ROI CONSTRAINED STATISTICAL SURFACE MORPHOMETRY

Chunxiao Zhou"*?, Denise C. Park™, Martin Styner®, Yongmei Michelle Wang

1,3,4,5

Departments of 'Statistics, “Electrical&Computer Engineering, *Psychology, *Bioengineering,
*Beckman Institute,
University of Illinois at Urbana-Champaign, IL, USA

Departments of Computer Science and Psychiatry,
University of North Carolina at Chapel Hill, NC, USA

ABSTRACT

This paper presents a novel ROI constrained statistical
surface analysis framework that aims to accurately and
efficiently localize regionally specific shape changes
between groups of 3D surfaces. With unknown distribution
of the data, existing shape morphometry analysis involves
testing thousands of hypotheses for statistically significant
effects through permutation. In this work, we develop a
hybrid method to improve the system’s efficiency by
computing the raw p-values of the nonparametric
permutation tests only within a region of interest (ROI) of
the surface. The ROI is identified through a parametric
Pearson type 111 distribution approximation. Furthermore, a
ROI based adaptive procedure is utilized to control the False
Discovery Rate (FDR) for increased power of finding the
significance.

Index Terms — Brain morphometry, MRI, permutation,
hypothesis testing, FDR.

1. INTRODUCTION

Recent advances in MRI technology have led to increasing
interest in statistical shape analysis of brain due to its ability
to detect morphological changes in structures of interest for
neuroscience research, as well medical diagnosis and
treatment. A critical issue in surface morphometry is the
shape description and representation. Different strategies
have been investigated in the literature [3, 8, 9]. The
spherical harmonics (SPHARM) approach using spherical
harmonics as basis functions for a parametric surface
description was proposed in [2]. The sampled SPHARM-
PDM is a smooth, accurate, fine-scale shape representation
[7]. The correspondence across different surfaces is
established by aligning the parameterizations via the first
order ellipsoid. The present work employs the SPHARM-
PDM description due to the mentioned advantages and its
successful applications [6]. The SPHARM-PDM leads to
corresponding location vectors over different surfaces,
which are then used in our subsequent statistical analysis.
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At each position on the surface, we test whether there is
significant mean vector difference between two groups of
location vectors. Since the distribution of the location
vectors is unknown, a reasonable strategy is to use a
nonparametric approach for hypothesis testing. Permutation
tests require few assumptions concerning statistical
distributions but exchangeability. They belong to the
nonparametric “distribution-free” category of hypothesis
testing and are thus flexible, and have been used
successfully in both structural and functional MR image
analysis [5, 6]. There are three main approaches to construct
the permutation distribution [4]. First, exact permutation
enumerates all possible arrangements. Second, an
approximate permutation distribution bases on random
sampling from all possible permutations. Third, permutation
distribution approximation uses the analytical moments of
the exact permutation distribution under the null hypothesis.
The computational cost is the main disadvantage of the
exact permutation, due to the factorial increase in the
number of permutations with the increasing number of
subjects. The computation load may be even heavier when
we look at multiple factorial analyses. The second
technique has the problem of replication and more type I
error. The limitation of the last method is whether the
moments can be obtained. In this work, we define a
simplified T2 test statistic from which the first three
moments of the exact permutation distribution can be
derived analytically. The regions of interest (ROI) on the
surface that possibly have significant shape differences are
thus identified by fitting the permutation distribution with
the first three moments. The real permutation is then only
performed within the ROI rather than over the entire
surface. This approach has the advantage of achieving a
good comprise between flexibility and efficiency by using a
hybrid version of parametric tests and nonparametric
permutation tests.

