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Abstract We seek a form of object model that exactly and completely captures the
interior of most non-branching anatomic objects and simultaneously is well suited
for probabilistic analysis on populations of such objects. We show that certain nearly
medial, skeletal models satisfy these requirements. These models are first mathe-
matically defined in continuous 3-space, and then discrete representations formed
by a tuple of spoke vectors are derived. We describe means of fitting these skeletal
models into manual or automatic segmentations of objects in a way stable enough to
support statistical analysis, and we sketch means of modifying these fits to provide
good correspondences of spoke vectors across a training population of objects. Un-
derstanding will be developed that these discrete skeletal models live in an abstract
space made of a Cartesian product of a Euclidean space and a collection of spherical
spaces. Based on this understanding and the way objects change under various rigid
and nonrigid transformations, a method analogous to principal component analysis
called composite principal nested spheres will be seen to apply to learning a more
efficient collection of modes of object variation about a new and more representa-
tive mean object than those provided by other representations and other statistical
analysis methods. The methods are illustrated by application to hippocampi.
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1 Object models suitable for statistics

The objective of statistics on a population of 3D (or 2D) objects is to produce such
entities as the mean object and a shape space spanned by principal modes of varia-
tion of the object. These statistical descriptors are derived from training cases, each
typically given by a pile of object boundary contours. Statistics on objects has been
applied to quite a variety of types of geometric model derived from the boundary
cases:

1. Boundary point distribution models ([4], [8], [17]). This popular form of model
has been analyzed by principal component analysis (PCA), although Kendall [16]
has shown this is not strictly appropriate because such models live in a space
formed by a Cartesian product of a Euclidean space and a quotient of a high-
dimensional sphere modulo the rotation group. However, even the correct analy-
sis ignores the shape of the object interior and, partially as a result, has difficulty
limiting its shape space to models whose boundaries do not cross themselves.

2. Deformation-of-atlas models, wherein the displacement of each voxel in the atlas
is provided [21], [1]) . These models have an enormous dimension, with the result
that the statistical analysis is expensive and unstable with respect to the sampling
into training cases and to noise in those training cases.

3. Implicit models, such as level surfaces of pseudo-signed-distance functions [18],
[31] that do not live in Euclidean feature spaces but are often analyzed (by PCA)
as if they did.

4. Skeletal models. While skeletal modeling is common, as summarized in the book
by Siddiqi and Pizer [27], work on statistics of skeletal models has been the ma-
jor topic of only one group, namely ours. That work emphasized that skeletal
models, like those in the first two categories, live on abstract manifolds that are
curved. Work on skeletal and other object models that live on abstract manifolds
have been the subject of study of Fletcher [10]. Our previous work on skeletal
model statistics, on which Fletcher was an early contributor, is laid out in chap-
ters 8 and 9 of Siddiqi and Pizer [27]. The strength of skeletal models is that
they richly model the object interior and boundary and that they yield an object-
relative coordinate system for the object interiors. The difficulty with general
skeletal models, and especially the medial models that are their most common
form, is that even for objects that do not intuitively feel like a tree of figures, the
model takes the form of the tree. However, the branching structure of the tree
does not stay the same over the object population. This makes statistical analysis
of these models very difficult. In our previous work we have solved this problem
by using skeletal models whose boundaries are only approximately that of the
training cases but which have no branches.

From the previous discussion one can conclude that no form of model has been
introduced that accurately and richly represents the training data and truly is fully
appropriate for statistical modeling. In this paper, we define a form of skeletal model
that precisely captures most non-branching anatomic objects and a form of statistical
analysis more well suited to these models than ones that have been previously ap-
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plied. The result of this statistical analysis, we show by illustration, produces more
appropriate object means, lower-dimensional shape spaces, and more descriptive
modes of variation than PCA-based statistical analysis of other skeletal or nonskele-
tal models. While our object modeling approach allows us to capture branching ob-
jects as well, the statistical techniques available to us or others is not yet capbable
of handling structures with variable branching structure. Therefore, here we do not
attempt here to model all object populations.

2 Skeletal models of non-branching objects

Skeletal models capture the interior of objects (the egg), and as such they more
stably and richly capture object shape than models that capture only the boundary
of objects (the eggshell). We define a continuous interior-filling skeletal model of
an object as a locus of spoke vectors (p,S) with tail at p and tip at p+S such that

1. none of the vectors cross each other;
2. the union of the vectors forms the interior of the object and the union of the spoke

tips forms the boundary of the object. The consequence of conditions 1 and 2 is
that each point in the object is reached by precisely 1 spoke.

3. the union of the tails, which we call the “skeletal locus”, forms a fully folded,
multi-sided locus (double-sided for slab-shaped objects). That is, except at the
fold, in slabs each position p appears twice in the set of spokes (see Fig. 1). The
reader should not confuse this with the more traditional characterization of the
skeletal locus as an unfolded point set that happens to have two spokes at every
point but the end points.

Fig. 1 An interior-filling skeletal model
in 2D. The two sides of the skeletal lo-
cus are shown slightly separated, but in
fact they are coincident. In the continuous
form there is a spoke vector at every point
on the folded curve forming the skeleton.

We call such a representation an interior-
filling s-rep, or for this paper just an s-rep.
We will refer to the whole s-rep by the nota-
tion m. In this paper we restrict ourselves to
s-reps of 3D objects that have the topology of
a sphere (have no interior cavities or through
holes).

We define a non-branching 3D object as a
region of space for which there exists an s-
rep with a single cyclic fold curve, i.e., for
which the skeleton does not branch. Exam-
ples of such objects are the kidney and the
esophagus (into which we swallow).

