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Deformable Registration of Prostate Images
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Abstract— Two major factors preventing the routine clinical
use of finite element analysis for image registration are (1) the
substantial labor required to construct a finite element model for
an individual patient’s anatomy and (2) the difficulty of deter-
mining an appropriate set of finite element boundary conditions.
This work addresses these issues by presenting algorithms that
automatically generate a high quality hexahedral finite element
mesh and automatically calculate boundary conditions for an
imaged patient. Medial shape models called m-reps are used to
facilitate these tasks and reduce the effort required to apply finite
element analysis to image registration. Encouraging results are
presented for the registration of CT image pairs which exhibit
deformation caused by pressure from an endorectal imaging
probe and deformation due to swelling.

Index Terms— registration, elastic, finite element, m-rep,
prostate

I. INTRODUCTION

F INITE element analysis is a powerful computational tool
for modeling soft tissue deformation. Most notably, this

approach has yielded positive results for same-subject non-
rigid image registration and for medical simulation appli-
cations. Published results include image registration for the
prostate [1] [2] [3], brain [4] [5] [6] [7] [8], and breast [9] [10],
as well as simulation of maxillo-facial surgery [11] and liver
surgery [12] [13] [14]. In fact, finite element analysis produces
such physically plausible biomechanical tissue deformations
that the method is used to generate synthetic displacement
fields that serve as a gold-standard in the validation of other
deformable registration algorithms [15].

The algorithms presented here for automating finite element
analysis are potentially applicable to a variety of medical
imaging applications that require deformation modeling. We
report results for the specific problem of prostate image regis-
tration, an important problem that arises during the planning
and delivery of radiotherapy treatment for prostate cancer.
Both external beam radiation and brachytherapy require regis-
tration between planning and treatment images. The need for
deformable registration is particularly acute when magnetic
resonance spectroscopy (MRS) images of the prostate are
acquired using an endorectal imaging probe. MRS images are
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valuable because they provide information about the location
of tumor deposits within the prostate, but their use is compli-
cated by the fact that pressure from an MRS imaging probe
displaces the prostate upward and flattens it against the pubic
bones. In order to use MRS images for treatment planning,
a deformable registration between the planning and treatment
images is required.

As computational power has grown more available, finite
element analysis has become a more accessible tool for
medical imaging research. However, its application is often
limited to the research arena due to the substantial labor
typically required to construct a high quality finite element
model from a patient image. This work focuses on specific
techniques to make finite element analysis more automatic
and efficient for medical imaging applications. Reducing the
labor required to generate a finite element model will make
the method more attractive and practical for both research and
clinical applications.

The remainder of this paper is organized as follows. Section
II considers related prior work in prostate image registration.
Section III provides an overview of the automated registration
method, with sub-sections describing the methods used for
shape modeling(III-B), finite element mesh generation (III-
C), boundary condition specification (III-D), and solution
computation (III-E). The registration experiment is described
in section IV, and the experiment results are presented in
section V. Discussion of the results is contained in section
VI, and section VII concludes the paper with a summary of
planned future work.

II. PREVIOUS WORK

Solutions to the problem of prostate registration have
been proposed using both rigid [16] [17] and non-rigid [18]
methods. Previous research has shown that the magnitude
of prostate deformation is large enough that it should not
be neglected in treatment planning, in particular for prostate
brachytherapy [19]. Therefore we focus here only on de-
formable prostate registration methods. Different types of
deformable prostate image registration approaches have been
presented by [1], [2], and [3], each of which uses a finite
element model as a component of the registration procedure.

The approach described by Bharatha, et al., [1] is most
similar to the work presented here, and includes validation
of finite element based prostate image registration using a
linear elastic material model for magnetic resonance (MR)
images. This earlier work differs from the method presentedIEEE
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here in several regards, including the algorithms for gener-
ating meshes and boundary conditions. In particular, meshes
composed entirely of tetrahedra were used by Bharatha, et al.,
whereas the mesh algorithm employed in this work generates
a hexahedral elements for the prostate. Hexahedral meshes
provide numerical advantages over tetrahedral meshes in finite
element analysis [20].

The prostate model presented by Alterovitz, et al. [2], uses
a 2D finite element model and optimizes both the applied
force vectors and the tissue stiffness parameters. As compared
to the model developed in our work, the stiffness parameter
optimization gives the Alterovitz model additional in-plane
flexibility, but its limitation to two dimensions prevents it from
representing any out-of-plane deformation.

Finally, the work presented by Mohamed, et al., [3] employs
a combined statistical and biomechanical approach to prostate
registration, while our work relies on medial geometry and
biomechanics to generate a deformation. The consistent use
of a medial model framework to automate the application of
finite element analysis is a feature, described in the following
sections, that sets our method apart from previous work.

III. METHODS

A. Overview

We present a multi-stage procedure for deformable image
registration that involves image segmentation, mesh construc-
tion, boundary condition specification, solution of finite el-
ement equations, and displacement interpolation. Several of
these stages rely on medially based shape models called m-
reps that provide a convenient representation of organ geome-
try along with an object based coordinate system, an essential
feature for the automated registration procedure. The steps in
the registration process are described below for a pair of 3D
images, I1 and I2, that record a patient’s prostate in different
states of deformation. The inputs/outputs of each stage along
with the dependencies between stages are depicted in Fig. 1.

1) Fit an m-rep model to the segmented prostate in image
I1, and label this instance of the m-rep M1.

