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ABSTRACT

Intensity modulated radiation therapy (IMRT) for cancers in
the lung remains challenging due to the complicated respira-
tory dynamics. We propose a shape-navigated dense image
deformation model to estimate the patient-specific breathing
motion using 4D respiratory correlated CT (RCCT) images .
The idea is to use the shape change of the lungs, the major
motion feature in the thorax image, as a surrogate to predict
the corresponding dense image deformation from training.

To build the statistical model, dense diffeomorphic defor-
mations between images of all other time points to the image
at end expiration are calculated, and the shapes of the lungs
are automatically extracted. By correlating the shape vari-
ation with the temporally corresponding image deformation
variation, a linear mapping function that maps a shape change
to its corresponding image deformation is calculated from the
training sample. Finally, given an extracted shape from the
image at an arbitrary time point, its dense image deformation
can be predicted from the pre-computed statistics.

The method is carried out on two patients and evaluated in
terms of the tumor and lung estimation accuracies. The result
shows robustness of the model and suggests its potential for
4D lung radiation treatment planning.

Index Terms— respiratory motion model , diffeomorphic
image registration, statistical shape analysis

1. INTRODUCTION

Currently, computed tomography is the major imaging modal-
ity for comprehensive evaluation of the lung in respiratory
motion due to significant advances in its both temporal and
spatial resolution [1]. Multi-slice CT enables acquisition of a
sequence of temporal 3D images in one breathing cycle. De-
velopments in computerized cancer treatment planning tech-
niques such as intensity-modulated radiation therapy (IMRT)
require precise and efficient calculation of dose distributions
to maximize the tumor treatment while avoiding endangering
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the surrounding normal tissues. However, the complicated
respiration dynamics limit the application of IMRT for lung
cancer treatment and diagnosis [2]. Clinical 4D modeling of
the thorax region in respiratory motion remains to be a chal-
lenging task.

Various models have been proposed to simulate and pre-
dict the complicated free-breathing system. Recognizing the
hysteresis and irregular breathing patterns, auxiliary devices,
such as the pencil-beam navigators [3] and the spirometer [4],
have been used to obtain extra modeling parameters as the
surrogate for the motion estimation. Pure image based models
[5, 6, 7, 8, 9, 10] have been adopted to characterize the respi-
ratory motion in the whole imaging space or within the major
organ region, mostly through image registration techniques.
In [8] a mean motion model for lung is proposed based on
image registration both intra- and inter-patients, where tidal
volume estimated by the air content in the lung is used to
account for individual differences. However, the model is
more or less limited in the applications to regular and repeated
breathing patterns due to the lack of surrogate signals; In [9]
a patient-specific model is trained in the dense image defor-
mations space, where the diaphragm position was manually
labeled as the surrogate. It can be observed that the regions
around the diaphragm contain the motions of large magni-
tudes, which makes the diaphragm position an efficient navi-
gator of the deformation dynamics. Nevertheless a more glob-
ally involved surrogate is needed to account for the motions
in more superior regions of lungs. Considering the large cov-
erage and the high-contrast intensity feature of the air-filled
lung fields in the image, the shape changes of the lung is a
promising surrogate signal.

In this paper we propose a pure image based modeling
method of estimating patient-specific respiratory model for
lung cancer radiation therapy, using the shape of the lung as
the navigator of the dense image deformation space.

2. METHODOLOGY

Our method begins from calculating dense diffeomorphic de-
formations from the end of expiration (EE) phase image to all



other phases (Sec.2.1). In the same images, shapes of the
anatomical structures are automatically extracted (Sec.2.2).
By correlating the shape changes with the temporally corre-
sponding image deformation fields in their separate reparam-
eterized spaces, we compute a linear mapping function which
maps a shape model temporal change to a dense image defor-
mation field (Sec.2.3). This relative computationally expen-
sive training process can be done completely off-line. Given a
target image at an arbitrary phase, we only need the extracted
shape to estimate the corresponding image deformation using
the trained statistics.

2.1. Motion characterization via diffeomorphic registra-
tion

The state-of-the-art symmetric diffeomorphic image registra-
tion method developed by Avants et al. [11] is used to obtain
the dense deformation fields of all phases. This method pro-
vides smooth deformation in a multi-resolution framework,
resulting in both forward and inverse mappings regardless of
which image is fixed and which image is moving.