Medial models, as defined by Blum [2] are
a form of skeletal model, but they cannot ex-
actly capture the entire interior of most non-
branching anatomic objects without an arbitrary number of skeletal branches and
variation of the number of branches and their branching structure. These render the
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model unsuitable for probabilistic analysis. Instead we seek a skeletal model [6]
that allows overcoming this branching instability. In particular, our target is that
all instances of the object have the simplest, stable branching pattern, i.e., without
branches. In these s-reps the skeletal locus is smooth except at the fold points.

Fig. 2 Slabular and quasi-tubular s-reps and their parameter spaces.
In the slab, u = (u,v) parametrize by mapping the long (u) and mid-
dle (v) dimensions of the object to the respective dimensions of an
ellipsoid collapsed along its short axis, which in turn is mapped
to the sphere by mapping its crest to the equator, its north side to
the sphere’s northern hemisphere, and its south side to the sphere’s
southern hemisphere. In the quasi-tube, u = (u,φ) parametrize by
mapping the along-tube dimension (u) to the axis of a cylinder with
infinitesimal radius and mapping the around-tube dimension (φ ) to
the normal directions of the infinitesimal cylinder. In both forms of
s-reps, τ parametrizes fractional distance along the spokes, where
τ = 0 at the skeletal locus and τ = 1 at the object boundary. In both
forms (u,τ) parametrize the interior of the object.

As illustrated in Fig. 2,
there are two types of
s-reps. In the first type,
which we call slabu-
lar, the smooth points
form two copies of a
smooth sheet, with the
two sheets pasted to
each other, and the fold
points form themselves
into a single smooth
cyclic curve, called the
end curve. In the sec-
ond type, which we
call quasi-tubular, the
smooth points take the
form of a bent cylin-
der of infinitesimal ra-
dius, i.e., a cylinder
whose surface is made
up of copies of an
axis curve with all the
copy curves pasted to
each other, and the fold
points consist of two
discrete points, called
the end points. In both
types a continuum of
spokes, formed by vec-
tors with tails on the
skeletal locus and tips
on the object boundary,
cover the interior of the
object.

Such s-reps capture all non-branching anatomic objects in the human body. This
includes not only slabular objects such as the kidney, most muscles, the heart, and
the bladder, and quasi-tubular objects, such as the esophagus and the rectum, but
also folded slabular objects such as the cerebral cortex and folded quasi-tubular
objects such as the intestines. These models capture objects with small pimples
and dimples; the main objects not captured are objects with hook-shaped or curvy
protrusions and indentations and those that branch multiple times.
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In slabular s-reps the skeletal locus forms a two-sided sheet p(u) with a cyclic
fold curve. The parametrization u has the topology of a sphere. In this work, for slab-
ular s-reps we will parametrize by the sphere and let the equator of the parametrizing
sphere map onto the fold of skeletal locus. Thus we will refer to the north and south
sides of the sheet. For each u a spoke S(u) exists with its tail on p(u) and its tip
on an object boundary point b(u). u parametrizes the skeletal locus along the object
and across and around the object; it also parametrizes the spokes S(u), which pass
within the object, as well as the object boundary b(u). The lengths of the spokes,
|S(u)|, which we will call r(u), and the directions of the spokes U(u) = S(u)/r(u)
are also defined. Thus u parametrizes the whole s-rep m(u) = (p(u),U(u),r(u)).

In quasi-tubular s-reps the skeletal locus forms a collapsed (infinitesimal radius)
bent cylinder with hemispherical caps at both ends, such that the axis of the cylin-
der is a space curve and the spokes emanating from each axis-orthogonal cut of
the cylinder end in a common plane. Here the parametrization u is typically on
the unit-radius, possibly hemispherically capped right-circular cylinder (Fig. 2); it
parametrizes the axis of (forming) the skeletal locus by the along-cylinder scalar
variable u, and it parametrizes the angle around the circular tubular cross sections
by another cyclic scalar variable φ . As with the slabular s-rep, u parametrizes the
spokes S(u), their directions U(u), their lengths r(u), and the object boundary b(u).
Quasi-tubular s-reps are used to model roughly tubular objects such as the esopha-
gus, but they can also be used to model objects like muscles whose cross-sections
are star-shaped but not roughly tubular.

For both slabular and quasi-tubular s-reps the position along a spoke from its
tip to its tail is parametrized by the proportion-of-spoke-length variable τ , so the
union of the interior and the boundary of the object is parametrized by (u,τ). In the
remainder of this paper we restrict ourselves to slabular s-reps.

The mathematical theory of skeletal models is presented in Damon’s chapter 3
of the book Medial Representations by Siddiqi and Pizer [27] and more completely
in Damon’s papers: [7, 6]. There the geometry of our class of s-reps is shown to
be neatly divisible into a) the differential geometry of the two sides and fold of
the skeletal locus p(u) and b) a variant of differential geometry, which we call ra-
dial geometry, of the (tail-less) spokes S(u) with respect to motions on the tangent
plane of the skeletal locus. The radial geometry of the spoke directions U(u) is of
special interest; it can be divided into a radial shape operator Srad(u) applicable
at non-fold medial points and an edge shape operator SE(u) [for u on the equator
of the parametrizing sphere or the ends of the parametrizing cylinder] applicable
at the fold curve. Each of these operators are represented by a 2× 2 matrix. These
shape operators describe U(u) motion in a way analogous to the way the ordinary
shape operator from differential geometry describes the motion of boundary nor-
mals. There are special matters dealing with the appropriate coordinate system in
which to describe U(u) motion and the need for projection of that motion onto the
tangent plane to p(u), but we will not go into those in this paper.