2) Fit the same m-rep model to the segmented prostate in
image I2, and label this instance of the m-rep M2.

3) Build a 3D hexahedral finite element mesh for M1.

4) Use the m-rep generated correspondences between
points in M1 and M2 to estimate displacement vectors
mapping the surface nodes of M1 to corresponding
points on the surface of M2. Iteratively refine this
estimate to get a set of essential finite element boundary
conditions (displacements) that deform M1 to match
M2’s shape and simultaneously minimize the elastic
energy of the solid object deformation.

5) Assemble the finite element system of equations using
a linear elastic material model, the refined boundary
conditions from step 4, and the mesh from step 3. Solve
this system to get a set of displacement vectors that map
all the mesh nodes defined over the volume of M1 onto
I2. Iteratively subdivide the mesh to arrive at a solution
with the desired precision.

6) Interpolate the displacement field inside each 3D mesh
element to determine the mapping from every voxel in
I1 to I2.

The following subsections describe the individual stages of
the registration pipeline outlined above. Section III-B covers
steps 1 and 2, discussing m-rep models and their use in image
segmentation. Section III-C describes the hexahedral mesh
generation algorithm used in step 3. Section III-D explains
how finite element boundary conditions are formulated during
step 4, and section III-E describes the solution method applied
in step 5. The interpolation performed in step 6 is briefly
discussed in section III-F.

B. M-Rep Models

M-rep models are used in this work to represent the 3D
shape of an imaged prostate. Prior work has established
algorithms for automatic image segmentation using m-reps and
has provided data validating the success of those algorithms
[21] [22]. A brief description of m-rep models and their use
in segmentation is provided here.

Like all medially based shape representations, m-reps char-
acterize the structure and geometry of an object using points
on the object’s medial surface. The simplest m-rep consists of
a single figure that represents a slab-like region with a non-
branching medial locus. Because the prostate’s shape can be

Fig. 1. These steps result in a deformation field that can be applied to Image I1 to register it with Image I2.
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well represented with a single figure m-rep, the discussion of
m-reps here will be limited to single figure models.

A single m-rep figure is represented by a lattice of medial
atoms, each of which provides a sample of object geometry at
a point on the medial surface. Fig. 2 illustrates the structure
of a medial atom and a figure. Each medial atom stores the
coordinates of a point on the medial surface along with the
object’s radius around that point, two vectors originating at
the medial point and terminating on the object’s boundary (y0

and y1 in Fig. 2), and other geometric information including an
oriented coordinate frame. The lattice arrangement of medial
atoms naturally leads to an object based coordinate system for
m-reps. All points in an m-rep are referenced using (u, v, t, τ)
coordinates, where u and v traverse the rows and columns of
the atom lattice so that 1 ≤ u ≤ umax and 1 ≤ v ≤ vmax,
where umax equals the number of rows in the lattice and vmax

equals the number of columns in the lattice. τ ranges from 0
at the medial surface to ±1 at the object boundary, and t spans
the angle between the two boundary vectors y0 and y1. The t
coordinate is important in the crest region of the object that is
sampled by atoms on the edge of the medial surface; varying
t sweeps out the cap that joins the top (τ = +1) and bottom
(τ = −1) portions of the object’s boundary surface.

Given the discrete lattice of medial atom samples contained
in an m-rep, a new medial atom can be computed at any
(u, v) point on the medial surface by smoothly interpolating
the sample atoms’ point coordinates, the object radius, and
other attributes across the lattice. Thus for for any valid set of
m-rep (u, v, t, τ) values, a corresponding (x, y, z) world space
point can be calculated. This mapping from medial coordinates
to world coordinates is represented by the following function:

[x y z] = ObjectToWorld(model, u, v, t, τ) (1)

In the implementation of Eqn. 1, different interpolation
schemes are possible. In this work, surface interpolation is
performed by defining bicubic Bézier spline patches over the
medial surface and the boundary surface of the object. Interior
point coordinates are mapped by using the τ coordinate to
linearly interpolate between the (x, y, z) coordinates of a point
on the medial spline surface and a point on the boundary spline
surface. An alternative interpolation method is described in
[23].

Fig. 2. Left: A medial atom with object properties labelled. y0 and y1

are vectors pointing to the object’s boundary. (n, b, b⊥) defines the object’s
coordinate frame at the atom’s location. Right: A single figure m-rep model
composed of a lattice of medial atoms

M-rep models presented in this paper were created using
a program named Pablo that was developed by the Medical
Image Display and Analysis Group (MIDAG) group at the
University of North Carolina at Chapel Hill. This software
supports creation and editing of m-rep models and provides
algorithms for automatically fitting an m-rep to grayscale
image data via optimization [22]. Pablo fitted an m-rep model
composed of a 3 × 3 lattice of atoms to segmented prostate
images to produce the prostate shape models used in this
work.

C. Mesh Generation Algorithm

Meshes composed of hexahedral elements are frequently
preferable to meshes built from tetrahedral elements due to the
superior convergence and accuracy characteristics of hexahe-
dral elements [20]. A description of an automatic hexahedral
element mesh generation algorithm based on m-reps follows
in section III-C.1. Readers are referred to [24] and [25] for
additional details on this meshing method. Section III-C.2
presents an algorithm for mesh optimization, and section III-
C.3 explains how mesh elements outside the prostate volume
were created.