Analysis of the location vectors involves testing
thousands of hypotheses, i.e. multiple testing. Simply
choosing a type I error threshold, for example with « =0.05
is not appropriate. In this case, 100 false positives would be
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expected when 2,000 locations on the surface are compared.
False positives must be controlled over all tests. A common
technique to handle the multiple testing problem is
controlling the familywise error rate (FWER), which
however, is too conservative for many applications [1].
False Discovery Rate (FDR) control is becoming more
popular due to its power of finding true discoveries through
the control of the fraction of false discoveries over total
discoveries [1]. The FDR method was initially proposed by
Benjamini and Hochberg, so called BH’s FDR. More
advanced techniques have also been developed recently,
such as Storey’s pFDR and BH’s adaptive FDR [1]. In this
paper, we adopt the concept of the adaptive FDR and
develop a ROI based adaptive procedure using BH’s FDR
to enhance the power of finding true discoveries.

2. METHODOLOGY
2.1. Overview

We first use the SPHARM-PDM software [7] to establish
surface correspondence and align the surface location
vectors over all subjects. The surface shapes of different
objects are thus represented by the same number of location
vectors. Second, a multivariate simplified 7° test statistic is
defined, and the ROI is identified by using the Pearson type
III distribution to approximate the permutation distribution
of the normalized test statistic. Third, within the ROI, we
permute the corresponding location vectors and measure the
p-values of the observed statistics. Finally, a ROI
constrained adaptive FDR strategy is utilized to find the
regions with significant group shape differences.

Two main contributions of this paper are: i) develop a
hybrid method to improve the system’s efficiency by
computing the nonparametric permutation tests for the raw
p-values only within a ROI of the surface, which is
identified through a parametric type III distribution
approximation; ii) increase the power of the multiple testing
by using an ROI constrained adaptive FDR.

2.2. Test Statistic and Region of Interest (ROI)

Suppose we have two groups of location vectors for each
corresponding surface position, and the numbers of subjects
in the two groups are respectively n, and n,. To analyze the
surface shape difference between two groups, we test the
null hypothesis of each spatial location one by one
independently, and then detect the locations with significant
shape changes. The null hypothesis /] is defined as no
group mean vector difference at i location, i=1,2,---,m,

where m is the total number of locations on the surface.

2.2.1. Definition of Test Statistic
The type III distribution is utilized in the present work to
approximate the permutation distribution of the test statistic
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without real permutation, which can be achieved through
the use of the first three moments of the exact permutation
distribution. Hotelling’s 7° is an optimal multivariate test
statistic for mean vector difference testing under
multivariate normality. However, it is impossible to
compute the pooled covariance matrix without real
permutation. We solve this puzzle by replacing the pooled
covariance matrix in the Hotelling’s 7° with the sample
variance-covariance matrix, S, over all the subjects of the
two groups. This leads to a simplified 7° (denoted as 7T in
this paper), which is the test statistic used here. Since the
simplified 77 is a monotonic function of Hotelling’s 77, this
two statistics share the same p-value in permutation tests.

2.2.2. Approximation through Type III Distribution
Let X denote the location vector matrix over all subjects in

. X Xy RS I xn+n,
both groups, i.e., o "L Let
X={0 o Vo Pust o Vaen
I zn, zn,+l zn|+n2
g7 _——L 1 | 1 denote centering matrix, where
n+ny ny+ny i,
n + ny
1., 1S@ (m+ny)x(m+ny) identity matrix, and 1, , ~isa

vector of size n; +n, with all entries 1. Note that H is

symmetric and idempotent, thus HH" =H. The
(m +ny)x(n, +n,) permutation matrix P randomly assigns »,

subjects to one group and the rest n, subjects to another

group. All [”1+"2]conﬁgurations are equally distributed.

n

Let C be the mean difference vector [Ll ro -l 1. We
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n n

derive the first moment of the exact permutation distribution
as following: E(T)=E(CPX"S™'XPTCT)

=(m +ny ~)E(CPXT (XH)Y(XH)" )" xP"CT)

= (my +n, 1) E(trace(CPX" (XHH XY™ xPTCT))

= (ny +n, —Dtrace((XHX )™ X(;)CCTHXT)
n+ny—1

— CCT trace((xEXTY " xHXT) = docT =3 1L )]
moom

where d is the dimension of location vector, i.e. 4 =3, and

the lemma of E(P"CTCP)=CC"H /(n, +n, —1) is used. Note

that the first moment of permutation distribution turns out
not dependent on the location vector matrix X, which then
only needs to be computed once for the entire surface.