Damon shows that an interior-filling locus (p(u),U(u),r(u)) has no locally cross-
ing spokes (is geometrically legal) if and only if for all u the positive eigenvalues
of Srad(u)< 1/r(u) and any positive generalized eigenvalue of (SE(u),J)< 1/r(u),
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where J is the 2×2 matrix all of whose elements are 0 but for the upper left element,
which is 1.

Discrete s-reps sample m(u) into a network of spoke vectors. In our work with
slabular s-reps the sampling is into a north m×n grid of spokes, a south m×n grid of
spokes, for some m, n, and a cyclic chain of 2m+2n−4 edge (crest) spokes (Fig. 2).
These are organized into an m×n grid of “skeletal atoms”, each consisting of 2 or
3 spokes with a common tail position. For interior grid points there are 2 spokes,
one on the north side and one on the south side. For exterior grid points there are 3
spokes, one on the north side, one on the south side, and a crest spoke bisecting the
other two.

Interpolation of a continuous s-rep from a discrete s-rep proceeds according to
the method of Han [11], in which p(u), r(u), and U(u) are interpolated in an inter-
twined way. The spokes are interpolated using the fact that Srad(u) or SE(u) times
a small step vector on the tangent plane to the skeletal locus at p(u) allows the
calculation of the spoke direction swing corresponding to that step. The rSrad(u)
or rSE(u) matrix is first interpolated and then the implied spoke swing and length
scaling for various small steps is integrated. The skeletal axis positions p(u) are in-
terpolated using a Hermite-like interpolation using both the discrete positions and
skeletal sheet normals there, where the normal is computed as the difference of the
two spoke direction vectors with a common skeletal sheet position. This relation for
the normal holds only for Blum medial sheets, but given the “as medial as possible”
criterion for skeletal sheets discussed below, it is sensible to use it for the skeletal
sheet interpolation.

3 Obtaining s-reps suitable for probabilistic analysis

There are three properties necessary for making a population of s-reps suitable for
probabilistic analysis. The first is that the branching topology of all members of
the population should be the same. There is nice, albeit not yet usable, work on
statistics of trees with variable branching topology [28, 30], but this is beyond the
scope of this paper. In this paper we restrict the branching situation further to having
no skeletal branches at all. This requires branching objects such as blood vessels to
be treated by compositing single branch components, but this, too, is beyond the
scope of this paper. This is the reason for the restriction mentioned in section 1 to
skeletal loci that are smooth except at the fold curve.

The second property needed to do probabilistic analysis is that small deforma-
tions in the objects yield small deformations in the skeletal model. This can be made
to occur when the process of fitting s-reps into the data describing the object has cer-
tain behaviors. These will be discussed in section 3.1.

The third property needed to do probabilistic analysis is that each spoke in one
s-rep in the training population be at a position, orientation, and length that geomet-
rically corresponds to that of the same spoke in the other training s-reps. Accom-
plishing this is discussed in section 3.2.
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3.1 Fitting unbranched s-reps to object description data

Typically object data is provided in the form of a tiled object boundary, a pile of par-
allel planes each containing a boundary contour, or a binary discrete image. To fit
s-reps to such data, we first transform the data into a signed distance image, where
the distance is negative inside the object and positive outside and where the zero
level curve of distance represents the object boundary. We have methods, using con-
strained flow controlled by the Laplacian of curvature, that yield a distance image
representing a smooth boundary staying within a half-voxel of the object data [22].

Our objective is to study shape variability by statistical means, so the pair of
distance images for many population samples of our object will be provided. For any
object sample there are very many s-reps that can be fitted to this data. In particular,
the skeletal locus could in principle be anywhere across the short dimension of the
object. In the extreme it could be along one side of the object, such that the object
was covered by lines going from one side of the object (e.g., the south side) to the
other side of the object. Since our goal is to do statistical analysis of the fitted s-reps,
we need to fit s-reps that have as little variability over the training cases as possible.

The closer the skeletal locus is to bisecting the top and bottom sides, the wider
the range of pimples and dimples on the boundary that could be accommodated.
More importantly, we can more stably constrain the geometry of the skeletal locus
if we make it bisect the two sides. However, as indicated earlier, the Blum medial lo-
cus will not do, because it generates branches for pimples and dimples. So in brief,
we want a skeletal locus smooth but at the folds that is space filling and, within
those constraints, as medial as possible. The following section gives properties of
truly medial fits that can be used in measuring how medial an s-rep is. The proper-
ties are described in the form of penalties that contribute to a weighted sum that is
minimized in the fitting process.

3.1.1 As medial as possible

The following medial properties should be approximate targets for an as-medial-as-
possible s-rep. Each property yields a penalty term in the aforementioned weighted
sum. Some depend on the input signed distance image D(x), and some involve the
relation between the north (south) side spoke S(u) and S(v), its counterpart on the
other side of the (double-sided) skeletal sheet with the same p(u) value.

1. Equal r(u) values for the northside and southside spokes at the same p(u): in the
fitting of a discrete s-rep we penalize according to |r(u)− r(v)|).

2. Spokes are boundary normals: in the fitting we penalize according to the devia-
tion from boundary normality, i.e., cos−1(∇̂D(x) ·U(u)) at the spoke end, where,
given a vector W, Ŵ is the unit vector in the direction of W.

