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ABSTRACT

Many neuroimaging studies are applied to primates as pathologies and environmental exposures can be studied
in well-controlled settings and environment. In this work, we present a framework for both the semi-automatic
creation of a rhesus monkey atlas and a fully automatic segmentation of brain tissue and lobar parcellation. We
determine the atlas from training images by iterative, joint deformable registration into an unbiased average
image. On this atlas, probabilistic tissue maps and a lobar parcellation. The atlas is then applied via affine,
followed by deformable registration. The affinely transformed atlas is employed for a joint T1/T2 based tissue
classification. The deformed atlas parcellation masks the tissue segmentations to define the parcellation. Other
regional definitions on the atlas can also straightforwardly be used as segmentation.

We successfully built average atlas images for the T1 and T2 datasets using a developmental training datasets
of 18 cases aged 16-34 months. The atlas clearly exhibits an enhanced signal-to-noise ratio compared to the
original images. The results further show that the cortical folding variability in our data is highly limited. Our
segmentation and parcellation procedure was successfully re-applied to all training images, as well as applied
to over 100 additional images. The deformable registration was able to identify corresponding cortical sulcal
borders accurately.

Even though the individual methods used in this segmentation framework have been applied before on
human data, their combination is novel, as is their adaptation and application to rhesus monkey MRI data. The
reduced variability present in the primate data results in a segmentation pipeline that exhibits high stability and
anatomical accuracy.

1. INTRODUCTION

Neuroimaging studies are increasingly applied to primates as pathologies and environmental exposures can be
studied in well-controlled settings and environment. In our own current studies, we are investigating the neu-
rological brain development in rhesus monkeys (Macaca mulatta) in regard to various adverse exposure models
such as prenatal, intrauterine exposure to auditory stress or maternal flu-infection. The employed measurements
in those studies include brain tissue volume, lobar parcellation, as well structural segmentations. In this paper
we present a framework that provides a solution to all of the these measurements.

Another line of primate brain analysis has been introduced and promoted by Van Essen et al,1–6 which focuses
on the surface based analysis of the macaque cerebral cortex and its parcellation into cognitive areas. This type
of analysis is complementary to ours as it allows the direct investigation of cortical surface parcellation. On
the other hand our methods offer cortical properties (such as cortical thickness), white matter parcellation, and
subcortical structures properties. These measurements can be employed in combination with the surface based
methodology to compare local cortical properties, such as cortical thickness.7,8

In this article, we present a novel framework for the atlas based tissue segmentation, followed by lobar
parcellation. In the next section, the different steps in our framework are detailed, starting with the generation
of the atlas, as well as the application of the atlas to rhesus monkey datasets in a series of steps based on tools
originally developed for use with human MRI studies.

Email: martin styner@ieee.org, WWW: www.ia.unc.edu



Figure 1. Illustration of brain segmentation with corresponding skin segmentation of an example MRI dataset in our
studies of rhesus monkey brain development (both skin and brain surface are transparent).

2. METHODS

We have developed a framework for both the semi-automatically creation of an rhesus monkey brain atlas
and automatic atlas based brain segmentation. The framework consists of 2 main steps: atlas building and
application. In the atlas building step, we determine an unbiased atlas image from a set of training images
after a series of preprocessing steps. On this atlas we define a probabilistic tissue segmentation, as well as a
lobar parcellation. Using existing tools developed for human MRI use, we apply the atlas to determine tissue
segmentations and lobar parcellation.

2.1. Subjects and Datasets

In our target studies we are studying brain development in rhesus monkeys using a single atlas. For the compu-
tation of this atlas we chose a set of eighteen healthy control subjects (Macaca mulatta)in the ages from 16 to 34
months. The atlas based segmentation procedure was then applied to both the training data as well as to two
additional intrauterine exposure studies with a total of over 50 additional subjects (ages 9 to 38 months). All sub-
jects have been generated from a large 500+ monkey-breeding colony at the Harlow Primate Laboratory (HPL),
with known history extending back five generations and over 25 years. Each monkey was scanned on a 3 Tesla
GE scanner (SIGNA Excite) with both a high-resolution 3D-SPGR sequence (0.2344x0.2344x0.0.497976mm3)
and T2-weighted spin-echo sequence (0.2734x0.2734x1.5mm).

