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1 Additional data analysis

In this section, some additional data analyses are discussed, in particular using datasets from

point distribution models.

1.1 Rotationally deformed ellipsoids

We first discuss the procedures of obtaining the raw ellipsoid data. To avoid notational con-

fusion, we denote a random vector by Xij and their observed values by χij, i = 1, . . . , n, j =

1, . . . , K. A point in R3 is described by (x, y, z) ∈ R3 in a fixed Cartesian coordinate system.

The surface of an ellipsoid can be parameterized by

s(u, v) =

x(u, v)

y(u, v)

z(u, v)

 =

 ra sin(v)

rb sin(u) cos(v)

rc cos(u) cos(v)

 , u ∈ [−π, π) , v ∈
[
−π

2
,
π

2

]
(1.1)

where ra ≥ rb ≥ rc > 0 are the length of the axes. We assume a default ellipsoid of ra = 0.75,

rb = 0.5 and rc = 0.25. For a parameter space Ω = [−π, π) × [−π
2
, π
2
] ⊂ R2, s : Ω → R3 is



(a) Original (b) Bent (c) Twisted

Figure 1.1: Tube views of meshed surfaces of (a) an original ellipsoid with ra = 0.75, rb = 0.5 and
rc = 0.25, (b) bent ellipsoid with α = 0.6, (c) twisted ellipsoid with θ = 0.6.

a surface map in R3 with (u, v)
s−→ (x(u, v), y(u, v), z(u, v)). Without loss of generality, we

assume that the first to third principal axes are x, y, z-axis in R3, respectively. The centroid

of the ellipsoid is at origin (0, 0, 0)′.

Rotational bending around the y-axis (cb = (0, 1, 0)′) is given by

B(s) = R(cb, fb(x))s(u, v), (1.2)

and twisting around the x-axis (ct = (1, 0, 0)′) is given by

T (s) = R(ct, ft(x))s(u, v), (1.3)

where

R(cb, fb(x)) =

cos(fb(x)) 0 − sin(fb(x))

0 1 0

sin(fb(x)) 0 cos(fb(x))

 ,

R(ct, ft(x)) =

1 0 0

0 cos(ft(x)) − sin(ft(x))

0 sin(ft(x)) cos(ft(x))

 .

Here, fb(x) = αx and ft(x) = θx for some α, θ ∈ [−π/2, π/2] representing the overall size

of the deformation. The amount of bending and twisting depends on the location on the

x-axis. In addition to the rotational bending, we also consider quadratic bending around the

y-axis which is defined by

Bq(s) = (x, y, z + αx2)′, x, y, z,∈ R (1.4)

using the ellipsoid parametrization (1.1). In the following, the term bending is used for
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Figure 1.2: Visualization of a standard ellipsoid with attached boundary normals.

rotational bending, and quadratic bending will be specified explicitly.

Figure 1.1 shows an example of an original ellipsoid, bent ellipsoid with α = 0.6 and

twisted ellipsoid with θ = 0.6.

1.2 Point distribution and boundary normals

We now discuss a parameterization of ellipsoids by a point distribution model. In particular,

a mesh grid and attached boundary normals of the surface s(u, v) will be used. See Fig. 1.2.

The size of surface mesh we used is 37× 33. We chose K = 9× 8 = 72 vertices to attach

normal direction vectors χk1k2 ∈ S2, k1 = 1, . . . , 9, k2 = 1, . . . , 8. For each k1, the vertices

where χk1k2 are attached have common x-coordinates

{−0.738,−0.649,−0.482,−0.256, 0, 0.256, 0.482, 0.649, 0.738},

the values of which influence the amount of deformation. Note that there are some directions

that will not vary when the object is deformed. For example, the normals χ5k2 (1 ≤ k2 ≤ 8),

which are attached to vertices with zero x-coordinate, will stay still when the object is twisted

or bent.

In the following we report four sets of experiments on the boundary normal ellipsoid

data. As opposed to the s-rep data analysis, we are working with the raw data directly.

The noise in the data is from the von Mises–Fisher distribution (Mardia and Jupp, 2000)

with concentration parameter κ > 0. For each experiment, two levels of noise are used:

κ = 100, 1000. The four sets of models are

• Twisting by (1.3), with ct = (1, 0, 0)′, θ ∼ N(0, σ2
θ), σθ = 0.3 ≈ 17.2◦. See Fig. 1.3.

• Bending by (1.2) with cb = (0, 1, 0)′, α ∼ N(0, σ2
α), σα = 0.4 ≈ 22.9◦. See Fig. 1.4.
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(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.3: (Twisting) Boundary normals using different concentration parameter κ. The rotation
around the x-axis is clearly visible in (a). Different colors represent different amounts of
twisting parameter θ.

• Quadratic bending by (1.4) with above cb and σα. See Fig. 1.5.

• Hierarchical deformation by bending (primary) and twisting (secondary) with the same

set of parameters above. See Fig. 1.7.

From each model a random sample of size n = 30 or 100 is obtained, from which the estimate

ĉ of the axis and σ̂ are obtained. This is repeated for 1000 times.

Twisting

Figure 1.3 shows 30 samples of 72 different normal directions from sets of twisted ellipsoids

with different noise levels. Different colors represent different amounts of twisting parameter

θ. Therefore, the number of colors correspond to the sample size.

Table 1.1 shows the performance of our estimator based on 1000 simulations. The per-

formance is measured by the mean and standard deviation of the absolute error dg(ĉ, c) and

those of the estimated twisting parameter σ̂θ. The accuracy is increased for larger n or κ.

In general, we observe quite accurate estimates even for a larger noise level (κ = 100).

Bending

Figure 1.4 shows 30 samples of 72 different normal directions after rotational bending using

different noise levels. The case of quadratic bending is illustrated in Fig. 1.5. Different colors

represent different amounts of bending parameter α. The different effects of rotational and

quadratic bending to the boundary normals can be compared by examination of Fig. 1.4a

and Fig. 1.5a. Rotationally bent directions are at concentric small circles (Fig. 1.4a) while
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Table 1.1: Twisting: Mean absolute error for ĉ, and the estimates σ̂θ

Twisting (unit: degrees)

κ n dg(ĉ, c) σ̂θ(σθ = 17.189)

100 30 3.174 (2.294) 17.209 (2.152)
100 100 1.563 (0.890) 17.324 (1.250)

1000 30 0.561 (0.317) 17.045 (2.133)
1000 100 0.289 (0.164) 17.173 (1.235)

(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.4: (Rotational bending) Boundary normals using different concentration parameter κ.
Different colors represent different amounts of bending parameter α.