3. The (interpolated) skeletal locus p(u) bisects S(u) and S(v). Equivalently, the
normal to p(u) is in the same direction as U(u)−U(v): in the fitting, for each
spoke we penalize according to the angle between the normal to p(u) and
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U(u)−U(v). This penalty has not yet been implemented in our code to fit s-reps
to objects.

4. End curves’ spokes are at crests of the zero level curve of the distance image
that forms the object boundary; this involves three properties, all involving the
principal directions w1 and w2 and the associated principal curvature κ1 of the
level surface at the spoke end, where κ1 is the lesser (more negative, i.e., more
convex) principal curvature:

a. The spoke end is at an extremum of κ1 along the integral curve of w1, so the
directional derivative of κ1 in the w1 direction should be zero. In the fitting
we have attempted to penalize according to the magnitude of that directional
derivative. However, the high order derivative of the distance function that
this involves proved to be unstable, so for now this term is not included in the
penalty list.

b. The plane of the spoke and its infinitesimally near neighbors along the prin-
cipal curve of w1 should be orthogonal to w2. We penalize according to the
angle between w2 and U(u)×U(v), the normal to the plane of the spokes at
that end curve point.

c. The boundary implied by the s-rep at the spoke end and the level surface of
the distance at the spoke end should agree in the first principal curvature. We
have not yet implemented a penalty for deviating from this condition, but in a
future implementation we plan also to penalize according to the magnitude of
the difference between the two relevant radii of curvature.

Fig. 3 A 2D object with multiple vertices
(the 2D correspondent to a crest in 3D), to-
gether with the desired skeletal sheet.

This method of forcing spokes into the
distance function’s crest is good when
there is a strong crest for the end curve
to fit into, but in some objects this crest is
weak or, even worse, the object has more
than one crest and we wish the s-rep to fit
between them. This situation is illustrated
in Fig. 3, where the skeletal sheet bisects
the twin crests on the right side of the ob-
ject, instead of favoring one crest over the
other.

3.1.2 Fitting s-reps to distance images

Fitting s-reps to such signed distance images is done in five stages.
In the first stage, to align the training cases, a reference s-rep is translated, rotated,

and possibly uniformly scaled into the space of the distance image via matching of
moments of boundary positions or via minimizing sum of squared distances between
designated s-rep spoke ends and object landmarks provided by the user.

In the second stage we restrict the corresponding northside and southside spokes
to having the same length and move each atom into place while maintaining a reg-
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ular array that is geometrically legal. In the third (spoke) stage we adjust the spoke
lengths and angles to match the object boundary quite closely. After the PCA-like
statistical analysis described in section 5 on the results of the third stage, the fourth
stage obtains better correspondence among the fits to the various training cases.
It accomplishes that by restricting the fits to the shape space resulting from the
statistical analysis. In the fifth stage we tighten the fit to the distance function by
allowing small deviations from the shape space; in particular, we again adjust the
spoke lengths and angles to match the object boundary quite closely. The following
describes these stages in more detail.

In the second stage, iteratively over the skeletal atoms (each consisting of a spoke
duple or triple with a common hub) we optimize an objective function [19] that is a
sum of two major penalty terms summed over the 2 or 3 spokes. Each major term
is a sum of subsidiary terms. The first major term measures how well the candidate
spokes are fit into the distance image; the second of these major terms measures the
geometric fitness of the candidate s-rep. Both terms include penalties for deviation
from being medial.

For the spoke S(u) the spoke-to-object-mismatch penalty sums terms penalizing
misfit to D(b(u)) (the signed distance value at the spoke end) and its derivatives.
The geometric fitness penalty sums terms penalizing general geometric misbehav-
ior such as lack of adherence to the medial properties.

Spoke-to-object mismatch penalties: All of these penalties are summed over spokes
interpolated from the original discrete set. In our application to hippocampi, each
quad of 4 spokes is subdivided by 4 in each dimension, producing a quad of 25
interpolated spokes. No interpolation is done, at present, around the crest.

1. Zeroth order fit to the distance image: |D(b(u))|.
2. First order fit to the distance image: the angle between S(u) and ∇D(b(u))), as

described in section 3.1.1, item 2.
3. The crest property penalties described in section 3.1.1, item 4.

Geometric fitness penalties:

1. S-rep irregularity: To achieve roughly uniform coverage of the object interior
and, given the crest-fitting of the end spokes, to provide approximate correspon-
dence of spokes across cases, a penalty for each spoke is applied proportional to
its difference from the average of its neighbors. At present, the average is calcu-
lated in a way consistent with the principal geodesic analysis approach described
in section 5.1.1.

2. Illegality of spoke crossings: a penalty is added for Srad or SE values for a spoke
being greater than the reciprocal of their spoke lengths (see section 2).

3. Deviation from medial properties, as described in items 1 and 3 of section 3.1.1.
4. The distance between S(u) and the result of the first stage for that spoke. The

distance measure reflects positional deviations at the spoke end.

In the third, i.e., spoke, stage the spoke tail p(u) is fixed, and the optimization is
only over the spoke direction U(u) and the spoke length r(u). The spoke-to-object
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mismatch penalties are as above, but the geometric fitness penalty is only on the
magnitude of the difference of both the spoke direction and the spoke length from
the result at the first stage.