In a respiratory sequence, each image is denoted by
It where t ∈ [0, 1] with 0 as the starting phase and 1 as
the end phase. We use the end of expiration (EE) phase
IEE as the base image due to its high reproducibility. For
each image It with dimension of I × J × K, the cor-
responding dense deformation field is denoted by Ht =
[ut(0, 0, 0), ...,ut(i, j, k), ...,ut(I, J,K)], where ut(i, j, k) =
[ux

t (i, j, k), uy
t (i, j, k), uz

t (i, j, k)] is the displacement vector
field as the result of registration with the base image IEE (
HEE itself is zero everywhere).

2.2. Binary segmentation and shape representation of the
lungs

The respiratory motions can be observed from the shape
changes of the lungs (left lung and right lung) in a 4D CT
clearly, especially near the diaphragm regions. As the major
source of motion in the imaging field, the geometrical vari-
ations of lungs are used as the surrogate for the temporally
corresponding dense image deformation. Furthermore the air
filled regions have high contrast boundaries, which makes the
automatic segmentation feasible.

Binary lungs are extracted using an automated segmenta-
tion pipeline, similar to the approach in [12]. First, a binary
threshold is chosen carefully to exclude airway regions and
to separate the two lungs. A 3D math-morphological “ball
rolling” operator fills the holes after thresholding and remove
unnecessary details in connecting regions of bronchi struc-
ture, airway and lungs. An example of resulting binary im-
ages are illustrated in Fig.1a.

The surface point distribution model (PDM) represent-
ing the shape of lungs is denoted by Pt = [Pleft

t ,Pright
t ] =

[pleft
t (0), ...,pleft

t (N),pright
t (0), ...,pright

t (N)], where pt(i) =

[px
t (i), py

t (i), pz
t (i)] is the ith point on the surface and N is

the number of surface points for each lung.
In order to train statistics on PDMs of all phases, corre-

spondences among the surface points across all phases must
be satisfied. A direct way of producing such group-wise cor-
respondence is to generate all the models via deforming a
common initial model. We start from a semi-manual trian-
gle mesh model of the lungs. A diffusion process deforms
the triangle mesh along surface normal directions to obtain a
good fit of the binary image contours. Correspondence among
the mesh vertices is provided by the use of an underlying me-
dial representation (m-rep) [13] as the initial shape model,
as shown in Fig.1b. The m-rep provides a fixed number of
sparse surface points (the spoke ends) with surface normals
(unit spoke vectors) for the diffusion process. The vertices of
each diffused mesh is a PDM; see Fig.1c. In our experiments
each lung has 450 surface points.

(a) (b) (c)

Fig. 1: Segmentation and deformation of the lungs: (a) an axial slice
of binary segmentation, in red; (b) a posterior view of the initial m-
rep model: the medial sheet of atoms are shown for the left lung and
surface mesh are shown for the right lung; (c) an anterior view of the
resulting PDM after diffusion process.

2.3. Shape-navigated image deformation statistics

2.3.1. Reparameterization of the image deformation and
shape space

For 3D CT lung images with typical resolution of 512×512×
100 the image deformation fields are storage demanding. The
dimension of 3D shape representation for lungs is also in the
order of thousands. Multiplying by the time dimension, the
calculation is computationally prohibitive. Dimension reduc-
tion becomes the natural solution. We use principal compo-
nent analysis (PCA) on all phases to reparameterize the shape
and dense image deformation space respectively. The repa-
rameterization of the image deformation space is described
as

Ht = µH +
kH∑
i=1

cH
i eH

i = µH + CH
t EH , (1)

where µH is the sample mean, eH
i is the ith eigenvector in the

dense image deformation space , EH is the matrix of eigen-
vectors, cH

i is the corresponding coefficient or the projection
score of Ht in the ith eigendirection, and kH is the number



of eigenmodes. Similarly, we have the equation for the point
sets forming the surrogate:

Pt = µP +
kP∑
i=1

cP
i eP

i = µP + CP
t EP . (2)

In our experiments with the training sample consisted of 10
phases, kH = 2 and kP = 5 cover more than 90% of the
total variance in their spaces respectively . The rest of the
variations are discarded as sampling noise.

