-
tics. Few of these methods make use of the full tensor information though most would
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benefit from an appropriate mathematical framework for tensor operations and tensor
statistics calculation. For instance, tensor interpolation is required in regularization, reg-
istration and spatial normalization. Tensor statistics calculation becomes necessary for
statistical DTI analysis in population studies. So far, analysis schemes have mostly fo-
cused on measuring properties in regions of interest and to a lesser extent along fiber
bundles [1], [2], and they have not made use of the full tensor information. Conse-
quently, clinical studies have mostly been limited to statistics of FA or MD maps on a
voxel-by-voxel basis [3].

As opposed to voxel-based analysis, we propose an object-oriented approach in
which the fiber tracts act as coordinate systems for quantitative DTI analysis. Our con-
cept provides a complete representation of each individual bundle, describing both ge-
ometry and diffusion properties. The representation includes model of the geometry of
individual bundles and statistics of diffusion tensors to be associated with the geomet-
ric model. In this paper, we focus on the computation of DTI tensor interpolation and
DTI tensor statistics. Tensor information is integrated across cross-sections and repre-
sented along bundles. We thus supplement our previous model of tract geometry [4]
with statistics of diffusion tensors, from which we derive diffusion properties.

2 Theoretical Framework
We denote the space of all diffusion tensors, i.e., the space of all3 × 3 symmetric,
positive-definite matrices, asPD(3). Averaging and interpolation of diffusion tensors
can be formulated as a least-squares minimization problem in this space. This definition
depends on the choice of metric, or distance, on the spacePD(3). Treating diffusion
tensors as vectors in the spaceR9, one can define a linear average ofN diffusion ten-
sorsp1, . . . , pN asµ = 1

N

∑N
i=1 pi. This definition minimizes the Euclidean metric on

R9. However, linear averages suffer from a “swelling” effect where diffusion tensors
with the same determinant will have an average with a larger determinant. Linear in-
terpolation of diffusion tensors suffers from this same effect. We adopt a more natural
metric for averaging and interpolation by treatingPD(3) as a curved manifold, or more
specifically, a Riemannian symmetric space. We use tensor averaging and interpolation
methods, first presented in [5], [6], that are based on the notion of geodesic distance
within this space. In a similar approach [7], interpolation is limited to only two tensors,
whereas our work applies to averaging and interpolation of an arbitrary number of ten-
sors and thus allows a full 3D interpolation of DTI data. The symmetric space metric
does not suffer from the swelling effect of the linear metric, that is, diffusion tensors
with the same determinant will have an average with the same determinant.

Symmetric spaces [8] arise from transformation groups on manifolds. The Rieman-
nian metric is chosen to be invariant under the group transformations. The symmetric
space structure ofPD(3) arises from transformations byGL(3), the group of positive-
determinant matrices. The transformation of a diffusion tensorp ∈ PD(3) by a matrix
g ∈ GL+(3) is given byp 7→ gpgT . Because of the algebraic nature of the symmet-
ric space structure, distance and geodesic computations onPD(3) are also algebraic in
nature. For instance, the geodesic distance between two tensorsp1, p2 ∈ PD(3) can be
computed using singular-value decomposition (SVD) as follows:

- Let p1 = UΛUT be the SVD ofp1, setg = U
√

Λ.



Fig. 1. Synthetic examples of weighted averages of tensors. The white ellipsoids average to the
red ellipsoid with the geodesic method and to the blue ellipsoid with the linear method. Left:
weights ={0.5,0.5}. Right: weights ={0.75,0.25}. It can be observed that the linear method
does not preserve the determinant.

- Compute the action ofg−1 onp2: y = g−1p2(g−1)T .
- Again using SVD, compute the eigenvaluesσi of y.
- The geodesic distance isd(p1, p2) =

(∑3
i=1 log(σi)2

) 1
2
.