(a) without noise (b) κ = 1000 (c) κ = 100

Figure 1.5: (Quadratic bending) Boundary normals using different concentration parameter κ. Dif-
ferent colors represent different amounts of bending parameter α.

quadratically bent directions are at circles with different centers (Fig. 1.5a). Despite the

major violation of our assumption of concentric circles, the proposed method surprisingly

works well for quadratic bending models, as Table 1.2 summarizes.

Table 1.2 shows the performance of our estimator for the rotational and quadratic bend-

ing models. The absolute errors between the true axis c and the estimated rotation axis ĉ
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Table 1.2: Rotational bending: Mean absolute error for ĉ, and the estimates σ̂α

(unit: degrees) Rotational bending Quadratic bending
κ n dg(ĉ, c) σ̂α(σα = 22.918) dg(ĉ, c) σ̂α(σα = 22.918)

100 30 0.898 (0.492) 34.133 (4.429) 1.494 (0.871) 23.277 (3.389)
100 100 0.467 (0.261) 34.179 (2.592) 0.789 (0.470) 22.880 (2.454)

1000 30 0.242 (0.127) 33.739 (4.448) 0.359 (0.213) 22.203 (3.184)
1000 100 0.127 (0.069) 33.973 (2.581) 0.193 (0.112) 22.276 (1.891)

are virtually small for both models. The performance of the estimator is enhanced for larger

κ and n. Moreover, as expected, the empirical errors are smaller for rotational bending than

quadratic bending. Note that the estimates σ̂α of rotational bending model are biased up-

wards, which we discuss in section 1.2.1. The parameter σα affects the quality of estimators.

In particular, larger σα leads to a greater bias of σ̂α, meanwhile it yields a better estimate

of ĉ (Fig. 1.6).

(a) (b)

Figure 1.6: (a) Mean absolute error dg(ĉ, c) after quadratic and rotational bending for different σα
values. (b) Mean of estimated bending parameter σ̂α after quadratic and rotational bending
for different σα values. The green dashed line marks the first diagonal.

Hierarchical motion

Figure 1.7 shows 30 samples of 64 different normal directions using different concentration

parameters κ, twistings σθ and a fixed bending parameter σα = 0.4. We have excluded 8

normal directions attached at x = 0. Different colors represent different amounts of absolute

rotation, which are |αj| + |θj|. In Fig. 1.7a we see rotations of normals along small circles
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(a) εj = 0, σθ = 0.1 (b) εj = 0, σθ = 0.3 (c) κ = 1000, σθ = 0.3

Figure 1.7: (Hierarchical deformation) Boundary normals using σα = 0.4, different concentration
parameter κ and twisting σθ.

around the y-axis. The clear motion pattern disappeared after an increase of σθ and κ in

Figure 1.7b and Figure 1.7c.

Table 1.3 shows the performance of our estimator based on 1000 simulations under hier-

archical rotational bending and twisting. As expected, the rotation axis estimates are less

accurate than for single motions. Moreover, the estimate of the secondary rotation axis is

less accurate than the estimate of the primary axis, particularly for κ = 100. The bias in

the estimates of the rotation angle will be further discussed shortly.

Two initial value choices (from Principal Arc Analysis and random directions) are applied.

In contrast to the s-rep analysis in the main article, the results in Table 1.3 are very similar

for both choices.

In the four sets of analyses, we have shown accurate estimation results of the proposed

method for the boundary normal data. In particular, the estimation from the quadratic

bending model is surprisingly accurate despite the misspecified model. We believe that the

proposed method will lead to robust estimates in other deformation models, which are similar

to a rotational deformation.

1.2.1 Estimation of σα

A precise estimation of σα under the bending model is an interesting open problem. We have

observed that the amount of swing is nonlinear, and conjecture that the change of the surface

curvature in the object is responsible for the additional swing of the directions. Figure 1.8

exemplifies such a non-linear relationship.

In the case of rotational bending, we may assume that our estimate σ̂α and the parameter
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Table 1.3: (Rotational bending and twisting) Mean absolute error for ĉ1, ĉ2, and the estimates σ̂α,
σ̂θ.

(unit: degrees) 1st rotation axis 2nd rotation axis
κ n dg(ĉ1, c1) σ̂α(σα = 22.918) dg(ĉ2, c2) σ̂θ(σθ = 17.189)

initialization by 1st and 2nd principal component

100 30 3.526 (2.775) 18.125 (2.370) 20.047 (16.717) 9.232 (1.598)
100 100 1.902 (1.444) 18.268 (1.337) 11.081 (13.477) 9.239 (1.143)

1000 30 2.683 (2.272) 17.785 (2.377) 8.570 (9.031) 9.119 (1.323)
1000 100 1.637 (1.126) 18.101 (1.349) 3.901 (2.459) 9.367 (0.691)

initialization by 1st principal component and a random direction

100 30 3.496 (2.762) 18.125 (2.367) 19.133 (15.445) 9.295 (1.498)
100 100 1.866 (1.390) 18.260 (1.342) 8.944 (6.753) 9.390 (0.798)

1000 30 2.678 (2.272) 17.785 (2.377) 8.479 (8.702) 9.125 (1.299)
1000 100 1.635 (1.127) 18.102 (1.349) 3.892 (2.451) 9.367 (0.691)

σα are related through a quadratic function as Fig.1.8a suggests. If such a quadratic function

f(σα) = p0 + p1σα + p2σ
2
α = σ̂α is known or can be estimated efficiently by a least square

quadratic polynomial, one can correct the estimate of σα for fixed ra, rb and rc by

σ̂new
α = − 1

2p2
±

√
1

4p22
(p21 − 4p0p2 + 4p2σ̂α),

with f ′′(σ̂new
α ) ≥ 0. A similar modification can be made for quadratic bending (Fig.1.8b).