1) Hexahedral Mesh Generation: For single figure m-reps
the automatic mesh generation algorithm creates a set of mesh
nodes based on a standardized sampling pattern defined in
terms of (u, v, t, τ) coordinates. The mapping defined in Eqn.
1 from object space coordinates to world space coordinates
determines nodes’ placement in world space. The standardized
m-rep meshing pattern is illustrated in Fig. 3. The first step
in meshing a m-rep figure is the construction of a sampling
grid of mesh nodes on the (u, v) parameter plane of the medial
surface. The vertices of the sampling grid are placed at regular
intervals in (u, v) coordinates, as shown in Fig. 3b. Additional
mesh nodes are then created by projecting the sampling grid
on the medial surface out toward the object boundary. For all
of the nodes on the medial surface except for those around
the rim of the grid, this is accomplished by holding u and v
constant and varying τ . As shown in Fig. 3d, for a node on
the interior of the medial surface grid five nodes are created
at {τ = −1.0,−0.5, 0.0, 0.5, 1.0}. For sample points on the
grid’s rim, a set of six nodes is created, with the sixth node
sitting on the object’s crest. This pattern is illustrated in Fig.
3e; a slice through a fully meshed figure is shown in Fig. 3f.

Mesh construction is guided entirely by information con-
tained in the m-rep model, so the meshing process described
requires no user interaction. Note that a mesh defined in terms
of medial object coordinates will fit any deformed version of
the m-rep model that generated the mesh.

2) Mesh Optimization: Each three dimensional element
is defined in a parameter space (Fig. 4a) and is mapped
into world space (Fig. 4b) via the element shape function
(x, y, z) = N(ξ, η, ζ). For the 8-node linear hexahedral
elements used in this work, the shape function is defined as
follows [26].

N(ξ, η, ζ) =
8∑

i=1

Ni(ξ, η, ζ) · [xi yi zi] (2)
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Fig. 3. (a) A slice through a single figure m-rep is shown, with one row of
atoms visible. (b) A regular sampling grid of mesh nodes is defined in the
(u,v) parameter space of the medial surface. (c) The regular sampling grid is
mapped into world space. (d) Each sample point in the central portion of the
medial surface gives rise to a group of five mesh nodes placed at constant u
and v and evenly spaced τ . Mesh nodes are drawn as black rings. (e) Sample
points on the rim of the medial surface produce 6 mesh nodes. (f) A slice
through a meshed figure shows the faces of hexahedral elements.

where [xi yi zi] are the coordinates of node i

and Ni =
1
8
(1± ξ)(1± η)(1± ζ)

The existance of a valid finite element solution for a given
mesh element depends on J , the Jacobian of the element’s
shape function N(ξ, η, ζ). Although a deformation solution
can be computed as long as the measure of element volume,
det(J), is non-negative [27], when det(J) is scaled to the
interval [-1, 1] by normalizing for element size, desirable
elements have a value of at least 0.5. Smaller det(J) values are
associated with strongly distorted elements that can adversely
impact the condition number of the finite element stiffness
matrix and reduce the accuracy of the computed solution. It
is sufficient to check the det(J) values at the Gauss integration
points in each element [28]. Computing the stiffness matrix
requires numerical evaluation of an integral over the volume of
the entire mesh; the Gauss integration points are the locations
inside each element where this integral is evaluated.

If elements with low det(J) values are generated, they
can be improved through optimization. The mesh quality
improvement procedure first assigns each element a score that

is the minimum value of det(J) evaluated at each of eight Gauss
integration points in the element. A list is compiled of all
elements with det(J) values less than 0.5 and the immediate
neighbors of those elements. For each element on the list,
the coordinates of its nodes are varied using a Nelder-Mead
simplex search [29] optimization procedure that maximizes the
element’s det(J) value. A prostate mesh produced through this
process is shown in Fig. 5.

In order to make the mesh optimization process robust and
efficient we use two new m-rep parameterizations that are
defined specifically for use in optimization. The first is an
invertible mapping between any valid (u, v, t, τ) coordinates
and the three dimensional (A,B,C) coordinate space. Over
the central portion of a figure, (A,B,C) coordinates are
defined by mapping u → A, v → B, and τ → C. In the crest
region of an object trigonometric formulas are applied to map
the region spanned by the medial coordinate, t, into (A,B, C).
Details of this mapping are provided in the appendix.

The second coordinate space employed is two dimensional
and spans the surface of an m-rep figure. Optimizing the
position of surface nodes in this coordinate space implicitly
constrains the nodes to remain on the object’s surface. In-
tuitively, (a, b) coordinates are computed by unwrapping the
surface of a figure’s (A,B, C) coordinate space and projecting
it onto a plane. Details are again provided in the appendix.

3) External Region Meshes: It is desirable to mesh a region
outside the modeled object so that a smooth deformation can
be applied to the surrounding tissue. The m-rep meshing algo-
rithm does not address the problem of meshing non-modeled
areas. Therefore for the prostate registration experiments a
tetrahedral mesh is generated to fill the volume of interest
surrounding the prostate. A layer of pyramid elements provides
an interface between the hexahedral and tetrahedral elements.
The base of a pyramid element is placed against the exposed
quadrilateral face of each of the outermost prostate hexahedral
elements. All the exposed pyramid element faces are then
triangles, and a tetrahedral mesh fills in gaps between these
triangles and the boundary of the region of interest. The
tetrahedral meshes used in this work are generated by CUBIT,
a meshing program from Sandia National Laboratories. The
pyramids and tetrahedra that fill the space external to the m-
rep models are shown in Figs. 5d and 5e.

