
Introduction

Stephen Pizer and Kaleem Siddiqi and Paul Yushkevich

Abstract In the late 1960s Blum (1967) first suggested that medial loci, later gener-
alized and called symmetry sets and central sets by mathematicians (Yomdin, 1981;
Mather, 1983; Millman, 1980), would provide an effective means of representing
objects appearing in 2D images. Soon thereafter Blum suggested the extension of
medial loci to objects in 3D images. These object representations have since come
to have an important role in the description of shape. In this introductory chapter we
explore the forms the medial representation of objects can take, and we give some
history of its development and use. To start, Section 1 places the medial representa-
tion of objects into the context of alternative representations.

This chapter sets the context for the subsequent material covered in this book,
which is organized in three parts. Part I of the book describes in detail the the math-
ematical properties of the medial representation and the relation between it and the
corresponding object boundary. Section 2 of this chapter introduces this material by
giving the basic mathematical definition and properties of the medial representation.
Section 3 cites evidence for medial representations as models of human vision. Part
II of the book presents algorithms that have been proposed for going from a bound-
ary to a medial representation or from a medial representation to a boundary rep-
resentation, and it discusses their performance. Section 4 of this chapter overviews
such methods, including some that are not detailed later in the book. Finally, Part
III of the book covers selected applications of the medial representation in image
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analysis. These include segmentation, shape characterization, recognition, object
labeling, and registration. Section 5 of this chapter introduces these applications.

1 Object representations

A variety of alternative means of representing objects or multi-object ensembles in
3D or 2D have appeared. The main alternatives to the medial representation fall into
three categories. Inlandmark representations(Fig. 1e) an object or object ensemble
is described by an ordered set of geometrically recognizable and salient locations
on the object(s). Typically this is a sparse set, due to the difficulty of manually or
automatically extracting a large set of landmarks from the 2D or 3D image data. In
boundary representations(b-reps) the object or objects are represented by a rela-
tively dense set of points sampling its (their) boundary (Fig. 1a), by a mesh of tiles
whose vertices form a boundary sampling set but from which normal and curvature
information can also be extracted (Fig. 1b), or by an orthogonal function decompo-
sition of the boundary surface, e.g., by Fourier (spherical, in 3D) harmonics (Fig.
1c). In this decomposition the representation is formed by the collection of coeffi-
cients of the basis orthogonal functions. Indisplacement by voxel representations
the object is represented by an atlas and a displacement vector field (Fig. 1d). The
atlas is formed as a template label image giving for each voxel the name of the ob-
ject class (including background as a class) in which the voxel falls in a template
image. The displacement vector field gives a displacement of each voxel and thereby
describes a mapping of space and thus of the object labels from the template image
to a particular instance of the object or object ensemble. Finally, there is the me-
dial representation (Fig. 1f), which, like the displacement by voxels representation,
directly represents the object interior.

Landmark representations have a long and rich history. They have the major
strength that, by the very choice of the landmarks, there is a strong correspondence
between each specified landmark in one image and that in another image in the pop-
ulation. While their sparseness typically limits them to object descriptions of large
spatial scale and the statistics has been largely in terms of positional displacements
and not local changes of orientation or magnification, there has been an extensive
study of their geometry and their statistics. Prolific and early authors on this subject
are Bookstein (1991) and Kendall (1989). A very effective summary of statistics
of landmark geometry is provided in Dryden and Mardia (1998). Methods to com-
pute diffeomorphic warps from landmark displacements can be found in Joshi and
Miller (2000). Medial representations typically capture many of the landmark corre-
spondences but also allow the study, at many spatial scale levels, of such additional
transformations as bending, widening, and elongation.

Boundary representations via tile meshes, (e.g., Delingette (1999)) provide all
of the capabilities of boundary representations via points and share the difficulty of
analysis at larger scales. In addition, they allow access to boundary normals and cur-
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Figure 1.1. Object representations of a mitten shape. a) Boundary points. b)
Boundary tiles. c) Fourier harmonics. This parametrized representation is by coef-
ficients of sinusoids on the parameter. d) Atlas displacements with labels. Shown
are the binary labels (inside vs. outside the object) in a base space and the new
locations of the labels after the displacements have been applied. Landmarks. f)
Medial. Shown is the continuous locus of centers of tangent disks (spheres in 3D) and
only a few of the disks, which in the representation are given at every center point.
Notice how the natural landmarks, at boundary vertices, correspond to endpoints of
the internal medial axis (shown) or the external medial axis (not shown)
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Fig. 1 Object representations of a mitten shape. a) Boundary points. b) Boundary tiles. c) Fourier
harmonics. This parametrized representation is by coefficients of sinusoids on the parameter. d)
Atlas displacements with labels. Shown are the binary labels (inside vs. outside the object) in
a base space and the new locations of the labels after the displacements have been applied. e)
Landmarks. f) Medial. Shown is the continuous locus of centers of tangent disks (spheres in 3D)
and two of these disks, which in the representation are given at every center point. Notice how
the natural landmarks, at boundary vertices, correspond to endpoints of the internal medial axis
(shown) or the external medial axis (not shown)

vatures and thus to the analyses of differential geometry. Nevertheless, they remain
shell and not interior representations.

Boundary representation via basis functions includes both spline fits and orthogo-
nal function decomposition. These represent an object of a particular topology (e.g.,
spherical topology) by a smooth continuous mapping from the surface of a stan-
dard object of the same topology (in our example, a sphere). This vector mapping
function can be decomposed into orthonormal functions (Kelemen et al., 1999). Be-
ing smooth functions, all derivatives of the object surface are available, and hence
boundary normals and curvatures can be derived analytically. Nevertheless, interior
properties are not directly accessible.

The displacement by voxel representation gives easy access both to boundaries
and to interiors. It requires methodology to limit the displacement maps to diffeo-
morphisms (1-to-1 smooth warps); these typically involve velocity fields integrated
via differential equations (Grenander and Miller, 1998). The difficulties of this rep-
resentation derive from the large computer storage space required by the represen-
tation, the correspondingly large computations needed to derive and analyze these
representations, and the difficulty of determining large scale properties from this
small scale representation. However, both displacement by voxel and displacements
of boundary representations provide a useful small scale description when combined
with a medial representation describing the larger spatial scales.
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The medial representation has special strengths in directly capturing various as-
pects of shape, in giving direct access to both object interiors and object boundaries,
and in providing rich geometrical relationships within objects. In the remainder of
this chapter we give a careful definition of this representation, and we introduce
some of its basic mathematical properties. In addition we introduce some of the
basic algorithms for extraction of the medial representation of an object, and we
sketch some of the applications of this representation in computer vision and image
analysis that will be covered in this book.

2 Medial representations of objects

The medial approach to representing an object (Figs. 1f, 2) is to describe a locus
midway between (at the center of a sphere bitangent to) two sections of boundary
and to give the distance to the boundary (called the medial radius), yielding the
object as the union of overlapping bitangent spheres. One way to think of this repre-
sentation is a locus of(p, r), wherep gives the sphere center andr gives the radius
of the sphere. In some representations the vectors from the medial point to the two
or more corresponding boundary points are included; in others they are derived via
first derivatives of the medial locus and of the radius function on that locus. When
these vectors are included, the primitive, called a medial atom, is a hub pointp with
two equal-length spokesS±1 (Fig.2 b). Blum (1967) described the interior medial
locus by restricting the bitangent spheres to those entirely contained in the object’s
interior. The spokes of these medial atoms do not overlap and sweep out the object’s
interior.

6

Figure 1.2. a) The medial spheres representation: a continuous locus (or collection
of continuous loci) of medial spheres (disks in 2D). The medial atoms representation,
a continuous locus (or collection of continuous loci) of medial atoms, where a medial
atom consists of a hub and two spokes.

D R A F T July 6, 2004, 11:07am D R A F T

Fig. 2 a) The medial spheres representation: a continuous locus (or collection of continuous loci)
of medial spheres (disks in 2D). b) The medial atoms representation, a continuous locus (or collec-
tion of continuous loci) of medial atoms, where a medial atom consists of a hub and two spokes.

The Blum medial axis is a transformation of an object boundary with the same
topology as the object. Thus the boundary can generate the medial locus of(p, r)
or the medial atoms, but equally the medial locus, in either form, can also generate
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the object boundary. In the first direction the transformation is a function, but in
the second direction it is one-to-many, since a medial point describes more than
one boundary point. In the boundary-to-medial mapping, low level boundary noise
can be transformed into large changes in the medial locus. Therefore, the inverse of
the boundary-to-medial mapping, which maps in the medial-to-boundary direction,
turns certain large changes in the medial locus into small changes in the boundary.
We cover methods working in both directions in this book.

One of the strengths of using the medial representation as a primitive is that
any unbranching, connected subset of the medial locus generates intrinsic space
coordinates for the part of the object interior that the medial atoms in that subset
reach. These coordinates can be thought of as follows: coordinate system location
in the medial sheet, choice of spoke (left or right) and fraction of the spoke length
along that spoke.

Two alternative definitions of the Blum medial locus have appeared. 1) In the
so-called “grassfire” or “Eikonal flow” definition the locus is the set of quench
points along with their times of formation when a fire burning on equally dense
grass within the object is lit at timet = 0 at all points on the object boundary. This
has been shown to be equivalent to the location of shocks in a partial differential
equation of motion at fixed speed in a direction initially normal to the object bound-
ary (Kimia et al., 1995). 2) The “Maxwell set” definition of the medial locus is
the set of locations internal to the object with more than one corresponding closest
boundary point in the sense of Euclidean distance (Mather, 1983). Each point in this
set is augmented with its distance to the boundary.

The Blum medial locus generalizes to the locus defined by all bitangent spheres.
This locus is called thesymmetry setand has been analyzed in some detail in the
literature (Bruce et al., 1985; Giblin and Brassett, 1985). As an object deforms,
the symmetry set can undergo a complex deformation. Likewise, as discussed in
Chapter 3, as the medial locus and the associated spokes deform, the correspond-
ing boundary can undergo a complex deformation. Other medial loci than the Blum
medial locus and the symmetry set have also been derived from the set of spheres
bitangent to the object. Asada and Brady (1983) suggested the use of the locus of
middles of the chord connecting the two points of bitangency. This representation
is also referred to as themidpoint locusand its properties in relation to that of the
symmetry set are studied in Giblin and Brassett (1985). It is the basis for the skele-
tonization technique developed in Zhu (1999). This locus turns out to be of special
interest when specialized to the family of tubes, i.e., objects with circular cross-
sections, whose skeletons turn out to be curves in 3-space. In this case the chord
center becomes the center of a disk orthogonal to the skeletal space curve.

Leyton (1992) described another locus derived from the set of spheres bitangent
to the object boundary. This locus is defined by connecting the two points of bitan-
gency along the shortest-distance geodesic path on the bitangent sphere and taking
the associated point to be the center of this geodesic path. Leyton called this locus
the Process Induced Symmetric Axis, or PISA. In his theory more complex objects
are formed by protrusion or indentation processes acting on the boundary of sim-
pler ones (Leyton, 1988, 1989). A formal justification for this view is a symmetry-
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curvature duality principle whereby the endpoints of this construction are related
to curvature extrema on the object’s boundary (Leyton, 1987; Yuille and Leyton,
1990).

Both the locus of chordal centers and the locus of geodesic centers require more
information than that required by the Blum medial axis, namely just a point and a
distance. Whereas the midpoint locus has been shown to be less singular than the
symmetry set (Giblin and Brassett, 1985), reconstruction of the object from it is
far from clear. Since neither of these medial loci have found broad acceptance or
application, we will not cover them further in this book.

Medial loci based on spheres change topologically as an object deforms. This
behavior was motivation to seek a medial axis that is stable under affine deformation.
Such an axis, based on a consideration of affine area enclosed by a region was
invented by Betelu et al. (2000). This construct is also interesting because it, unlike
the Blum locus, is insensitive to noise. However, it is unintuitive and is very new,
and as a result it has so far received little study or use. Therefore, we will not cover
it in this book.

The major disadvantage of medial representations based on bitangent spheres
is the fact that the branching structure of the medial locus is very sensitive to the
small scale geometric aspects of the object. In Fig. 2 the lower joint of the thumb
produces its own longish branch, and though this may be desirable in this case,
an even smaller pimple due to noise would also produce a similar branch. Blum
noticed this deficiency and coined the term ligature (meaning glue) to describe such
portions of the medial axis that describe only small portions of the boundary such
as regions of high negative curvature. Such ideas have lead to modifications of the
medial axis to identify salient portions of it (August et al., 1999; Katz, 2002) but can
also be overcome in other ways, including the marrying of the medial representation
to the displacement by voxel representation or by displacement of the boundary
representation at small scale.

The medial representation has a variety of strengths and as a result we have writ-
ten this book. In particular:

1. It is an interior representation of the object and thus is subject to both geometric
and mechanical operations applicable on the object’s interior, such as bending,
widening, elongation, and warping.

2. It provides rich geometric information, giving simultaneously locational, orien-
tational, and metric (size) description in any locality of the interior and near ex-
terior of an object.

3. It provides a basis for description at multiple spatial scales and thus provides
efficiency of computation and efficiency in the number of population samples
needed to estimate object geometry probabilities.

4. It allows one to distinguish object deformations into along-object deviations,
namely elongations and bendings, and across-object deviations, namely bulgings
and attachment of protrusions or indentations.

5. Its branches at the larger scales divide objects in a way that makes automatic
object recognition effective.
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6. It provides descriptions of objects and their geometric transformations that are
intuitive to nonmathematical users.

7. It generates object-relative coordinate systems for object interiors and their near
neighborhoods that provide useful correspondences across instances of an object.

8. It provides a means for describing the locational, orientational, and size relations
between one object and a neighboring region of another object within a complex
of objects (see Chapter 8).

It is often the case that the interior of an object is described as a binary image,
e.g., a set of pixels inR2 or a set of voxels inR3. A frequent algorithmic objective for
researchers is to transform this binary image, or equivalently the curve or surface
that forms its boundary, to its medial axis. In this book we refer to this operation
as theMedial Axis Transformor the MAT. If the output of the MAT is discretely
represented, i.e., as a set of pixels or voxels, we will refer to the operation as the
Discrete MAT.

In the remainder of this section we define medial loci and some of their properties
in detail, discuss their history, sketch the basic algorithms for their extraction from
boundaries and overview their applications in computer vision. This material is or-
ganized as follows. Section 2.1 precisely defines theBlum medial locus. Section 2.2
describes the structural geometry of Blum medial loci and their use for decompos-
ing objects into simple figures. Section 2.3 explains the local geometric properties
of Blum medial loci. Finally, Section 2.4 defines medial atoms and describes their
use in skeletonization via deformable models. This section also provides an intro-
duction to m-reps which are used as an object representation, with medial atoms as
the building blocks.

