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ABSTRACT

Shape analysis has become of increasing interest to the neuroimaging community due to its potential to pre-
cisely locate morphological changes between healthy and pathological structures. This manuscript presents a
comprehensive set of tools for the computation of 3D structural statistical shape analysis. It has been applied
in several studies on brain morphometry, but can potentially be employed in other 3D shape problems. Its main
limitations is the necessity of spherical topology.

The input of the proposed shape analysis is a set of binary segmentation of a single brain structure, such
as the hippocampus or caudate. These segmentations are converted into a corresponding spherical harmonic
description (SPHARM), which is then sampled into a triangulated surfaces (SPHARM-PDM). After alignment,
differences between groups of surfaces are computed using the Hotelling T 2 two sample metric. Statistical p-
values, both raw and corrected for multiple comparisons, result in significance maps. Additional visualization
of the group tests are provided via mean difference magnitude and vector maps, as well as maps of the group
covariance information.

The correction for multiple comparisons is performed via two separate methods that each have a distinct
view of the problem. The first one aims to control the family-wise error rate (FWER) or false-positives via the
extrema histogram of non-parametric permutations. The second method controls the false discovery rate and
results in a less conservative estimate of the false-negatives.

Prior versions of this shape analysis framework have been applied already to clinical studies on hippocampus
and lateral ventricle shape in adult schizophrenics. The novelty of this submission is the use of the Hotelling T2
two-sample group difference metric for the computation of a template free statistical shape analysis. Template
free group testing allowed this framework to become independent of any template choice, as well as it improved
the sensitivity of our method considerably. In addition to our existing correction methodology for the multiple
comparison problem using non-parametric permutation tests, we have extended the testing framework to include
False Discovery Rate (FDR). FDR provides a significance correction with higher sensitivity while allowing a
expected minimal amount of false-positives compared to our prior testing scheme.

1. INTRODUCTION

Quantitative morphologic assessment of individual brain structures is often based on volumetric measurements.
Volume changes are intuitive features as they might explain atrophy or dilation due to illness. On the other hand,
structural changes at specific locations are not sufficiently reflected in volume measurements. Shape analysis
has thus become of increasing interest to the neuroimaging community due to its potential to precisely locate
morphological changes between healthy and pathological structures.

One of the first and most influential research in shape analysis was presented by D’Arcy1 in his ground-
breaking book On Growth and Form. In more recent years, several researchers proposed shape analysis via
deformable registration to a template.2–5 Inter-subject comparisons are made by analyzing the individual de-
formable transformations. This analysis of the transformation fields has to cope with the high dimensionality
of the transformation, the template selection problem and the sensitivity to the initial position. Nevertheless,
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several studies have shown stable shape analysis results. Bookstein6 and Dryden et al7 presented some of the
first mathematical methods for 3D shape analysis based on sampled descriptions. The shape analysis of densely
sampled 3D Point Distribution Models (PDM) and their deformations was first investigated by.8 Inspired by
their experiments, Styner et al9 proposed shape analysis based on a parametric boundary description called
SPHARM (10). The SPHARM shape analysis approach was extended11 to use the implied sampled surface
(SPHARM-PDM), a method also used by Li.12 Pizer and later Styner13,14 and Golland15 proposed shape anal-
ysis on medial shape descriptions in 3D and 2D, respectively. They used a fixed topology sampled model with
implicit correspondence that is fitted to the objects.

This manuscript presents a comprehensive methodology for the computation of 3D structural statistical shape
analysis on the object boundary via SPHARM-PDM (see Figure 1). It has been applied in several studies on
brain morphometry, but can potentially be employed in other 3D shape analysis problems. The main limitations
of our shape analysis methodology is the necessity of spherical topology.

Figure 1. Schematic view of our SPHARM-PDM based shape analysis pipeline.

2. METHODS

This section describes the SPHARM-PDM shape description, the statistical analysis methodology, as well as
issue of alignment and scaling normalization.

In summary, the input of the proposed shape analysis is a set of binary segmentation of a single brain
structure, such as the hippocampus or caudate. These segmentations are first processed to fill any interior holes
and a minimal smoothing operation. The processed binary segmentations are converted to surface meshes, and
a spherical parametrization is computed for the surface meshes using a area-preserving, distortion minimizing
spherical mapping. The SPHARM description is computed from the mesh and its spherical parametrization.
Using the first order ellipsoid from the spherical harmonic coefficients, the spherical parametrizations are aligned
to establish correspondence across all surfaces. The SPHARM description is then sampled into a triangulated
surfaces (SPHARM-PDM) via icosahedron subdivision of the spherical parametrization. These SPHARM-PDM
surfaces are all spatially aligned using rigid Procrustes alignment. Group differences between groups of surfaces
are computed using the standard robust Hotelling T 2 two sample metric. Statistical p-values, both raw and
corrected for multiple comparisons, result in significance maps. Additional visualization of the group tests are
provided via mean difference magnitude and vector maps, as well as maps of the group covariance information.