In the fourth stage the optimization is over the shape space determined by the
statistical analysis of those third stage fits that are adequately good, and the in-
tialization is always from the mean s-rep of those fits. In that stage the geometric
atypicality penalty is the negative log prior density (up to a constant multiplier and
additive constant) of being in a population of s-reps, given by the Mahalanobis dis-
tance function also determined from the statistical analysis. In sections 5.2 and 5.3
we describe how to compute a set of eigenmodes vi of s-reps and associated princi-
pal variances σ2

i , using the actual abstract space in which an s-rep falls. Any s-rep
in that population is designated by a tuple of scores α of the respective eigenmodes,
and ∑i(α

2
i /σ2

i ) forms the Mahalanobis distance of that s-rep.
The fifth, spoke, stage is just like the third stage, but on and relative to the results

of the fourth stage.
In all of the stages conjugate gradient optimization of the objective function is

applied.
Fig. 4 shows some sample hippocampus fits by this method, as described in sec-

tion 6.

Fig. 4 S-reps fitted to 9 of the 62 hippocampi used for the statistical analysis (see section 6)
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3.2 Achieving correspondence of spoke vectors

The previous work on achieving correspondence in training populations of anatomic
object models has involved shifting points on object boundaries in point-distribution
models (PDMs) [3, 20] [5]. We find the most attractive method is that of [3, 20],
which minimizes a sum of two entropy terms: H(z)−α ∑i H(xi). The first term
measures the tightness of the probability distribution on the representation entities,
here possibly including not only the boundary points but also derived values such
as curvature. The second term sums negatives of entropies over the training cases,
with each entropy measuring the uniformity of the distribution of the points on the
respective object boundary. We are in the process of extending this method to spoke
correspondences. In our case the representation entities are spokes, and the entropy
possibly includes not only skeletal sheet curvatures (eigenvalues of the shape oper-
ator at spoke tails) but also spoke direction curvatures (eigenvalues of the Srad or SE
operators of spokes). Also, the uniformity measurement must be of spokes within
the object volume.

However, this method has not been fully implemented at the time this paper is
written. Thus the following statistics are based on fits whose correspondence come
from common shape-based penalties used for fitting the training cases and the com-
mon shape space in which they fall before refinement by the final spoke stage.

4 The abstract space of s-reps and common configurations of
s-rep families in that space

4.1 The abstract space of s-reps

Let each s-rep mk in a training population consist of n spoke vectors {(pi,ri,Ui)|
i = 1,2, . . . ,n} that correspond across the population. The set {pi} of points on each
training discrete s-rep’s skeletal locus form a PDM (point distribution model) that
can be centered so that its center of gravity is the origin. Also, the result can be
scaled by a factor making the sum of the squared distances of the points to the ori-
gins equal to unity. Thereby each PDM is describable by a scaling term represented
by the log of its scale factor γ and a tuple of scaled, centered spoke tail points that
abstractly live on the unit 3n−4 dimensional sphere S3n−4.

Each spoke direction Ui abstractly lives on the unit 2-sphere. Each logri value,
as well as logγ , abstractly live in Euclidean space. Thus a discrete s-rep lives in
Rn+1× S3n−4× (S2)n, i.e., the Cartesian product of n+ 2 manifolds, one of which
is Euclidean and all of the rest of which are spheres. If the number of training cases
N is less than 3n−4, the space of the scaled, centered spoke tails is restricted to the
intersection of S3n−4 with the Euclidean space of dimension N−1 passing through
the center of S3n−4, i.e., in SN−1. Also in that case, the n radii live in RN−1. In the
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experiment on hippocampi reported in section 5, N = 62 and n = 66. Thus each
hippocampus s-rep is a point in the composite space R62×S61× (S2)66.

4.2 Families of s-rep components on their spheres

The statistical analysis method we will describe in section 5 involves includes anal-
ysis on each of the here, 67 component spherical spaces, then compositing the ana-
lyzed information with one another and with the Euclidean space data, and analyz-
ing the composited data. Therefore, it is of interest to consider how the s-rep data
points distribute themselves on each sphere.

Certain basic transformations of the objects can be expected: global rigid rota-
tions, rotational folding about an axis, and twisting about an axis. We have shown
[24] the following behaviors of the spoke-direction points on S2 under these trans-
formations. For each transformation each spoke moves on a small circle on S2 about
the rotational axis of the transformation; different spokes move on different small
circles, but all the circles share the same axis. In rotational folding and twisting
different spoke-direction points rotate in opposite directions as the fold or twist pro-
gresses.

Fig. 5 Data points for an s-
rep spoke in 62 hippocampi
(see section 6)

Also, for rigid rotation the points on S3n−4 or SN−1

(here S61), each describing the tuple of skeletal points
for a separate training s-rep, move on a small circle (1-
sphere).

We have experimentally confirmed (see Fig. 5) the rel-
evance of these ideas, by observing that real data s-rep
spokes tend to arrange themselves near small circles.

We will now examine methods for statistically analyz-
ing such data on a d-dimensional sphere in a PCA-like
fashion, to describe the data by a suitable notion of mean
and a shape space formed from a limited number of eigenmodes of variation.

5 Training probability distributions in populations of discrete
s-reps

5.1 Previous methods for analyzing data on a sphere

To understand the methods we will describe, it is useful to describe two approaches
to PCA in a d-dimensional Euclidean space. The two approaches are called “for-
ward” and “backward” according to the order in which the dimensions are analyzed.
In a Euclidean space the two approaches are equivalent, but on spheres (and indeed
any curved space) they can give far from the same results.
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In the forward approach, the mean is computed as the 0-dimensional space
(point) best fitting the d-dimensional data. Then the first principal component is
computed as the 1-dimensional space (line) best fitting the d-dimensional data. Then
the second principal component is computed by first finding the 2-dimensional space
(plane) best fitting the d-dimensional data and then taking the direction in that plane
orthogonal to the first component. And so on. The analysis proceeds from dimension
0 to 1 to 2 to ... to d−1. At each step the fit is to the d-dimensional data.

