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Abstract. We propose a novel method for the validation of vascular
segmentations. Our technique combines morphological operators and the
STAPLE algorithm to obtain ground truth of centerline extractions as
well as a measure of accuracy of the methods to be compared. Moreover,
our method can be extended to the validation of any open-curves. We
also present a comparison study of three vascular segmentation methods:
ridge traversal, statistical and curves level set. They are compared with
manual segmentations from five experts.

1 Introduction

Blood vessels and their branches vary considerably but are often critical in plan-
ning and performing neurosurgical and interventional procedures. In planning
the feeding and drain vessels of a lesion must be defined. During surgery the
vessels serve as landmarks and guidelines to the lesion [1]. The more precise the
vascular segmentation is, the more accurate the plan and navigation.

Segmentation of tubular structures and more specifically vascular segmen-
tation has been of high interest in medical imaging, and several excellent tech-
niques have been developed, incorporating a variety of different approaches. For
instance, the curve evolution algorithm [4] produces accurate vascular segmen-
tations by combining the modified curvature diffusion equation (MCDE) with
a level-set based technique. On the other hand, Aylward et al. [2] use a ridge
traversal technique with width estimation to extract vascular centerline and es-
timated radius at each point along blood vessels. Wink et al. [6] have developed
a front propagation method for the extraction of blood vessels. Given a starting
point, a front wave is moved to fit the tubular structure.

Surveys have been conducted to contrast the vascular segmentation algo-
rithms [3], however, no direct comparison has been done on the accuracy of
these techniques. In this paper, we propose a measure for vessel segmentation
comparison and we apply it to the analysis of vascular segmentation algorithms
from 3-dimensional images of the liver (CT and MR combined). The rest of this
paper is structured as follow: first the STAPLE algorithm and its extension to
open curves is described, second the segmentation methods to be compared and
the results of the comarison are presented.
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2 Method

In this section we present the STAPLE algorithm [5] and detail how we extend
its use for open curves validation.

2.1 STAPLE algorithm

The Simultaneous Truth and Performance Level Estimation (STAPLE) algo-
rithm generates ground truth volumes from a set of binary expert segmentations
as well as a simultaneous accuracy assessment of each expert.

STAPLE works as follow: considering p = (p1, p2, ..., pr)
T a column vector

of R elements, with each element a sensitivity parameter characterising one of
the R segmentations, and q = (q1, q2, ..., qr)

T a column vector representing the
specificity parameter of one of R segmentations. Let D be an N × R matrix
describing the binary decisions made for each segmentation at each voxel of the
image and T be an indicator vector of N elements representing the hidden binary
true segmentation. The complete data can be written as (D, T ) and the prob-
ability mass function of these data f(D, T |p, q). An expectation-maximization
algorithm then estimates the performance level of the experts characterized as
a tuple (p, q), where p represents the sensitivity (“true positive fraction”) and
q the specificity (“true negative fraction”), which maximizes the complete data
log likelihood function

(p̂, q̂) = argmaxp,qlnf(D, T |p, q) (1)

The STAPLE algorithm treats segmentation as a pixelwise classification,
which leads to an averaging scheme that accounts for systematic biases in the
behavior of experts in order to generate a fuzzy ground truth volume and simul-
taneous accuracy assessment of each expert. One can notice that for STAPLE
to work, the set of binary segmentations should overlap which is often not the
case for open curves. In order to overcome this issue, we propose an iterative
scheme to construct ground truth of open curve segmentations such as blood
vessels. First, each centerline extraction is discretized to form a binary image
volume - having an intensity of one on the centerline and zero outside. Second,
our method iteratively creates new morphologically dilated segmentations from
the initial volume. The STAPLE algorithm is then used to compute the level of
each experts as well as the ground truth at each stage of the dilation process. The
resulting output is a set of probability maps as well as sensitivity and specificity
levels of the experts for each dilation factor.

2.2 Toy example

We illustrate the behavior of our technique using a simple example composed
of three segmentations (one per expert) of an horizontal straight line. Figure 1
shows the three original segmentations as well as the resulting probability map.
The sensitivity p and specificity q of the experts are shown in figure 2.
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Fig. 1. Simple example composed of three segments representing segmentation of the
same structure by three experts (left) and the resulting probability map obtained by
averaging the ground truth probability volumes (right).
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Fig. 2. Sensitivity and specificity of the experts in the simple example of three straight
line segmentations. Expert 1 and Expert 3 are confused.

In this example, the three initial segmentation were separated by three pixels.
As we can predict the expert levels graph shows high specificity and very low sen-
sitivity as long as the three binary segmentations do not overlap (dilation < 3).
As soon as the dilated segmentation start to overlap, the sensitivity increases
and the specificity decreases. One can notice that the sensitivity of the second
expert is higher than the two others which is the intended behavior of the algo-
rithm since the second expert has extracted the real structure. The sensitivity
will increase logarithmically since in the limit (dilation → ∞) the sensitivity will
be one for all experts and specificity is undefined. The specificity graph shows
that all experts are following the same specificity until segmentations overlap,
then, once again, the second expert outperforms the other two as expected.

2.3 Open curves validation

In order to validate our technique, we created simulated data composed of single
spiral going down the Z axis. A binary mask (high intensity inside the spiral, low
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intensity outside) was computed from it. After a gaussian blurring of the binary
volume (σ = 2), six experts extracted the spiral using a manual (point and click)
segmentation technique. We then applied our validation method from n = 2
experts to n = 6 experts to create five normalized (I ∈ [0, 1]) probability maps
of the manually segmented spiral. We then superimposed the original spiral with
each probability map and computed the mean probability along the centerline.
A mean probability of 1.0 would mean that the segmented spiral is the exact
representation of the original. Figure 3 shows the results of the experiment.
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Fig. 3. Simulated open-curve: a spiral (left) and the mean probability along the cen-
terline of the spiral given an increasing number of experts (right).