2.3.2. Correlation between shape variation and image vari-
ation

Linear correlation between the surrogate and the image mo-
tion has been hypothesized in [3, 9] and was shown to be ef-
fective in modeling the respiratory dynamics. Based on the
same hypothesis, linear correlation between the shape varia-
tion space and the image variation space within the breath-
ing cycle is assumed . Given CH

t and CP
t , we first center

the data by Xt = CP
t − µCP

t
, Yt = CH

t − µCH
t

. We then
form the training data matrix X = [X0, ..., Xt, ..., X1] and
Y = [Y0, ..., Yt, ..., Y1]. The linear mapping matrix M, which
gives Y = XM, can be calculated via the standard multivari-
ate regression as follows:

M = (XT X)−1XT Y. (3)

Given a target image at arbitrary phase t∗ with an auto-
matically extracted shape of the lungs, we directly project the
shape onto the shape prior to get CP

t∗ , and the corresponding
center CH

t∗ is recovered by CH
t∗ = (CP

t∗ − µCP
t
)M + µCH

t
.

3. EXPERIMENTAL RESULTS

In our experiments, the respiratory correlated CT (RCCT)
data sets are provided by a 4-slice scanner (lightSpeed GX/i,
GE Medical System), acquiring repeat CT images for a com-
plete respiratory cycle at each couch position while recording
patient respiration (Real-time Position Management System,
Varian Medical Systems). The CT images are retrospectively
sorted (GE Advantage 4D) to produce a series of 3D images
at 10 respiratory time points. The time resolution is 0.5 s.
The CT slice thickness is 2.5 mm. For each time point, tu-
mor contours by experts’ delineation are used as the clinician
truth.

Sequences of RCCT for two patients ( patient A and B in
the plots) are tested. We quantified the estimation errors by
applying the predicted deformations to the gross tumor vol-
ume (GTV) of the EE phase and measured the results with
the clinicians’ delineation. Fig.3 shows an example of GTV
delineation and the predicted 3D tumor colored by the surface
distance to the clinician truth.

Three measurements are adopted to investigate the results
using standard boxplots (median, interquantile range, largest

(a)
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Fig. 2: (a): A tumor contoured in white on axial slices as clinician
truth. (b): An estimated tumor volume (the median case for patient
A) shown in two views, using the proposed method colored by sur-
face distance errors, with the maximum surface distance of 0.11 cm.

observation and outliers are plotted): The Dice coefficient
measures the volume overlap between the prediction and the
ground truth GTV; The average surface distance measures the
overall geometry fitness; The 90% quantile surface distance
accounts for large discrepancies. In comparison, we plot the
estimation errors without deformation estimation (no regis-
tration), in which the tumors are assumed static and EE phase
GTV are used for all time points. This static situation illus-
trates the mobility of the tumors. We also plot the estimation
errors when directly applying the image deformation to the
GTV via the same symmetric diffeomorphic registration used
in training. The results are summarized in Fig.3. The max-
imum error of 0.25cm surface distance is in fact within one
voxel size, 0.1cm × 0.1cm × 0.25cm. In both patients, our
shape-navigated statistical model largely reduces the estima-
tion error from the static (no registration) method and is more
robust than the registration method as a result of the noise
removal during the reparameterization.
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Fig. 3: GTV estimation evaluation on patient A (left) and B (right)
on Dice coefficient (top), average surface distance (middle) and 90%
quantile surface distance (bottom). Our shape-navigated statistical
model results (box 3) are compared with the results without registra-
tion (box 1) and the results of applying the registration deformation
(box 2).

We also evaluated the estimation error of the shape of
lungs. Automatic binary segmentation results were used as



the ground truth. Since the results on left and right lungs are
quite consistent with each other, we use the average numbers
of the two lungs in the boxplots of Fig.4. Results without mo-
tion modeling ( no registration) are not in comparison merely
because the motion of the lungs are obvious to observe. Con-
sistent with the GTV evaluations, our method yields good es-
timations on lungs, slightly better than the registration method
in terms of the average surface distance.
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Fig. 4: Lung volume estimation evaluation on patient A (left) and
B (right) on Dice coefficient (top), average surface distance (middle)
and 90% quantile surface distance (bottom). Our shape-navigated
statistical model results (box 1) are compared with the results of ap-
plying the image deformation via registration(box 2).

4. CONCLUSION

In the evaluated cases the proposed model is able to esti-
mate the dense image deformation within the breathing se-
quence robustly. The dimension reduction in both image and
shape deformation spaces not only retains anatomically rele-
vant variation but also reduces noise. The hypothesis of linear
correlation between the shape and image deformation space
is shown to be effective. Given 4D image sequences both at
planning time and treatment time, our next goal includes esti-
mating the respiratory motion at the treatment time based on
the statics trained on the sequence of planning time. Also, it
is possible to extend the methodology to inter-patent studies
to include more training samples for more robust statistics.
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