The backward approach begins by fitting the best hyperplane of dimension d−1
to the d-dimensional data. Then the data is geodesically (orthogonally) projected
onto this hyperplane. Next the fit of a hyperplane of dimension d− 2 is made to
this projected data. And then the data from the hyperplane of dimension d− 1 is
projected onto this hyperplane of dimension d−2. And so on, until we have a line
fitted to the data that has been projected on a plane and we project the data from
the plane onto the line. Finally, the mean is the 0-dimensional best fit to the data on
the line. In this method the fit at the kth step is to the data projected onto a space of
dimension d− k+1.

In PCA each training point can be expressed as the mean plus a weighted sum of
the d eigenmodes. The weights are called scores. The score of eigenmode d−k+1,
k = 1,2, . . . ,d for that training point is the signed projection distance of that data
point from the space of dimension d− k+1 to the space of dimension d− k.

5.1.1 Principal Geodesic Analysis

The method we had previously used to analyze m-reps (s-reps with equal-length
spokes at common spoke tails) was the Principal Geodesic Analysis (PGA) method
of Fletcher [9]. This method is a forward approach. It begins with computing the
intrinsic forward Fréchet mean on each component, spherical and Euclidean, in the
composite space. The mean on a sphere is the point on the sphere whose sum of
squared geodesic distances to the data points is minimum. The intrinsic Fréchet
mean is a forward mean because the best zero-dimensional approximation to the
data, the mean, is computed relative to the full d-dimensional sphere.

Fig. 6 Data clustered on
a sphere

Given this mean, the form of PGA that we use moves
the data from its manifold onto a tangent hyperplane at the
mean with a Euclidean metric determined by keeping direc-
tions and the condition that every point on the sphere has the
same Euclidean distance to the mean on the tangent hyper-
plane as its geodesic spherical distance to the mean on the
sphere. On the data on this tangent plane the method carries
out PCA, and its eigenvectors are mapped back to the orig-
inal sphere, yielding geodesics through the mean. Strictly

speaking, the method is applied to the composite space, not sphere by sphere, but it
could be applied sphere by sphere.

This method works very well when the data cluster on each of the composite
spheres (and the Euclidean space in the composite) because then data projected on
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the tangent plane represents the original data well (Fig. 6). However, in our case the
data frequently live on small circles that are far from the pole, whereas the mean
may be found at the pole. It is then not surprising that PGA will not be optimal.

5.1.2 GPCA: Geodesics with the Mean on the First Geodesic

Huckemann et al. [12, 13] proposed a method called geodesic principal component
analysis (GPCA) which inspired our final method by having an important backward
component. They realized that the Fréchet mean may be far from the best fitting
great circle. Hence, if the data lives on or near a circle on a sphere, the mean should
be computed on that circle after projection of the data onto it. Their method found
the best fitting geodesic (great) circle on the sphere, projected the data onto that,
and found the Fréchet mean on that great circle of the projected points. This is a
backward mean, since it computed after projection from the original d-space onto a
1-dimensional subspace.

The method of Huckemann et al. on a d-sphere then went on to compute principal
geodesic circles through the mean in a forward fashion, in a way quite similar to
PCA, albeit on a sphere. Its weakness for our data comes from two problems. First,
it fits great circles, whereas our data live near small circles. Second, it is backward
only at the first step, whereas the fully backward method of Jung [14] described next
appears superior.

5.1.3 Composite Principal Nested Spheres

A method better recognizing the loci along which the s-reps tend naturally to vary
is the Composite Principal Nested Spheres (CPNS) method of [14]. It consists of
1) component by component estimation of principal modes of each of the spherical
manifolds separately, each producing scores that are suitable for Euclidean analy-
sis; then 2) compositing those analyses with one another and the Euclidean data,
followed by PCA on the result.

5.2 Training probability distributions on s-rep components living
on spheres: Principal Nested Spheres

We begin by describing the principal nested spheres (PNS) approach that is applied
to the data on each sphere separately. This method has already been described in
[14]. As suggested, the approach is backwards analysis, and at each step the best fit-
ting subsphere of one dimension lower is fit, irrespective of whether that subsphere
is a great or small subsphere.

The approach begins with the data on the d-dimensional sphere. The best sub-
sphere of d − 1 dimensions is fit by an analytical computation. As illustrated in
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Fig. 7 Computation of subsphere, projection, and scores in Principal Nested Spheres

Fig. 7, the result is formed by (and recorded as) the pole (axis) position w1 of the
subsphere on the d-sphere and its latitude (angle from the pole) ψ1. Then it projects
the data onto the subsphere of dimension d− 1. The process begins anew, finding
the (d−2)-dimensional subsphere best fitting the data that has been projected onto
the (d− 1)-dimensional sphere. The process repeats itself until a 1-sphere (a not
necessarily great circle) with points on it has been arrived at. The final step is to find
the mean (best-fitting 0-sphere) as the best fitting point to (geodesic mean of) the
data points that have been projected onto the circle.

The mean is successively projected forward through the dimensions 2,3, . . . ,d
using the subsphere-to-sphere transformations that have been recorded. The result-
ing point on the d-sphere gives the place in the data space which is the backwards
mean of the shape component that was analyzed on this sphere.