In general, we believe that modeling based on the curvatures will improve our current

estimator. Such a modeling is beyond the scope of this paper, and we list a few important

notions of curvature that have potential in modeling.

Most common curvature measures are the principal curvatures (κ1, κ2) with κ1 ≥ κ2,

Gaussian curvature, and mean curvature. These measures are calculated from the first and

second fundamental form (see Gray (1998) and Kühnel (2006)). Koenderink (1990) indicated

that Gaussian curvature and mean curvature are not representatives of local shapes because

Gaussian curvature is identical for all local approximations for which the ratio of the principal

curvatures (κ1, κ2) is equal. Therefore, he introduced the two alternative quantities: shape
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(a) Rotational bending (b) Quadratic bending

Figure 1.8: Relationship between α̂ and α for various (ra, rb, rc).

index S and curvedness C,

S =
2

π
tan−1

(
κ2 + κ1
κ2 − κ1

)
, (κ1 ≥ κ2) (1.5)

C =
2

π
ln

(√
1

2
(κ21 + κ22)

)
. (1.6)

1.3 Quadratic bending of s-reps

The proposed method is also applied to the fitted s-reps of quadratically bent ellipsoids. After

fitting s-reps to the raw images discussed in Section 5.1 of the main article, we obtained the

estimated axis of rotation of ĉb = (−0.026, 0.999, 0.002) with a distance of 1.517◦ to the

true y-axis cb = (0, 1, 0) and a standard error of ŝeB(ĉb) = 0.86◦. Similar to mesh ellipsoid

surfaces, the distance of the rotation axis estimate to the true axis is lower in case of rotational

bending compared to quadratic bending.

1.4 Standard error estimation using bootstrap

In general, the bootstrap algorithm for estimating standard errors can be formulated as

follows:

1. Select B independent bootstrap samples x̃(1), . . . , x̃(B) drawn from x = (x1, . . . , xn)

with xi = (xij)j=1,...,K .
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2. Evaluate the bootstrap replications by the statistic s(x(b)) for all b ∈ {1, . . . , B}.

3. Estimate the standard error by the standard deviation of the B replications

ŝeB =

(
1

B − 1

B∑
b=1

[s(x(b))− s(x(·))]2

) 1
2

where s(x(·)) = 1
B

∑B
b=1 s(x

(b)).

In our case, the bootstrap replications result in estimates ĉ(1), . . . , ĉ(B) with ĉ(b) ∈ S2

where the number of bootstrap replications B is chosen by B = 200. The mean ĉ
(·)
g is given

by the Fréchet mean

ĉ(·)g = argmin
x∈S2

B∑
b=1

d2g(x, ĉ
(b)).

Thereby, the standard error estimate of the rotation axis is given by

ŝeB(ĉ) =

(
1

B − 1

B∑
b=1

d2g(ĉ
(b), ĉ(·)g )

) 1
2

.

The standard error of the standard deviation ŝeB(σ̂) can be estimated by plug-in s(x(b)) = σ̂(b)

in the above equation.

2 Simulation results for the hierarchical deformation

model

Table 2.1 summarizes the numerical performance of estimation of the hierarchical deforma-

tion model (11) as discussed in Section 4 of the main article. We have used the data-driven

method to choose the initial values as described in Section 3 of the main article. The results

are comparable to those from the simpler models in Section 4 and are fairly successful.

3 Discussion of model bias

A possibly important issue that is left unanswered is whether the parameters c0 and r =

dg(c0, µ) of the model

X = R(c0, θ)µ⊕ ε (3.1)
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Table 2.1: Numerical performance over 1000 replications, for hierarchical deformations.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 4.527 (3.591) 4.929 (3.007) 22.693 (3.031) 15.890 (2.096)
n = 100 2.201 (1.206) 2.944 (1.550) 22.698 (1.589) 15.844 (1.126)

κ = 1000
n = 30 2.084 (1.364) 1.275 (0.701) 22.385 (2.984) 14.940 (1.941)
n = 100 1.123 (0.741) 0.652 (0.338) 22.492 (1.542) 15.030 (1.110)

Body 2
κ = 100

n = 30 2.617 (1.762) 3.066 (3.099) 22.440 (2.959) 15.094 (2.011)
n = 100 1.366 (0.746) 1.682 (0.870) 22.542 (1.562) 15.219 (1.073)

κ = 1000
n = 30 1.099 (1.171) 0.921 (2.349) 22.339 (2.983) 14.872 (1.945)
n = 100 0.568 (0.354) 0.438 (0.236) 22.470 (1.543) 14.981 (1.099)

are the minimizer (c̃, r̃) of the least squares problem

min
c,r

Eρ2{δ(c, r), X} = min
c,r

E{dg(c,X)− r}2. (3.2)

Rivest (1999) has shown that when c0 is known, the minimizer r̃ = argminr E{dg(c0, X)−
r}2 is biased towards π/2, i.e. r̃ > r = dg(c0, µ) if r < π/2. In fact, given any c for

the axis of rotation, r̃c = E{dg(c,X)} minimizes E{dg(c,X) − r}2. Now to focus on c,

minc,r E{dg(c,X)− r}2 = minc E{dg(c,X)− r̃c}2 = minc Var{dg(c,X)}. Therefore c0 of (3.1)

is the minimizer of (3.2) if for all c ∈ S2,

Var{dg(c0, X)} ≤ Var{dg(c,X)}. (3.3)

This inequality may be satisfied when rσθ is large compared to the standard deviation of the

error ε. If σθ or r is 0, there is no variation due to the rotation of R(c0, θ), which makes the

model unidentifiable. Heuristically, small σθ makes the estimation difficult. Likewise, the

variation due to rotation is small if the rotation radius r = dg(c, µ) is small. The standard

deviation of the length rθ of the arc on δ(c, r) is rσθ. Hence, the hypothesis:

(H) If (3.3) is not satisfied, the least-squares estimator may be biased.