As one can see the segmentation keeps improving with the number of experts.
This is due to the STAPLE algorithm which limits the contribution of “bad”
experts. From the probability map we can then reconstruct the mean spiral as
shown in figure 4.

Fig. 4. Volume rendering of the output probability map (left) and the reconstructed
spiral from the set of 6 experts (right).
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3 Comparison of segmentation techniques

In this section we compared three vascular segmentation techniques on seven liver
datasets (CT and MR). CT volumes are contrast enhanced 1× 1× 3mm3 voxels
and MRA volumes are time-of-flight data with 1 × 1 × 1mm3 voxels. In order
to establish truth, five experts have segmented vascular centerlines manually by
point and click. We then compared the expert segmentations with three other
techniques: (a) a ridge traversal and width estimation method, (b) a statistical
segmentation technique using connected component and (c) a region growing
via level set method using the Curves algorithm. Next we present these three
techniques in details.

3.1 Ridge traversal and width estimation

This vessel extraction method extracts blood vessels from 3-dimensional images
using a scale space technique. The algorithm traverses a ridge in an intensity
function F , using the Hessian at a point x. Let’s define α and β as ascending-
ordered eigenvalues of the Hessian at x, u and v as the corresponding eigenvectors
of the Hessian, and P and Q as the directional derivatives: P = u · F and
Q = v · F . Therefore, if x is exactly in the middle of the ridge the following
conditions must hold: α < 0 and P = 0. Given an initial starting point close to
the ridge, the intensity ridge is computed to minimize P using a direction search
with respect to the Hessian. The line search is performed from x in the direction
u to find the local minimum of P . If the resulting minimum is not within a
specified tolerance a new initial point is required. This vascular segmentation
method has shown sub-voxel accuracy but has never been compared with other
techniques on physical datasets.

3.2 Statistical Segmentation

The second segmentation technique to be compared uses statistics on the in-
tensity of the blood vessel as well as a region growing technique. First the user
specifies a set of points inside a blood vessel, then statistics are computed to
define a gaussian probability class corresponding to the blood vessel likelihood.
Second, a connected component algorithm is performed based on the previously
defined class. Third and last, morphological operators are used to remove un-
wanted structures and obtain a smooth segmentation.

Skeletization is then done using a ridge finding technique. Basically the binary
image volume is blurred by an amount proportional to the expected radius value
of the tubular structure and the ridge is tracked.

3.3 Segmentation via levelset

The third segmentation method is based on the Curves algorithm [4], an ex-
tension of geodesic active contours based on a level set implementation. The
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evolution of the level set is driven by the curvature equation. In the case of a
1-dimensional curve in a 3-dimensional space, the following equation should be
minimized

∮

0

1

g(|∇I(c(p))|)|C′(p)|dp (2)

where C(p) is the 1-dimensional curve, I the image, and g a strictly decreasing
function such that g(r) → 0 as r → ∞. By computing the Euler-Lagrange
equations, the curve evolution equation can be formulated as

Ct = kN −
g′

g

∏

(

H
∇I

|∇I|

)

(3)

where H is the Hessian of the intensity function. Therefore the equation for
embedding space is

νt = λ
(

∇ν(x, t),∇2ν(x, t)
)

+
g′

g
∇ν(x, t) · H

∇I

|∇I|
(4)

The output of the Curves algorithm is a binary image obtained from the zero
level set. Therefore, the same skeletization technique as in 3.2 is used to obtain
the centerlines.

3.4 Results

Given the centerline segmentations (5 experts and 3 automated) for the seven
datasets we applied our algorithm until a maximum dilation of 7 voxels. We are
interesting in the sensitivity and specificity of each methods; these two values
characterize the confidence level of a method and allows for comparisons. The
mean results are presented in figure 5.

One can notice that the ridge traversal technique outperforms the statistical
and curves method in both terms of sensitivity and specificity. Moreover, the
sensitivity of the ridge traversal and curves technique are close to the sensitivity
of the experts. However, the statistical method performs poorly compared to the
experts and the other automated techniques.

From the specificity graph, one can notice that the three automated method
have a smaller specificity than the experts. There are two reasons for this. First,
the length of the segmented centerlines appear to be shorter for all the experts
segmentation. This can be explained by the noise present in the image which
makes small structures invisible to the human eye but the automated algorithms
are able to extend further the tubular structure. Second, Curves and statistical
methods tends to “leak” outside of the structure making the skeleton less reliable.
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Fig. 5. Sensitivity (left) and specificity (right) of the 5 experts and the 3 segmentation
methods to be compared.
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4 Discussion and Conclusions

We have presented a novel algorithm for validation of open-curve segmenta-
tion and applied it to evaluating vessel segmentation methods. Our technique
quantifies the accuracy of different segmentation techniques and also produces
an accurate probability map of the ground truth segmentation. We have shown
that ridge traversal techniques can outperform level sets and statistical method
in localizing the centerline of a tubular structure.

The main drawback of our approach is that it discretizes centerlines to the
pixel level. Some segmentations can have a sub-voxel accuracy, but this technique
cannot be used to discern that accuracy

We are currently extending our method to estimate the radius of segmented
tubular structures assuming a constant radius at each centerline point.

This work is funded in part by the Whitaker Foundation (TF-04-0008).
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