2.1 Statistics of Diffusion Tensors

We now define the mean and variance of diffusion tensors respecting the geometry of
the space. Following Fréchet [9], we define the average as the minimum mean squared
error estimator under the natural Riemannian metric defined above. Given a set of dif-
fusion tensorsp1, . . . , pN ∈ PD(3) the mean is defined as

µ = arg min
p∈PD(3)

N∑

i=1

d(p, pi)2. (1)

This minimization problem can be solved using a gradient descent method as described
in [5]. This is analogous to the algorithm for computing the intrinsic mean given by
Pennec [10]. Having defined the mean, we define the sample variance of the data as the
expected value of the squared geodesic distances from the mean:

σ2 =
1
N

N∑

i=1

d(µ, pi)2. (2)

2.2 Interpolation of Tensors

For developing consistent interpolation between diffusion tensors we extend the above
definition of the mean to weighted averaging. Using a least-squares criterion, we define
the weighted average of diffusion tensorsp1, . . . , pN ∈ PD(3) as

Ave({wi}, {pi}) = arg min
p∈PD(3)

N∑

i=1

wid(p, pi)2, (3)

wherew1, . . . , wN are positive real weights that sum to 1. Figure 1 provides synthetic
examples of weighted averages of tensors.

For interpolating tensors within a voxel, trilinear weights may be used for thewi.
In this paper, we only focus on trilinear weights although higher order interpolation
may be defined using the same concept. This interpolation is a natural generalization
of trilinear interpolation of scalar values, i.e., if we replaced the diffusion tensors in
the above definitions with real numbers, we would arrive at trilinear interpolation. It
follows easily from the use of trilinear weights that the interpolation function does
indeed interpolate the corner points. It can also be shown that the interpolation function
is continuous on[0, 1]3 (see [6] for a proof).



Fig. 2. Overview of the DTI analysis framework.

3 Fiber Tract Modeling and Analysis Methodology
Interpolation and averaging of tensors is applied for quantitative fiber tract-oriented
analysis of DTI. The geometry of an individual fiber tract is modeled, basically with
what is commonly called a point distribution model (PDM) [11]. Diffusion tensor statis-
tics are computed across fiber tract sections and are associated with the mean geometric
model, resulting in a compact description of diffusion properties along the fiber tract.
An overview of our framework is illustrated in Fig. 2.

3.1 Preprocessing: Tensor Field Computation and Fiber Extraction
The tensor field is computed from DTI data by solving the Stejskal-Tanner’s diffusion
equation system [12]. A tractography algorithm [13] extracts streamlines following the
principal diffusion tensor directions between source and target regions of interest, with
sub-voxel precision. Our latest version of the tractography tool includes tensor interpo-
lation as described in Sect. 2.2. Except at branching or crossing points, the extracted 3D
curves are assumed to represent the most likely pathways through the tensor field.

3.2 Geometric Modeling
An individual fiber tract, described by a set of streamlines, acts as a training set from
which we estimate a template shape, the mean shape, and statistical deviations by learn-
ing its inherent shape variability. A brief review of the geometric modeling of one indi-
vidual fiber tract is presented below (see [4] for a more comprehensive description).

First, fibers represented as polylines are reparametrized by cubic B-spline curves.
This ensures an equidistant sampling along each fiber as well as a consistent sampling
for all fibers. Second, an origin, which can be reliably identified across subjects, is de-
fined for each fiber tract. This is either a geometric criterion, e.g., a cross-section with
minimal area, or anatomical information like intersection with the midsagittal plane.
Points with the same arc-length along the fiber tract are defined as homologuous. This
explicit point to point matching has been proven relevant in [2] where we demonstrated
that it properly aligns local shape features across all curves in a fiber bundle. Given this
correspondence, the alignment of all curves in the training set is achieved by Procrustes
analysis [14]. Only estimated translations and rotations are applied to fibers. Indeed, a
size normalization is not desirable since the training fibers belong to the same individual
fiber tract. Given the set of aligned shapes, the mean shape is estimated by averaging



the spatial coordinates at each corresponding location over the tract. Additionally, sta-
tistical shape deviations from this template shape along the tract can be characterized
by extracting the principal modes of deformation via a principal component analysis.

3.3 Attributing the Geometric Model with Diffusion Tensor Statistics

The estimated mean shape models the geometry of the fiber tract. A complete repre-
sentation of the tract, describing both geometry and diffusion properties, is obtained
by attributing each location along the mean curve with statistics of diffusion tensors
calculated over cross-sections.