While we have not succeeded in finding analytic forms of conditions that satisfy (3.3), a

simulation study has been carried out to support our hypothesis (H). For c0 = e3 = (0, 0, 1)′,

µr = µ(r) = cos(r)c0 + sin(r)e1, and θ
iid∼ N(0, σ2

θ), X is distributed as the von Mises–

Fisher distribution with center R(c, θ)µr and the concentration parameter κ = 100. We

then evaluated the minimizer c̃ of Var{dg(c,X)} based on 5 × 105 Monte-Carlo random

observations of X, for different combinations of r ∈ {π/16, π/8, π/4, π/3, π/2} and σθ ∈
{0.1, 0.2, 0.5, 1} in radian. The result of the experiment is summarized as the distance
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Table 3.1: Distance to true axis (measured in degrees)

σθ
r 0.01 0.1 0.2 0.5 1

π/16 = 11.25 11.25 11.19 10.99 9.10 2.29
π/8 = 22.50 22.50 22.36 21.89 2.55 0.20
π/4 = 45.00 44.98 44.81 42.73 0.22 0.00
π/3 = 60.00 59.97 59.79 3.72 0.16 0.00
π/2 = 90.00 90.00 90.00 0.49 0.02 0.02

between c̃ and c0 in Table 3.1.

It can be checked from Table 3.1 that the distance between c̃ and c0 is smaller for larger

values of σθ and r. Moreover, for sufficiently large σθ and r, dg(c̃, c0) = 0, which leads to

c0 from the model (3.1) satisfying (3.3). On the other hand, when σθ and r are small with

respect to the variance of the error, the rotation (3.1) becomes unidentifiable. This is further

illustrated at Figure 3.1, which shows the scatter of 100 random observations from model

(3.1), with (r, σθ) = (π/16, 0.2) on the left and (π/4, 0.5) on the right panel. The left panel

suggests that when (r, σθ) are small, the rotation about the axis c0 is not distinguished and

the optimal c̃ is near µ and dg(c̃, c0) is large (cf. Table 3.1). The right panel illustrates that

the rotation is visually identified for large values of (r, σθ), and for such a case, the parameter

c0 is the solution of the least squared problem (3.2).

Figure 3.1: The scatter of 100 random observations from the model (3.1), with (r, σθ) = (π/16, 0.2)
on the left and (π/4, 0.5) on the right panel. The north pole, depicted as c in the figure, is
the true axis of rotation c0. The blue x visualizes µ.

4 Numerical studies with misspecified parameters

In this section, we study the impact of parameter misspecification of the estimator, particu-

larly of the function fj that model the relationships between the rotation angles θj. We study

parameter misspecification over different rotational deformation situations as described in
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Section 4 in the main article.

Recall, Section 4 in the main article reports studies for two different objects. The first

object (Body 1) consists of K = 4 directions, while the second object (Body 2) contains

K = 8 directions. The von Mises–Fisher distribution is used for the distribution of errors.

Three rotation models (indexed by equation number in the main article) are considered for

each object:

• Model (2)–Rigid rotation: c = (1, 0, 0)′, θj = fj(θ) = θ, where θ ∼ N(0, σ2
θ) and

σθ = π/12 ≈ 15◦.

• Model (10)–Twisting : c = (0, 1, 0)′, θj = fj(θ) = 1j∈I1θ − 1j∈I2θ, where θ ∼ N(0, σθ)
2,

σθ = π/8 ≈ 22.5◦. Here, I1 and I2 are the partitions of {1, . . . , K} according to the

right and left sides whereas I1 = {1, 2} and I2 = {3, 4} for Body 1 and I1 = {1, . . . , 4}
and I2 = {5, . . . , 8} for Body 2.

• Model (11)–Hierarchical deformations : c1 = (1, 0, 0)′, c2 = (1/
√

2,−1/
√

2, 0)′, θj = θ

and ψj = fj(ψ) = 1j∈I1ψ−1j∈I2ψ, where θ ∼ N(0, σθ)
2, σθ ≈ 22.5◦ and ψ ∼ N(0, σψ)2,

σψ ≈ 15◦. The I1 and I2 are the same partition used in the twisting model above.

The hierarchical model represents deformations by a rigid rotation and oblique twist. For

each model, we generate n = 30, 100 rotationally deformed objects with different error

concentration parameters κ = 100, 1000. These are replicated 1000 times, and the estimation

quality is measured by dg(ĉ, c) and σ̂θ =
∑n

i=1 θ̂
2
i /n.

The estimation results using correct parameters are reported for the single deformation

models in Table 1 in the main article and for the hierarchical deformation model in Table 2.1

above.

4.1 Parameter fj

The modeling of the function fj can be challenging as discussed in Section 1.2.1 or for the

s-rep model in case of bent, and bent and twisted ellipsoids in chapter 5 in the main article.

Therefore, it is crucial to study the impact of misspecification of fj.

Table 4.1 reports mean and standard deviations of the measures for the single deformation

models. The true underlying rigid rotation deformation is indicated by fj(θ) = θ, j = 1, . . . , 4

for Body 1 and is misspecified by fj(θ) = θ, j = 1, 2 and fj(θ) = −θ, j = 3, 4. Body 2 is

misspecified by fj(θ) = (j/10)θ instead of fj(θ) = θ for j = 1, . . . , 8. In both cases the
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Table 4.1: Numerical performance over 1000 replications, for single deformation models.

Rotation Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 15) dg(ĉ, c) σ̂θ (σθ = 15)

κ = 100
n = 30 4.133 (2.26) 3.314 (0.44) 2.905 (1.60) 6.771 (0.85)
n = 100 2.235 (1.18) 3.308 (0.24) 1.560 (0.83) 6.816 (0.51)

κ = 1000
n = 30 1.166 (0.64) 1.037 (0.13) 0.841 (0.46) 6.698 (0.88)
n = 100 0.656 (0.34) 1.039 (0.07) 0.448 (0.22) 6.744 (0.46)

Twisting Body 1 Body 2
(unit: degrees) dg(ĉ, c) σ̂θ (σθ = 22.5) dg(ĉ, c) σ̂θ (σθ = 22.5)

κ = 100
n = 30 2.761 (1.51) 3.669 (0.48) 4.062 (3.67) 17.150 (2.12)
n = 100 1.482 (0.78) 3.658 (0.25) 1.889 (1.35) 17.055 (1.27)

κ = 1000
n = 30 0.803 (0.43) 1.139 (0.15) 1.017 (0.74) 16.760 (2.19)
n = 100 0.446 (0.23) 1.147 (0.08) 0.536 (0.36) 16.857 (1.17)

misspecification does not effect the estimated rotation axis ĉ but leads to a poor prediction of

σ̂θ. The true underlying twisting motion of model (10) is given by fj(θ) = θ, j = 1, 2, fj(θ) =

−θ, j = 3, 4 for Body 1 and is misspecified by fj(θ) = θ, j = 1, 4, fj(θ) = −θ, j = 2, 3.