Fig. 4. Left: Hexahedral element in its (ξ, η, ζ) parameter space Right:
Hexahedral element that has been mapped into world space



5

Fig. 5. (a) M-rep model of a prostate (b) Prostate m-rep with implied surface (c) Base level prostate mesh (d) Sliced view of the meshed volume of interest
(e) Exterior view of the meshed volume of interest

D. Boundary Conditions

To compute a deformation with finite element analysis,
boundary conditions are specified for some of the nodes in
terms of node displacements. However, point displacements
are not available directly from the images. What is visible in
the images is shifting and/or change in the shape of the object
boundary. Thus we use the m-rep model to derive an initial
approximation to surface point displacements from observed
boundary changes.

In the case of the prostate, the m-rep model M1 is fitted to
image I1 and is used to guide mesh construction. Then M1

is transferred onto the image of the deformed prostate where
it is fitted to the deformed prostate shape, yielding M2. M1

and M2 have the same topology, and their object coordinates
span exactly the same parameter space. This means that the m-
reps’ object coordinates implicitly define a one to one mapping
between points in the original prostate and points in the
deformed prostate. For a node belonging to M1 with medial
coordinates (ui, vi, ti, τi), an approximate displacement vector
di is defined in the following way.[
x(i,1) y(i,1) z(i,1)

]
= ObjectToWorld(M1, ui, vi, ti, τi)[

x(i,2) y(i,2) z(i,2)

]
= ObjectToWorld(M2, ui, vi, ti, τi)

di =
[
x(i,2) y(i,2) z(i,2)

]
−

[
x(i,1) y(i,1) z(i,1)

]
(3)

A full set of boundary conditions for a prostate model consists
of the vectors di that specify displacements for nodes on the
prostate surface and zero displacement vectors for nodes on
the exterior surface of the whole meshed volume, specifying
that those nodes remain stationary. The exterior surface nodes
are the ones lying on the outermost faces of the tetrahedra
seen in Fig. 5e.

Applying this set of boundary conditions to the finite
element mesh will result in a deformed object that exhibits the
shape observed in image I2. This geometry based approxima-
tion of the boundary conditions is not unique; any non-folding
surface-to-surface mapping between m-rep models M1 and M2

will provide displacement boundary conditions that produce
the required shape change. To increase the accuracy of the
computed deformation, the set of boundary conditions can be
optimized so that the energy of the deformation is minimized.
Boundary condition optimization relies on the assumption

that when multiple sets of boundary conditions all result in
the same boundary shape change, the most likely set is the
one that requires the least amount of energy to produce the
deformation.

Since non-zero boundary conditions are only applied to
nodes on the prostate’s surface, boundary condition optimiza-
tion is most efficiently performed using the nodes’ (a, b)
surface coordinates. For the ith surface node, (a(i,1), b(i,1))
references a point on the surface of the original m-rep model
M1 and (a(i,2), b(i,2)) denotes a point on the surface of the
deformed model M2. The displacement di can then be defined
as follows.

[
x(i,1) y(i,1) z(i,1)

]
= SurfaceToWorld(M1, a(i,1), b(i,1))[

x(i,2) y(i,2) z(i,2)

]
= SurfaceToWorld(M2, a(i,2), b(i,2))

di =
[
x(i,2) y(i,2) z(i,2)

]
−

[
x(i,1) y(i,1) z(i,1)

]
(4)

The SurfaceToWorld transform maps the (a, b) coordi-
nates to medial (u, v, t, τ) coordinates using the relations de-
tailed in the appendix, and then applies the ObjectToWorld
transform to the (u, v, t, τ) coordinates.

The boundary condition optimization procedure initializes
the surface point correspondences by setting (a(i,2), b(i,2)) =
(a(i,1), b(i,1)). Then the (a(i,2), b(i,2)) coordinates are adjusted
by a Nelder-Mead simplex search algorithm [29] to minimize
the strain energy of the resulting deformation. This optimiza-
tion is illustrated in Fig. 6. The strain energy is defined as

Fig. 6. In the boundary condition optimization process, (u, v, t, τ) co-
ordinates are converted to the more compact (a, b) surface coordinates.
Corresponding points are then allowed to slide along the object surface, as
shown on the right, to minimize the energy of a deformation.
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follows [30] [31].

PE =
1
2

∫
V

σ · ε dV where σ is the stress (5)

ε is the strain
V is the object volume

E. Solution Algorithm
To compute the deformation of a three dimensional linear

elastic finite element model with N nodes, a system of linear
equations of the following form must be solved.

Ka = f (6)

where K is the 3N× 3N stiffness matrix
a is a vector containing node displacements
f is a vector containing node forces

An initial approximation to the deformation solution can be
derived from the m-rep model correspondences in the same
way that the initial approximation to the boundary conditions
is derived. For each node in the mesh, an initial approximation
to the node’s displacement vector di is defined by Eqn. 3. A
preconditioned conjugate gradient solver is used to iteratively
improve the solution to Eqn. 6.