The correction for multiple comparisons is performed via two separate methods that each have a distinct
view of the problem. The first one aims to control the family-wise error rate (FWER) or false-positives via the
extrema histogram of non-parametric permutations. The second method controls the false discovery rate and
results in a less conservative estimate of the false-negatives.



Figure 2. Left: The SPHARM shape description of a human lateral ventricle shown at 4 different degrees ( 1, 3, 6,
10 harmonics). Middle: Illustration of SPHARM correspondence via alignment of the spherical parametrization using
the first order ellipsoid meridian and equator. Right: Set of 6 caudate structures with correspondence shown at selected
locations via colored spheres.

2.1. SPHARM-PDM

In summary, the SPHARM description is a hierarchical, global, multi-scale boundary description that can only
represent objects of spherical topology.10 The spherical parameterization is computed via optimizing an equal
area mapping of the 3D voxel mesh onto the sphere and minimizing angular distortions. The basis functions
of the parameterized surface are spherical harmonics. Each individual SPHARM description is composed of a
set of coefficients, weighting the basis functions.16 demonstrated that SPHARM can be used to express shape
deformations. Truncating the spherical harmonic series at different degrees results in object representations at
different levels of detail. SPHARM is a smooth, accurate fine-scale shape representation, given a sufficiently high
representation level. Based on a uniform icosahedron-subdivision of the spherical parameterization, we obtain a
Point Distribution Model (PDM).

2.1.1. SPHARM Correspondence

Correspondence of SPHARM-PDM is determined by normalizing the alignment of the spherical parameterization
to an object-specific frame. In the studies presented in this paper, the normalization is achieved by rotation of
the parameterization, such that the spherical equator, 0◦ and 90◦ longitudes coincide with those of the first order
ellipsoid(see Figure 2). After this parametrization normalization, corresponding surface points across different
objects possess the same parameterization.

We have compared the SPHARM correspondence to other types of correspondences and it compared favourably
to human expert established correspondence.17

2.2. Area-preserving Spherical Mapping

The appropriate parameterization of the points of a surface description is a key problem for correspondence
finding, as well as for an efficient SPHARM representation. Every point i on the surface is to be assigned a
parameter vector (θi, φi) that are located on the unit sphere. A homogeneous distribution of the parameter
space is essential for an efficient decomposition of the surface into SPHARM coefficients. We give here a brief
summary of the surface parameterization procedure proposed by Brechbühler.10

A bijective mapping of the surface to the unit sphere is created, i. e., every point on the surface is mapped
to exactly one point on the sphere, and vice versa. The main idea of the procedure is to start with an initial



Recursive Linear Number of
Level Level Surface Points

1 1 12
2 2 42
3 4 162
4 8 642
5 16 2562

Table 1. Comparison of subdivision levels for recursive and linear subdivision of the icoshedron.

parameterization. This initial parameterization is optimized so that every surface patch gets assigned an area in
parameter space that is proportional to its area in object space. The initial mapping from surface to parameter
space is constructed using discrete Laplace’s equations to solve the corresponding Dirichlet problem. To obtain
a homogeneous distribution of the parameter space over the surface, this initial parameterization is modified in
a constrained optimization procedure considering two criteria:

1. Area preservation: Every object region must map to a region of proportional area in parameter space.

2. Minimal distortion: Every quadrilateral should map to a spherical quadrilateral in parameter space.

Brechbühler establishes constraints for area preservation, while the distortion of the mesh serves as the
objective function during optimization. The optimization solves the resulting system of nonlinear equations by
linearizing them and taking Newton steps.

2.3. Surface Models from SPHARM: SPHARM-PDM

From the SPHARM description we can compute triangulated surfaces by sampling the spherical parameterization
uniformly on the sphere. Equidistant sampling in the parameter space leads to a dense sampling around the
poles (θ = 0, θ = π) and a coarse sampling around the equator (θ = π/2). This fact can be explained by the
poles being mapped to all points having φ = 0 . . . 2π and θ = 0, or θ = π (see also Fig. 2). Using a linear,
uniform icosahedron subdivision shown in Fig. 3, however, we gain a good approximation of a homogeneous
sampling of the spherical parameter space and thus also of the object space. The subdivision is linear in the
number of subdivisions along each edge of the original icosahedron, rather than the commonly used recursive
subdivisions. Any recursive subdivision has a corresponding linear subdivision, but most linear subdivisions have
no corresponding recursive subdivision (see Table 1 and Figure 3).