Body 2 is misspecified by fj(θ) = θ, fl(θ) = −0.5θ whereas the true parameter is given

by fj(θ) = θ, fl(θ) = −θ for j = 1, . . . , 4 and k = 5, . . . , 8. The comparison of Table 4.1

to Table 1 in the main article shows that a misspecification of the parameter fj does not

effect the rotation axis estimation of a single deformation by fitting concentric small circles

whereas the predicted rotation angle is biased by misspecification of fj. The specification of

fj models the relationships between the rotation angles θj and is therefore crucial for their

prediction.

On the other hand, the partition I1 and I2 is not explicitly used in the estimation proce-

dure of the rotation axis. The partition I1 and I2 is implied by the function fj. A partition

I1 and I2 of indices {1, . . . , K} represents sets of direction vectors that rotate together, i.e.,

the partition models the deformation type. In the simulated examples, the partitions are

chosen to model the bending and twisting deformation accordingly. The specification of fj

gives the possibility to incorporate additional prior knowledge about the statistical model of

the rotation angle θj, e.g., linear or quadratic relation by the distance of the direction to the

rotation axis. Nevertheless, the modeling of the function fj can be challenging as discussed

before. There are real data applications where the definition of a partition is naturally mo-

tivated, e.g., by the physical structure of the body. An example is to estimate the rotational

deformation between the upper and lower leg as studied in Section 6 in the main article.

This example can be extended to all joints inside the human body and to all objects which

are connected by a joint. On the other hand, there is a group of data sets where such a

partition is not obvious, e.g., in the s-rep model of the hippocampus. A first approach could
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Table 4.2: True and misspecified parameter fj for Body 1 in the hierarchical deformation
model (11).

f11(θ) f12(θ) f13(θ) f14(θ) f21(ψ) f22(ψ) f23(ψ) f24(ψ)

True θ θ θ θ ψ ψ −ψ −ψ
Table 4.4 θ θ −θ −θ ψ ψ ψ ψ
Table 4.5 θ −θ −θ θ −ψ ψ ψ −ψ

Table 4.3: True and misspecified parameter fj for Body 2 in the hierarchical deformation
model (11).

Hierarchical rotations
j

1 2 3 4 5 6 7 8

True
f1j(θ) θ θ θ θ θ θ θ θ
f2j(ψ) ψ ψ ψ ψ −ψ −ψ −ψ −ψ

Table 4.4
f1j(θ) 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ 0.5θ
f2j(ψ) ψ ψ ψ ψ −ψ −ψ −ψ −ψ

Table 4.5
f1jθ) 0.1θ 0.2θ 0.3θ 0.4θ θ θ θ θ
f2j(ψ) ψ ψ 0.7ψ 0.7ψ −0.2ψ −0.2ψ −0.3ψ −0.3ψ

be to define the partition on the basis of an observation of a medical expert. An automatic

detection of partitions and clusters is an interesting future research direction.

In contrast to the single deformation model, a misspecification of fj has an impact in

the hierarchical deformation model by the iterative back-and-forward deformations of the

random direction vectors. Therefore, a misspecification of the parameter might guide the

iterative estimation procedure to fall in a local minimum, and leads to a poor estimation

of the rotation axes and angles. Table 4.2 and Table 4.3 report the true and misspecified

fj for the simulation studies whereas the estimation results are summarized in Table 4.4

and Table 4.5. At first we have changed the order of the original parameters f1, f2 for

Body 1 in Table 4.4. The first estimated rotation axis ĉ1 is around (1/
√

2,−1/
√

2, 0)′ and

the second estimated rotation axis ĉ2 is around (1, 0, 0)′, i.e., the estimator has interchanged

the true underlying deformations which results in a distance of approximately 45 degree of

ĉ1 to c1 and ĉ2 to c2. Nevertheless, the order of generalized rotational deformations are not

interchangeable in general, and a misspecification might bias the results. In a second set, we

have misspecified f1j globally by a factor of 0.5 and kept the original f2j for Body 2. The

means and standard deviations in Table 4.4 show only small changes compared to Table 2.1

and are very accurate. A global scale change does not change the relationships between

the rotation angles. Both cases demonstrate the performance of the hierarchical estimation

procedure in case of a moderate misspecification by reasonable estimates.

In addition, two cases with drastically misspecified parameters are reported. In a third

S15



Table 4.4: Numerical performance over 1000 replications, for hierarchical deformations using mod-
erate misspecified parameters.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 45.223 (3.61) 44.792 (3.69) 15.013 (2.00) 22.725 (3.01)
n = 100 45.188 (1.73) 44.423 (1.79) 14.992 (1.06) 22.731 (1.58)

κ = 1000
n = 30 43.648 (1.29) 44.257 (2.67) 14.454 (1.89) 22.442 (2.99)
n = 100 43.705 (0.72) 43.981 (1.42) 14.482 (1.06) 22.510 (1.54)

Body 2
κ = 100

n = 30 2.617 (1.76) 3.066 (3.09) 22.440 (2.96) 15.094 (2.01)
n = 100 1.100 (1.17) 0.921 (2.35) 22.339 (2.98) 14.872 (1.94)

κ = 1000
n = 30 1.366 (0.74) 1.683 (0.87) 22.542 (1.56) 15.219 (1.07)
n = 100 0.569 (0.35) 0.438 (0.23) 22.470 (1.54) 14.981 (1.09)

Table 4.5: Numerical performance over 1000 replications, for hierarchical deformations using dras-
tically misspecified parameters..