2.1 The Definition of the Medial Locus

Medial loci enjoy wide use in computer vision and image analysis, as well as in other
fields of computer science such as graphics, computer aided design, and human-
computer interfaces (Bloomenthal and Shoemake, 1991; Sherstyuk, 1999; Storti
et al., 1997; Blanding et al., 1999; Igarashi et al., 1999). The modern interest in
medial loci originates with the work of Blum, who defined the medial locus of a
two-dimensional object, studied its geometric properties, and noted its usefulness
for describing the shape of objects (Blum, 1967; Blum and Nagel, 1978). While the
definition itself is deceptively simple, the thorough understanding of the properties
of the medial locus requires rigorous mathematical treatment. Only recently have a
number of mathematically rigorous studies of the medial loci of higher-dimensional
objects been published (Damon, 2003; Giblin and Kimia, 2002, 2004). These stud-
ies and their extensions are covered in Chapter 2 and Chapter 3.

We begin by defining the medial locus using a formulation that slightly extends
Blum’s original definition. Later in this section we mention some alternative defi-
nitions of the medial locus. The basic element of Blum’s definition is themaximal
inscribed ball.
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Definition 0.1. Let Sbe a connected closed set inRn. A closed ballB⊂Rn is called
a maximal inscribed ballin S if B⊂ Sand there does not exist another ballB′ 6= B
such thatB⊂ B′ ⊂ S.

Next let us give a formal definition of the termobjectto avoid any ambiguity that
the use of this word may bring.

Definition 0.2. A set inRn is called ann-dimensionalobjectif it is homeomorphic
to then-dimensional closed ball.

Let Ω denote ann-dimensional object and let∂Ω denote its boundary. We are
now ready to define the medial locus ofΩ .

Definition 0.3. The internal medial locusof Ω is the set of centers and radii of all
the maximal inscribed balls inΩ .

Definition 0.4. Theexternal medial locusof Ω is the set of centers and radii of all
the maximal inscribed balls in the closure ofRn/Ω .

Definition 0.5. TheBlum medial locusof Ω is the union of its internal and external
medial loci.

Definition 0.6. The tuple{p, r} that belongs to the Blum medial locus of an object
Ω is called amedial pointof Ω .

The medial locus is thus a subset of the spaceRn× [0,+∞]. We will sometimes
use the term medial locus to refer just to the set of the centers of the maximal
inscribed balls, forgetting about their radii. The termsskeleton, medial axis, and
symmetric axishave been used by other authors to describe both the internal medial
locus and the entire medial locus as a whole, with or without the inclusion of the
radial component.

It turns out that the medial locus consists of a countable number of manifolds
whose codimension in the spaceRn× (0,+∞) is no less than 2. Hence, the me-
dial locus of a two-dimensional object consists of a number of curves and iso-
lated points, and the medial locus of a three-dimensional object consists of surface
patches, curves, and isolated points. The manifolds composing the internal medial
locus lie inside the object and are bounded, while the manifolds in the external me-
dial locus lie outside of the object and extend to infinity. Fig. 3a. shows the internal
and external medial loci of a two-dimensional object.

Moreover, it turns out that the inscribed disks whose centers and radii compose
the medial locus of an object generically1 are bitangent to the object’s boundary.
In fact, the medial locus is a subset of a more general geometric construct called
thesymmetry set, defined as the closure of the locus of centers and radii of all balls
bitangent to the boundary of an object (Giblin and Brassett, 1985). The balls that
generate the symmetry set are not restricted to lie either inside or outside of the

1 The wordgenericis being used in a precise mathematical sense, as defined in the glossary.
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a. b.

Fig. 3 a. The internal and external medial loci of an object. b. The symmetry set of the same
object, which contains the internal and external medial loci (shown in blue) as well as some cusped
structures.

boundary of the object. Hence, in addition to the medial locus, the symmetry set of
an object contains connective structures such as the cusps shown on Fig. 3b.

The medial locus can also be defined analytically using the followinggrassfire
analogy. The object is imagined to be a patch of grass whose boundary is set on
fire instantaneously. As the grass burns away, the fire fronts propagate from the
boundary. This propagation can be described by the following differential equation:

∂ C (t, p)
∂ t

=−αn(p), (1)

whereC (t, p) denotes the fire front at timet, parameterized byp, n(p)) is the unit
outward normal to the fire front, andα is a constant, positive for inward propaga-
tion and negative for outward propagation. As the propagation progresses, segments
of fire fronts that originate from disjoint parts of the boundary begin to meet and
quench themselves at points that are calledshocks. The medial locus is defined as
the set of all the shocks, along with associated values of timet at which each shock
is formed. This analytic definition of the medial locus is equivalent to the geomet-
ric definition given previously; a proof was given by Calabi (1965a) and Calabi
(1965b); Calabi and Hartnett (1968). Kimia et al. (1995) combine the grassfire flow
with an additional additive term based on the Euclidean curvature of the evolving
front to yield a reaction-diffusion space for shape analysis.

2.2 Structural Geometry of Medial Loci

A rigorous description of the structural composition and local geometric properties
of Blum medial loci of three-dimensional objects is given in Chapter 2 and Chapter
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a. b.

Fig. 4 a. Different classes of points that compose the medial locus of a three-dimensional object,
as categorized by Giblin and Kimia. b. Three possible ways in which maximal inscribed disks can
be tangent to the boundary of a two-dimensional object.

3 (see also Giblin and Kimia (2000)). The classification of types of points on the
medial locus was also given in (Yomdin, 1981) and in (Mather, 1983). Their de-
scription classifies medial points based on the multiplicity and order of contact that
occurs between the boundary of an object and the maximal inscribed ball centered
at a medial point.

Each medial pointP = {p, r} in the objectΩ is assigned a label of formAm
k .

The superscriptm indicates the number of distinct points at which a ball of radius
r centered atp has contact with the boundary∂Ω . The subscriptk indicates the
order of contact between the ball and the boundary. The order of tangent contact is a
number that indicates how tightly a ballB is fitted to a surfaceSat a point of contact
P.

The following theorem specifies all the possible types of contact that can gener-
ically occur between the boundary of a three-dimensional object and the maximal
inscribed balls that form its medial locus. The theorem also specifies how medial
points with different associated type of contact are organized to form surfaces and
curves in the medial locus.

Theorem 0.1(Giblin and Kimia). The internal medial locus of a three-dimensional
objectΩ generically consists of

1. sheets (manifolds with boundary) of A2
1 medial points;

2. curves of A31 points, along which these sheets join, three at a time;
3. curves of A3 points, which bound the free (unconnected) edges of the sheets and

for which the corresponding boundary points fall on a crest;
4. points of type A41, which occur when four A31 curves meet;
5. points of type A1A3 (i.e., A1 contact and A3 contact at a distinct pair of points)

which occur when an A3 curve meets an A31 curve.

Proof. See (Giblin and Kimia, 2000) for a rigorous proof.
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In two dimensions, a similar classification of medial points is possible. The in-
ternal medial locus of a two-dimensional object generically consists of (i) curves
of bitangentA2

1 points, (ii) points of typeA3
1 at which these curves meet, three at a

time, and (iii) points of typeA3 which form the free ends of the curves. The three
classes of contact are illustrated in Fig. 4a. In two dimensions,A3 contact means
that the inscribed disk and the boundary osculate at a local maximum of boundary
curvature.

The geometric properties of the external medial locus are similar to those of the
internal locus, with the exception that the sheets and curves are no longer completely
bounded and may stretch out to infinity. Less effort has been devoted in the literature
to the study of external medial loci.

Theorem 0.1 states that each surface composing the internal medial locus of an
object joins another two such surfaces or terminates at a point of typeA1

3, which
correspond to ridges of curvature on the boundary surface. Similarly, curve seg-
ments composing the internal medial loci of two-dimensional objects either connect
with pairs of other curve segments or terminate at points corresponding to posi-
tive maxima of boundary curvature. Hence, the number of such ridges or maximal
points limits the number of surfaces and curves in the internal medial locus. It can
be shown by induction that the number of curve segments composing the internal
medial locus of an object whose boundary hasM positive maxima of curvature may
not exceed 2M−3.

We will use the termstratumto refer collectively to curves in medial loci of two-
dimensional objects and to surfaces in medial loci of three dimensional objects. The
composition of medial loci into interconnected strata makes it possible to decom-
pose geometrically complex objects into simple components calledfigures(Fig. 5).
Roughly speaking, a figure is the part of an object that corresponds to a particu-
lar stratum in the medial locus. A particularly simple mathematical definition of a
figure is the following:

Definition 0.7. The union of closed balls whose centers and radii form a single stra-
tum in the medial locus of an object is called a figure with joint2.

Figures generated by strata belonging to the internal medial locus of an object
are bounded, and the union of all such figures is the object itself. The intersection of
a pair of figures with joints is non-empty if the generating strata of the two figures
are connected. This non-empty intersection is called thejoint, and it comprises of
balls of triple boundary contact.

The internal medial locus of a figure has only a single stratum and figures can be
said to be geometrically simple and easier to study than whole objects. Fig. 6 shows
some examples of two-dimensional figures with joints.

The relationship between the structure of symmetry sets and the extrema of
boundary curvature of two-dimensional objects are central to Leyton’s theory of
symmetry (Leyton, 1987). For planar objects, Leyton’s curvature-symmetry duality
theorem states that

2 As distinguished fromfigure, which will be discussed later in the context of m-reps.
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Fig. 5 Decomposition of a planar object into figures with joints. Each curve in the medial locus
corresponds to a single figure.

Fig. 6 All four of these objects fall into the category offigures with jointsaccording to Def. 0.7,
even though none of them have an actual “joint”. Notice that the figure on the right has more than
two positive maxima of curvature.

Any section of curve, that has one and only one curvature extremum, has one and only one
symmetry axis. This axis is forced to terminate at the extremum itself.

The extension of this theorem to three dimensions is given by Yuille and Leyton
(1990).

Leyton’s theory states that the curves composing the symmetry set of an object
represent the history of events that have formed the object. According to Leyton’s
postulates, “memory is always in the form of asymmetry,” meaning that asymme-
try makes it possible to recover information about the formation of an object, while
“symmetry is always the absence of memory.” He suggests that the extrema of cur-
vature are the places where the boundary has been pushed in from the outside or
pushed out from the inside, indicating a growth or deformation process. The medial
curves that terminate at these extrema are in a sense arrows in the direction of the
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push. Hence, the symmetry set is a diagram of protrusion and indentation operations
that have been applied to an object (Leyton, 1992).

2.3 Local Geometry of Medial Loci

Prior to describing the local geometry of Blum medial loci, let us introduce a useful
notation for referring to the points of contact between a ball placed at a medial point
and the boundary of an object.

Definition 0.8. If P = {p, r} is a medial point of an objectΩ , then the set of points
of contact between a ball of radiusr centered atp and∂Ω is called theboundary
pre-imageof P.

In other words, a medial point labeledAm
k has a boundary pre-image that contains

mpoints. Since for most of the medial pointsm= 2, the following definition is quite
useful.

Definition 0.9. If points A andB form the boundary pre-image of a medial pointP,
thenA is called amedial involuteof B and vice versa.

Said in another way, medial involutes are pairs of points on the boundary of an
object that are symmetric with respect to the medial locus. It is possible for a point to
have multiple medial involutes, for example one with respect to the interior medial
locus and one with respect to the exterior medial locus.

The major part of Blum’s work on the internal medial loci of two-dimensional
objects is devoted to the study of the geometric relationships between medial points
and their boundary pre-images (Blum, 1967; Blum and Nagel, 1978). Blum showed
that the points in the boundary pre-image can be expressed in terms of the position
and radius of the medial point and from their derivatives with respect to movement
along the medial locus.

For the purposes of studying local geometry of internal two-dimensional medial
loci it suffices to focus on medial points that lie on the interior of the curves compos-
ing the medial locus and thus have two-point boundary pre-images. The geometric
properties of the free endpoints and connecting endpoints of medial curves can be
derived as the limit cases of the interior point properties.

In addition to using the positionp and the radiusr to characterize each point on
the medial locus, Blum uses two first order properties. The first property is the slope
of the medial curve at the medial point, which can be expressed as a unit-length
tangent vectorU0. The second is called theobject angleand is given by

θ = arccos

(
−dr

ds

)
, (2)

wheres is the arc length along the medial curve. The object angle is indicative of
the narrowing rate of the object with respect to movement along the medial curve.
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a. b.

Fig. 7 Local medial geometry. a. Local geometric properties of a medial point and its boundary
pre-image. b. The rowboat analogy for medial points: the oars (spokes) areS±1 = rU±1.

When the object angle is equal toπ/2, the radius has a critical point, and as one
moves along the medial locus, the object retains its local width.

A medial point can be characterized byp, r,U0, andθ , or preferably, byp, r,U+1,U−1,
whereU+1 andU−1 are unit-length vectors orthogonal to the boundary of the object
atb±1 = p+ rU±1.

Fig. 7a describes the local geometry of a medial point and associated boundary
pre-image pointsb−1 andb+1. The angle formed by the pointsb−1, p, andb+1 is
bisected by the vectorU0, the unit tangent vector of the medial curve atp. The angle
betweenU0 and the vectorsb−1−p andb+1−p is the object angleθ .

The quantitiesp,b±1, r,U±1,U0, andθ appear frequently in this book. To bet-
ter remember these quantities, consider an analogy between a medial point and a
one-person rowboat, illustrated in Fig 7b. The position of the rower in the boat cor-
responds top, and the length of the oars corresponds tor. The vectorU0 represents
the direction in which the boat is moving andθ is the angle that each oar makes with
U0. The pointsb−1 andb+1 correspond to the tips of the oars, and the directions of
the oars are given by the vectorsU+1 andU−1. The movement of a point along the
medial locus is analogous to the rowboat navigating down the middle of a stream,
with the rower adjusting his oars in such a way that their tips always just touch the
banks of the stream (of course, the oars are made of a stretchable material, and as
the boat moves, their length changes). A similar analogy to a wheel, corresponding
to the bitangent disk, is made in m-rep literature, and the termspokeis used instead
of the termoar. In this book we have adopted the termspokefor this vector between
the medial locus and the boundary.

The values ofp, r, and their derivatives can be used to qualitatively describe the
local bending and thickness of an object, as first shown by Blum and Nagel (1978).
The measurementsp andU0 along with the curvature of the medial curve describe
the local shape of the medial locus, and subsequently describe how a figure bends at
p. A figure that has a line for its medial curve is symmetrical under reflection across
that line. The measurementr describes how thick the figure is locally, while cosθ

describes how quickly the object is narrowing with respect to movement along the
medial curve. A figure with a constant value ofr has the shape of a worm.
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Free ends of medial curves, where the maximal inscribed disk and the boundary
osculate and the boundary pre-image contains a single point, are a limiting case of
the bitangent disk situation. As our imaginary rowboat approaches such a point, its
oars, i.e., the spokes, come closer and closer together until they collapse infinitely
quickly at the end-point, forming a single vector in the directionU0. The object
angleθ , which is equal to half of the angle between the spokes, is zero at such
endpoints.