Computing the Mean Tensors along the Fiber TractFirst, each sample pointx from
the set of reparameterized fibers is assigned a tensorp. Since the tensor field is defined
on the discrete voxel grid whilex lies on a continuous curve, a geodesic interpolation
(see Sect. 2.2) is required to compute the tensorp at the locationx. The tensorp is
given by the weighted average of the eight voxel tensor values in the nearest2× 2× 2
neighborhood ofx, the weights being defined by trilinear interpolation (see (3)). LetP
be the set of obtained tensors,P = {pf,i} with f indexing the reparameterized fibers
across the tract andi the location along each reparameterized fiber. Then, the tensor
setP is aligned by rotation. LetRf ∈ SO(3) be the rotation estimated by Procrustes
analysis for the reparameterized fiberf . Each tensorpf,i lying on f is rotated to the
tensorp ′f,i by the group actionRf : p ′f,i = Rfpf,iR

T
f , ∀i. Last, at each corresponding

locationi along the tract, the mean tensorµi is computed from the set of aligned ten-
sors,{p ′f,i}, as defined in (1). In addition, tensor diffusion variability can be assessed
at each location of the average curve by computing the geodesic standard deviation
according to (2). For visualization purposes, each average tensor is translated to its cor-
responding average location on the average curve. Since diffusion tensors are invariant
to translation, this does not affect any diffusion property.

Deriving Diffusion Properties At each location along the template curve, diffusion
properties are derived from the average tensor. We consider the measures:i) the three
eigenvalues of the average diffusion tensor,λ1, λ2, λ3, which represent the diffusivities
along the three principal directions of the tensor,ii) the mean diffusivity, MD, defined
by the first moment of the diffusion tensor eigenvalues,iii) the fractional anisotropy, FA,
which is a normalized measure of the tensor shape and defines a distance to isotropy.

4 Experiments and Results
We have applied our new fiber tract-oriented DTI analysis technique to image data of
a prospective study of neonatal brain structure in children at high risk for schizophre-
nia [15]. This study includes 3-Tesla MRI and DTI of neonates at 2 weeks of age with
follow-up at 1 year. Local diffusion properties in white matter as measured by DTI
have been implicated to be associated with axon density, degree of myelination and
density of fluid. DTI of neonates in general present a decrease of FA and an increase
of MD from central to peripheral regions, reflecting the typical pattern of early struc-
turing of white matter. Over the first few months till age 1 and further, there is a rapid
development of myelination of white matter. This is expected to be demonstrated by a
thinning of local tensors and therefore by an increase of FA and a decrease of MD as



a b c d
Fig. 3. DTI data with fiber tracts overlaid on axial sections of FA images. Genu and splenium of:
a) , b) one typical neonate case,c) , d) one typical one year-old case.

a b c d
Fig. 4.Average tensors calculated in cross-sections displayed along central spine of each bundle.
Genu and splenium of:a) , b) one typical neonate case,c) , d) one typical one year-old case.

a function of age. We will focus on the commissural bundles of the corpus callosum,
specifically on the genu and splenium fiber tracts which connect prefontal cortices and
parts of the temporal, parietal and occipital lobes, respectively. It is known that the sple-
nium is myelinating earlier than the genu, and that the presence of myelin sheaths has
a significant effect on ability of water to diffuse [16].

Diffusion Tensor Image Data Neonates and follow-ups were scanned on a Siemens
head-only 3T scanner (Allegra). A single shot echo planar (EPI) diffusion tensor se-
quence with total scan time of approximately 4 minutes was used. The imaging param-
eters were: TR/TE/TH=4219ms/92.2ms, isotropic voxels with 2mm slice distance and
inplane resolution =2× 2mm, 5 averages, and number of slices ranging from 44 to 65.
Seven images were acquired for each slice, one without diffusion gradient (b=0) while
the remaining six withb=1000s/mm2 and diffusion gradients along the standard orien-
tations [17]. We selected 8 cases from our large image database: 4 neonates at 2 weeks
and 4 infants at age 1 year. For all cases, the genu and splenium tracts were extracted
by tractography (see Fig. 3), the regions of interest being manually defined on the FA
image using our SNAP tool.