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 11.576 (4.66) 33.737 (4.94) 5.423 (2.58) 2.619 (3.45)
n = 100 11.272 (2.38) 33.372 (2.48) 4.749 (1.02) 0.966 (1.44)

κ = 1000
n = 30 11.228 (3.91) 33.586 (4.06) 3.597 (1.98) 1.186 (2.34)
n = 100 11.183 (2.19) 33.445 (2.25) 3.295 (0.32) 0.413 (0.26)

Body 2
κ = 100

n = 30 12.204 (5.01) 33.456 (5.11) 15.917 (1.88) 214.219 (20.16)
n = 100 11.337 (2.46) 33.959 (2.47) 16.180 (1.15) 214.553 (10.75)

κ = 1000
n = 30 11.838 (4.40) 33.787 (4.46) 15.727 (2.01) 219.414 (20.99)
n = 100 11.289 (2.30) 33.978 (2.34) 16.316 (1.20) 219.587 (10.45)

scenario, f1 and f2 are misspecified so as to generate different deformations for Body 1 in

Table 4.5. Both the means and the standard deviations show poor estimation results. In

a last set we modified f1 and f2 by keeping the underlying deformation direction of each

direction vector for Body 2 but changing the amount of deformation locally. Also in this

scenario the hierarchical estimator shows poor estimation results in Table 4.5.

4.2 Primary and secondary rotation

The hierarchical model is a first attempt to model and estimate more then one rotational

deformation. The order of two rotations is not interchangeable and is considered as a part

of the statistical model which attempts to describe the nature as well as possible. Therefore,

we assume a primary rotation R(c1, θj) and a secondary rotation R(c2, θj) in our hierarchical

model. The order of rotation can be misspecified in two different ways in the proposed

approach. At first, we might interchange f1 and f2 as discussed in Section 4.1 above for

Body 1 in Table 4.4. In addition, the primary and secondary rotation has to be specified for
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Table 4.6: Numerical performance over 1000 replications, for hierarchical deformations with mis-
specified order of primary and secondary rotation axis.

Hierarchical rotations
dg(ĉ1, c1) dg(ĉ2, c2) σ̂θ(σθ = 22.5) σ̂ψ(σψ = 15)

(unit: degrees)

Body 1
κ = 100

n = 30 4.624 (2.66) 4.876 (2.85) 22.720 (3.00) 15.896 (2.10)
n = 100 2.258 (1.30) 2.949 (1.54) 22.701 (1.58) 15.847 (1.12)

κ = 1000
n = 30 2.044 (1.27) 1.279 (0.70) 22.382 (2.98) 14.947 (1.94)
n = 100 1.124 (0.72) 0.656 (0.33) 22.492 (1.54) 15.033 (1.11)

Body 2
κ = 100

n = 30 2.590 (1.47) 2.992 (1.75) 22.439 (2.96) 15.094 (2.01)
n = 100 1.323 (0.72) 1.688 (0.87) 22.541 (1.56) 15.220 (1.07)

κ = 1000
n = 30 1.063 (0.67) 0.849 (0.47) 22.336 (2.98) 14.873 (1.94)
n = 100 0.567 (0.35) 0.438 (0.23) 22.470 (1.54) 14.982 (1.09)

the initialization.

Table 4.6 summarizes the results in estimation of the hierarchical deformation model (11)

with interchanged primary and secondary rotation for the initialization. The results are simi-

lar to Table 2.1. The estimator converges to the same results in this example. Nevertheless, a

misspecification might increase the risk that the estimation procedure converges in a different

local minimum.

4.3 Discussion

The introduction of fj in our model has advantages and disadvantages. We study generalized

rotational deformations on the basis of directional data, and the rotation of a direction from

one to another place on the sphere is not uniquely defined in the hierarchical case. Therefore,

different functions fj can describe different rotational deformations. Prior knowledge is nec-

essary in order to restrict the rotational directions to avoid the convergence of the optimizer

into a different local minimum and to avoid an overfit of c1 and c2 as mentioned Section 4

in the main article.

The development of a method to predict the function fj from a given data set is an inter-

esting open research question. Furthermore, an automatic classification of spoke directions

into a partition I1 and I2 and a final classification of the deformation type into rigid rotation,

bending or twisting are of future interest.
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5 Computational complexity of the algorithm

The computational complexity of the proposed estimation procedure is now reported in two

forms: the asymptotic time complexity and finite sample time measurements.

The asymptotic time complexity of the proposed algorithm depends on the number of

samples n and the number of direction vectors K. In particular the optimization problem,

(ĉ, r̂) = argmin
c,r1,...,rK

n∑
i=1

K∑
j=1

d2g{δ(c, rj), Xij},

is the dominant part of the algorithm. Our algorithm to solve this nonlinear least squares

problem is doubly iterative. The outer loop consists of applications of the exponential

and inverse exponential maps whose time complexity is O(nK). The inner loop iteratively

updates c† ∈ R3 and r†j ∈ (0, π/2) by the Levenberg–Marquardt algorithm, where each

iteration requires the asymptotic time complexity of O(nK) mainly due to the computation

of Jacobian matrix. Notice, that the computation time for inverting a 3 × 3 matrix is

dominated by other terms and is ignored. Overall, if a finite number of iterations is assumed,

then the asymptotic time complexity of the proposed algorithm is O(nK).

We now turn to our attention to the complexity of the algorithm in real time, which we

believe is more useful for practitioners. Computation times were measured by a personal

computer with a Intel(R) Xeon(TM) 3.73GHz processor.

We have tested the estimations of three different rotational deformations

• Model (2) - Rigid rotation,

• Model (10) - Twisting and

• Model (11) - Hierarchical deformations

as described in Section 4 (the numbers correspond to the equation number in the main

article), with two different types of objects to be deformed.