As with PCA, we record the score of the jth data point relative to the projection of
the subsphere of dimension d−k+1, k = 1,2, . . . ,d, to the subsphere of dimension
d−k as the signed projection distance zd−k+1, j of that data point between those two
spheres (see Fig. 7). The random variable zd−k+1,· is a zero-mean variable that can be
understood as being in Euclidean space. Thus, the d×N array Z with elements k, j
being zd−k+1, j represents the Euclideanized, 0-mean distribution of the respective
shape component of the data on the d-sphere.

5.3 Compositing component distributions into an overall
probability distribution

In our method of analysis of CPNS the distribution of the 62-case s-rep data on
each of the component spheres is analyzed by PNS. The compositing approach has
already been described in [15]; here we detail it for analysis of s-reps. In that case,
with 67 spheres, this yields 67 Z arrays. One of them (for the spoke tail points)
is 61× 62 and the other 66 (for the spoke directions) are 2× 62. We must now
account for the correlations between the various s-rep components, including both
those that live on spheres and those that live in a Euclidean space. To prepare for
that, for each s-rep the Euclidean components, k = 1,2, . . . ,67, each of the form log
length or log scale factor, must each have their mean computed (in the ordinary way
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of summing the entries across the data items and dividing by the number of entries,
62) and then subtracting that mean from each data item’s corresponding component.
(Strictly speaking, that data lives in a 62-dimensional space, but the SVD analysis
to follow is insensitive to using the original 67 dimensions.) Call the result of this
the 67×62 array ZEuclidean.

Next each Z array row must be made commensurate; we give each entry the units
of the object boundary offset produced by any row entry. This is accomplished by

1. multiplying the two rows giving z entries for each of the 66 spoke directions by
the average of the length of that spoke over the training cases;

2. multiplying the n (66) rows giving entries giving a mean-subtracted log spoke
length by the average of the length of that spoke over the training cases;

3. multiplying the N−1 (61) rows giving z entries for the scaled and centered me-
dial point tuple, as well as the row giving the log of the scale factor, by the
geometric mean of the point tuple scale factors over the training cases.

We produce a zero-mean Euclidean representation of our data by piling all of
these scaled Z arrays (67 from spherical analysis and 1 from Euclidean analysis)
on top of one another, producing the 260× 62 array Zcomp (Fig. 8), to which the
same analysis as is done in conventional PCA can be applied. By this analysis,
SVD (singular value decomposition) on Zcomp yields a list of eigenvectors (principal
directons) vi and eigenvalues (principal variances) σ2

i . Together with the backward
means for each of the spheres and the mean of the Euclidean variables, this is the
PCA-like result reflecting our understanding that s-reps live on the Cartesian product
of 67 spheres and a Euclidean space.

Fig. 8 Left: the composite array Zcomp before row scaling for N s-reps. * indicates that the vari-
able’s row mean has been subtracted. Right: the row scale factors.
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The CPNS mean is formed by compositing the backward means from each of the
component spheres and the Euclidean mean. Each component mean is a point on
its respective sphere or Euclidean space. The mean s-rep is achieved by composit-
ing these points into spoke directions, spoke tail points, and spoke lengths. Unlike
the Euclidean mean or the forward intrinsic mean, the spherical components of the
CPNS mean live not only on their spheres but on all the best fitting subspheres. It
therefore can be expected that the CPNS mean is more representative of the training
shapes than any of the forward means.

From the CPNS analysis, we can choose a number of eigenmodes that captures
a desired fraction of the total variance. This forms a shape space for s-reps as im-
plied by the training cases. Every s-rep in the shape space is given by a tuple α of
scores of the eigenmodes, with associated Mahalanobis distance Σi(α

2
i /σ2

i ). Given
α , one can form the vector Σiαivi and then apply the row scale factors computed
in preparing for the SVD. The entries in the resulting column vector can be divided
into the tuples corresponding to each s-rep component, just as the columns in the
array Zcomp were divided. Each component will have its value unscaled by the row
scale factors previously discussed. The Euclidean components are then ready for
adding their mean. Each group of components from a spherical space is ready for
projection into its successive spherical spaces represented by the latitude angles ψi
and polar directions wi, beginning with the backwards mean for that sphere. Com-
positing the results on each of the 68 spaces into spoke directions, spoke tails, and
spoke lengths yields an s-rep that can be displayed or used to provide s-rep-relative
coordinates for the points in the image space in which an s-rep was originally fit.

The results of a CPNS analysis on hippocampi, some of which were illustrated
in Fig. 4, are described in the following section.

6 Analyses of populations of training objects

We analyze 62 left hippocampi segmented from MR images. These are from control
(normal) individuals in a study of schizophrenia [26]. Each had an initial model that
had been fit years ago using an earlier version of the first three stages of the s-rep
fitting program; these fits were neither tight with the object boundary nor did they
satisfy the spoke-to-boundary orthogonality and crest fitting objectives. These initial
models were each translationally, rotationally, and scale aligned to their distance
functions, and the resulting models were fit using the geometric (atom-by-atom and
spoke) stages described as the second and third stages in section 3.1.2. Our objective
was to compare fitting using CPNS followed by statistical analysis via CPNS with
fitting using PGA followed by statistical analysis via PGA.