For mathematical tractability, we adopt the idea of the
indictor function in [4] to analytically calculate the second
and third moments. The calculation involves measuring the
expected values of indictor function in different situations.
The final result is a sum of multiple terms with each term a
product of a function of location vectors and a coefficient
only related ton, and n,. The second and third moments

are location based and differ from surface voxel to voxel.



The type III distribution is standardized to have mean
zero, variance 1 and skewness 7 :

@it
r4/y?)
where —-2/y<y<o and I'is the gamma function. We

I = @+ )/ D77 exp(=22+ y1)/ 77)

construct this type III function with the derived first three
moments to approximate the permutation distribution of the
normalized test statistic as below [4]:

y =(E(T*)=3E(TWVar(T)- E(T)*)/ var(T)*?
In fact, less moments (first two) or more moments may be
used to approximate the permutation distribution. The type

II distribution using the first three moments achieves a
good balance between the model complexity and accuracy.

2.2.3. Identification of ROI

Given an observed statistic 7' (i.e., simplified 77), we first
normalize it according to z=(7-E(T))/\[Var(T) - Then, the
corresponding critical value at the pre-chosen significance
level ¢, is calculated based on the constructed type III

distribution. Finally, the voxel is included into the ROI if its
Z value is larger than the critical value.

Under multivariate normality and equal group variance,

the Hotelling’s 77 is distributed as (1 +7m =2)d

(m +ny—d-1)

One could define the ROI by simply thresholding the

observed values of the Hotelling’s 7 test statistic with this

F distribution at ¢, . However, the normality assumption

d,ny+ny—d-1 :

may not be satisfied in real applications, which will lead to
inaccurate ROI identification (see Section 3 and Fig. 1).

2.3. Raw p-values through Permutation within ROI

Within the ROI detected by the above permutation
distribution approximation, either exact permutations or
random permutations with Monte Carlo strategy can be
applied to construct the permutation distribution, based on
which the p-values of the observed statistics are calculated.

2.4. Adaptive FDR within ROI

The BH’s FDR is defined as (see notations in Table 1):
FDR = E(——) = E|R>0) P(R>0)> Where Rv1=max(R,1).
Rv1 R

It is more powerful and less stringent than the FWER.

Accept null Reject null Total
INull true U \% mg
IAlternative true G L m
Total W R m

Table 1. Possible outcomes from m hypothesis tests.

In this work, we adopt an adaptive procedure of the
BH’s FDR [2], with detailed steps as following:
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Step 1: For { pi| location i € ROI'}, order the set of observed
p-values as py < p) <+ < p,, ), Where m, is the number

of locations within ROI .
Step 2: Starting with p , in decreasing order, find the

largest & for which Puo < 4, whereq is the preset FDR
m

error rate and m is the total number of location vectors on
the surface.

Step 3: Estimate the number of null locations by using
my = (1+gq)(m—k) -

Step 4: Calculate the “BH-FDR-adjusted p-values” for
locations within ROI through Pl =min{p; g /)| j2i}-

Step 5: Set p5% =1, if location i ¢ ROI .
Step 6: Compare all #" with desired level of FDR ¢ ; all
pP <4 are declared as significant.

This adaptive FDR control is more powerful than the
conventional BH’s FDR. It can find more significant areas
while preserve the same desired FDR rate. The ROI
constrained adaptive scheme in this work is more efficient
since only the p-values within the ROI need to be sorted.
We set the p-values outside the ROI to 1 because it is
unlikely to change the ranking of the p-values of true
significant, therefore, this procedure won’t change the
significance detection result with the adaptive FDR strategy.