We first examined the computation times for a set of well-controlled objects. Using

the Body 1 (as plotted in Fig. 2 of the main article) consisting of the original K = 4

directions, we duplicated the same direction vectors to increase the number of directions

(K = 8, 16, 32, 64, 128) so that the effect on computation time of the different locations of

direction vectors is minimized. For each sample size n = 30, 60, 120, we have repeated the
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Table 5.1: Median time measurements in seconds over 100 replications.

n Model
K

4 8 16 32 64 128

30
(2) 0.04 0.07 0.13 0.26 0.61 1.81
(10) 0.11 0.16 0.26 0.40 0.79 2.00
(11) 0.54 0.84 1.61 3.17 6.91 19.23

60
(2) 0.04 0.07 0.13 0.28 0.68 2.03
(10) 0.10 0.18 0.29 0.42 0.85 2.18
(11) 0.75 1.39 2.72 6.55 13.84 30.80

120
(2) 0.04 0.07 0.13 0.29 0.76 2.34
(10) 0.12 0.18 0.27 0.44 0.92 2.50
(11) 1.29 2.50 4.90 10.03 20.37 53.91

Table 5.2: Minimal time measurements in seconds over 100 replications..

n Model
K

4 8 16 32 64 128

30
(2) 0.02 0.05 0.08 0.19 0.48 1.59
(10) 0.03 0.07 0.12 0.25 0.61 1.75
(11) 0.23 0.40 0.74 1.50 3.21 7.71

60
(2) 0.02 0.04 0.08 0.18 0.54 1.78
(10) 0.03 0.05 0.14 0.27 0.68 1.89
(11) 0.37 0.68 1.32 2.61 5.52 12.37

120
(2) 0.02 0.04 0.09 0.22 0.63 2.12
(10) 0.03 0.09 0.15 0.33 0.79 2.38
(11) 0.64 1.21 2.39 4.85 9.99 21.61

estimation R = 100 times to measure the computation time required to obtain the estimates

ĉ. Note that we have used von Mises-Fisher distribution with κ = 1000 for the i.i.d. errors.

Tables 5.1 and 5.2 report the median computation time and the minimal computation

time among the R repetitions, respectively. With large numbers of sample and directions,

the computation requires less than a minute on average, while it takes less than a second for

moderate sizes of sample and directions.

From an inspection of Table 5.1, there is a trend for the computation time increasing

approximately linear with K and also with n for all models.

By comparing the minimal time (Table 5.2) and the median time (Table 5.1), we have

noticed that the computation time varies by a large amount. See for example model (11)

with n = 60, K = 128; The median time is over 30 seconds while the shortest time is only

12 seconds. This is due to the slow convergence of the iterative algorithm for a particular

choice of observations.

Finally, Table 5.3 reports the quality of the repeated rotation axis estimations by the
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Table 5.3: Quality of the repeated rotation axis estimations for the time measurements by dg(ĉ, c)
in degree.

n Model
rotation K

axis 4 8 16 32 64 128

30

(2) 1 1.18 0.92 0.63 0.40 0.33 0.22
(10) 1 0.88 0.61 0.40 0.29 0.20 0.14
(11) 1 2.18 2.10 1.99 1.89 1.86 1.81
(11) 2 1.43 1.09 0.77 0.60 0.48 0.43

60

(2) 1 0.74 0.63 0.42 0.30 0.21 0.16
(10) 1 0.59 0.42 0.29 0.18 0.14 0.10
(11) 1 1.42 1.28 1.24 1.20 1.16 1.17
(11) 2 0.88 0.64 0.49 0.35 0.28 0.21

120

(2) 1 0.60 0.39 0.30 0.20 0.15 0.10
(10) 1 0.37 0.30 0.20 0.14 0.10 0.07
(11) 1 1.09 0.97 0.99 0.90 0.89 0.89
(11) 2 0.61 0.44 0.29 0.22 0.18 0.12

mean distance of dg(ĉ, c), which shows higher accuracy for larger K and n as discussed in

Section 4 of the article.

We also have examined the computation times with another set of objects whose base

direction vectors are determined randomly. As shown in the following, the additional ran-

domness leads to more variation in the computation times. Nevertheless, the computation

time exhibits again the approximate linear increase for K and n.

The second set of objects to be deformed has K = 8, 16, 32, 64, 128 directions vectors,

each of which is obtained from uniform distribution on a hemisphere. With n = 30, 60, 120

samples, we also report the time measurements from R = 100 replications.

Table 5.4: Median time measurements in seconds over 100 replications.

n Model
K

8 16 32 64 128

30
(2) 0.08 0.14 0.26 0.63 1.83
(10) 0.18 0.29 0.49 0.94 2.10
(11) 1.99 6.39 17.18 51.44 130.85

60
(2) 0.08 0.14 0.28 0.70 2.04
(10) 0.22 0.32 0.51 0.96 2.27
(11) 2.74 6.75 24.25 63.20 265.95

120
(2) 0.08 0.14 0.30 0.77 2.40
(10) 0.22 0.32 0.48 0.98 2.54
(11) 9.79 18.86 42.81 129.75 305.54

Table 5.4 and 5.5 report the median and the minimum computation time in seconds,

respectively. As expected, the time increases with larger K and larger n. Due to the uncon-
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Table 5.5: Minimal time measurements in seconds over 100 replications..

n Model
K

8 16 32 64 128

30
(2) 0.05 0.08 0.20 0.58 1.78
(10) 0.07 0.12 0.25 0.59 1.84
(11) 0.42 0.84 2.30 3.45 8.03

60
(2) 0.05 0.10 0.23 0.59 1.80
(10) 0.07 0.16 0.31 0.72 1.99
(11) 0.72 1.36 2.75 5.99 18.78

120
(2) 0.04 0.10 0.24 0.63 2.23
(10) 0.06 0.17 0.32 0.71 2.31
(11) 1.25 2.43 4.91 15.24 33.16

Table 5.6: Quality of the repeated rotation axis estimations for the time measurements by dg(ĉ, c)
in degree.

n Model
rotation K

axis 8 16 32 64 128

30
(2) 1 0.92 0.64 0.45 0.33 0.21
(10) 1 0.67 0.44 0.30 0.22 0.15
(11) 1 1.20 0.59 0.40 0.23 0.16
(11) 2 2.57 0.73 0.55 0.37 0.25

60
(2) 1 0.64 0.53 0.31 0.23 0.15
(10) 1 0.43 0.26 0.22 0.14 0.10
(11) 1 1.05 0.37 0.25 0.18 0.11
(11) 2 2.67 0.60 0.35 0.23 0.17

60
(2) 1 0.42 0.33 0.23 0.14 0.11
(10) 1 0.31 0.21 0.15 0.10 0.07
(11) 1 0.86 0.27 0.17 0.11 0.07
(11) 2 2.39 0.37 0.25 0.17 0.12

trolled model complexity (originated from the random base directions) the time difference

between the median and the minimum time is larger than the previous controlled case. We

conjecture that the computation times are heavily dependent on the convergence of the

Levenberg–Marquardt algorithm.