1) Mesh Subdivision: If greater accuracy than that provided
by the initial mesh is desired, the mesh can be subdivided
to create smaller elements that provide a higher resolution
deformation solution. The mesh nodes produced by the m-
rep meshing algorithm have both world space (x, y, z), and
medial object (u, v, t, τ) coordinates. By subdividing elements
using the object coordinate system, a smoother, more detailed
approximation of the object geometry is produced. Straightfor-
ward subdivision with world space coordinates would provide
higher resolution for the solution representation but would not
change the error of the geometric representation. The medial
coordinate based subdivision process allows for increased
precision in both the geometry and the solution. The advantage
of increased geometric precision is a reduction in deformation
error in the vicinity of the boundary. Subdivision using world
space coordinates is compared to subdivision using medial
object coordinates in Fig. 7. The result of applying medial
coordinate based subdivision to a prostate mesh is shown in
Fig. 8. Each subdivision step increases the size of the system
of equations by approximately a factor of 8.

Fig. 7. (a) Coarse mesh. (b) Subdivision of coarse mesh using Euclidean
coordinate midpoint computations. (c) Subdivision of coarse mesh using
medial coordinate midpoint computations. The subdivision in (c) is a smoother
approximation of the object’s boundary than the subdivision in (b).

2) Solution on a Subdivided Mesh: The larger system of
finite element equations that results from subdivision can be
efficiently solved by taking a multiscale approach and using
sparse matrix data structures. The approach taken here is to
solve the finite element system of equations on the initial mesh
using the procedure outlined at the beginning of section III-E
and then interpolate that solution to the subdivided mesh and
solve again using a conjugate gradient solver.

F. Displacement Interpolation

The solution to Eqn. 6 provides a 3D displacement vector
for each mesh node. To find the displacement vector for a voxel
in I1, a spatial search is performed on the mesh to determine
the element index and (ξ, η, ζ) coordinates that correspond to
the voxel’s location. Then by substituting the node displace-
ment vectors for the node coordinates in Eqn. 2, the shape
function N(ξ, η, ζ) is used to interpolate the displacement
to the voxel’s location. The interpolated displacement vector
maps the voxel from I1 onto the corresponding point in image
I2.

IV. REGISTRATION EXPERIMENT

Validation of the finite element registration method was
accomplished through prostate image registration experiments.
In these experiments a single figure m-rep model represented
the prostate. Pablo fitted the m-rep to binary prostate images
that were produced from expert manual segmentations of CT
image pairs. The area around the prostate was represented
as a homogeneous region, and all soft tissues were modeled
as isotropic linear elastic solids. Boundary conditions were
supplied in terms of displacement vectors for nodes on the
prostate model’s surface. The material parameters for the
linear elastic material model were E, Young’s modulus, and
ν, Poisson’s ratio. Since boundary conditions were specified
in terms of displacement vectors rather than force vectors,
the deformation did not depend on Young’s modulus [25].
Poisson’s ratio was set to ν = 0.49 for the prostate, indicating
near incompressibility.

To be meaningful, the method for evaluating the regis-
tration accuracy needed to be independent of the method
used to produce the registrations. Since expert prostate sur-
face segmentations were an experiment input, the registration

Fig. 8. Top row: Surface of a prostate mesh at subdivision levels 1 - 3
Bottom row: Sliced view of a prostate mesh at subdivision levels 1 - 3
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accuracy could not be evaluated in terms of percentage of
prostate volume overlap, prostate surface proximity, or any
other metric derived from an analysis of registered prostate
surface positions. Instead, it was appropriate to evaluate these
registrations by examining the alignment of corresponding
fiducial points inside the registered prostate volume. Since
fiducial points were not used at any stage of the finite element
registration process, they provided a truly independent measure
of registration accuracy. Implanted brachytherapy seeds were
the fiducials employed in the validation experiment. Seed
voxels were automatically located in the test images via image
intensity thresholding, and seed coordinates were computed as
the average position of a cluster of bright voxels. A mapping
between the seeds extracted from each of two images was
established through the use of a non-rigid point matching
algorithm [32].

The validation study was performed using computed to-
mography (CT) prostate images acquired at Memorial Sloan-
Kettering Cancer Center. Results are presented for the follow-
ing pairs of prostate CT images:
A) Prostate phantom deformed by MR imaging probe

A deformable male pelvis phantom was implanted with
non-radioactive brachytherapy seeds and scanned first
with a deflated MR imaging probe in the rectum (image
A1) and then scanned again with the probe inflated
(image A2). This produced a pair of images of the
prostate and surrounding region that captured the dis-
placement and deformation caused by pressure from the
probe. The phantom’s prostate, bladder, and rectum were
made of a water-based polymer designed to simulate
the properties of real tissues (Computerized Imaging
Reference Systems, Inc.). 75 brachytherapy seeds were
evenly distributed in the prostate and visible in both
images. The in-plane resolution for this volumetric pair
of images was 0.49 mm, and the thickness of each slice
was 1.5 mm. A representative slice from each of the CT
images in this pair is shown in Fig. 9.

B) Patient prostate deformed by swelling
A brachytherapy patient was scanned 1 hour after 68
seeds were implanted (image B1) and again one month
later (image B2). In the first scan the prostate was
enlarged due to swelling caused by the brachytherapy
procedure. The in-plane resolution for this pair of images

Fig. 9. Left: A CT slice from image A1 shows the phantom prostate with
the uninflated probe. Right: A CT slice from image A2 shows the phantom
prostate with the inflated probe.

was 0.49 mm, and the thickness of each slice was 5.0
mm.