The geometry of medial loci of three-dimensional objects is harder to visual-
ize and express than the planar medial geometry. A number of researchers have
studied the differential geometry of three dimensional medial loci (Nackman, 1982;
Vermeer, 1994; Gelston and Dutta, 1995; Hoffmann and Vermeer, 1996; Teixeira,
1998). However, the basic relations are not too different from the two-dimensional
case. Instead of bitangent circles, we have bitangent spheres, with the spokes still
forming normal vectors to the object boundary and their vector difference forming a
normalN to the medial locus. Generically the medial locus forms two-dimensional
manifolds and there are still two spokes at all but branch points and endpoints. The
edges of the medial locus form space curves, as do the branches. Branch curves typ-
ically end; the normal situation is of a branching sheet attached to a parent sheet to
form a fin.

In non-generic situations, sections of the sheet can degenerate to a space curve, in
which case the object is a tube, i.e., has circular cross section and the medial atom
becomes an entire cone of spokes with theU0 -vector as their axis. The relation
between theU0 vector, the object angleθ and derivatives ofr on the medial sheet
becomes

∇r =−U0cos(θ),

where the gradient is intrinsic to the medial sheet.
The local reconstruction of the boundary from the medial axis or the symmetry

set is discussed in Chapter 2 (Sections 6 and 7) following which the relationship
between medial points of three-dimensional objects and the boundary pre-images
of these points is presented in detail in Chapter 3. Many of the results reported
in Chapter 3 are based on Damon’s work onskeletal structures(Damon, 2003).
This work follows the generative approach to medial geometry, as opposed to the
previously described approaches that derive the medial locus from the boundary
description of a given object. In the generative approach, the medial locus is defined
first, and the object and its boundary are generated by an outward flow from it. Since
the medial locus can be defined to contain a fixed number of figures with a specified
topology, this approach to medial geometry is often better suited to problems of
object modeling and shape description than the approaches deriving the medial axis
from the object boundary. In the latter class of methods the derived medial loci
can vary greatly and can thus be difficult to compare or analyze. The generative
approach is the cornerstone of m-rep methodology, which will be introduced in the
following section.
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Damon’s skeletal set is a stratified set3 of arbitrary dimension, on which a multi-
valued vector fieldS, called theradial vector field, is defined. At most points in
the skeletal set a pair of radial vectors is defined; these vectors point in the differ-
ent directions relative to the tangent space of the skeletal set. At edges of skeletal
manifolds that are not shared by more than one manifold, the radial vectors come
together to form a single vector that lies in the tangent space of the manifold. At
shared edges, more than two radial vectors are defined. The endpoints of the ra-
dial vectors form a locus that is called the boundary of the object described by the
skeletal set. Damon describes a number of constraints that must be satisfied by the
skeletal set and the radial vector field in order for the boundary to be continuous
and differentiable. These constraints are expressed in terms of theradial shape op-
erator Srad and a skeletaledge shape operator SE, which measure how the radial
vectors bend with respect to the skeletal set. These operators not only describe the
local properties of the radial vector field but can also be used to express the local
differential geometry of the boundary.

Another way to view the skeletal set for an object is that the skeletal locus is a
fully cyclic piece of plastic wrap fit on both sides of the sheets forming the medial
counterpart and that each point on the plastic wrap has a single spoke emanating
from it, with none of the spokes crossing. Thus, at points that are neither branch
points nor end points, there are two sheets of the plastic wrap touching each other
and thus two spokes emanating, one from each sheet. These spokes need not be of
equal length. At branch points there are three pieces of plastic wrap touching, and
at end points the plastic wrap doubles back on itself and there is a single spoke, as
illustrated in Fig. 8. Damon has shown that a natural measure on the skeletal sheet is
the product of ordinary Riemannian distance on the sheet and the sine of the angle
between the spoke vector and the tangent plane of the sheet. In Chapter 3 it is shown
that this measure and a skeletal generalization of the shape operator can be used to
pull back integrals over the object interior or its boundary onto the skeletal sheet.
The Blum medial locus can be constructed as a special case of the general skeletal
set by requiring that the radial vectors at each point of the skeletal set be symmetric
with respect to its tangent space.

2.4 Medial Atoms and M-Reps

In this section we show how medial atoms can be used as building blocks for a
particular type of object representation called m-reps. Via this scheme a collection
of medial atoms can be used to come up with an approximate representation of a
graph of figures with fixed topology. Such a view can provide advantages when the
task is to draw comparisons across a population of similar structures such as that
obtained by drawing several instances from a particular class of objects.

3 As described in the glossary, a stratified set consists of interconnectedmanifoldsof different
codimensions.
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Fig. 8 Medial geometry of end atoms. The continuous relationship between a point on a medial
curve and the points of contact between a disk inscribed at the point and the boundary of the object
asymptotes at the end point of the curve: equal steps along the medial curve result in increasing
steps along the boundary.

2.4.1 Medial Atoms

A medial atom is a modeling primitive that represents a place on the medial locus of
an object. A medial atom describes such a place up to a specified differential order
and with a specified level of tolerance. The continuous medial locus of an object can
be discretely sampled into a set of medial atoms. However, medial atoms should be
thought of as entities that exist independently of any medial locus, as demonstrated
by the following definition.

Definition 0.10.An n-dimensional medial atom of order 0(n = 2,3) is a tuplem =
{p, r} that satisfies

p ∈ Rn, r ∈ R+. (3)

Geometrically, a medial atom of order 0 is simply interpreted as a ball. Such
medial atoms essentially correspond to maximal inscribed balls whose centers and
radii form the medial loci of objects. Given a structured collection of medial atoms
of order 0 sampled from the medial locus of an object, it is possible to approximately
reconstruct the object’s boundary by “shrink-wrapping” a sheet around the balls
defined by the atoms, as shown in Fig. 9.

The use of the word “order” in the above definition refers to the fact that medial
atoms can be used to approximate medial loci up to a given order. An order 0 atom
describes zeroth order medial properties, which are position and radius. An order 1
atom, which is defined below, describes the derivatives of position and radius.

The shortcoming of medial atoms of order 0 and the shrink-wrap boundaries de-
rived from them lies in the fact that while both the medial locus and the boundary
can be approximately recovered from a set of order 0 medial atoms, the local sym-
metry relationships between pairs of medial involutes can not be directly expressed.
However, medial atoms of higher order can be used to capture these symmetry rela-
tionships and are hence more useful for object representation.

Definition 0.11.An n-dimensional medial atom of order 1is a tuple
m= {p, r,U+1,U−1} that satisfies
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Fig. 9 Boundary of an object reconstructed by shrink-wrapping a collection of order 0 medial
atoms.

p ∈ Rn, r ∈ R+, U+1 ∈ Sn−1, U−1 ∈ Sn−1, (4)

whereSn is the unit n-dimensional sphere.

The additional components of the medial atom of order 1 are the two spoke ori-
entations,U+1,U−1. Recall that these are precisely the same first order quantities
that were used, after multiplication by the spoke lengthr to computeS±1, to relate
medial points to their boundary pre-images (Fig. 7).

The rowboat analogy used to describe the first order geometry at a point on the
medial locus can be used equally well to describe medial atoms of order 1. The
atom’s position and radius correspond to the position of the rower and the length of
the oars (spokes); the orientation corresponds to the direction of the boat’s bow, and
the object angle to the angle between the bow and the oars (spokes). Unlike their
order 0 cousins, which one could visualize as an inflated rubber tube, medial atoms
of order 1 explicitly define a pairs of points on the boundary of the object that they
describe. These points are, of course, the tips of the spokes and are given by the
following definition.

Definition 0.12.The tuples{b−1,U−1} and{b+1,U+1} given byb±1 = p + rU±1

are called theimplied boundary nodesof the medial atomm= {p, r,U+1U−1}. Here
U±1 = (cos(θ),±sin(θ))T in 2D and(cos(θ),±sin(θ),0)T in 3D in the coordinate
system whose first basis vector is a unit bisectorU0 of U+1 andU−1 and whose
second basis vector is a unit vector in the direction ofU+1−U−1, whereθ is the
object angle, i.e., half the angle betweenU+1 andU−1.
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a. b.

Fig. 10 Medial atoms used for core tracking. a) A medial atom defined by positionp, radiusr,
orientation determined byU0 and object angleθ . b) A Gaussian derivative filter associated with
the atom, as used for core tracking.

Medial atoms of order 1 correspond to medial points of typeA2
1, whose boundary

pre-images contain two points.4. Medial points of other types can be represented
either using special medial atoms, as discussed later in Sec. 2.4.2, or as limit cases
of A2

1 medial points. In this section we deal only with order 1 medial atoms because
these atoms contain all the information necessary to reconstruct the boundary pre-
images of medial points and the symmetry relationships between pairs of medial
involutes.

The agreement between a medial atom and an image is measured by amedialness
function, the domain of which is the set of parameters defining a medial atom. Given
a tuple of parameter values, the medialness function measures how well the position
and orientation of the boundary nodes of a medial atom defined by these parameters
match edge-like structures in the image.

As illustrated in Fig. 10, the medialness function most widely used in the core
tracking literature is computed using the image intensity gradient at boundary node
locations. Given an imageI and an order 1 medial atomm = {p, r,U+1,U−1}, this
function is defined as

M(m) = ∇σ I(b−1) ·U−1 +∇σ I(b+1) ·U+1 , (5)

where∇σ I(b) is the image gradient computed at the pointb by convolution with
the gradient of the isotropic Gaussian kernel with apertureσ :

∇σ I(b) =
∫

∇Gσ (b−z)I(z) dz . (6)

4 TheA j
i taxonomy of medial points, as used by Giblin and Kimia (2000), was discussed in Section

2.1.
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The apertureσ is proportional to the radius of the medial atom. This proportionality
makes the medialness function invariant to the magnification of the structures in the
image.

2.4.2 M-Reps: A Medial Object Representation

First-order medial atoms serve as the building blocks for m-reps, which have the
following distinguishing properties:

• The medial locus of an object is represented explicitly.
• A smooth approximate representation of the object’s boundary, with tolerance, is

implied by the medial locus representation.
• An accurate description of the boundary is given by a smooth fine-scale defor-

mation of the implied boundary.

The explicit specification of an object’s medial locus by m-reps makes it possible
to compare similar objects in terms of symmetries. In contrast, medial loci yielded
by applying a skeletonization method to similar objects can pose challenges for
comparison because their branching topology may differ, as in the case of nearly
circular objects.

M-reps come in different flavors. Discrete m-reps, due to Pizer et al. (1999),
represent the medial locus using a structured sparse set of medial atoms (Fig. 11
shows a 2D example, and Fig. 12 shows a 3D example). Continuous m-reps, defined
in Yushkevich et al. (2003), represent the medial locus as approximation curves or
surfaces defined by a set of{p, r} control points. This section describes discrete
m-reps.

M-reps specify the figural composition of an object explicitly. An m-rep repre-
senting a complex object contains multiple components which we shall refer to as
figures. Each figure is a sheet of medial atoms. These figures are organized into a hi-
erarchy of parent-child relationships, with parents representing the substantial parts
of the object, such as the palm of the hand, and children representing protrusions
and indentations, such as the fingers. The figural graph of an m-rep resembles the
composition of a geometric object into figures with joints but does so only at a con-
ceptual level. The manner in which an m-rep is organized into figures is guided by
structural, conceptual, and populational properties, rather than by a desire to pre-
cisely mimic the medial branching topology of the objects being represented. The
difference between the figural composition of m-reps and the branching topology of
corresponding objects is illustrated in Fig. 11.

Various means for representing m-reps in a computer are discussed in Chapter 8.
In direct contrast to skeletonization methods, m-reps derive the boundary de-

scription of an object from its medial description. Since the composition of an m-
rep into figures and atoms is explicitly imposed, one can describe different objects
using m-reps with the same figural composition. This makes it possible to then com-
pare such objects based on their medial properties. In particular, one only needs to



Introduction 21

Fig. 11 (Left). Representation of an object using a discrete m-rep. The m-rep is organized into a
hierarchy of figures based on structural properties of the object. At the root of the hierarchy lies
the main figure whose implied boundary is indicated by the dotted curve. The children of the main
figure are the protrusion and indentation figures. (Right). Continuous medial locus of the same
object. Branches in the medial locus are determined by the geometry of the boundary and include
branches that do not contribute to the structural description of the object.

compare the values of the medial atom parameters, assuming that medial atoms rep-
resent corresponding locations in the objects. This type of analysis of course makes

Fig. 12 A three-dimensional discrete m-rep figure of a kidney organized as a 3×5 quadrilateral
mesh of medial atoms. The atoms with a larger light hub are the neighbors of the atom with a
darker hub. The atom with a darker hub and the two atoms below it are interior medial atoms; the
rest are end atoms.
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an implicit assumption that the instances being compared are well described by
the imposed m-rep fit. The alternative is to attempt to use the more standard skele-
tonization approaches to obtain a representation, but then one has to compare medial
structures with different branching topologies. There is a growing literature on the
use of graph theoretic methods for matching skeletal structures; some of this ma-
terial is covered in Chapter 10. However, these techniques are more complex than
the comparison of m-reps. For example, the use of m-reps with a common figural
composition makes it possible to estimate probability distributions on the parame-
ters of medial atoms and hence makes medial based shape characterization across a
population of similar objects possible.

3 Psychophysical and Neurophysiological Evidence for Medial
Loci

The medial representations described in Section 2 have not only found many appli-
cations by engineers but have also been found to be relevant components of human
vision models. For example, there is literature which suggests that figural decompo-
sition of objects using medial loci might correspond to the cognitive processing per-
formed by the human brain. Rock and Linnett (1993) argue that figures are captured
preattentively by the human visual system. Other studies have shown that figures
which arise from locations of extrema of negative curvature on the boundary are
often associated with the visual decomposition of objects (Hoffman and Richards,
1984; Biederman, 1987; Braunstein et al., 1989; Siddiqi et al., 1996; Singh and
Hoffman, 1997). The junctions of figures can also have special importance, match-
ing Biederman’s work on the junctions of visual parts (Biederman, 1987). Whereas
we shall not cover this literature in great detail in this book, in this section we review
some of the findings that point to a role for medial loci in shape perception. We shall
also cover the literature that provides neurophysiological evidence for medial axes.

Among the first reported psychophysical data is that of Frome (1972), who ex-
amined the role of medial axes in predicting human performance in shape alignment
tasks. In these experiments subjects were required to position an ellipse so as to be
parallel to a reference line. It was found that for this task, the acuity with which the
stimulus was placed could be explained by the length of the medial axis within the
ellipse, i.e., the straight line connecting the centers of curvatures corresponding to
the end points of the major axis of the ellipse.