In addition to the computation time, Table 5.6 reports the quality of the repeated rotation

axis estimations by the mean distance of dg(ĉ, c), which again shows higher accuracy for larger

K and n as discussed in Section 4 of the article.
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6 Estimation procedure for knee motion during gait

In section 6 in the main article we have studied a real data example: the deformation of the

upper and lower leg by two potentially non-orthogonal rotations at the knee joint during

gait. These two rotations are flexion-extension about a right-to-left (medial-lateral) axis and

the internal-external rotation of the lower-leg relative to the upper leg about an axis directed

along the long axis of the lower leg. The data set consists of T time dependent observations

M1, . . . ,MT whereas each Mi is a collection of markers Mi = (Mi1, . . . ,MiK̃) on the upper

and lower leg with Mij ∈ R3, j = 1, . . . , K̃. Let Ĩ1 and Ĩ2 be a partition of indices {1, . . . , K̃}
representing groups of K̃1 markers Ĩ1 on the upper leg and K̃2 markers Ĩ2 on the lower leg.

Two markers Mι1 , ι1 ∈ Ĩ1 and Mι2 , ι2 ∈ Ĩ2 are chosen as basis points at the upper and lower

leg. Set I1 = Ĩ1 \ {ι1}, I2 = Ĩ2 \ {ι2}, K = K̃ − 2, K1 = K̃1 − 1 and K2 = K̃2 − 1 then

directions Xi = (Xi1, . . . , XiK) are derived by

Xij =
Mij −Miι1

‖Mij −Miι1‖
, j ∈ I1, Xij =

Mij −Miι2

‖Mij −Miι2‖
, j ∈ I2

for i = 1, . . . , T , which are invariant to translation and size changes.

For the sake of convenience, we assume the observations X1, . . . ,XT are independent and

modify the single rotation model (10) in the main article to

Xij = R(c, θij)X1j ⊕ εij (j = 1, . . . , K). (6.1)

A more careful modeling of the time dependencies is left for future work, e.g., by an autore-

gressive model as suggested by (Rivest, 2001, Section 4.1).

The first (flexion-extension) rotation axis c1 is estimated by the estimation procedure (7)

in the main article and describes a bending deformation of the upper and lower leg around

the knee. The lower leg rotates relative to the upper leg whereas the upper leg rotates

relative to the pelvis. At first, we estimate the rotation angles θui of the upper leg in order to

estimate the rotation angles θli of the lower leg relative to the upper leg. The least squares

estimators (ĉ1, r̂1) can be used to estimate the parameters of (6.1) with

θij = atan2{〈P(ĉ1,r̂1j)Xij, ĉ1 ×X1j〉, 〈P(ĉ1,r̂1j)Xij, X1j − ĉ1 cos(r̂j)〉}. (6.2)
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(a) bone (b) skin

Figure 6.1: Predicted rotation angles (θ1, ψ1) = (θ̂u, ψ̂u) of directions on the upper leg and angles
(θ2, ψ2) = (θ̂l, ψ̂l) of directions on the lower leg for the first 200 time points. (a) Estimated
rotation angles of directions derived from bone markers. (b) Estimated rotation angles of
directions derived from skin markers. (angle units in radian)

The predictor of θui , i = 1, . . . , T is

θ̂ui =
1

K1

K1∑
j=1

θij, j ∈ I1.

Next, the directions are de-rotated by X̃ij = R(ĉ1,−θ̂ui )Xij for j = 1 . . . , K and i = 1, . . . , T .

The directions X̃ij, j ∈ I1 are directions on the upper leg and do not rotate about ĉ1 after

the inverse deformation. The remaining rotation of the lower leg relative to the upper leg is

then

θ̂li =
1

K2

K2∑
j=1

θ̃ij, j ∈ I2 with

θ̃ij = atan2{〈P(ĉ1,r̂1j)X̃ij, ĉ1 × X̃1j〉, 〈P(ĉ1,r̂1j)X̃ij, X̃1j − ĉ1 cos(r̂j)〉}.

Finally, we obtain a set of de-rotated directions Z by Zij = X̃ij, j ∈ I1 and Zij =

R(ĉ1,−θ̂li)X̃ij, j ∈ I2 for i = 1, . . . , T .

The estimation of the second (internal-external) rotation axis (ĉ2, r̂2) and ψ̂u, ψ̂l follows

the same steps of the above paragraph using using Zi instead of Xi for i = 1, . . . , T .

In addition to the estimates ĉ1 and ĉ2, we estimate the standard errors ŝeB(ĉ1), ŝeB(ĉ2).

Moreover, we estimate the rotation axes ĉ1j and ĉ2j for each marker j = 1 . . . , K. Therewith,

we can quantify the estimations by the dispersion σdg(ĉ1,ĉ1j) of the geodesic distance dg(ĉ1, ĉ1j)

and σdg(ĉ2,ĉ2j) respectively.
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Figure 6.1 reports the predicted rotation angles (θ̂ui , ψ̂
u
i ) of the upper leg relative to the

laboratory reference frame and (θ̂li, ψ̂
l
i) of the lower leg relative to the upper leg for the first

200 time points. The larger observed rotation angles around the second rotation axis for the

skin data is due to the well-known deformation of the skin surface.

References

Gray, A. (1998), Modern Differential Geometry of Curves and Surfaces with Mathematica,

CRC Press, 2nd ed.

Koenderink, J. J. (1990), Solid Shape, The MIT Press.

Kühnel, W. (2006), Differential Geometry, vol. 16, Student Mathematical Library, 2nd ed.

Mardia, K. V. and Jupp, P. E. (2000), Directional Statistics, Chichester: Wiley.

Rivest, L.-P. (1999), “Some Linear Model Techniques for Analyzing Small-Circle Spherical

Data,” Canadian Journal of Statistics, 27, 623–638.

— (2001), “A Directional Model for the Statistical Analysis of Movement in Three Dimen-

sions,” Biometrika, 88, 779–791.

S24