For comparison purposes, a fluid based registration method
was also applied to the prostate image pairs [33]. This method
produced a registration by optimizing the deformation field to
maximize image intensity match. Because brachytherapy seeds
show up brightly and distinctly in CT images, the presence of
the seeds strongly affected the result of this intensity driven
registration algorithm. To remove this bias and permit the fluid
registration to be legitimately evaluated using the same metric
as the finite element registration method, the brachytherapy
seeds were edited out of the prostate images and the fluid
method was applied to the edited CT images. The editing was
accomplished through the following steps:

1. All voxels inside the segmented prostate volume were
classified as seed voxels or prostate tissue voxels via
intensity thresholding.

2. The mean and standard deviation of the intensity of
prostate tissue voxels was computed.

3. The intensity of each seed voxel was replaced by a ran-
domly selected intensity from the distribution computed
in the previous step.

Since the prostate tissue in the test images appeared homoge-
neous on CT except for the presence of the seeds, the edited
images visually matched the expectation for prostate images
without seeds. An edited patient image slice is shown in Fig.
10.

V. RESULTS

This section first presents registration accuracy results and
then analyzes algorithm performance. Registration accuracy
is reported based on measurements of brachytherapy seed
alignment between registered prostate image pairs. The dis-
cussion of algorithm performance considers the computational
efficiency of the solution method and the effectiveness of the
mesh and boundary condition optimization procedures.

A. Registration Accuracy

The registration accuracy is clinically most significant in
the anterior/posterior direction since the prostate is adjacent
to the anterior wall of the rectum. Accurate registration in
this direction is necessary to minimize the rectum’s exposure

Fig. 10. Left: A portion of an axial slice from a patient prostate CT image
is shown. Right: The same CT slice is shown with the brachytherapy seeds
edited out of the image via the procedure described in section IV.
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to radiation which can cause complications including rectal
bleeding. When prostate deformation is caused by pressure
from an endorectal imaging probe, as in image pair A, the
deformation is greatest in the anterior/posterior direction.
Therefore in addition to calculating the total registration
error, the magnitude of the error component in each of the
left/right, anterior/posterior, and superior/inferior directions
was assessed.

For both test image pairs, the finite element registration error
was of the same order as the image resolution. This is the best
registration accuracy that could be expected since uncertainty
in seed segmentations contributed to the registration error
measurements, and the image resolution was the limiting factor
for seed segmentation accuracy. In both test cases, the fluid
registration method produced errors that were greater than the
finite element registration errors and significantly larger than
the image resolution.

The registration error at each seed was computed as the
difference between the seed’s registered image A1 or B1

coordinates and its corresponding image A2 or B2 coordinates.
For each of the test image pairs the mean and standard
deviation of the seed registration error are reported in Figs. 11
and 12 for the set of all seeds that were identified with high
confidence in both of the paired images. The point matching
algorithm successfully matched more than 75% of the seeds
in each of the image pairs; 58 of the 75 seeds implanted in
the phantom were matched and 52 of the 68 seeds implanted
in the patient were matched. The seeds that could not be
matched with confidence by the point matching algorithm were
excluded from the error analysis. However, the regular nature

Fig. 11. Average registration error and standard deviation are shown for
brachytherapy seeds embedded in a phantom prostate (image pairA). The image
resolution in the left/right and anterior/posterior directions is 0.49 mm, indicated
in the graph with a dashed line. The slice thickness in the superior/inferior
direction is 1.5 mm, indicated with a solid gray line.

Fig. 12. Average registration error and standard deviation are shown for
brachytherapy seeds embedded in a patient’s prostate (image pair B). The image
resolution in the left/right and anterior/posterior directions is 0.49 mm. The slice
thickness in the superior/inferior direction is 5.0 mm.

of the seed distribution in the phantom allowed all 75 of the
phantom seeds to be manually matched between images A1

and A2. The manual and automatic seed point matchings were
consistent, and there was no significant difference between the
error metrics computed for the 75 manually matched seeds
and the 58 automatically matched seeds. This indicates that
the error metrics computed for the partial seed matchings are
reliable.

1) Registration accuracy for phantom images: The average
amount of seed movement observed in image pair A due to
the inflation of the MR imaging probe was 10.48 mm. After
finite element registration the average alignment error in the
anterior/posterior direction was 1.07 mm. Fig. 11 summarizes
the registration error for the set of all matched seeds when
registered by the finite element method and when registered
by the fluid method. Note that the fluid registration error
is significantly larger than the finite element error in the
superior/inferior direction and in the most important ante-
rior/posterior direction.

Fig. 13 illustrates the structure of the deformation field
computed for image pair A by applying the deformation to
a slice of a grid image and to the slice of image A1 shown
undeformed in the left panel of Fig. 9. The positions of the
brachytherapy seeds in this computationally deformed image
closely match their positions in the image A2, previously
shown in the right panel of Fig. 9.

When the m-rep geometry-based point correspondences
defined in Eqn. 3 were used to register image pair A, the
registration error averaged 3 mm per seed with 2 mm of
the error in the important anterior/posterior direction. Thus
computing the deformation field using the finite element model
eliminated more than half of the anterior/posterior registration
error found in the geometry-based mapping.