Later, Psotka (1978) examined the role of medial loci in representing the per-
ceived form of more complex outlines. Subjects were given outline forms (a square,
a circle, a humanoid form and various rectangles) and were asked to draw a dot
within each outline in the first place that came to mind. The superimposed dots
for each outline were found to coincide well, for the most part, with the locations
predicted by Blum’s grassfire flow as opposed to locations suggested by other field
theories of form perception that had been proposed, such as McCulloch’s size con-
stancy proposal (McCulloch, 1965).
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(a)

(b)

Fig. 13 (Adapted from (Kov́acs et al., 1998, Fig. 2, 8, 9 & 10), with permission from Ilona
Kovács.) The functionDε for various objects. Dark shading corresponds to increasing values of
Dε , and the “white spot” denotes its maximum. (a)Dε for a cardioid on the left and a triangle on
the right; cross-sections through maximum loci are indicated as dotted lines a-b and c-d. (b)Dε for
a few frames in a sequence depicting the movement of an animal.

Adopting a different experimental procedure, the effect of closure on figure-
ground segmentation along with a possible role for medial loci was examined by
Kovács and Julesz (1993, 1994) and Kovács et al. (1998). In the experiments re-
ported in Kov́acs and Julesz (1993) subjects viewed a display of Gabor patches
(GPs) aligned along a sampled curve presented in a background of randomly ori-
ented Gabor patches playing the role of distractors. Using a two alternative forced
choice paradigm, subjects were required to decide whether the display included an
open curve or a closed one. The percentage of correct responses were recorded as a
function of the separation distance between successive GPs. A significant advantage
was found for the correct detection of configurations of closed (roughly circular) tar-
gets. In a second series of experiments subjects were required to detect a target GP
of varying contrast placed either inside or outside a circular arrangement of GPs in a
field of distractors. It was found that the contrast threshold at which the target could
be detected was decreased by a factor of 2 when it was located at the center of the
circle, as opposed to the periphery, suggesting a special role for a medial location.

This second finding of increased contrast sensitivity at the center was later ex-
amined more carefully in Kov́acs and Julesz (1994). For an elliptical configuration
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of GPs it was found that the peak locations of increased contrast sensitivity were in
fact predicted by a type of medial model. Specifically, these locations coincided with
the local maxima of aDε distance function, representing at each location the per-
centage of boundary locations over the entire outline that were equidistant within a
tolerance ofε. Examples of theDε function for more complex forms were presented
in Kovács et al. (1998) (see Fig. 13) along with the proposal that its maxima could
play an important role in form perception tasks such as the processing of motion
(see also Chapter 11, Section 11).

Whereas the above notion of anε parameter is fixed as a global quantity, a dif-
ferent notion of scale provides the key motivation for medially subserved perceptual
models based oncores(Burbeck and Pizer, 1995), which are discussed in Section
4.4. Underlying this model is the hypothesis that the scale at which the visual system
integrates local boundary information is proportional to object width at medial loci.
This view is corroborated by the findings of Burbeck et al. (1996), where the core
model was shown to explain human performance in bisection tasks on shapes. In
these experiments elongated stimuli were created by placing two sinusoidal waves
in phase, side by side, and then filling in the region in between. An example of such
a “wiggle” stimulus is shown in Fig. 14. The amount that it is perceived to bend
depends on the frequency and amplitude of the sinusoids. For any given stimulus
a subject was asked to judge whether a probe dot, placed between two sinusoidal
peaks, appeared to the left or right of the object’s center. By varying the position
of the probe dot the perceived center was chosen to be the point about which a
subject was equally likely to choose left or right in the task. The perceived central
modulation was then defined as the horizontal distance between the centers for a
successive left and right peak. The experiments revealed that for a fixed width the
central modulation increased with increasing amplitude but decreased with increas-
ing frequency. Furthermore, the modulation effects were greater for a narrow object,
in a manner that was adequately explained by the linking of object boundaries at a
scale determined by object width, as predicted by the core model.

These wiggle stimuli were revisited by Siddiqi et al. (2001), who showed that
in fact the perceived centers in the study of Burbeck et al. (1996) were located
precisely on the Blum medial axis, at locations that coincided with local maxima of
the radius function. In several experiments using similar stimuli, but with varying
degrees of translation between the sinusoidal boundaries, properties of medial loci
were shown to account for human performance in shape discrimination tasks using
a visual search paradigm.

Taken together, the above body of work provides a wealth of support for the role
of medial loci in shape perception. Unfortunately, far less research has been carried
out to provide neurophysiological support for medial axes. The one exception is the
work of Lee (1995) and Lee et al. (1998) where neurons were isolated in the pri-
mary visual cortices of awake rhesus monkeys and their response to a set of texture
images was examined. In the first study (Lee, 1995) the input images consisted of
either a linear boundary with two regions of contrasting texture, or a rectangular
strip or a square on a background of contrasting texture. In each case the texture
was comprised of scattered bars in a vertical or horizontal orientation. The findings
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Fig. 14 (Adapted from Siddiqi et al. (2001)). LEFT: The geometry of a “wiggle” stimulus used in
(Burbeck et al., 1996). RIGHT: The task is for the subject to judge whether the probe dot is to the
left or to the right of the object’s center.

revealed a subset of neurons that had a peak response when their receptive fields
were centered at the texture boundaries. Some of these neurons also had a sharp re-
sponse when centered at the center of the rectangular strip or square, i.e., at locations
predicted by the Blum medial axis. The subsequent more comprehensive results re-
ported in Lee et al. (1998) revealed that the neurons with interior response peaks
appeared to focus in the vicinity of the center of mass of compact shapes (squares
and diamonds) but along the entire medial axis for elongated shapes (rectangles).
This finding is consistent with the special status attributed to a local maximum of
the radius function, e.g., in the context of the wiggle bisection experiments and the
contrast sensitivity enhancement experiments discussed earlier. However, the neu-
rophysiological data in support of medial axes has not yet been corroborated in the
literature by other researchers.

4 Extracting Medial Loci of Objects

The human vision models described in Section 3 suggest that medial information is
somehow extracted from the contrast available at boundaries or from the boundaries
themselves. How do we get a computer to extract medial loci?

The computer vision literature describes a large number ofskeletonizationmeth-
ods, which extract medial loci of objects starting from some boundary represen-
tation. In most practical applications the object and its boundary are represented
discretely, for example as a set of pixels of the same intensity in a characteristic
image or as a mesh of points. Skeletonization is made difficult by the inherent sen-
sitivity of the medial locus to the fine details of the boundary representation. Given
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two different discrete representations of the same object, the true Blum medial loci
of the two representations can have a differentmedial branching topology, i.e., a
different number of figures and a different connectivity graph between the figures.

Hence, the challenge of skeletonization is not to find the precise medial locus of
an imprecisely specified boundary, but rather it is to compute an approximation of
the medial locus that is consistent with respect to different discrete representations
of the same object. Moreover, a good skeletonization method should yield similarly
structured medial loci for objects that are similar objects and for versions of the
same object that have undergone similarity transformations or magnification.

This section introduces the notions of distance transforms, the Hessian, thinning
and pruning, which are common ingredients to many skeletonization algorithms.
It then overviews the various approaches to extracting medial loci in the litera-
ture. The approach of shocks of the grassfire flow, interpreted as singularities of
the Euclidean distance function, is developed in more detail in Chapter 4. Methods
based on digital distance transforms are described in Chapter 5, and those based on
Voronoi techniques are detailed in Chapters 6 and 7. The boundary evolution and
Voronoi methods are also compared to approaches based on height ridges of medi-
alness (cores) in the overview paper by Pizer et al. (2003b). A special property of
these three approaches is that they provide a scale parameter that makes it possible
to tune the accuracy with which the result matches the precise medial locus of the
input boundary. The loci computed at larger values of the scale parameter general-
ize better to different discrete representations of the input object as well as to other
similar objects.

4.1 Distance Transforms, the Hessian, Thinning and Pruning

A distance transformof a boundary is obtained by assigning to each location in
space its distance to the closest point on the boundary. Thus, points which lie on
the boundary are assigned a value of zero. The distance transforms in use in the
skeletonization literature typically adopt a notion of Euclidean or approximate Eu-
clidean distance. It is also common to distinguish locations which lie in the interior
of a boundary from those that lie in the exterior by a sign change, leading to the no-
tion of a signed distance transform. Distance transforms turn out to be very useful
representations since their level curves or surfaces represent the locus of positions
reached by successive iterations of a grassfire flow. Furthermore, their singularities
coincide with the Blum medial axis. Thus, numerous approaches to skeletonization
use a distance transform to simulate the grassfire flow along with techniques to lo-
cate its singularities. These approaches benefit from the fact the distance transform
values at each point on the medial locus give the radius function.

The Hessianmatrix of a smooth approximation to a distance function provides
eigenvalues that can be used to characterize the type of local symmetry of its level
sets: in 3D the slab, the tube, and the sphere. While the tube is non-generic and
the sphere doubly non-generic, the Hessian eigenvalues give graded results such as
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“a slab but almost tubular.” Withλ1,λ2,λ3 the eigenvalues of the Hessian and with
|λ1| ≤ |λ2| ≤ |λ3|, we have

• 0-D ridges (nearly spherical) whenλ1 ≈ λ2 ≈ λ3 � 0,
• 1-D ridges (nearly tubular) whenλ1 ≈ 0,λ2 ≈ λ3 � 0 and
• 2-D ridges (very much a slab) whenλ1 ≈ λ2 ≈ 0,λ3 � 0.

The same analysis can also be applied to pseudo-distance functions, such as the
smooth edge strengthv in Section 4.3.

There exist a number of techniques in the literature to compute the medial axis by
successively peeling layers of the distance transform, e.g., by using morphological
thinning. Binary mathematical morphology (Serra, 1982; Matheron, 1988; Jonker
and Vossepoel, 1995) is based on the operations of erosion and dilation of an object
via a structuring element. The general idea is to carry out a process of erosion by
a ball to the binary image iteratively, thinning the object until it is one pixel thick.
These methods take advantage of the fact that successive erosion by this small struc-
turing element is equivalent to erosion by a larger disk or ball and that the discrete
approximation to the larger disk improves when a small element is successively ap-
plied. As the successive erosions by the small structuring element are applied, the
methods check for pixel or voxel removals that change the topology of the skeleton
from that of the original object. These voxels are marked as skeleton voxels. This
class of algorithms actually has a long history in the pattern analysis literature. The
advantage of such methods is that they can be computationally very efficient. How-
ever, the challenge faced by such methods derives from the fact that the resolution
of both the original object and the skeleton is given by an underlying rectangular
lattice: a voxel is either on the skeleton, or it is not. The resulting medial loci can
be sensitive to the rasterization of the object and may have difficulty in discerning
the local geometry of the medial locus near branch points, particularly in 3D. More-
over, the resulting medial loci can be sensitive to the rotation and magnification of
the object prior to the imaging process.

As discussed earlier, an inevitable difficulty faced by skeletonization algorithms
is their inherent sensitivity to small perturbations of the boundary of an object. Thus
many methods result in an initial coarse computation of the skeleton, followed by
a second stage ofpruning in which components which are thought to represent in-
significant boundary details are removed. The types of measures used for pruning
are driven in part by the manner in which the original boundary is represented and
the computational techniques that are used. For example, when the boundary is de-
fined by a polygon or a mesh and Voronoi techniques are used to compute the medial
locus, pruning functions are designed to measure the area or length contribution of a
Voronoi edge or face to determine whether or not it should be kept (Chapters 6 and
7). On the other hand, when computations are carried out on a discrete lattice using
digital distance transforms, pruning measures are designed to take into account in-
variance and/or stability properties of the reconstruction with or without a branch or
sheet, as in Chapter 5. In both settings it is generally accepted that a pruning method
should have the following properties:

1. It should preserve topology (homotopy type).
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2. It should be continuous, i.e., small differences in the significance measure should
result in small changes to the computed skeleton.

3. The significance measure should be local on the medial locus.

4.2 Skeletons via Shocks of Boundary Evolution

One class of approaches aims to simulate Blum’s grassfire flow, as described by
Eq. 1, and to then detect the locus of quench points. These approaches are distinct
to the approaches of morphological erosion, in that the evolving curve is modeled
as a partial differential equation. In practice this raises questions about how the flow
should be numerically discretized and the singularities of the evolution detected,
both of which are nontrivial issues.

Representative methods in this class are the techniques of Leymarie and Levine
(1992); Tari et al. (1997); Siddiqi et al. (2002). In the first method the boundary
of a 2D object is represented as an active contour, which is partitioned at locations
of positive curvature maxima corresponding to the medial axis endpoints. The var-
ious segments of the active contour then propagate inwards driven by a potential
function modeled by the negative gradient of the Euclidean distance function to the
boundary. The active contours slow down in the vicinity of the medial axis, where
the magnitude of the numerical gradient is small.

The skeletonization method in Siddiqi et al. (1999, 2002); Dimitrov et al. (2003)
is based on a novel characterization of singularities of the grassfire flow, which in
turn lends itself to robust and efficient numerical implementations. The key insight
is that in the limit as the area (2D) or volume (3D) within which average outward
flux is computed shrinks to zero, the average outward flux of the gradient of the Eu-
clidean distance function has different limiting behaviors at non-medial and medial
points. This allows for a uniform treatment in 2D and 3D, along with associated
skeletonization algorithms. These techniques, along with related methods based on
the gradient of the Euclidean distance function, are discussed in Chapter 4. It turns
out that for the case of shrinking circular neighborhoods the limiting values of the
average outward flux reveal the object angle and hence allow for the explicit re-
covery of their boundary pre-image (Dimitrov et al., 2003; Dimitrov, 2003). An
advantage of this approach is that the analysis extends to higher dimensions.

4.3 Greyscale Skeletons

It is well known that the grassfire flow is equivalent to a formulation where the time
of arrival surface associated with the level curves of the flow satisfy an eikonal equa-
tion. A generalization of these results to the case of greyscale images is described
in (Tari et al., 1997; Shah, 1996). The method is based on a linear differential equa-
tion that is developed from a model introduced by Modica and Mortola (1977) for
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approximating the characteristic functionχ∂Ω of the boundary∂Ω of an objectΩ .
Given a boundary approximationχ∂Ω , possibly computed by thresholding a simple
edge strength operator and thus not necessarily closed, it generates a scalar function
v on space (image) giving modified edge strength, whose troughs yield a medial
locus.