- - -

Figure 3. Icosahedron subdivision for different levels of sampling. From left to right: Base icosahedron, subdivision
factors 2, 4 and 6.

Using the pre-computed parameter locations (θi, φi) from the icosahedron subdivision, we can compute the
PDM directly from the coefficients, as the parameter locations stay constant for all objects at a given subdivision
level. In our experience the sampling for the surface of brain structures should be chosen between subdivision level



10 (1002 surface points) and 20 (4002 surface points) depending on the complexity of the objects. For example,
hippocampal surfaces are well represented by a subdivision level 10 and caudate surfaces by a subdivision level
15.

2.4. Alignment and Scaling Normalization

Alignment and scaling of the objects are two important issues in shape analysis that are also discussed here.11

In general, we usually chose rigid-body Procrustes alignment (18) followed by no scaling normalization or scaling
inversely to the intra-cranial cavity volume (ICV). For a simple normalization with ICV, the scaling information
would be scalei = ICV

1/3
i . Since shape differences are more easily interpreted in the original unit space (usually

millimeter units) the scale information is divided by the mean over all ICV values: scalei = ICV
1/3
i /µ

1/3
ICV .

This is equivalent of scaling each structure such that its overall head size is normalized to a standard head size.
Commonly both no scaling and ICV scaling are reported in our shape analysis studies: the original scale analysis
represents an unbiased raw analysis, whereas the ICV scale analysis corrects for differences in overall interior
head size and thus approximatively normalizes for gender and age differences. In general both types of analysis
should yield similar patterns of differences and special care needs to be taken if this is not the case.

2.5. Local Testing of Group Mean Difference using Hotelling T 2 metric

Figure 4. Left: Schematic view of testing procedure: A set of features per surface point (shown as colormaps) are
analyzed using uni- or multi-variate statistics, resulting in a raw significance map (bottom) .Right: The raw significance
maps are overly optimistic and need to be corrected to control for the multiple comparison problem. The corrected
significance maps on the other hand are commonly pessimistic estimates.

After shape description, correspondence establishment, alignment and scaling normalization, the next step
in the shape analysis pipeline consists of testing for differences between groups at every surface location (see
Figure 4). This can be done in 2 main fashions:

• Analyzing the magnitude of the local difference to a template: For this option, a template needs to be first
selected, usually this is the common mean of the 2 groups or the mean of separate control group. The
magnitude of the difference is easily understood and results in difference maps for each subject. Also, the
resulting univariate statistical analysis is quite well known and local significance can be easily computed
using the Student t metric. The main disadvantage of this method is the need to select a template, which
introduces an additional bias into the statistical analysis, as well as the possible loss of statistical sensitivity
by compressing the difference information into a simple magnitude measurement. We applied this method
in our earlier studies of hippocampi19 and ventricles.20



• Analyzing the spatial location of each point: For this option, no template is necessary and multivariate
statistics of the (x, y, z) location is necessary. We have chosen to use the Hotelling T 2 two sample difference
metric as a measurement of how 2 groups locally differ from each other. The standard Hotelling T 2 is defined
as T 2 = (µ1 − µ2)′(Σ( 1

n1
+ 1

n2
))−1(µ1 − µ2), where Σ = (Σ1(n1 − 1) + Σ2(n2 − 1))/(n1 + n2 − 2) is the

pooled covariance matrix. An alternative modified Hotelling T 2 metric is less sensitive to group differences
of the covariance matrixes and the number of samples: T 2 = (µ1 −µ2)′(Σ1

1
n1

+ Σ2
1

n2
)−1(µ1 −µ2). All our

current studies are based on this modified Hotelling T 2 metric.

Figure 5. Left: Scheme of P-value computation via permutation tests. The real group difference S0 (e.g. Hotelling T 2) is
compared to that the group differences Sj of random permutations of the group labels. The quantile in the Sj histogram
associated with S0 is the p-value. Right: Example run on test data with 1000 random permutations. On the left the
individual Sj are plotted and on the left the corresponding Sj histogram is shown. The black line indicates the value of
S0.

We then want to test the two groups for differences in the means of the selected difference metric (univariate:
Student t, multivariate: Hotelling T 2) at each spatial location. Permutation tests are a valid and tractable
approach for such an application, as they rely on minimal assumptions and can be applied even when the
assumptions of the parametric approach are untenable. Non-parametric permutation tests are exact, distribution
free and adaptive to underlying correlation patterns in the data. Further, they are conceptually straightforward
and, with recent improvements in computing power, are computationally tractable.

