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Abstract. We present a method for automatically finding correspon-
dence in Diffusion Tensor Imaging (DTI) from deformable registration
to a common atlas. The registration jointly produces an unbiased av-
erage DTI atlas along with diffeomorphic correspondence between each
image. The registration image match metric uses a feature detector for
thin fiber structures of white matter, and interpolation and averaging of
diffusion tensors use the Riemannian symmetric space framework. The
anatomically significant correspondence provides a basis for comparison
of tensor features and fiber tract geometry in clinical studies and for
building DTT population atlases.

1 Introduction

Diffusion tensor imaging (DTT) has become increasingly important as a means
of investigating the structure and properties of neural white matter. The local
diffusion properties of water in the brain can be measured in vivo using dif-
fusion tensor MRI (DT MRI). In brain tissue, water diffuses more easily along
myelinated axons which make up the white matter fiber bundles. Acquiring mul-
tiple images with different gradient sensitizing directions provides an estimate
for the local diffusion tensor at each voxel. The major eigenvector of each tensor
corresponds to the direction of the local fiber bundle, and the field of principal
eigenvectors can be integrated to produce fiber tracts.

Many approaches have been proposed to analyze DTT in clinical studies. For
example, derived scalar properties such as fractional anisotropy (FA), relative
anisotropy (RA), or mean diffusivity (MD) of the tensors are often compared
in regions of interest drawn by experts. Other methods have characterized the
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Fig. 1. Flowchart of atlas building process.

geometry of white matter through tractography, as well as quantitative analysis
of tractography [1]. However, region of interest approaches require an expert
to segment structures of interest, and inter-subject comparison of tractography
lacks the correspondence between fiber tracts needed to make statistical compar-
isons. Wakana et al. [2] have built a fiber-tract atlas in the form of voxel maps
of prior probabilities for major fiber bundles. We propose to build an atlas for
tensor images to provide a basis for statistical analysis of tensors, tensor-derived
measures, and fiber bundle geometry.

We use the techniques of registration and atlas-building to provide inter-
subject correspondence for statistical analysis of diffusion data, an overview is
shown in in figure 1. Our metric for optimizing the parameters of registration
is based on a structural operator of the tensor volumes. An initial alignment
is performed by computing the affine transformation between the structural
images, and applying the transformation to the tensor volumes. A deformable
atlas-building procedure is then applied which produces mappings between each
subject and a common atlas coordinate system using the method of Joshi et al
[3]. We validate our method by showing an improvement over affine registration
alone.

2 Registration

Several image metrics have been proposed for inter-subject registration of DTI
including metrics based on the baseline images and the full diffusion tensors [4,
5]. We propose an intermediate, heuristic solution between using only baseline
images and using metrics based directly on the diffusion tensors. Our method is
based on a structural operator of the FA image that is more sensitive to major
fiber bundles than metrics based only on baseline images. Given a tensor image
I and the corresponding FA image F'A, the structural operator C' is defined in
terms of the maximum eigenvalue of the Hessian,

FApy FAyy FA,.
C = max [eigenvalues(H)|, where H= | FA,, FA,, FA,. |. (1)
FA,, FA,, FA,,



Fig. 2. The top row shows axial, sagittal, and coronal slices of the FA image from a
DTI scan of a 1-year old subject. The bottom row shows the result of the structural
operator on the FA image taken at o = 2.0mm. Major fiber bundles such as the corpus
callosum, fornix, and corona radiata are highlighted, while the background noise is
muted.

Figure 2 shows the FA image of a tensor field and the corresponding structural
image C. Let h;(z) be a mapping which gives the corresponding point in the
subject image I; for all z in the domain 2 of the atlas image I. Given two
images I; and I, the image match functional that is optimized in the registration
process is

M1 (), To(h(x))) = / _[Ci(o) = Calh(o)) o 2)

the mean squared error between C; and Cs.

We use C over existing methods for two main reasons. First, we observe that
C is a good detector of major fiber bundles which occur as tubular or sheet-like
structures. Callosal fibers form a thin swept U; the corona radiate is a thin fan;
the cingulum is a tubular bundle, and C serves as a strong feature detector for
all types of these thin structures. Consequently, C optimizes correspondence of
fiber tracts better than the baseline image, because C has the strongest response
at the center of major fiber bundles, while the baseline image has the strongest
signal in the cortico-spinal fluid (CSF). Secondly, we use C' instead of a full
tensor metric or the FA itself in order to avoid biasing analysis by using the
same feature for registration that will be used for statistical comparison. The
Hessian at a fixed scale ¢ is a first step towards basing the registration on the
geometry of fiber bundles rather than the values of the tensors. Future work will
investigate a multi-scale approach to computing C' to make the measurement
dependent only on the local width of the structure.