The modification is designed to produce an edge strength image that is smooth,
i.e., has small gradient magnitude, and falls from a value 1 at∂Ω towards 0 with
distance from∂Ω . As such it minimizes the functional

Eσ (v) =
∫

Ω

[
σ ‖∇v‖2 +

(v−χ∂Ω )2

σ

]
=
∫

Ω

[
σ ‖∇v‖2 +

v2

σ

]
(7)

with the constraintv = 1 along∂Ω . The minimizer ofEσ satisfies the elliptic dif-
ferential equation

∇2v =
v

σ2 (8)

with the constraint serving as a boundary condition. The parameterσ plays the role
of a nominal smoothing radius. Whenσ is small compared to the local width of
the shape and the local radius of curvature of∂Ω , the level curves ofv capture
the smoothing of∂Ω by a curve evolution model with a combination of a constant
motion (grassfire) and curvature motion term, as used in Kimia et al. (1995). In
particular, as shown by Mumford and Shah (1989), whenσ is small,

v(x,y) = σ

(
1+

σκ(x,y)
2

)
∂v
∂η

(x,y)+O(σ3) (9)

whereη is the direction of the gradient ofv andκ(x,y) = vξ ξ /‖∇v‖ is the curvature
of the level curve ofv passing through the point(x,y) with vξ ξ the second derivative
of v in the directionξ tangent to the level curve.

The skeleton is taken to be the troughs ofv. These troughs are computed by find-
ing the extrema of|∇v| along the level curves ofv. As indicated in equation 9, near
the shape boundary the level sets ofv mimic a curve (or surface) evolution process
with a speed consisting of a constant component and a component proportional to
curvature.

In mathematical terms the above extrema are the set of positions where

d‖∇v‖
ds

= 0,

with s the arc-length along level curves ofv. These are the points where the level
curves are parallel and the gradient lines ofv have inflection points. Geometrically
this means that the gradient vector∇v is an eigenvector of the Hessian ofv at points
on the axes of local symmetry. This method is developed in a series of interesting
papers (Tari et al., 1997; Tari and Shah, 1998).

The above ideas have been applied to both the computation of medial loci of
boundaries implicitly defined in greyscale images, and their segmentation into pro-
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trusions and indentations in (Shah, 2001, 2005). The latter is accomplished by

grouping points which share the same sign of the second derivatived2‖∇v‖
ds2

. Further-
more, extensions of these ideas to higher dimensions have been explored (Tari and
Shah, 2000; Shah, 2005b). The development of robust algorithms to compute these
medial loci remains an area of investigation, and these computational methods are
similar in spirit to the class of methods based on core tracking to be discussed next.
A practical difficulty faced here is that the medial loci so obtained are disconnected.
Nonetheless, it is possible to use the direction of∇v to determine a hierarchical
interpretation as a graph of components. The 2D case is detailed in Shah (2001).

4.4 Core Tracking

The greyscale skeletons of Shah and Tari can be seen as a special case of cores, with
the functionv, or more precisely its reciprocal, serving as a measure of medialness.
Cores generalize the medialness to functions not just of position but also medial
radius and spoke directions.Coresare medialness height ridges, i.e., maxima of
dimensionp− k in a space of dimensionp equal to that of medial atoms, i.e., 5 in
2D and 8 in 3D.

These medial loci are computed by tracking (Pizer et al., 1998; Furst and Pizer,
1998; Morse et al., 1998; Eberly et al., 1994; Fritsch et al., 1995a). These particu-
lar medial loci do not have the same branching properties as Blum medial loci, so
special branch-searching and seeding strategies are needed (Fridman, 2004). Their
strength is that they are derived directly from greyscale image data without the need
of first extracting boundaries and that, as shown in the references just cited, they are
quite insensitive to image noise.

Core tracking literature has made two different choices for defining the sub-
spaces in which maxima are found, resulting in two classes of cores:maximal con-
vexity coresandoptimal parameter cores. In maximal convexity cores the subspaces
are defined by thep−1 directions of greatest second derivative ofM, computed at
each point as the unit eigenvectors of the Hessian matrix (Eberly, 1996). In optimal
parameter cores, the atoms are required to attain a local maximum in radius, ori-
entation, and object angle, as well as in the direction orthogonal to the Euclidean
tangent space of the core, which is defined by the optimal orientation (Furst and
Pizer, 1998; Fridman et al., 2004).

Core tracking methods work by following a core from a starting point in the
parameter space. A user specifies a location, size, orientation and object angle of
an initial medial atom and the algorithm searches for a ridge point in the vicinity
of this initialization. The algorithm then tracks the core, taking small steps in the
parameter space until some termination condition is met. Core tracking has been
implemented using marching cubes methodology (Furst and Pizer, 1998; Lorensen
and Cline, 1987) and using predictor-corrector methods (Fritsch et al., 1995b).
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a. b.

Fig. 15 Examples of Voronoi diagrams. a. Voronoi Diagram of six points. b. Voronoi Diagram of
points sampled from the boundary of the corpus callosum. The skeleton of the object is just the
internal portion of the Voronoi Diagram.

4.5 Skeletons from Digital Distance Transforms

The pattern analysis literature is replete with a class of methods which use digi-
tal distance transforms but are distinct from the methods of morphological erosion.
These methods attempt to locate height ridges on a discrete lattice, using techniques
from discrete geometry and topology. This is done either by iterative removal of pix-
els or voxels, or by marking centrally located elements, or a combination of these
two ideas. The state of the art algorithms in this class are the subject of Chapter 5.
These methods offer the advantage that they are computationally efficient and that
formal guarantees on the quality of the results can be provided, including reversibil-
ity and homotopy preservation.

4.6 Voronoi Skeletons

Voronoi skeletons (Ogniewicz, 1993; Székely, 1996; Amenta et al., 2001) are com-
puted by calculating theVoronoi diagramof a set of points sampled from the bound-
ary of an object. Fig. 15a shows a Voronoi diagram of a set of six points on a plane.
The diagram consists ofVoronoi regions, which are sets of points located closer to
a particular generating point than to any other generating point. The line segments
in the diagram are calledVoronoi edges; they separate Voronoi regions and are loci
of points that are equidistant from a a pair of generating points. The points where
Voronoi edges meet are equidistant from three or more generating points.

When the generating points of a Voronoi diagram are sampled from the boundary
of an object, as shown in Fig. 15b, the similarity between Voronoi edges and the
curves composing the medial locus becomes apparent. A circle of appropriate radius
centered at a point on a Voronoi edge contains two generating points, i.e., has two
points of contact with the boundary. A circle centered at an intersection of two
Voronoi edges contains three generating points, i.e., has three points of contact with
the boundary, as do disks centered at intersections of curves in the medial locus.
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The Voronoi diagram is also related to the grassfire analogy: if some points on the
boundary are set on fire (as opposed to the whole boundary), the places where fire
fronts meet and quench themselves are the edges in the Voronoi diagram of these
points.

The Voronoi diagram of a set of boundary points contains edges that extend out-
side of the object, possibly to infinity. The discrete approximation of the boundary
obtained by connecting the generating boundary points with line segments cuts the
Voronoi diagram into internal and externals parts. The internal part is called the
Voronoi skeleton. The Voronoi skeleton generated by a discrete representation of an
object’s boundary is an approximation of that object’s internal medial locus. Schmitt
provides a proof that as the number of generating boundary points increases, the
Voronoi skeleton converges in the limit to the continuous medial locus, with the ex-
ception of the edges generated by neighboring pairs of boundary points (Schmitt,
1989).

The Voronoi skeletons, such as the one shown in Fig. 15b, contain many branches,
some of which are spurious and sensitive to the slightest changes to the generating
boundary points. For instance, a Voronoi skeleton computed from the set of pixels
forming the boundary of an object in an image can change significantly if the object
in the image is rotated. In order to make Voronoi skeletons more robust to small
boundary changes, researchers have proposed to isolate parts of the Voronoi skele-
tons that are most stable and significant. A number of measures of significance for
edges and groups of edges in the Voronoi skeleton have been introduced in the litera-
ture (Ogniewicz and K̈ubler, 1995; Sźekely, 1996). The significance measures make
it possible to establish trunk-branch relationships between connected edges in the
Voronoi skeleton, and thus to establish a hierarchy of figures and sub-figures. The
edges that fall far from the root of this hierarchy and have small significance values
do not contribute to the descriptive ability of the Voronoi skeleton and are trimmed.
Pruning on the basis of significance introduces a component of scale into Voronoi
skeletonization. By adjusting the threshold level of significance at which edges are
discarded from the skeleton, it is possible to generate a coarse-to-fine spectrum of
skeletons. These ideas are explored in some detail in Chapter 6. Chapter 7 discusses
theoretical results on the quality of approximation of the medial locus obtained by
Voronoi diagram methods in 3D.

Both local and global measurements of significance have been proposed to orga-
nize and prune Voronoi skeletons. Local measurements assign a significance score
to each edge in the Voronoi skeleton using a heuristic, such as the distance along
the boundary between the pair of generating points to which the edge is equidistant
(Ogniewicz, 1993). Global methods, on the other hand, compute the significance
of an edge or a group of connected edges by measuring its impact on the appear-
ance of the whole object, for example measuring the effect that removing the edge
or edges from the skeleton would have on the shape of the boundary (Näf, 1996;
Styner, 2001; Katz and Pizer, 2003).

The construction of Voronoi skeletons of three dimensional objects, while analo-
gous to the two-dimensional construction, is much more difficult to implement. One
difficulty arises during the traversal of Voronoi edges. The connectivity of Voronoi
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edges in two dimensions organizes them into a tree structure that can be traversed
from the trunk to the leaves; in three dimensions the Voronoi edges may form a
graph that contains cycles and is more difficult to traverse. Methods for organiz-
ing three-dimensional Voronoi skeletons into figures have been developed by Näf
(1996); Attali et al. (1997); Styner (2001).

4.7 Skeletonization by Deformable Medial Models

The skeletonization methods described so far aredeterministicin the sense that the
medial locus is defined entirely by the boundary of the object. These methods do
not provide a way of incorporating prior knowledge about the shape of the medial
locus into the extraction process. This limitation leads to the methods frequently
producing spurious branches. This limitation also makes it difficult to use skele-
tonization methods to produce features for shape characterization. A solution is to
use deformable methods to fit a medial model of a fixed branching topology to the
object.

A discrete medial model can be constructed from a single medial manifold in one
of two ways, by sampling or by parametrization. Both of these ways are described
in Chapter 8, but here we restrict our discussion to an m-rep as a quadrangular grid
of medial atoms sampling the continuous medial locus of atoms. The corresponding
continuous locus can be interpolated from the grid, and each atom in this inter-
polated medial locus has an intrinsic medial coordinate described earlier. The end
atoms, i.e., boundary atoms in such a grid represent the crest where the atoms on one
side of the continuous sheet meet the atoms on the other side of that sheet. Branch-
ing protrusion figures or indentation figures from the figure defined by this main grid
can also be represented by such a quadrangular grid of medial atoms, with certain
of its end atoms, calledhinge atomsdesignated as forming the base of the subfigure
and sitting on the medially implied boundary of the host figure. The connections
between the subfigure and its host figure are given by the medial coordinates in the
host of the subfigure’s hinge atoms.

Deformation of such a medially defined object consists of transforming each
of its medial atoms in such a way that the implied object remains unfolded and
each atom avoids unnecessarily changing its relation to its neighboring atoms in the
grid and also taking care that each hinge atom connecting a subfigure to its host
figure can transform in ways consistent with sliding, or rotating the subfigure on its
host figure’s medially implied surface. All of this, including the coordinate system
provided by medial atoms that allows the expressions of the relationships between
medial atoms, is described in Chapter 8.

Given a characteristic image or a greyscale image, the medialness of each of
the interpolated medial atoms from such a deformable set of grids of atoms can be
measured, and the deformation which optimizes the integral of this medialness can
be chosen as the medial representation of the object. However, this representation
is limited to objects with the same branching topology as that of the starting model.
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Chapter 8 shows how such models can be formed from training populations of the
object. It also shows how probabilities on the deformations of these models can
be derived from the training populations and how these probabilities can be used
as priors when calculating optimal deformations of the model into a new target.
These ideas put deformable m-reps into the realm of Grenander’spattern theory
(Mumford, 1996; Grenander, 1976, 1978, 1981).

5 Applications of medial loci in computer vision

Due to their effectiveness in representing object shape, medial loci have found many
applications in computer vision and image analysis. Since they can be used to rep-
resent object interiors via local rotational and magnification transformations as well
as displacements, and since they provide an object-centered correspondence of po-
sitions between object instances, they provide an effective basis for probabilistic
descriptions of populations of objects. In turn, these descriptions can be used for
testing hypotheses as to shape differences between object classes, classification of
new objects, statistical sampling, and other applications of probability theory, as
discussed in Chapter 9.

Another useful application of medial models is the segmentation of objects and
multi-object complexes via deformable models. Deformable model segmentation is
equivalent to image registration, so the very same approaches can be used to regis-
ter two images of the same objects. Such segmentations/registrations can be done
by optimization of a posterior probability over a shape space of relatively low di-
mension, making use of the aforementioned probabilistic descriptions as prior prob-
abilities and as the means of limiting the shape space dimension. This application is
detailed in Chapter 9.

Segmentation via following a medial locus from image data, without needing an
explicit prior probability, has also met with success. While many of the methods
apply to both tubular and slab-shaped objects, they have been particularly success-
ful in the case of trees of tubes whose branching structure is variable and thus not
specifiable as a prior on a model with fixed branching topology. Aylward and Bul-
litt (2002) and Fridman et al. (2004) have produced core-based methods for this
purpose. Lorigo et al. (2001) and Descoteaux et al. (2004) have produced tubular
tree extraction methods leveraging the fact that skeletal curves are entities of co-
dimension greater than 1 in three dimensions. The method of Descoteaux et al. is
flux-based and follows the more general form described in (Vasilevskiy and Siddiqi,
2002). These applications are not detailed further in this book.

Because they represent objects as a graph of figures, with geometric descriptions
of both the figures and their connections, medial representations are very well suited
to object recognition and labeling of object parts. Several graph theoretic methods
have been developed for such purposes and Chapter 10 covers this application with
a focus on the problem of 3D model retrieval. These methods can also be applied
to the analysis and comparison of anatomical structures as viewed in medical im-
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ages, including vessel trees, bronchial trees (Tschirren et al., 2005), etc. Centerlines,
which may be viewed as the limiting case of a medial manifold shrinking to a 3D
curve, have also proven useful for the visualization of structures in virtual endoscopy
(Deschamps and Cohen, 2001; Bouix et al., 2004). These latter applications are not
covered in this book.

Yet another application that has been developed for medial axes leverages the
object-relative coordinates that they provide for applying physical simulations to
objects and collections of objects. For example, one can do mechanical simulations
based on medial models (Crouch et al., 2004), i.e., with spatial meshings based on
medial coordinates. These partial differential equations can be applied to medial
models directly in the object-based coordinates that the models provide, or even on
the curvilinear high-dimensional spaces that describe medially represented objects
(see Chapter 8). However, since there are only a few such applications thus far in
the literature, they are not covered in this book.