2.2. Atlas Building

As the first step of our segmentation framework, we determine an atlas image as the unbiased average image from
a set of training images by iterative, joint deformable registration of all training datasets into a single unbiased
average image9 (see Fig 2) that has minimal deformation to all training images.

Prior to this deformable registration, the training images need to be affinely registered, skull stripped and
intensity calibrated. For this purpose, in a first stage we randomly selected a training case as template and semi-
automatically determined its skull-strip mask using the ITK-SNAP tool.10 All other cases were then affinely
registered11 to this template and skull-stripped with the slightly dilated mask of the template. Using pairwise
histogram quantiles matching, all images were intensity calibrated to the template. All calibrated, skull-stripped
images were then voxel-wise averaged to form the initial affine average image. This affine average image was
then chosen as the template and the registration, skull stripping and intensity calibration steps were repeated



Figure 2. Left: Scheme of unbiased, average atlas image computation by jointly deforming a series of training images
into their average image. Right: Computed atlas (bottom) and one of the 18 original training images at similar slices.
The gain in signal to noise is clearly visible.

with the affine average template. As the final step of the atlas image computation, the unbiased deformable
atlas procedure was applied to compute the final template atlas image. This atlas image represents the unbiased
average that has overall minimal deformation to all training images.9 This step was performed both for the T1
weighted and T2 weighted images, where the T2 affine average template was additionally registered to the T1
weighted image prior to the deformable atlas computation.

On this atlas image, we defined the probabilistic maps for white matter(WM), gray matter(GM) and cerebro-
spinal fluid(CSF), as well traced manually the definitions of the lobar subdivisions.

The three tissue probabilistic maps were initialized with binary segmentations from manually selected thresh-
olds: white and gray matter segmentations on the T1 image, cerebro-spinal fluid on the T2 image. These seg-
mentations were manually edited by an expert (RK). The segmentations were slightly smoothed using a Gaussian
kernel of 0.4mm variance and propagated back to the 18 affinely aligned training cases via the deformation fields
computed in the atlas building. After this back propagation, the tissue segmentations were linearly averaged to
form the probabilistic tissue maps. The probability maps were locally normalized to maximally 1 and a rejection
class was created by subtracting the sum of all three tissue probabilities from 1.

The above described atlas image computation is based on images that have not been corrected for intensity
inhomogeneity artifacts. The tissue segmentation procedure described in the next section also corrects such
artifacts and thus we applied that tissue segmentation procedure to all affinely aligned training images. Both
the deformable atlas image, as well as the probabilistic tissue maps were then recomputed. The final atlas image
is therefore based on affinely aligned, skull stripped, intensity calibrated and intensity inhomogeneity corrected
training images.

As the next step, a lobar parcellation was determined on the tissue class segmentation of the atlas by relabeling
the tissues into lobes using the ITK-SNAP segmentation tool10 for the right lobes only (rater RK). These right
hemispheric definitions were mirrored at the midsagittal plane using a simple axial flip operation followed by
rigid registration to produce the initial left hemispheric lobar parcellation. The initial left parcellations were
then corrected using manual relabeling (RK). The full parcellation consists of separate definitions for the left and
right hemisphere for the subcortical, frontal, prefrontal, cingulate, parietal, occipital, auditory, visual and limbic
temporal lobes, as well as the brainstem, corpus callosum and cerebellum (see Fig. 4). The final parcellation
is determined by an iterative dilation in order to fill any unlabeled areas up to 5 voxels away from the initial
parcellation. As described in the next section, this lobar parcellation serves as a mask to full brain tissue
segmentations.



2.3. Brain Tissue Classification and Parcellation

Automatized brain tissue classification is a common task in human neuroimaging and several solutions have
been proposed (e.g.12–15). In our framework we employ our itkEMS tool,15,16 which computes a probabilistic
atlas based automatic tissue segmentation via an Expectation-Maximation scheme. This tool further performs
an intensity inhomogeneity correction of the image that removes gradual variations in the image intensities
mainly due to RF coil imperfections. The output consists of the corrected grayscale image along with binary and
probabilistic maps of the tissue classes of white matter (WM), gray matter(GM), cerebrospinal fluid tissue(CSF).
The binary tissue segmentations also enable a straightforward skull stripping by masking out all non-brain-tissue
voxels.

The following parcellation process is computed via deformable registration of the atlas to the current image
using the same fluid, diffeomophic, deformable registration process employed also in the atlas computation. The
computed deformation fields are then applied to the parcellation or any other region of interest definition on the
atlas.

