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RELATIONSHIPS BETWEEN REDUNDANCY ANALYSIS,
CANONICAL CORRELATION, AND
MULTIVARIATE REGRESSION

KEeiTH E. MULLER

UNIVERSITY OF NORTH CAROLINA

This paper attempts to clarify the nature of redundancy analysis and its relationships to
canonical correlation and multivariate multiple linear regression. Stewart and Love introduced
redundancy analysis to provide non-symmetric measures of the dependence of one set of variables
on the other, as channeled through the canonical variates. Van den Wollenberg derived sets of
variates which directly maximize the between set redundancy. Multivariate multiple linear re-
gression on component scores (such as principal components) is considered. The problem is ex-
tended to include an orthogonal rotation of the components. The solution is shown to be identical
to van den Wollenberg’s maximum redundancy solution.

Introduction

Hotelling [1936] derived canonical correlation as a method for finding linear combi-
nations of two sets of variables which are maximally correlated. Stewart and Love [1968]
introduced redundancy analysis as an interpretational aid to canonical correlation. Contro-
versy arose immediately as to what it actually measures and whether what it measures is of
any utility. [See Dawson, Note 1, for a detailed review.] Van den Wollenberg [1977]
derived sets of variates which directly maximize the between set redundancy (whereas the
canonical solution maximizes the between set canonical correlation).

This paper considers a number of aspects of redundancy analysis in an attempt to
clarify its nature. First, a seemingly unrelated problem is defined. Its solution is shown to be
the same as van den Wollenberg’s. Consequently, the model equation studied gives some
insight into the nature of redundancy analysis.

Some Standard Results

This section summarizes a number of standard results in regression. This provides a
convenient way to introduce notation and context needed in the sequel. First, consider the
usual multivariate multiple regression model equation for g criterion variables and p pre-
dictors, with both sets standardized (zero mean and unit variance):

VA = Z.B + E - (1)

y
nxgq (n x p)p x q) nxgq

Assume that the number of observations, n > p + ¢, and that the usual least squares
assumptions of independence, linearity and homoscedasticy hold. It may be the case that
the rank of Z, is p*, strictly less than p. Then, of course, the usual estimator of B does not
exist. One standard response is to replace the original p variables with p* (full rank)
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variables, such as the principal components, or other “factor” variables. The procedure
identifies a new (full rank of p*) model:

z, = Z. By + E )
nxgq (n x p*)p* x q) nxq
Z,, = z,T ©)
nx p* (n x pXp x p*)

The value of B, is uniquely defined, once a particular transformation T has been chosen,
and the usual estimator of B, exists. '
It is often convenient to require orthogonality for the new variables:

2.z = R =l = TRLT. @
Hence, any choice of F, p x p*, rank p*, such that
R, =FF 5)
implies
T = F(FF)~ . 6)
These results imply a choice for B, namely
B,=TB, )
By = T(R7Gx Ruwy) ®)
=TT'R,,. )

Since TT' is a generalized inverse of R,, [see Khatri, 1976, for a related discussion], the
factor score approach and generalized inverse approach to the less then full rank regression
problem are equivalent in many important ways.

A Related Problem

Assume that an orthogonal (rank r < p*) rotation, 4,,, of the factor scores is desired.
The model then becomes

zZ, = Z,TA,B, + E (10)

¥y
nxgq (n x p)p x p*Xp* x r)r X q) nxq

Taking the expectation of (10) and replacing the expectation of Z, with Z, gives an equation
to be solved for estimators of the parameters:

Z,=2Z,TA,B,. 1y
Premultiplying by (1/n)4, T'Z’, produces

"A,TR,,=A, TR, TA,B, (12)

= A, A,B, (13)

=B,. (14)

Using this result in (11) and premultiplying by (1 /mT'Z, gives
T'R,,= TR, TA, A, TR, (15
=A, A, T'R,,. (1¢
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Postmultiplying by R,, T A, , the equation then becomes
T'RyR,,TA, = A A TR R, TA,. (17)

xy yx

Upon reflection, it can be seen that this equation is satisfied by choosing 4, as a matrix
whose columns are eigenvectors of the symmetric matrix

M =TR,R,T. (18)

Equivalence to Maximizing Redundancy

The purpose behind the above development is quite simple. It is easy to show that the
above solution for choosing linear combinations of Z, is equivalent to van den Wollen-
berg’s solution for choosing linear combinations of Z, which maximize the redundancy of
Z, given Z . Stewart and Love [1968] defined the redundancy statistic as the mean vari-
ance of one set explained by a canonical variate of the other set. The total redundancy is the
sum over the canonical variates. The k'™ redundancy is equal to a constant times the inner
product of the canonical factor loadings:

2
% biR,, R, b, = Rd, (k). (19)

Here k indicates a particular canonical variate, b, the canonical weights for Z .
Van den Wollenberg [1977] expressed the redundancy in an alternate form. First, one
of the two solution equations from canonical correlation is

0=R,a —pR,b,. (20)
Jere a, is the k" set of canonical weights for Z, . Hence
PRy by = Ry, a;. (21
Taking the inner product of each side separately gives
pibR, R, b, =a,R, R, a,. (22)
It follows immediately that
Rd,, (k) = é 4R, R, a,. (23)

Therefore the redundancy statistic may also be characterized as the mean squared loading
of one set on a canonical variate of the other set. Some of the controversy centers on the fact
that redundancy is not symmetric, while canonical correlations are (with respect to the
labeling of one set as Z_ and the other as Z,). Of course, the usual multiple R is also not
symmetric in that sense.

To see the claimed equivalence, consider van den Wollenberg’s solution equation to
maximize redundancy:

(RyR,, — AR Ja = 0. (24)

The linear combination of Z, sought is a, p x 1. This two-matrix eigenvalue problem may
be solved in various ways. The most common technique used in canonical correlation uses
afactor, F, of R . It may be applied here as follows:

(R, R,, — AFF)a = 0. 25)
Premultiplying by (F'F) 1 F’ gives
(FF)"'FR_R,, — AF’a = 0. (26)
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Letting
a=F(FF) 'a,=Ta, 27
the expression (26) becomes
(FF)"'FR,, R, F(FF)~!' —ila, =0. (28)
With T defined as in (6), (28) becomes
(T'R,, R, T — ila, = 0. (29)

This again is the eigenvector solution equation for the matrix M defined in (18). Note that
throughout, either Z, or Z, or both may be less than full rank.

Conclusions

The results of the last two sections may be summarized as follows: (i) equation (10) is
the model equation for maximizing redundancy, (i) which is equivalent to finding a method
of moments estimate of a choice of orthogonal rotation of factor scores used for regression.
Redundancy analysis stands between canonical correlation and multivariate multiple re-
gression. Canonical correlation may be thought of as a process of orthogonalizing the Z,
correlation matrix and the Z, correlation matrix, then providing an orthogonal transform-
ation of each (orthogonal) set to maximize and orthogonalize the between set correlations.
Multivariate multiple regression provides a single transformation from one original space
to the other original space. Redundancy analysis orthogonalizes one set of variables (at a
time) and then provides an orthogonal transformation to use in predicting into the original
space of the other set. Redundancy analysis should be treated as evaluating adequacy of
regression (prediction) and not association. It shifts the usual emphasis in canonical corre-
lation toward multivariate multiple regression. In the former, the two sets of variables stand
in a strongly symmetric relationship. In the latter the two sets are usually treated and
discussed quite differently.
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