We conclude the book with Chapter 11, which provides an overview of appli-
cations of medial representations in different fields at scales ranging from the very
large to the very small.
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Abstract The m-rep, a representation of the interior of one or more objects, from
which boundaries can be synthesized, is described in detail. An m-rep consists of
sheets of medial atoms; both sampled and parametrized representations of these
sheets are described. Means of forming objects made from a main sheet (figure)
and attached protrusion or indentation subfigures are described, as are multiscale
hierarchies of object complexes, objects, figures, atoms, and voxels. The object-
relative coordinate system provided by m-reps is presented. To allow the estimation
of probabilities on populations of m-reps, the m-rep can be understood as an element
in a feature space that takes the mathematical form of a symmetric space. Doing
this provides the ability to estimate probabilities by a generalization of principal
component analysis to these curved spaces.
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1 Introduction

Chapters 4-7 have taken the point of view that objects begin from a boundary repre-
sentation and a medial representation is derived from the boundary. An alternative
view is that an object is a member of a population of instances of the object and that
a fixed topology of the medial locus can be derived from this population, as well as
a probability distribution on the geometry of that medial locus. Thus every medial
instance can be seen as a deformation of the mean of this probability distribution,
and every boundary can be seen as synthesized from that medial instance. The me-
dial representation called them-rep, discussed in Chapter 1, Section 2.4, enables
the formation of these fixed topology medial structures and the estimation of their
probabilities from training samples. This chapter covers the details of m-reps, the
view of an m-rep as a point on the mathematical entity called asymmetric space,
and the ideas of probability distributions on symmetric spaces. Moreover, m-reps
are described in two forms: grids of order 2 medial atoms calleddiscrete m-repsand
splines of order 1 medial atoms calledcontinuous mreps.

2 M-reps, Medial Atoms, and Figures

We seek a means for representing an object, such as a liver or a car, and ensembles
of objects, such as the whole abdomen or a street scene. Following the philosophy
of Grenander’sPattern Theory(Grenander (1996)) that an object’s very shape is
described by its deformations into its various instances in a population and also re-
alizing that objects deform mechanically in time, we need a representation in which
the associated deformations are rich, natural, and efficiently implemented.

Let us focus on single objects first. What constitutes an object? The intuitive view
is that an object is not simply a shell but rather consists of interior material that can
be locally transformed by elongation, bending, twisting, swelling or contraction,
and displacement. We follow this useful view and choose to synthesize objects from
such a description of the object interior.

The medial representation, originally promulgated as a locus of bitangent spheres,
is well suited to providing this description because its sphere primitive is locally
maximally interior to the object. However, it fails to integrate to the interior. This
aim is achieved by a small modification (Fig. 1) - replacing the sphere by a hub
formed by its center and the two equal-length spokes to the points of sphere tan-
gency. As explained in Chapter 1, we call this object-interior-component primitive
a medial atom, and we use the termm-repto refer to a locus of medial atoms that
sweep out an object interior.

The locus of medial atoms can be a manifold with boundary; an object or object
part represented by such a manifold is called afigure. As illustrated in Fig. 2, in 2D
the manifold can be a curve, in which case we call the figure abar; in a limiting
case the curve degenerates to a point, and the bar degenerates to a disk. In 3D the
manifold can be two-dimensional, in which case we call the figure aslab and its
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a. b. c. d.

Fig. 1 a) Sample tangent spheres representing an object in 2D. b) Medial atoms representing
the same object. c) A medial atom in 3D. The hub is at positionp; the two spokes, of lengthr, are
namedS+1 andS−1, respectively, the unit vectors in those direction areU+1 andU−1, respectively,
and the spoke ends are at positionsb+1 andb−1, respectively; finally, fractional distance from the
hub to the spoke end is given byτ. d) A 3D kidney with a grid of samples of its medial atoms. This
representation is called asampled m-repor adiscrete m-rep. The third spoke on the atoms at the
edge of the grid was discussed in Chapter 1 and is detailed in Section 8 of this chapter.

locus of hubs themedial sheet. In 3D the manifold can also be one-dimensional, in
which case we call the locus of the hubs themedial axis, the atom must be inter-
preted as representing all spokes obtained by spoke rotation about the atom spokes’
bisector, and the figure is called atube. In the limiting 3D case the axis degenerates
to a point, and the figure degenerates to a sphere.

a. b1. b2.

Fig. 2 A slab, in which the medial locus forms a curved 2D manifold of medial atoms. Sample
atoms forming a grid are shown, and the balls illustrating their hubs are samples of the medial
sheet. b) A tube, in which the medial locus forms a curve of medial atoms. In b1 sample atoms
forming a chain are shown; the balls illustrating their hubs are samples of the medial axis. In b2
the boundary implied by the m-rep is shown.

A collection of figures that are attached among themselves form a multifigure ob-
ject. Each figure can form a protrusion added to the collection (Fig. 3a), or a figure
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a. b. c.

Fig. 3 Multifigure objects and multi-object complexes. a) A multi-figure male prostate with two
seminal vesicles. b) The kidney minus the renal pelvis. c) The multiple objects making up a male
pelvis: bladder, prostate, and rectum.

can form an indentation that is subtracted from the collection (Fig. 3b). Indentations
can even pass entirely through the host figure, forming a hole. The form of attach-
ment of subfigures to host figures is described in Section 8. Finally, the collection
of figures can form multiple inter-related objects (Fig. 3c) that are non-intersecting
but possibly abutting.

3 Object-relative coordinates

A special strength of the medial atom is that it carries a natural local coordinate
system, complete with origin (its hub), coordinate frame (see Fig. 4), and metric
(its spoke length), though strictly, medial atoms whose spokes are exactly opposed
have one dimension of ambiguity in their coordinate frame; see below. Other medial
atoms can be expressed in terms of a reference atom as

1. a translation of the reference atom’s hub, in the metric of the reference atom (3
parameters). The origin of the atom’s coordinate system is thus its hub location;

2. a magnification or demagnification of the spokes in common (1 parameter). The
spoke length thus provides the distance metric of the atom’s coordinate system
and thereby makes local shape description of the figure invariant to local magni-
fication;

3. rotations of the two spokes’ directions, or alternatively a 3D rotation of the frame
fitted to the spokes together with a 2D rotation of the spokes towards or away
from each other in their common plane (both 4 parameters). The latter view
breaks down in the singular situation when the spokes are back-to-back, i.e.,
one is a rotation byπ of the other, which occurs at all critical points of the spoke
width function. Nevertheless, it exposes theobject angle, namely half of the angle
between the spokes, and the bisector of the spokes. This bisector and the vector
orthogonal to it in the plane of the spokes along with the vector orthogonal to this
plane forms a natural medially fitted frame. The second of these, which is in the
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direction of the difference of the spokes, can be shown to be normal to the medial
sheet. A difficulty with this frame is that as one of spokes rotates continuously
from nearly back to back with the other spoke, through back to back (object an-
gle π/2), and beyond, the sense of the bisector changes discontinuously due to
the fact that back-to-back spokes is a singular situation (∇r = 0, and the bisector
is not unique).

Fig. 4 Left: A medial atom’s figural coordinates (u,v,φ ,τ) and its atom frame (U0, U0⊥, n), where
n is the normal to the medial sheet. Right and middle: Two views of the figural coordinates for a
sheet of medial atoms (shown sampled).

By this approach any medial atom can be written as an 8-parameter (9 for end
atoms; see Section 8) transformation of the primal medial atom, whose hub is at the
origin, whose spoke length is unity, and whose spokes are both along the cardinal
x-axis. These transformations, at various locations on the medial locus, provide an
ability that is absent in many other object representations, namely, to provide combi-
nations of local translations, twisting, bending, and swelling/contraction of interior
material.

Writing each medial atom in a figure in terms of its immediate neighbors yields
an object-relative coordinate system. In this coordinate system, whose coordinates
we will write asu, the object is seen as a spoke-length-proportional dilation from the
medial sheet or axis, according to the theory of Damon (Chapter 3). That is, one of
the coordinates inu, which we callτ, is the fraction of the distance from the medial
sheet or axis to the implied boundary at the spoke ends.τ -1 has the useful property
that its sign distinguishes the inside from the outside of the figure. The spoke-length
distance metric applied along the medial sheet provides two coordinates that can be
calledu andv. Applied to a tubular axis, it provides a single coordinateu.

An additional coordinate is needed to distinguish the two sides of the medial
sheet and to take one around the crest from one side to the other. In the case of the
tube this coordinateφ takes one around the tube by varying from -π to π. In the case
of the slab this coordinate has a constant value ofπ/2 on one side of the object and
of π/2 on the other side and changes smoothly between these while passing around
the crest. In the Blum formulationφ changes discontinuously between -π andπ at
the crest. However, lettingφ change continuously between−π andπ and be zero at
the crest is more consistent with the tube representation and is friendlier to computer
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representation because it stabilizes the end definition provided by image data (see
Section 8). This decision, however, leaves open the definition of the point at which
the end atom is placed, truncating eitheru or v such that the surface begins to be
parametrized withφ and the non-truncated ofu or v. Since the object angle must
begin to move quickly towards 0 as the crest is approached, one possibility is to let
φ begin to transition when the object angle magnitude falls below some threshold,
e.g.,π/4 (Fig. 4).

4 Figures, Subfigures, and Multi-Object Ensembles

When we divide an object into its figures, each of which forms a slab or a tube, we
must describe the connection between the figures. Most commonly we think of one
figure as a subfigure of a host figure, attached to the host along a connected locus
(Fig. 5). However, it is possible for a figure to be attached to itself, or it can be
attached to one or more other figures at a disconnected locus of points – consider
the handle of a mug. We now treat the means by which the subfigure is attached to
its host at any one of the one or more connected loci of points of attachment.

Fig. 5 Host figure and subfigure. Left: representation. Middle: as two separate figures. Right:
blended.

One view is to form an attachment of a medial locus branch to the host’s medial
locus - this is the view that Blum and many mathematicians have taken. In that
view, the patch metric on the medial locus described by Damon in Chapter 3 is
typically quite small between the branch point and near the host figure boundary, as
those medial atoms are responsible for little interior material. In the region of the
branching the medial surface has a corner that has complex geometry, especially at
the two ends of the corner.

Another view is to describe the subfigure fully by itself and to form a blend region
to attach the subfigure to its host. Of course, this requires a description of the blend
region and the means of smoothly attaching it both to the host figure and to the sub-
figure. But this view has the advantage that the subtractive (indentation) subfigure
connects in a completely equivalent way as the additive (protrusion) subfigure.
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In either case the part of the subfigure near the host figure (we call that part the
hinge) needs to be understood in the coordinate system of the nearby medial atoms
of the host figure. This representation allows the subfigure to be translated, rotated
and scaled in the figural coordinates of the host figure (Han et al. (2004)). More
precisely, the subfigure atoms near the connection to the host figure translate, rotate,
and magnify their coordinates relative to the nearby host atoms while maintaining
their coordinates in terms of the intrafigural neighboring atoms, and the remainder of
the atoms maintain their coordinates in terms of the intrafigural neighboring atoms,
all the while keeping the figural shape as close to constant as possible. The means
of maintaining figural shape while deforming is a subject of the next section.

Multiple objects may be described in a similar fashion. That is, each object has
its own m-rep, but in addition, to describe the relations among objects the atoms in
one object that are near a second object also need to be understood in relation to
the nearby atoms of the second object. This arrangement should be held mutually.
With such an arrangement interpenetration among objects can be avoided by see-
ing whether the spoke ends of one object have a negative value ofτ in the figural
coordinate system of the second object.

5 Synthesis of Objects & Multi-Object Ensembles by Multiscale
Figural Description

One point made in the first paragraph has not received adequate emphasis till now:
the medial representation is being recommended as the basic means of representing
objects, i.e., the representation from which other aspects of the object, such as its
boundary and locations in its interior, aresynthesized. To convey this point better,
we jump off from the relation between the figures that make up an object and the
object as a whole. Just as one cannot understand the leaves of a tree and the tree
as a crown on a trunk at the same spatial scale (Koenderink (1990)), one needs to
understand figures and the object as being at separate spatial scales. The figures
can be understood as determining with finer tolerance information that is already
conveyed by the object as a whole, at a larger tolerance. Moreover, the figural sheets
can be allowed to have only two coordinates of parametrization precisely because
small deviations from smoothness that the Blum medial axis might require in the
sheet’s boundary, leading to arbitrarily many subfigures, can be handled at a smaller
scale level.

Continuing to a larger scale level than figures, the objects forming a multi-object
ensemble determine with finer tolerance information that is already conveyed by the
object ensemble as a whole, at a larger tolerance. Similarly, figural sections, each
an interior region of the figure corresponding to a neighborhood of medial atoms
(Fig. 6), determine with finer tolerance information that is already conveyed by the
figure as a whole, at a larger tolerance. This process can be continued, down to the
scale of the voxel, where individual voxels may be very locally displaced, rotated,
or scaled to refine the tolerance given by the medial representation. In this sense,
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an m-rep is a representation that is medial at the large and moderate spatial scales
corresponding to objects, figures, and figural interior sections but even more local
at the smaller spatial scales.

Fig. 6 Figural interior section corresponding to the neighborhood of a medial atom

Why do we represent objects in this large-scale-to-small fashion? It is because
it is not useful to synthesize or deform an object in much more than O(N) time,
where N is the number of primitives at the smallest scale, since an object or object
ensemble will typically have thousands of primitives at that scale. Working at the
smallest scale only and yet reflecting relationships of arbitrary degrees of locality
would yield an O(N2) algorithm, which is unacceptably slow. The large-scale-to-
small approach is designed so that calculation of the value of a primitive at one
scale need only account for that primitive and its relation to neighboring primitives
separated by its own scale. The hierarchical application of this principle provides
O(N) algorithms for synthesis and deformation.

The synthesis of an object then occurs from large scale to small (Fig. 7). At the
largest scale, that of the object ensemble, a base model is geometrically positioned,
rotated, scaled and grossly warped, as described by just a dozen or fewer variables.
To do this requires knowledge of the gross variations among the family of object en-
sembles being modeled, information that can be garnered from statistics on samples
of the ensemble. How to represent the associated probability densities and estimate
its parameters is discussed in Section 7.

For all of the remaining levels of scale, the next smallest scale is one at which
the components of the previous scale are each refined. These successively smaller
scales will be, at the least, the multi-object ensemble (if there are multiple objects
being modeled), the objects, the figures of which they are made up, interior sections
of those figures, and smaller subsections of those figures. More finely spaced scale
levels are also possible. For example, one might choose to place larger figures in
one scale level and smaller ones in the next smaller scale level.

Deformations of an object ensemble occur from large scale to small, with the
smaller scale deformations beingresidualsfrom the larger scale ones, i.e., being
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a. . b. c.