3. RESULTS

We applied the method to the MRI hippocampi' that were
semi-automatically segmented by human expert raters and
manually grouped into 2 groups (group A and group B)
with 21 subjects in each group. This dataset serves as a
testing dataset for methodology validation and as an
example for all users of the SPHARM-PDM software.
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Fig.1. Left: F-distribution approximation of the Hotelling’s I°
statistic permutation distribution. Right: Normal and Type III
approximation of our Z statistic permutation distribution.

1 2 3 a4 6
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Fig. 1 demonstrates the performance of the type III
distribution approximation, by showing the fitting results of
a randomly selected voxel on the hippocampus surface. The
green graph on the left is the histogram of the Hotelling’s 7°
statistic, and the one on the right is the histogram of our Z
statistic (simplified and normalized 77 statistic) Fig. 1 right
shows that approximating the permutation distribution of

! http://www.ia.unc.edu/dev/download/shapeAnalysis/



this normalized test statistic with type III distribution (using
the first three moments) is more precise than with a normal
distribution (using only the first two moments). In addition,
the fitting of the Hotelling’s 7° permutation distribution by
@1+21-2)x3 . distribution (Fig.1 left red) is obviously
(1+21-3-1) >
unsuitable for this voxel and for this dataset.

Evaluation of our ROI identification method on the
example hippocampus dataset is shown in Fig. 2. It can be
seen that compared with approximating the permutation
distribution using parametric F distribution, the type III
distribution approximation using the first three moments
leads to less discrepancy with the raw p-value map from real
permutation. This further confirms that the present ROI
identification strategy is reasonable and accurate. Note that
at the same significance level ¢, , even if a few significant

surface locations based on the real permutation ROI
identification are missed in our ROI identification, these
voxels would have raw p-values very close to ¢, due to

the precise type III distribution approximation, and would
be shown as non-significant after false positive error control
(such as FDR). Alternatively, we can set ¢, slightly larger

than the subsequent preset DFR rate, ¢,,, (for example,
chooseaRO]:O.OSS forg,,,=0.05), to guarantee that all
locations with raw p-values smaller than or equal to «,,,
(based on real permutation) are included in our ROI.

(a) (b) © (C)) (e)
Fig.2. Comparison of techniques in ROI identification (at
significance level 0.05). a): ROI (in red) detected by the raw p-
map through real permutation. b): ROI (in red) detected by F
distribution. ¢): ROI (in red) detected by type III distribution. d):
The difference of b) and a). e): The difference of ¢) and a).

| A | A | =0.05
' N\
. K
=0.0

(a) (b) (© (d
Fig.3. Comparison of multiple testing techniques. a): Raw p-map.
b): FWER corrected p-map. ¢): BH’s FDR corrected p-map. d):
ROI constrained adaptive FDR corrected p-map.

The false positive error control results are shown in Fig.
3. The raw p-map has the largest significance region,
including numerous false positives. Since FWER control is
conservative, it leads to the smallest size of significance
areas. Our ROI constrained adaptive FDR method discovers
more significant locations than the conventional BH’s FDR
method under the same FDR level (0.05).
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4. CONCLUSION

A new ROI constrained surface morphometry analysis
method is developed and presented. The ROI is identified
by using the analytically derived first three moments of the
permutation distribution. The real permutation is then
performed only within the ROI rather than the entire object
surface for considerably reduced computation cost. Our
hybrid strategy takes advantage of nonparametric
permutation tests and parametric type III distribution
approximation to achieve both accuracy/flexibility and
efficiency. Furthermore, a ROI based adaptive procedure is
employed to control the False Discovery Rate (FDR) for
increased power of the multiple testing. Experimental
results demonstrate the effectiveness of the present
statistical analysis method. Compared with the conventional
FWER and BH’s FDR control, our ROI based adaptive
FDR control is more powerful while keeping the false
positive rate below the desired level as well.
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