2) Registration accuracy for patient images: Image pair
B exhibits prostate deformation due to tissue swelling and
includes the influence of real tissue inhomogenity. In this
regard, test image pair B provides an excellent test for the
registration algorithm. The larger slice thickness used in the
clinical images limits the precision of error measurement in
the superior/inferior direction. However the in-slice resolution
of this image pair is the same as that of the phantom images
and permits careful examination of the anterior/posterior error
component, which averaged 1.25 mm per seed. In contrast,
the fluid registration error in the same direction averaged 4.20
mm per seed. Fig. 14 shows slices from image B2 along with
registered seeds segmented from images B1 and B2.

Fig. 13. Left: The computed deformation for the registration of image pair
A applied to a regular grid. Right: The same deformation applied to a slice
of the CT with the uninflated probe.



9

Left: Axial slice Right: Sagittal slice

Top row: Unregistered seeds

Center row: Seeds registered via finite element method

Bottom row: Seeds registered via fluid method

Fig. 14. Axial and sagittal slices of image B2 are shown. Seed positions
segmented from B2 are rendered in cyan. The magenta seeds were identified
in image B1 and mapped onto B2 with no registration (top), finite element
registration (center) and fluid registration (bottom). In both the axial and
sagittal views, some seeds are not visible because they are located behind
the image slice.

B. Algorithm Performance

Performance measures for the finite element mesh opti-
mization and boundary condition optimization algorithms are
reported here, followed by a discussion of the computational
efficiency of the solution algorithm.

1) Mesh Quality Optimization: The majority of prostate
mesh elements created by the meshing algorithm presented
in section III-C were of high quality and had det(J) > 0.5
prior to any optimization. Fig. 15(a) displays a histogram of
det(J) for an initial prostate phantom mesh. The optimization
process described in section III-C.2 succeeded in improving
the hexahedral prostate meshes so that det(J) > 0.5 for all
elements, as shown in Fig. 15(b). The element shape quality
of the prostate meshes remained high after each of three
subdivision steps, making repeated application of the mesh
optimization step unnecessary for the prostate models.

Fig. 15. Histograms of det(J) for elements of the phantom prostate mesh (a)
before element quality optimization and (b) after element quality optimization

2) Boundary Condition Optimization: Tests showed that
the optimization procedure described in section III-D reduced
the energy of a prostate deformation by up to 20%, but
the optimization had a negligible impact on the registration
accuracy at the seeds. The displacement vectors for the seed
points changed by such small amounts after optimization that
the error statistics were unaffected.

3) Computational Efficiency: The experiment results
demonstrated that the number of solver iterations required to
converge to a solution was reduced due to the good initial
approximation provided by a solution on a coarser mesh. Fig.
16 shows the number of conjugate gradient iterations required
for solution convergence after three mesh subdivision steps
and shows that the computational savings gained by starting
with the solution predicted from a coarser level increases with
the subdivision level.

The finite element code used for this experiment was
implemented in Matlab, leading to slower execution times than
a compiled and optimized implementation of the algorithms
presented would provide. With the Matlab implementation a
deformation of prostate mesh level 1 or 2 could be computed
on a desktop workstation in several minutes. A solution on
mesh level 3 required about 12 hours. Timing runs with the
authors’ more recently developed finite element code that is
written in C++ indicates that if the prostate experiment were
repeated using the new code the solution for the level 1 mesh
would be computed in less than 0.1 seconds, the solution for
the level 2 mesh would be computed in less than 2 seconds,
and the solution for the level 3 mesh would be computed in
less than 2 minutes.

Fig. 16. The number of nodes, elements, and solution iterations required for
prostate mesh subdivision levels 1 - 3 using image pairA. The rightmost graph
compares the solution iteration counts required using a zero displacement
initial solution approximation compared to the iteration counts required using
m-rep predicted displacements as the solution approximation.
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VI. DISCUSSION

An analysis of the registration experiment results reported in
the previous section is provided below. The registration error
measurements for the finite element and fluid methods are
considered first, followed by a discussion of the performance
of the finite element registration algorithm.

A. Registration Accuracy

The clinical goal for prostate image registration is 2 mm
accuracy, with the greatest importance given to the error com-
ponent in the anterior/posterior direction. The finite element
registration results are encouraging because they indicate the
2 mm goal can be achieved when accurately segmented high
resolution images are provided; even with thick 5.0 mm image
slices the registration in the anterior/posterior direction is
excellent, averaging 1.25 mm error for the patient test case.

The larger errors produced by the fluid method in the
registration experiment can be attributed to the lack of visible
structure inside the prostate in CT images. Even the prostate’s
boundary was difficult to detect in some regions, putting any
intensity driven registration approach at a disadvantage. The
finite element method did not suffer from this disadvantage
because the input segmentations and the m-rep models pro-
vided a continuous prostate surface even where the boundary
was not clearly visible in the images. Thus the prostate shape
information encapsulated in the models allowed the finite ele-
ment method to generate more accurate prostate deformations
than the fluid method.

B. Algorithm Performance

The significance of the finite element registration algorithm
is considered here, with special attention given to the novel
aspects of the mesh generation and optimization procedures.

As previously noted, hexahedral finite element meshes can
often provide better convergence and accuracy than the more
commonly used tetrahedral meshes. Research has shown that
for both linear elastic and non-linear elasto-plastic problems
the error in a finite element solution is smaller when a
mesh of linear hexahedral elements is used than when a
mesh of similarly sized linear tetrahedral elements is used
[20]. Research has been directed toward the development of
hexahedral meshes from images [34], but the development
of automatic hexahedral meshing algorithms is a challenging
problem that continues to motivate current research efforts in
the mesh generation community [35]. Therefore, the automatic
generation of quality hexahedral meshes by the m-rep based
meshing algorithm is a noteworthy development.