Using our definition for an image match functional, registration of the im-
ages proceeds in two stages. First, a template tensor image is aligned into a
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Fig. 3. The top six images show the correspondance of the affine atlas and the five sub-
ject images at a point in the splenum of the corpus callosum. Notice the corresponding
index in the subject images does not necessarily correspond to the same anatomical
location. The bottom six images show the deformable atlas and subject images with
the same point selected; Here the atlas provides better anatomical correspondence, and
the deformable atlas has sharper structures.

standardized coordinate system by affine alignment of the baseline image with
a T2 atlas using normalized mutual information. The remaining tensor images
are then aligned with the template using an affine transformation and equation
2. In this coordinate system, we can average the tensor volumes to produce an
affine atlas. However, the affine registration does not account for the non-linear
variability of the white matter geometry, and many of the white matter struc-
tures are blurred in the atlas volume. For this reason, we subsequently apply a
deformable registration procedure to obtain anatomical correspondence between
the population of images I; and a common atlas space [3]. This procedure jointly
estimates an atlas image I and a set of diffeomorphic mappings h; that define
the spatial correspondence between I and each I;. Figure 3 shows the improved
correspondence attained from the deformable registration. We use the unbiased
approach so that the statistics of corresponding locations are not biased by our



choice of the template image. The computed transformations are applied to each
tensor volume as described in the next section.

3 Tensor Processing

The application of high-dimensional transforms to the DTI volumes must ac-
count for the space of valid tensors. The orientation of a diffusion tensor pro-
vides a measurement of fiber orientation relative to the anatomical location, and
spatial transformations of the tensor fields must account for the reorientation of
the tensor. Furthermore, since diffusion tensors are symmetric positive-definite
matrices, operations on the images must preserve this constraint.

3.1 Spatial Transformations of Tensor Images

When spatial transformations of diffusion images are performed to align the
anatomy of different scans, the tensors must also be transformed to maintain
the relationship between anatomy and anisotropy orientation. We use the finite
strain approach of Alexander et al. to reorient tensors in a deformation field by
decomposing the local linear approximation of the transformation into a rota-
tion and deformation component [6]. The rotation of each tensor is computed
by performing singular value decomposition (SVD) on the local linear approxi-
mation of the transformation F', where F' is given by the Jacobian matrix of the
deformation field computed by finite differencing. A local linear deformation F’
is decomposed into a rotation matrix R and a deformation matrix U, where

F=UR. (3)
The local transformation of a tensor D is given as

D' = RDR". (4)

3.2 Interpolation and Averaging of Tensor Images

The space of valid diffusion tensors does not form a vector space. Euclidean
operations on diffusion tensors such as averaging can produce averages with a
larger determinant than the interpolating values, which is not physically sensible.
Furthermore, operations on diffusion tensors are not guaranteed to preserve the
positive-definite nature of diffusion. The Riemannian framework has been shown
as a natural method for operating on diffusion tensors, which preserves the phys-
ical interpretation of the data, and constrains operations to remain in the valid
space of symmetric positive-definite matrices [7, 8]. Further simplifications have
shown an efficient method for computation using the Log-Euclidean metric [9].
Interpolation and averaging are treated as weighted sums in the Log-Euclidean

framework defined as N
D =exp <Z w; log(Di)> ) (5)
i=1
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Fig. 4. 4(a) and 4(c) show a slice of the FA for the affine and deformable atlases. 4(b)
and 4(d) illustrate a subregion of tensors in the splenum of the corpus callosum. Notice
that the FA image of the affine atlas is more blurry, and that the tensors in the splenum
are more swollen in the affine atlas.

where log and exp are the matrix logarithm and exponential functions. To pro-
duce the atlas tensor volume the deformed tensor volumes with locally rotated
tensors are averaged per-voxel using the Log-Euclidean scheme,

I (z) = R(2)I(z)R(x)", (6)

N
I(x) = *Z og(I;" (hi())) | - (7)
N

4 Experiments and Results

Our methodology was tested on five datasets of healthy 1-year olds from a clinical
study of neurodevelopment. The images were acquired on a Siemens head-only
3T scanner. Multiple sets of diffusion weighed images were taken for each sub-
ject and averaged to improve signal-to-noise ratio. Each dataset consisted of
one baseline image and six gradient direction images with b=1000s/mm? us-
ing the standard orientation scheme. An image volume of 128x128x65 voxels
was acquired with 2x2x2 mm resolution. Imaging parameters were TR/TE =
5200ms/73ms.