Our null hypothesis is that the distribution of the locations at each spatial element is the same for every
subject regardless of the group. Permutations among the two groups satisfy the exchangeability condition, i.e.
they leave the distribution of the statistic of interest unaltered under the null hypothesis. Given n1 members of
the first group ak, k = 1 . . . n1 and n2 members of the second group bk, k = 1 . . . n2, we can create M ≤

(
n1 + n2

n2

)
permutation samples. A value of M from 20000 and up should yield results that are negligibly different from
using all permutations.21

2.6. Correction for Multiple Comparison

The local shape analysis involves testing from a few to many thousands of hypothesis (one per surface element)
for statistically significant effects. It is thus important to control for the multiple testing problem (see Figure
4), and the most common measure of multiple false positives is the familywise error rate (FWER). The multiple
testing problem has been an active area of research in the functional neuroimaging community. The most widely
used methods in the analysis of neuroimaging data use random field theory2223 and make inferences based
on the maximum distribution. In this framework, a closed form approximation for the tail of the maximum
distribution is available, based on the expected value of the Euler characteristic of the thresholded image.23

However, random field theory relies on many assumptions such as the same parametric distribution at each



spatial location, a point spread function with two derivatives at the origin, sufficient smoothness to justify the
application of the continuous random field theory, and a sufficiently high threshold for the asymptotic results to
be accurate.

In our work, we are employing non-parametric permutation tests and false discovery rate as two alternative
correction methods for the multiple comparison problem.

2.6.1. Minimum over Non-parametric permutation tests

Non-parametric methods deal with the multiple comparisons problem24 and can be applied when the assumptions
of the parametric approach are untenable. Similar methods have been applied in a wide range of functional
imaging applications.25

Details of this method are described in24 and only a summary is provided here. The correction method is
based on computing first the local p-values using permutation tests. The minimum of these p-values across
the surface is then computed for every permutation. The appropriate corrected p-value at level α can then be
obtained by the computing the value at the α-quantile in the histogram of these minimum values. Using the
minimum statistic of the p-values, this method correctly controls for the FWER, or the false positives, but no
control of the false negatives is provided. The resulting corrected local significance values can thus be regarded
as pessimistic estimates akin to a simple Bonferroni correctection.

2.6.2. False Discovery Rate

Additionally to the non-parametric permutation correction, we have also implemented and applied a False
Discovery Rate Estimation (FDR)26,27 method. The innovation of this procedure is that it controls the expected
proportion of false positives only among those tests for which a local significance has been detected. The FDR
method thus allows an expected proportion (usually 5%) of the FDR corrected significance values to be falsely
positive. The correction using FDR provides an interpretable and adaptive criterion with higher power than the
non-parametric permutation tests. FDR is further simple to implement and computationally efficient even for
large datasets.

The FDR correction is computed as follows:27

1. Select the desired FDR bound q, e.g. 5%. This is the maximum proportion of false positives among the
significant tests that you are willing to tolerate (on average).

2. Sort the p-values smallest to largest.

3. Let pq be the p-value for the largest index i of the sorted p-values psort,i ≤ q · i/N , where N is the number
of vertices.

4. Declare all locations with a p-value p ≤ pq significant.

2.7. Output of Statistical Analysis

There are two main types of results from the statistical testing step: a) descriptive group statistics, such as the
mean and covariance information, and b) group mean difference hypothesis testing. The descriptive statistics are
used for quality control, sanity check, as well as these are necessary to make sense of the computed significance
maps (”Is that significant region enlarged in the patient population?”). The significance maps show the regions
of significant difference of the Hotelling T 2 metric with 3 different maps: the raw p-value map, the FDR corrected
p-value map, and the permutation based corrected p-value map. The value of the Hotelling T 2 metric is also
useful to visualize the full range of the effect size.



2.8. Computation Scheme

The general workflow starts from the segmented datasets with binary labels for each structure of interest. The
first preprocessing program extracts a single binary label and applies heuristic methods to ensure the spherical
topology of the segmentation. In the next step, the surface mesh is computed from the segmentation, as well as a
spherical parametrization of this surface mesh via area preserving mapping (see Section 2.2). The SPHARM-PDM
shape representation is then computed. These three steps have to be run on all datasets in a shape analysis
study. Often they are applied in parallel to all datasets in a cluster environment or a multi-CPU processing
server. After all SPHARM-PDM representations have been computed, the statistical testing step computes
the difference maps, the significance maps, as well as the descriptive statistics such as the mean surfaces and
covariance matrixes.