As detailed in section V-A.1, the element shape optimization
succeeded in improving element quality and the boundary
condition optimization succeeded in discovering sets of bound-
ary conditions that resulted in lower energy deformations.
However, neither of these optimizations were critical to the
outcome of the prostate registration experiment, and when the
tests were repeated without the optimizations, the registration
error was not significantly different. The availability of these
optimization procedures could still be important for situations

where the deforming structures have more complex geometry
than the prostate, since the initial m-rep approximations may
be less accurate in such cases.

From a computational point of view, both types of optimiza-
tion were made more efficient and robust through the introduc-
tion of alternate parameterizations of the m-rep model volume
and surface. The mapping from (u, v, t, τ) medial coordinates
to the three dimensional (A,B,C) volume coordinates and
the two dimensional (a, b) surface coordinates improved opti-
mization efficiency because the point representations provided
by these parameterizations was more compact and reduced the
dimensionality of the space searched during the optimizations.

VII. CONCLUSION & FUTURE WORK

We conclude that the finite element image registration algo-
rithm presented here shows promise for producing deformable
registrations of 3D prostate images with a minimal amount
of human intervention. The accuracy levels achieved with the
method seem to be primarily limited by the segmentation
accuracy and input image resolution.

In addition to software engineering efforts, future work will
proceed in three directions. First, the prostate registration algo-
rithm may be expanded to use a five object male pelvis model
that includes the rectum, bladder, and pubic bone objects in
addition to the prostate. The use of a multi-object model would
allow not only the prostate but also the surrounding structures
to be accurately registered. Second, the registration algorithm
will be applied to images of other soft tissue organs such
as the liver. Recent methods of radiation treatment such as
high dose treatment and tomotherapy require tight treatment
margins. Such tight margins can be achieved through highly
accurate registration of planning and treatment images. Finally,
more advanced material modeling will be pursued. Spatially
varying material parameters could increase the realism of the
model, as could the addition of more complex material models.
Soft tissues are most accurately characterized as viscoelastic
[36], so it is important to determine whether registration
accuracy might be improved through the use of a viscoelastic
or hyperelastic constitutive model.

APPENDIX I
MEDIAL OBJECT COORDINATE TRANSFORMS

The coordinate transformations used in the mesh element
optimization (section III.C) and in the boundary condition
optimization (section III.D) are detailed here. These transfor-
mations map 4D (u, v, t, τ) object coordinates onto unique
3D (A,B, C) coordinates for each point in an m-rep figure
and onto unique 2D (a, b) coordinates for each point on the
surface of an m-rep figure. The mappings from (u, v, t, τ) to
(A,B,C) and (a, b) are analytically invertible, allowing direct
conversion between any of the three coordinate spaces. These
transformations are important because when point coordinates
are iteratively optimized, reducing the dimensionality of the
coordinates improves the efficiency and robustness of the
optimization.

An m-rep figure is divided into five regions: a center region
and four rim regions, labelled RA, RB , RC , RD and RE in
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Fig. 17. (a) Five regions of an m-rep figure (b) Diagram of the (A, B, C) parameter space with the five m-rep regions labelled (c) & (d) A sliced view of
one of the rim regions, with the polar type medial object coordinates shown on the left and the corresponding (A, B, C) parameter space on the right.

Fig. 17 (a). In any single region only three of the four
medial coordinates are needed to uniquely identify a point.
For the entire center region, RE , all points are referenced
by (u, v, 1, τ); t does not vary. In each of the rim regions,
RA, RB , RC , and RD, either u or v maintains a constant
value. Therefore, the (u, v, t, τ) parameter space can be viewed
as five three-dimensional parameter spaces rather than as
one four-dimensional space. The (A,B, C) parameter space
simply maps these five three-dimensional segments into one
continuous three-dimensional space. For the center region, the
mapping is direct.

A = u B = v C = τ (7)

For the rim regions, a more complicated mapping is neces-
sary because the t and τ medial object coordinates for the
rims are essentially polar coordinates, while the (A,B,C)
coordinates form a Cartesian type coordinate system. (See Fig.
17 (c) and (d)) The (A,B,C) coordinates for each rim span a
wedge shaped region, as shown in Fig. 17 (b). The equations
for the (u, v, t, τ) → (A,B,C) mapping for each rim region
are as follows.

α =
1

tan
(

tπ
2

)
+ 1

RA : A = v (1− |τ |α) + (1− v)(−|τ |α)
(

umax + 1
umax − 1

)
B = v

RB : A = u

B = (umax + 1− u) (vmax + |τ |α)

+(u− umax)(vmax − 1 + |τ |α)
(

vmax + 1
vmax − 1

)
RC : A = (vmax + 1− v) (umax + |τ |α)

+(v − vmax)(umax − 1 + |τ |α)
(

umax + 1
umax − 1

)
B = v

RD : A = u

B = u (1− |τ |α) + (1− u)(−|τ |α)
(

vmax + 1
vmax − 1

)

RA, RB , RC , RD :
C = τ (1− α)

(a, b) medial object surface coordinates are defined in terms
of (A,B, C) coordinates. The (a, b) parameter space covers
the surface of the (A,B,C) parameter space, unfolded along
the (umax + 1) edge.

a =
{

A if C ≥ 0
2 (umax + 1)−A if C < 0

b = B
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