Fig. 7 The multiscale deformation of an object ensemble made from (top to bottom) bladder,
prostate and rectum during a segmentation. The color bars next to panel a and panels b-c, respec-
tively, show the amount and direction of the boundary displacement corresponding to each color.
Positive values show displacements towards the exterior of the object, and negative values show
displacements towards the interior of the object. The scale for panel a has larger values of displace-
ment than that for the other panels. In each case the displacement is shown on the result from the
next larger scale level, with scale levels processed from large to small. a. Ensemble deformation,
displayed on initial m-rep. b. Deformation of the bladder produced at the bladder object stage, and
sympathetic deformations of the prostate and rectum, displayed on ensemble stage result. c. De-
formation of the prostate produced at the prostate object stage, and sympathetic deformations of
the rectum, displayed on the prostate and rectum in the bladder stage result.

applied on the result of the large scale deformations. Thus, for example, the total
deformation applied to a figure making up one object consists of the effect on it of a
deformation global to the object ensemble, combined with a deformation global to
the object of which it is a part, combined by the residual deformation of the figure
itself.

When dealing with the residual deformation of an entity at one scale level, one
needs to be aware that smooth deformations by arbitrary transformations on the
atoms forming an m-rep figure may produce the illegality of one Euclidean point
having two different figural coordinates. This may occur by the two local conditions
of the medial sheet kinking and then, in further deformation, self-intersecting, or
of the boundary kinking and then, in further deformation folding. Or it may occur
by non-local self-penetration. The mathematics of Damon given in Chapter 3 have
given local conditions on the medial locus that will allow one to prevent the local
conditions, but non-local self-intersection may require a more expensive search.

Until now we have acted as if the topology of the m-rep, i.e., what are the figures
and what is a subfigure of what host figure, is a given. But where should the model
topology come from in the first place? Two possibilities present themselves.

First, based on knowledge of the application area, the user can understand what
the parts are. The first example is of human anatomy: the lobes of the liver come
from that discipline, and the smaller lobe can be seen as attached to the larger one.
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A second example is of the automobile: a manufacturer understands that the bumper
should be a part separately modeled from the car body.

Second, the m-rep topology can come from the statistics of instances of the ob-
ject, each geometrically analyzed into medial components. Styner (Styner et al.
(2003)) has suggested how the Blum medial analysis of instances from their bound-
aries can lead to a stable set of figures and figure/subfigure relationships even though
each individual medial analysis is rather unstable. Essentially, in each instance por-
tions of medial axis are grouped into sheets based on continuity of the medial sheet
and ofr values, sheets corresponding to an appropriately small fraction of the vol-
ume are deleted, and the branchings of the remainder are identified. Then sheets and
branchings held in common across the cases are found. Indeed, some populations
may need models of multiple branching structures to encompass the whole popu-
lation, but for anatomic objects it is impressive how frequently a single branching
structure will do.

6 M-reps as Symmetric Spaces

M-reps are designed to be deformed. One major use of deformation is in a statistical
study of a population, in which an m-rep model is deformed into each instance in
the population and then a probability density is derived from the collection of defor-
mations. Another major use of deformation is in mechanical simulations on 3-space
that includes one or more objects. Therefore the mathematical relationships among
deformations on m-reps is important to understand. In the following we will see that
the set of deformations forms what is called asymmetric space. A background to
the mathematics of symmetric spaces and a description of m-rep deformations as a
symmetric space can be found in (Fletcher et al., 2005). Also included in that chap-
ter is a more thorough discussion of statistical analysis of m-rep objects than that
included in Section 7.

Let us begin with a single medial atom. Let us consider all transformations on
a medial atom, i.e., all combinations of translations of the hub, magnifications or
demagnifications of the common spoke length, and rotations of the spokes. We shall
see that this set of all transformations on the atom forms what mathematicians call
a symmetric spacemade up of a Cartesian product ofLie groupsandquotients of
Lie groups, and the medial atom is a single point on this space. In the following we
explain these terms and ideas and generalize them to full m-reps, preparing their
application to statistics of m-reps, to interpolations of the transformations between
m-reps, and to interpolations in space between samples of sampled m-reps (Fig. 1d).

Each medial atom can be understood as a transformation of the primitive medial
atom, which, given a base(x,y,z) coordinate system, we will take to be the atom
whose hub is at the origin, both of whose spokes point in the positivex direction,
and whose spokes have unit length. The medial atomm then is understood as the
translation of the hub from the origin to the hub position ofm, combined with the
magnification (multiplication) of the unit spoke length by the radial length of the
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spokes inm, combined with the rotations of each of the spokes to their respective
latitudes and longitudes on the sphere. The first two of these transformations are
algebraic group operations, with the operations of vector displacement and multi-
plication respectively. That is, 1) we can compose two vector displacements or two
spoke length multiplications, 2) for each of these operations there is an identity
transformation, and 3) there is a unique inverse to each transformation. This group
property, together with the fact that the set of transformations and the composition
and inverse operations are smooth, are the definition of a Lie group.

The spoke rotational transformations do not form a group, among other reasons
for lack of a unique inverse. However, each spoke rotation can be thought of as ro-
tation of a sphere that includes no rotation about the spoke axis. Mathematicians
call this the quotient SO(3)/SO(2) of the Lie group of sphere rotations (3D rota-
tions calledSO(3)) and the Lie group of rotations about the spoke axis (2D rota-
tions calledSO(2)). This quotient of Lie groups has adequate smoothness due to the
smoothness of the contributing Lie groups.

The result of a medial atom being in a set that is a Cartesian product of Lie
groups and quotients of Lie groups is that the set of medial atoms can be understood
as an 8-dimensional smooth manifold (9-dimensional for end atoms), albeit one
that is curved (see Fig. 8). On this manifold, we can define a distance function and
thus geodesic paths. For m-reps, the associated distance-squared function for an
appropriately small m-rep transformation might be formed from the sum over the
atoms of the sums of the squared displacements of the two spoke ends associated
with hub translation, spoke length magnification/demagnification, and swings of
the spokes, respectively. Alternatively, the squared displacements from these four
atom components might be normalized according to the figural volume changes
they produce.

γ(0) γ(1/3) γ(2/3) γ(1)

a. b. c.

Fig. 8 a) A high-dimensional curved manifold of m-reps. On this manifold a point is a whole
m-rep. The geodesic path shown between two such points (m-reps) gives a shortest route of trans-
formations between the m-reps, a sequence shown for a hippocampus in part b). This same diagram
(with the surface being of lower dimension) can be taken to illustrate the manifold of medial atoms.
In that interpretation a point is a single medial atom. c) The tangent plane to a symmetric space
and the Exp mapping of a vector in the linear tangent space to a geodesic path on the symmetric
space.
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A manifold is called asymmetric spaceif it satisfies the property that at each
point there is distance-preserving diffeomorphism (bijective, smooth warp whose
inverse is also smooth) on the manifold such that all geodesics through that point
are reversed by that diffeomorphism. For the linear space of translations, the dif-
feomorphism is negation of the translation transferred to the origin. For the multi-
plicative space, the idea works by applying the linear theory to the logarithm of the
magnification. For the rotations of axes on the sphere, the reversing map is rotation
about that axis byπ.

Cartesian products of symmetric spaces are also symmetric spaces. For example,
a medial atom is a Cartesian product of the hub translation, spoke length magnifi-
cation, and two spoke rotation symmetric spaces. Now consider a sampled m-rep,
i.e., a collection of medial atoms to each of which the transformation, relative to its
own center, can be applied. This discrete approximation to an m-rep is a Cartesian
product of the symmetric spaces corresponding to each atom separately and is thus
itself a symmetric space. The set of discrete m-reps of a particular structure made up
of ni internal atoms andne end atoms can thus be understood as a curved manifold
of dimension 8ni +9 ne. A point on that surface corresponds to a particular discrete
m-rep (see Fig. 8).

Why have we gone to the trouble of thinking of a discrete m-rep as a curved,
smooth manifold formed by a symmetric space together with a distance function? It
is because for such manifolds geodesic calculations are closed-form algebraic op-
erations implemented by two operations between a pointp on the manifold and a
point on the linear tangent space at that point. The mapping between the tangent
hyperplane and the curved surface is calledexpp, and the inverse mapping, between
the curved surface and the tangent hyperplane, is calledlogp. As illustrated in Fig.
8, these mappings allow the difference between two m-reps to be computed; and as
illustrated in Fig. 9. they allow the geodesic to be sampled to form an animation of
the deformation between two m-reps. And they allow positions along that geodesic,
measured by the fraction of the distance traveled between the endpoints, to provide
an interpolation between two m-reps. While they also allow interpolation among
two or more medial atoms, interpolation within a fixed m-rep is more appropriately
done (Han et al., 2005) using interpolation of the medial sheet from the atom hub
positions and the sheet normals given by each atom’s spoke differences and inter-
polation of the two respective spoke swings using the mathematics given in Chapter
3. Strictly speaking, neither form of interpolation produces medial atoms in that the
atoms’ spokes are not orthogonal to the surface over the atoms’ ends, but rather they
are what Damon calls skeletal atoms (Chapter 3).

Frequently we are interested in the “shape space” of m-reps, that is, the set of
m-reps modulo a global similarity transformation (7 dimensions: translation (3),
rotation (3), magnification/contraction (1)). By analogy to shape spaces on flat (Eu-
clidean) manifolds, we consider a space of m-reps that have been corrected by an
alignment operation that minimizes the inter-object geodesic distances.
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a. b. c.

Fig. 9 The interpolation of quad-meshes of spokes (Han et al., 2005). a) The uninterpolated atoms
of a single figure kidney object. b) Interpolated atoms for that object. c) For the blend region of a
multi-figure object (see Fig. 5). The red and green dots show the surfaces of the part of the host
figure and the subfigure that are included in the object surface. The red and green curves delimit
the region to be blended; on each curve sample points have associated spokes, shown in light blue
and pink, on the host figure and subfigure, respectively. The yellow lines show spokes interpolated
between the light blue and pink spokes; the endpoints of these spokes interpolate the blend surface
between the corresponding points on red and green curves; these are shown for only four example
points. The medium blue curves show similar interpolations between other pairs of corresponding
points on the red and green curves.

7 The Statistical View of Objects

Instead of always talking about an individual entity, such as your liver or your car,
as an object, we also frequently speak of an object, e.g.,theautomobile orthe liver,
as a population of instances, either across individuals or within an individual across
time. Moreover, even a single object representation may be usefully understood as
a center of a population of objects that agree with the representation to within some
tolerance. The remaining question is how to represent such probability distributions
on m-reps.

The first answer that may come to mind is to find the mean and principal compo-
nents of the parameters describing an m-rep, since these can be used to parametrize a
Gaussian probability distribution. Let us consider even the simplest situation, prob-
abilities on a single medial atom. Because the transformations available include
nonlinear ones of magnification and rotation, the linear theory of principal compo-
nents is not suitable and, if used, generates geometrically illegal objects. However,
the theory of principal components has been generalized by Fletcher et al. (Fletcher
et al. (2004)) to the situation of symmetric spaces including nonlinear transforma-
tions. As described in Section 6, the mental leap comes from first understanding a
geometric entity as a geometric transformation of a base entity (e.g., a medial atom
as a transformation of the base medial atom as described above) and then consid-
ering it as a point in the of all such geometric transformations. Each point in that
space corresponds to a transformation, i.e., to a geometric entity (though some of
the points may be geometrically illegal). The idea is to do statistics on the collec-
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tion of symmetric space points corresponding to a training population or to place
probability density measures on the symmetric space.

Fig. 10 Left: A flat symmetric space and Middle: a curved symmetric space, with means and
principal geodesics. Right: The mean kidney m-rep is illustrated at the origin, with the m-reps±1
standard deviation from the mean along the two dominant principal geodesics shown along the
horizontal and vertical axes.

Let us first consider the symmetric space of translations. Because addition of
coordinate values is the operation of the underlying Lie group, the space of trans-
lations can be understood as a flat (Euclidean) space of transformations. That is,
one can visualize the space as a flat, albeit high-dimensional, surface upon which
the difference between two transformations is a vector along the straight line be-
tween the points corresponding to the two transformations (Fig. 8). The metric on
that difference is the Euclidean difference between the points and is thus calculated
using the Pythagorean theorem. Principal component analysis is appropriate in such
spaces. In such a space the mean of a collection of geometric entities (points) is the
point to which the sum of squared distances over the collection is minimum. And
the subspace of the firstk principal components is thatk-dimensional linear sub-
space through the mean to which the sum of squared distances over the collection is
minimum.

As illustrated in Fig. 10, this view can be generalized to the situations where the
transformations defining geometric entities are nonlinear. In this case the space is
curved, since straight lines between a pair of points achieved by linear interpolation
of the parameters describing the points fail to stay on the surface of transforma-
tions. For example, the linear interpolation of two 3D rotation matrices or of two
unit quaternions (represented as a 4-tuple of coefficients) element-by-element does
not yield a 3D rotation matrix or a unit quaternion, respectively. This is because
in the rotation Lie group the operation involves multiplication of the matrices or
quaternions. However, if closest distance paths on this curved surface of transfor-
mations can be defined, i.e., geodesics in the space, the notions of mean and princi-
pal components can be generalized. The Fréchet mean of a collection of geometric
entities (points) is the point to which the sum of squared geodesic distances over
the collection is minimum. And the subspace of the first k principal components is
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that k-dimensional subspace of geodesic paths through the mean to which the sum
of squared geodesic distances over the collection is minimum.

The same idea can be applied to produce statistics on a tuple (Cartesian product)
of transformations, i.e., to a sampled m-rep. A strength of this idea is that the differ-
ent operations on an atom: hub translations, spoke rotations, and magnification of
both spokes, can relate in their respectively appropriate ways. This idea can be well
illustrated by considering the mean of two sampled m-reps. In producing the mean,
the hubs may be translated along the vector in Euclidean 3-space between the two
input hubs to the point halfway between them. At the same time, the rotations of a
spoke must interpolate as rotations, i.e., on the surface of the sphere in 3-space, to
the orientation halfway between the two input orientations. In addition, the lengths
(magnifications) of the two spoke pairs needs to be interpolated according to its Lie
group operation, namely multiplication. That is, the mean size should be the geo-
metric mean of the two input sizes. This idea is all the stronger when it is applied
to the Cartesian product of a set of atoms sampling an m-rep. Then articulations at
joints are handled correctly, swellings that are local remain local, etc.

The approach just sketched depends on producing the measures on the Lie group
according to which geodesics will be defined. The idea we are using at present is
to make equal those differences in the different components of a medial atom that
produce equivalent changes in Euclidean position in the ambient 3-space at the im-
plied boundary, i.e., at the spoke ends. We make this choice because so much of the
action in image analysis takes place at this boundary. Physical objects are visually
sensed at the boundary. Image contrasts typically take place at the boundary. So
even though we wish to represent the whole object interior and not just the bound-
ary, the boundary has a special significance. Of course, if in a particular application
the properties of interest take place at another place, e.g., some fixed fraction of the
way from the medial locus to the boundary, i.e., some fixed value ofδ , then the
distance r in the following would need to be replaced byδ r.