3. RESULTS

The first tests we computed on a schizophrenia study of the hippocampus in order to assess the differences of our
template-free analysis methodology to the prior analysis measuring differences to a template.19 54 schizophrenis
subjects (age: 30.1y (11.9), male gender) and 26 healthy control (age: 31.2y (10.7), male gender) subjects were
analyzed. The groups are matched for age and ethnicity. All subjects were scanned on the same 1.5 T scanner
and with the same protocol (IR-Prepped SPGR, axial, 0.9375x0.9375x1.5mm3).

The hippocampi were analyzed with the analysis framework described in this paper, as well as with the
prior method that consisted of initially computing an correctly group weighted average and then assessing the
univariate signed distance magnitude of each surface to this template.19 The results are visualized in Figure
6. The correlation between the two methods is clearly visible, as well as the gain in statistical sensitivity. The
Hotelling T2 based analysis shows enlarged regions of significance as well as a new larger region of significance
in the hippocampus head.

Figure 6. Statistical maps of example shape analysis study on the hippocampus (schizophrenics vs controls) using the
univariate mean difference of the distance magnitude to a template as a metric (top) or the template free Hotelling T2 on
the location vector of each mesh point. The correction for multiple tests was performed using the pessimistic permutation
based method.

As an additional test study we applied our shape analysis framework to a schizo-typal personality disorder
(SPD) study on the caudate brain structure that was available to us through the NAMIC network.28 The data
consists of structural SPGR MRI datasets from 15 right handed medication-free male SPD patient, as well as



from 14 matched healthy control subjects. Although both left and right hemispheric caudate were outlined on
the MRI data, only the right caudate is presented here as a test study.

The correspondence of the SPHARM-PDM description was visually controlled for all datasets. The descriptive
group statistics (see Figure 7) show that the mean objects of the 2 groups are quite similar. The differences
between the mean are overall small (max at 1.6 millimeter), but most pronounced in the anterior head region,
the superior body region and the posterior tail region ∗. The visualization of the covariance ellipsoids show that
the variability is reduced in the body section compared to the anterior head and especially the posterior tail
section.

Mean Difference Covariance Ellipsoids Significance Maps

Figure 7. Statistics of right caudate analysis. The left visualization shows the mean difference as a colormap from green
(0 mm difference) to red (1.6 mm difference) as well an vectorfield on the overall mean surface mesh. For two regions
with large differences a zoomed view is provided. The middle visualization shows the covariance ellipsoid colored with
the magnitude of the largest ellipsoid axis (axis of largest covariance). The same two zoomed views are provided. The
variance in the first zoom section is markedly reduced compared to the second zoom section.

The results of the mean difference hypothesis tests are visualized in Fiigure 7. The raw significance maps
displays an overly optimistic estimate with the superior body, as well as anterior head region to be significantly
different. The conservative, permutation based correction map provides a pessimistic estimate with only a single
significant region in the anterior head region. The result of the false discovery rate correction is in-between the
raw and the permutation based correction. On one hand, significant parts in the anterior tail section are visible
in the raw significant map, but are not preserved in the FDR corrected map. On the other hand, significant
parts in the superior body as well as the anterior head region are present in the FDR corrected maps. The global
shape difference has a p-value of p = 0.009. Based on these results, a significant shape difference between the
two populations on the right caudate is clearly suggested.

4. CONCLUSION

We have presented a comprehensive, local shape analysis framework for brain structures founded on the SPHARM-
PDM shape representation and local statistical tests. The whole software is available as open source and is
currently in use by several research groups outside of UNC. It has been applied in several studies on brain mor-
phometry at UNC, as well as by several outside collaborators at the Brigham and Womens Hospital (Boston),
GeorgiaTech (Atlanta), University of Illinois (Champaign-Urbana) and several more. The methodology can po-
tentially be employed in 3D shape analysis problems other than brain structure analysis. The main limitation
of our shape analysis is the necessity of spherical topology.

The presented studies illustrate the applicability of our testing framework and the comparison to the prior
template-based method show clear correlation with enhanced sensitivity for the template-free method.

∗The naming of caudate head and tail regions in this section are not based on anatomical labels



The shape analysis framework described in this paper is accessible as part of the UNC NeuroLib library.29

Instructions for the download precompiled executable as well as the compilation process of the open-source UNC
NeuroLib can be found in the tutorial section of the webpage www.ia.unc.edu/dev. The binary distribution
also contains sample data, and sample scripts.

We presented research and software development in progress, and many additional enhancements of the
current tool base are being developed or are planned. These enhancements include the incorporation of subject
covariates, such as age, gender, handedness etc, as well as an user-interface based control tool for the whole
shape analysis.
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