The deformable registration process that is central to both the atlas and parcellation computation, matches
directly the image intensities. Thus an appropriate intensity calibration, additional to a prior intensity inho-
mogeneity correction, is crucial for the computation of a high quality average image and segmentation result.
Our intensity calibration method transforms all training images into the same intensity range via a spline based
histogram transfer function that matches the mean intensities of the tissue classes of WM, GM and CSF, as well
as the overall range of the image intensities. The mean tissue intensities are estimated using the probabilistic
segmentation maps computed during the tissue classification.

In detail, our segmentation framework performs the following steps are for the computation of each individual
case. First, the atlas image is affinely registered to the cases T1 image. The affine transformation is applied
to the atlas probability maps and parcellation. The transformed atlas is employed in our tissue classification
tool itkEMS in order to compute probabilistic and hard tissue segmentations from jointly the T1 and T2 images
(see Fig. 1). This step further corrects RF-coil induced intensity non-uniformity, as well as performs brain
stripping and is followed by image calibration to the atlas. Via fluid, deformable registration the transformed
atlas is registered with the intensity calibrated, brain stripped images. The computed deformation field is
applied to the affine transformed parcellations. These deformed parcellations mask the previously computed
tissue segmentations to define the parcellation on the case (see Fig. 2).

Figure 3. Visualization of a representative example of the tissue segmentation. Left: overlaid ontop of the smoothed,
intensity corrected imag. Middle: 3D visualization of the white matter (red) and gray matter surface (green, transparent).
Right: Medial view of segmentation after removal of right hemisphere.

3. RESULTS

We successfully built average atlas images for the T1 and T2 datasets using all 18 training datasets. The
atlases clearly exhibit an enhanced signal-to-noise ratio compared to the original images (see Fig2) due to the



Figure 4. Visualization of the parcellation definition on a representative example of the computation. First row: gray
matter parcellation. Second row: white matter structures. Third row: MR images overlaid with gray matter (left/middle)
and white matter (right) parcellation. Fourth row: 3D visualizations corresponding to third row.



compaction of the corresponding intensity information from all 18 images. Furthermore, the clear definition of
the cortical folds in the atlas shows that the cortical folding variability in our training set is small and highly
reduced compared to human cortical folding.

The tissue segmentation was then applied to all images (see Fig. 3 for a representative case). Next, the atlas
parcellation was warped into each case and the tissue segmentations were masked with the warped parcellation.
Figure 4 shows the parcellated white and gray matter tissues for a representative case. The 3D renderings show
how well the identification of the parcellations agrees with the sulcal locations. Especially the white matter
visualization shows that the parcellation borders are located in the middle of the correct sulci.

Using the same framework, we can define regions of interest outlining the major subcortical structures on the
atlas and compute the segmentation of the individual datasets (see Fig. 5A). The cortical parcellations can also
be used in combination with cortical thickness measurements based on the automatic tissue segmentations (see
Fig. 5B) to analyze lobar histograms of cortical thickness changes.

Even though the original atlas was build from a training population of 16-34 months of age, we have applied
it successfully on datasets as young as 9 months of age. In total over 50 additional datasets have been segmented
with the framework presented here without a single failure.

A: Subcortical Structure Segmentation

B: Cortical Thickness Analysis

Figure 5. A: Illustration of subcortical definition on the atlas (Left: Manual definition using ITK-SNAP tool, Right:
3D Rendering with pial GM surface). B: Example of cortical thickness computation based on the automatic tissue
segmentation.



4. CONCLUSION

We have presented in this work the generation and application of a rhesus monkey brain atlas for tissue clas-
sification and regional parcellation. Neither fully automatic brain tissue classification and nor automatic lobar
parcellation and structural segmentation has yet been published for the analysis of rhesus monkey data.

The computed atlas image shows that the cortical variability in our training data is highly limited. The
deformable registration is able to identify corresponding cortical gyri accurately in the atlas, its training datasets
as well as additional unrelated datasets.

The individual methods used in the segmentation pipeline have been applied before on human data, but
their combination is novel, as is their adaptation and application to rhesus monkey MRI data. Furthermore, we
generated a novel, high-resolution rhesus monkey atlas with high signal-to-noise ratio. The atlas is appropriate
for the intermediate developmental stages up to early adult age.
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