Average of Diffusion Tensors in Cross-Sections along TractsThe geometric model
and associated diffusion tensor statistics are computed for both tracts of each subject
as described in Sect. 3. The Procrustes alignment for clustering of dispersed bundles
has been skipped in these experiments, because tracking resulted in coherent, compact
bundles. Figure 4 shows the mean tensors along the mean curve for each selected fiber
tract for typical neonate and one year-old cases. As expected, the one year-old case
presents much sharper and more elongated mean tensors than the 2 weeks-old case,
which is explained by myelination of these white matter tracts.

Diffusion Properties along Fiber Tracts The diffusion properties computed from the
mean tensors, confirm the observation of increase of tensor elongation (see Fig. 5). For
both tracts, the maximum diffusivity,λ1, appears quite similar for all cases, whereas the
median and mininum diffusivities,λ2 andλ3, are definitely higher in the two weeks-old
cases (see dashed versus solid lines). Similarly, the mean diffusivity is much higher in
the two weeks-old cases compared to the one year-old cases. This is consistent with
the FA plots that, on the contrary, show higher values for the one year-old cases. These
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Fig. 5.Diffusion properties derived from average tensors plotted as a function of arc-length. From
left to right: Eigenvalues, MD and FA for the genu (top row) and the splenium (bottom row) of
one typical neonate (dashed lines) and one typical one year-old (solid lines). Last column displays
FA for all 8 subjects: 4 neonates (dashed lines) and 4 one year-old (solid lines).

observed diffusion properties complies with the fact that white matter becomes more
and more dense and structured with age. The overall pattern of each diffusion property
for all subjects is similar. This indicates an early local structure of unmyelinated fiber
tracts at birth, possibly explained by high axonal density, that develops into a more
organized structure due to myelination with increasing age.

Validation A preliminary validation of our quantitative DTI analysis framework has
been performed on the basis of 6 repeated DTI scans of the same subject with slight
change of head position [18]. The analysis is applied to 3 callosal bundles and the
uncinate fasciculus from each single scan and an average DTI computed after rigid
body alignment. Diffusion properties along tracts are compared between scans. Stan-
dard deviation from the set of 6 scans lies with 5% for FA and MD and 2% forλ1. This
test/re-test validation demonstrated a good reproducibility of the methodology.

5 Discussion
We have presented a new framework for fiber tract-oriented quantitative analysis of
DTI data. It combines a geometric model of fiber tracts with diffusion tensor statis-
tics. Unlike most other statistical analysis of DTI data, we do not compute statistics on
scalar measurements derived from tensors but we compute statistics on diffusion ten-
sors followed by calculation of tensor properties. We use non linear statistics for tensor
interpolation and averaging. The extended set of features provided by the new method-
ology which includes integrated measurements across bundles and along fiber tracts
seems to be suitable to study white matter fiber tract properties in cross-sectional and
longitudinal studies. The new quantitative DTI analysis technique describes properties
of tracts and is therefore superior to conventional region-of-interest measurements and
might lead to an improved understanding of MRI/DTI findings and its association to
normal/abnormal brain development at early age. Our analysis confirms earlier find-
ings in regard to decrease of FA and increase of MD towards peripheral regions. The
expected change over the first year of development is clearly demonstrated by FA and
MD plotted as a function of arc-length. Analysis of the three associated eigenvalues



reveals more insight, namely that the FA increase is due to decrease of the second and
third eigenvalue whereas the diffusion along the major tensor direction remains similar.
Further analysis on a larger population with extended age range might reveal more in-
sight into the trajectory of growth as measured by DTI and measured as a function of
anatomical location. We presently have 60 neonates and will increase this number to a
total of 125. Ultimately, the proposed compact representation of the geometry of a tract
and of associated diffusion properties aims at being used for inter-subject comparison
and statistical analysis. This implies correspondence issues that are currently investi-
gated by arc-length parameterization and could include local shape features of curves
which have been shown to yield typical patterns along major fiber tracts [2]. Group
comparison in clinical studies would require more advanced statistical techniques, for
instance for comparison of probability distributions of tensors and hypothesis testing.
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