For each set of diffusion weighted images the diffusion tensors were estimated
using the method of Westin et al [10]. The structural image C' was computed
from the FA volume with ¢ = 2.0mm. Affine and deformable alignment were
computed using the methods described in section 2. The warped DTI volumes
were averaged to produce an affine atlas and a deformable atlas. Figure 4 shows
a comparison between the tensor volumes of the two atlases.

Tractography was performed in the atlas space, and the tract bundles were

warped to each subject image using h;. Figure 5 shows the results of tractography
in the atlas and the corresponding warped fibers in two subject images.



(a) Atlas (b) Image 1 (¢) Image 2

Fig. 5. Fibers traced in the corpus callosum of the atlas (a) are mapped to correspond-
ing locations in the subject images (b) (c) despite pose and shape changes.

5 Validation

Visual inspection of tractography in the atlas volume shows an initial qualitative
validation that the registration and averaging methods provide anatomically sen-
sible results. Histogram comparisons of derived tensor measures in the affine and
diffeomorphic atlas show an initial quantitative validation of the improvement
of the deformable registration over affine registration alone. The gradient mag-
nitude of the FA was measured in the whole brain of the affine and deformable
atlases. Figure 6 shows the gradient magnitude images and a histogram compar-
ison. At the 90" percentile of the cumulative histogram, the deformable atlas
has a gradient magnitude of 684 while the affine atlas is 573, an increase of
20%. This shows that the deformable atlas better preserves thin structures via
improved alignment.

6 Discussion and Future Work

We have developed an automatic method for producing correspondence in dif-
fusion tensor images through deformable registration, and a novel image match
which alignes structural features. We apply the transformation using the finite
strain model for tensor rotation and a Riemannian framework for averaging
and interpolation. Initial validation of deformable registration is performed by
showing improvement in thin structure preservation over affine alignment. Fu-
ture validation work will try to quantify the quality of correspondence of fiber
tracts. In future work, we intend to build DTT atlases of different populations to
compare tract geometry and tensor statistics along tracts.
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ures (c¢) and (d) show the histogram and cumulative histogram of gradient magnitude
intensities in the whole brain.

2. Wakana, S., Jiang, H., Nagae-Poetscher, .M., van Zijl, P.C.M., Mori, S.: Fiber
Tract-based Atlas of Human White Matter Anatomy. Radiology 230(1) (2004)
7787

3. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construc-
tion for computational anatomy. Neurolmage (Supplemental issue on Mathematics
in Brain Imaging) 23 (2004) S151-S160

4. Zhang, H., Yushkevich, P., Gee, J.: Registration of diffusion tensor images. In:
CVPR. (2004)

5. Guimond, A., Guttmann, C.R.G., Warfield, S.K., Westin, C.F.: Deformable reg-
istration of dt-mri data based on transformation invariant tensor characteristics.
In: ISBI. (2002)

6. Alexander, D., Pierpaoli, C., Basser, P., Gee, J.: Spatial transformations of dif-
fusion tensor magnetic resonance images. IEEE Transactions on Medical Imaging
20(11) (2001)

7. Fletcher, P., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics
of diffusion tensors. In: ECCV 2004, Workshop CVAMIA. (2004) 87-98



8.

9.

10.

Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing.
International Journal of Computer Vision 66(1) (2006) 41-66

Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on
tensors in the Log-Euclidean framework. In: MICCAI. Volume 3749 of LNCS.
(2005) 115-122

Westin, C.F., Maier, S.E., Mamata, H., Nabavi, A., Jolesz, F.A., Kikinis, R.: Pro-
cessing and visualization of diffusion tensor MRI. Medical Image Analysis 6(2)
(2002) 93-108