Fifty of the third-stage fits were chosen as satisfactory, and this set was dealt
with in both ways. Fifteen eigennmodes were chosen from each set as the dominant
eigenmodes. The result was two shape spaces, one with a mean and eigenmodes
based on PGA on the 50 fits and one with a mean and eigenmodes based on CPNS of
the same 50 fits. Following this analysis, two applications, one PGA-based and one
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CPNS-based, of the fourth (shape space) and fifth (spoke) stages (see section 3.1.2)
were applied to produce the two sets of fitted s-reps that we wished to compare. In
each application, each of the 62 hippocampi was initialized by the mean appropriate
for that set, and it was first translated, rotated, and scaled into the hippocampus
distance image to be fit. That result was taken as the initialization of an optimization
over the corresponding shape space; the spoke optimization of the fifth stage was
applied to the result. These fits seemed generally satisfactory for all 62 hippocampi.
Let us refer to the results as the PGA-based fits and the CPNS-based fits.

CPNS analysis was applied to the CPNS-based fits, and PGA was applied to the
PGA-based fits. In the following we compare the eigenvalue plots, the means, and
the eigenmodes between these two analyses.

In both analyses the first mode of variation dominated, and it was largely uniform
scaling. It formed 70% of the total variance in the CPNS analyis and 90% of the to-
tal variance in the PGA analysis. This is consistent with a longstanding approach
in neuroimage analysis of focusing on hippocampus volume as a discriminative pa-
rameter. Removing this source of variation from both the eigenvalue list and the
total variance in the corresponding analysis yielded the eigenvalue and cumulative
eigenvalue plots shown in Fig. 9. There is an obvious compression to the left of the
eigenvalues in the CPNS plot relative to those in the PGA plot. This is quantified
by looking at how many eigenmodes were necessary to achieve 90% of the remain-
ing variance. The CPNS-based fitting and analysis requires only 7 additional modes
to achieve 90% (thus 97% of the total variance when the first mode is included),
whereas the PGA-based fitting and analysis requires 14 additional modes to achieve
90%. We also notice that, whereas the fitting after the first three stages, i.e., the
geometry-based stages, produced analyses by either PGA or CPNS that required 20
modes each to reach 90% of the variance in modes 1 on, the amount of fitting-based
noise produced by the stage optimizing over the statistical shape space followed by
spoke stage refinement is so lessened that only 8 modes (the first, scaling mode and
7 more) are now necessary to reach 97% of the variance in modes 1 on.

Fig. 9 Eigenvalues (bars) and cumulative eigenvalue (curve) plots as percentage of total variance
for CPNS (left, requiring 7 modes for 90% of variance) and for PGA (right, requiring 14 modes
for 90% of variance) after removal of the first mode.
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Fig. 10 Implied bound-
aries of CPNS (cyan) and
PGA (yellow) means of
the 62 left hippocampi of
normal individuals

Now we compare the CPNS-based backward mean s-rep
to the PGA-based forward mean s-rep. Both means look like
a hippocampus, but as seen in Fig. 10, the CPNS mean is
longer, related to the fact that the PGA-based fits were nois-
ier near the tail and head of the hippocampus.

Finally, we compare the two analyses in terms of the
shape changes shown by their eigenmodes. Because the
contrast is too complex to show here, we summarize what
we have observed. Beyond the first, largely scaling, eigen-
mode, none of the following 4 eigenmodes from the PGA
set qualitatively match any of the following 4 eigenmodes
from the CPNS set, and vice versa. Roughly, the CPNS
eigenmodes seem to capture more in the way of bendings
and twistings, and the PGA eigenmodes seem to capture more in the way of rota-
tions and small variations in eccentricity. We suggest that the reason is that CPNS
by its design is more sensitive to changes in local directions (e.g., of spokes), so,
relative to PGA, its preliminary shape space enables more efficient modeling of
variations of that type. Moreover, its use in the final statistical analysis senses those
variations more efficiently.

7 Extensions and discussion

The method of composite principal nested spheres applies to any data that are best
analyzed as a composite of components lying on spheres and possibly including
Euclidean components. The analyses of such data done so far have suggested that
CPNS can provide more efficient analysis (fewer eigenmodes), stabler s-rep fitting,
and possibly more information about twisting and bending changes than PGA and
other forward methods. We have seen that fitting a geometric model, here an s-rep,
to object segmentations is significantly improved by the use of a shape space based
on CPNS-based analysis on preliminary fittings; the improvement is both in terms
of quality of fit and in terms of making a second statistical analysis on the models
informative.

Shape analysis via CPNS extends beyond s-reps to essentially every other repre-
sentation of shape. Shape inherently involves directions and curvatures (derivatives
on directions). As a result, it can be expected that CPNS will provide similar ad-
vantages when applied to other representations of shape. The following list some
candidate representations suitable for CPNS analysis.

• Point distribution models (PDMs), made of a large tuple of boundary (and pos-
sibly other) points. On 10 lung PDMs for 10 phases of a patient’s respiration,
CPNS required only required 1-2 eigenmodes vs. 3 for PCA. As with s-reps,
CPNS required fewer modes than the forward method, here PCA.

• Point and normal distribution models: i.e., boundary point PDMs with a bound-
ary normal supplied with each point
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• Quasi-tube s-reps
• Branching objects
• Multi-object complexes
• Warps, i.e., displacement vector images or time-indexed velocity vector images

representing diffeomorphisms or other invertible deformations.
• Fiber conglomerates, such as those studied by [23].
• Tensor images
• Covariance matrices

The method of s-rep fitting followed by correspondence improvement and CPNS
analysis requires a variety of improvements, listed in the following, together with
testing on many more shape populations. Once verified, it seems suitable for appli-
cations in segmentation by posterior optimization [27, Chapter 9], hypothesis testing
[29], and classification [25].

Improvements in s-rep fitting needed include spoke interpolations at the crest
using the Srad and SE matrices [11], fittings into multi-crest distance images, and
generalization of entropy-based correspondence optimization [3] to spokes.
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