If the spokes have lengthr, an appropriately small translation of boundary by∆

can be accomplished by moving the hub by∆ , by changingr by ∆ (multiplying r
by (1+ ∆/r)), or by changing the spoke angle by∆/r. Thus spoke angle changes
of ∆θ contributer∆θ to distances, spoke length magnification by 1+ λ contribute
λ r to distances, and translations of the hub by4p contribute|∆p| to distances.

The means of computing the mean and principal components from a collection
of training points on the symmetric space of sampled m-reps can now be specified.
Basically, one either does trigonometry on the symmetric space surface itself, or
one transfers the points to the tangent hyperplane at the present estimate of the
mean via thelogp function, operates on that surface, and transfers the result back
onto the symmetric space surface via theexpp function. The second approach can
be shown to work for computing the mean, as long as distances on the tangent
hyperplane are taken to be the corresponding geodesic distances on the symmetric
space surface. As long as the cloud of sample points is tightly clustered, the second
approach produces a good approximation to either definition of principal geodesics
defined on the symmetric space manifold:
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1. the geodesic through the mean that minimizes the sum of squared geodesic dis-
tances to the geodesic;

2. the geodesic through the mean such that the points on that geodesic by geodesic
projection of the sample point have maximum sum of square geodesic distances
to the mean.

The latter two definitions, equivalent in flat space, are not equivalent in any
curved space, e.g., the space of tuples of atoms (m-reps). Indeed, the approxima-
tion has certain properties preferable to either of the two definitions of principal
geodesics defined on the symmetric space manifold, so we use this approximation
in computing principal geodesics.

Two issues that arise when doing statistics are preliminary alignment of the train-
ing cases and setting positional correspondences among the training cases. We have
discussed a method of alignment at the end of the previous section. The issue of
correspondence is discussed in Section 9.

How does analysis of m-reps by geodesic alignment, Fréchet mean computation,
and principal geodesic analysis compare in results to alignment of corresponding
boundary point distribution models using the Procrustes method and principal com-
ponent analysis of the corresponding points (the medial atom spoke ends)? Exper-
iments on both simulations on ellipsoids and on interpatient data on real organs
show cases where the principal variances and principal modes of variation differ
significantly between the two forms of analysis. Indeed, in cases where the ellip-
soid undergoes compositions of independent bendings, twistings, and spoke mag-
nifications of m-reps, the analysis based on principal geodesic analysis of m-reps
extracts the three basic transformations, but the principal component analysis of
corresponding boundary points produces more modes, some with self-intersections
and non-smooth boundaries and many of which are mixtures of the independent
modes used in the ellipsoid formation. Details can be found in (Pizer et al., 2005a),
in preparation.

Other probability distributions and statistical approaches can also be applied
on symmetric spaces. Examples are probability distributions produced by Parzen
windowing and other Gaussian mixtures and clustering approaches. Statistical ap-
proaches include discrimination by support vector machine and related methods,
kernel methods, and indeed any statistical method that needs to be applied to ob-
jects or shapes.

Statistics may also be calculated on image intensities. However, image inten-
sities, in 3D medical images in any case, only make sense in anatomic, i.e., in
object-relative, coordinates. That is, for the intensities across images to correspond,
whether position by position or region by region, the image space must be trans-
formed to these coordinates before the statistics is done. This transformation may
be within objects and outside near the boundary, or it may also also deal with inter-
stitial regions between objects. Detailing of this approach is left to Chapter 9.

Finally, for deformations that take place within a particular object instance rather
than between members of a population, physical models represented by partial dif-
ferential equations and solved by finite element and other discrete approximations
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can be aided by m-reps, in meshing (Crouch et al., 2003) and perhaps in solution
via eigenanalysis directly from m-reps.

8 Discrete M-reps

To represent a continuous entity such as an m-rep in a computer, one must discretize
it. The two most common means of doing this are by sampling or by producing a
parametrized representation in terms of basis functions. In this section we discuss m-
reps represented by sampling to producediscrete m-reps. In Section 10 we discuss
a parametrized representation formed by m-rep splines.

The medial sheets forming a figure can be sampled by any appropriate sampling
scheme: into triangular tiles, quadrilateral tiles, hexagonal tiles, etc. According to
the idea that the spoke lengthr forms a distance metric, the spacing between the tile
vertices should be approximatelyr-proportional. At each vertex is placed a medial
atom (Fig. 4).

In a continuous m-rep the end curve is formed by atoms whose spokes have come
together, i.e., the object angle is 0 (see Chapters 2 & 3)). The locus of the spoke ends
of these atoms forms a crest on the boundary, i.e., a locus of a local maximum of
curvature in the principal direction across the crest. Two problems arise with using
such an atom of spoke-multiplicity 2 as an end atom in a discrete m-rep. First, the
atoms spokes move towards each other at an infinite rate in the limit as the medial
sheet end is approached (Fig. 11a), an unstable process. Second, deriving an atom
from but a single point of image information is ill-conditioned, and doing this for
an atom as critical to the shape as an end atom is therefore ill-advised.

Thus, as introduced in Chapter 1, we invented a new representation calledend
atoms(Fig. 11b) for figural ends that was designed to be stable in both of these
senses. To avoid the infinitely fast collapse to zero of the angle between the me-
dial spokes, it could allow only a subset of the types of ends generally allowed. At
the same time, it needed to be consistent with the description used for the interior
portion of the medial manifold. We therefore cut off the interior description while
there was still a significant angle between the spokes and insisted that the Blum
medial axis of the end portion continue straight from the place where the interior
description stopped. That is, the end atom was provided with a new spoke along
the bisector of the other two spokes with the new spoke incident to the crest of the
implied boundary. By providing this bisector spoke with a specifiable lengthηr,
we provided a parameterη of crest sharpness additional to the parameters of the
interior medial atoms. Even corners can thus be designated, usingη = 1/cos(θ).

The branching structure described in Section 5 was also developed to avoid in-
stability in a continuous m-rep. In this representation the parts, calledhinges, of the
ends of protrusion (additive) and indentation (subtractive) subfigure sheets ride on
the implied boundary of a host figure. These hinges are represented by designat-
ing a sequence of end atoms on the subfigure as hinge atoms. Knowing the hinge
atoms’ global position, orientation, and size parameters in the figural coordinates
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a. b.

Fig. 11 Medial geometry of end atoms. a. In cross-section, the continuous relationship between a
point on a medial surface and the points of contact between the disk of principal curvature inscribed
at the point and the boundary of the object asymptotes at the crest point: equal steps along the
medial surface result in increasing steps along the boundary. b. To account for this asymptotic
relationship m-reps describe ends of figures using special end atoms with three spokes that describe
the entire end-cap of the figure, symmetric about the crest atb0.

of the host boundary allows the subfigure to follow changes of its host figure while
remaining appropriately connected to the host. The remainder of the atoms in the
subfigure should then change to that member of the principal geodesic space of that
subfigure for which the hinge atoms agree most closely, in geodesic distance, with
their host-implied positions.

Fig. 12 A subfigure and host figure, their relation and blend, and hinge atoms.

The description of a subfigure riding on a host figure and thus intersecting the
host figure requires a means of blending the seam of a subfigure with its host fig-
ure and of giving object-relative coordinates within the blend region. An approach
consistent with the medial atoms of the host figure and of the subfigure, illustrated
in Fig. 12, is to cut off the subfigure at a specified value of itsu coordinate, produce
a hole in the host figure by dilating the subfigure’s intersection with the host figure
in the (u,v) coordinates of the host figure, associate the positions on the two cut-off
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curves based on an integrated minimum distance criterion, and between each pair
of associated points interpolate the spokes. This interpolation is best accomplished
using the ideas in Section 6, interpolating the hub position linearly, log of the spoke
length linearly, and the spoke orientation along the spherical geodesic. The blended
surface passes over the ends of the interpolated spokes. The degree of dilation and
the subfigure cutoff coordinate are parameters of the process.

For speed of computation we presently approximate the surface interpolation via
a grossly tiled blend and retiling and interpolative smoothing with normal agree-
ment, using a successive subdivision algorithm described in detail in Thall (2004)
(Fig. 12). This algorithm is also used to quickly approximate the boundary tile ver-
tices of the individual figures making up an object. However, a method based on
interpolating the medial atom hubs and spokes appears preferable. Such a method
was briefly discussed near the end of Section 6.

The blend region needs its own figural coordinates. As illustrated in the left panel
of Fig. 12, thev andφ coordinates of the subfigure serve to take one around the
blend,δ takes one along the spokes, and we create aw coordinate that follows the
interpolation from the subfigure cutoff to the edge of the hole in the host figure.

As an object deforms, not only can the individual figures that make it up change
shape, but it is also useful to see subfigures as changing their overall conformation
relative to their host. If they rotate or translate or magnify, they need to be seen as
rotate or translate relative to the host figure, i.e., in the figural coordinates of the
host. This includes not only rotation on the surface of the object but also rotation
about a hinge in that surface, hinge atom by hinge atom, with a consequence for
the remaining atoms within the subfigure’s shape space, as described above. This
provides a generalized notion of hinging even when the hinge curve is not straight.

One can handle the inter-object relationships in a similar way (Pizer et al., 2005b;
Jeong et al., 2006). For each target object certain medial atoms in neighboring ob-
jects, namely those near and thus highly correlated with the target object are desig-
nated as neighbor atoms. These neighbor atoms areaugmentedto the target object
atoms, and after alignment of these sets over the cases, principal geodesic analysis is
applied to this augmented set, i.e., to the union of these atoms. The result is a shape
space formed from the mean and set of chosen principal geodesic modes for the
augmented set. For any position of the neighbor atoms, the projection of the aligned
augmented set onto the shape space followed by restricting the result to the target
object is the conditional mean of the target object, given the neighbor atom posi-
tions. This conditional mean is the target object valuepredictedby the neighbors.
Prediction allows the target object to undergo changes sympathetic to the changes of
its neighbors. This predicted value can be geodesically subtracted from the aligned
target object itself to give a target object residue. A second principal geodesic anal-
ysis on these residues can be computed, yielding a shape space for the target object
after prediction by its neighbors and a probability density on that space. Geodesic
subtraction of the prediction and projection onto this neighbor effect shape space
then yields the part of object variation that can be attributed to its own variation, as
opposed to the effects of neighbor variation.
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9 Correspondence of Discrete M-reps in Families of Training
Cases

The principle expounded in this chapter is that a medial representation is usefully
thought of as implying a boundary rather than the reverse. To compute the mean
and principal geodesics associated with a family of training cases, each training
case is typically given by its boundary. The problem is to produce an m-rep for each
case such that the figural topology and number of medial atoms per figure are fixed
and such that the individual atoms are in good correspondence across the cases.
This issue of establishing correspondence is always of concern with discrete repre-
sentations, but it is particularly of concern because many conformations of atoms
can almost equally well describe the same boundary. One of the major strengths
of discrete m-reps is its stability: moderate changes in the medial atoms can lead
to only small changes in the implied boundary. But said another way, multiple ar-
rangements of medial atoms can imply the same boundary to within some tolerance.
This polymorphism can lead to problems of positional correspondence between dif-
ferent instances of the same object, e.g., by representing different individuals in a
population or different states of the same individual.

One way to obtain correspondence is to take the point of view of Taylor, Davies,
et al. (Davies et al. (2002)) that in a population of all reparametrizations of the mem-
bers of the population, the one to be chosen is the one which has the tightest prob-
ability distribution. That is, degradation of correspondence is assumed to broaden
the probability distribution. This point of view requires the notion of orbits of indi-
vidual instance, that is, the subspace of all representations on the symmetric space
that lead to the same boundary (perhaps to within some tolerance). Finding the best
representative of each training case’s orbit leads to a time-consuming computation.

A good step towards achieving correspondence at low cost can be obtained by
depending on m-rep’s edge fitting in a predictable fashion into a crest of the train-
ing case’s boundary and then regularly spacing the atoms. The regular spacing can
be obtained by including a measure of irregularity in an objective function to be
minimized as the m-rep is fit to the object boundary. The measure of regularity that
we use is the sum of the square deviations of each atom from the average of its
neighbors, where the average and the deviation is computed via geodesic distances.

The objective function that we minimize to fit an m-rep of a given topology into
an object is a weighted sum of the following terms.

1. The irregularity measure just mentioned.
2. The sum of squared distances between the implied boundary’s tile vertices and

the input object boundary. This distance function can be made large in other
objects of a complex, to avoid interpenetration of the regions implied by the
respective objects’ m-rep sheets.

3. The sum of squared geodesic distances of the medial atoms to the corresponding
atoms in a reference m-rep translated so that it shares a center of gravity with the
m-rep being fit. (Rotation and scaling is also possible, using the second moments
about the center of gravity.) Initially, the reference object may be taken as one of
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the training objects, but after all the objects are initially fit, their mean can form
a new reference object, and the fitting can be repeated.

4. The sum, over an optionally chosen set of landmarks on the reference object,
of distance squared divided by tolerance squared. This helps with initialization,
with getting the m-rep to fit into narrow elongated sections, and with avoiding
rotation of the m-rep sheet.

As illustrated in Fig. 6, this algorithm works quite effectively, over a variety of
complexes of single figure objects. A version for multifigure objects is in trial.

Fig. 13 An m-rep fit to 12 training cases of the bladder, prostate, rectum complex with correspon-
dence.

10 Continuous M-Reps Via Splines or Other Basis Functions

With a parametrization of the medial sheet on (u,v), given the continuous functions
of the hub locusp(u,v) and the spoke length valuer(u,v), theenvelope equations
for the family of spheres defined by these functions yield expressions restating equa-
tions 5 of Chapter 1 and the equations in proposition 7.1 of Chapter 2. The following
analytic expressions for the spoke unit vectorsU(u,v) and the spoke endsb(u,v) re-
sult:

U =−∇r±
√

1−|∇r|2N , (1)

b = p+ rU, (2)
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whereN is the unit normal to the medial sheet and∇r is the Riemannian gradient of
the functionr on the medial sheet (the Riemannian gradient describes the direction
in which r changes fastest on the manifoldp and its magnitude is equal to the rate
of change per unit step in the tangent plane). These are given respectively by

N =
pu×pv

|pu×pv|
and ∇r =

[
pu pv

]
I−1
[

ru

rv

]
(3)

whereI denotes the first fundamental form on the medial surface, given by the outer
product of

[
pu pv

]
with itself. The spokes themselves are simplyrU, the object

angleθ(u,v) is given by cos−1(|∇r|), and the frameF(u,v) is made from the vectors
N, ∇r/|∇r|, and their cross-product.

Recognizing the ability to compute a continuous locus of full medial atoms from
the continuous functionsp(u,v) andr(u,v), Yushkevich et al. (2003) proposed B-
splines in(x,y,z, r) as a means of producing these continuous functions. Given a
mesh of control points for these B-splines, the internal locus of a single-figure m-rep
can be calculated. The greater challenge lay in forming the end curve and represent-
ing branches, where the vector∇r must satisfy certain equality constraints.

Along the end curve, the equality constraint requires that|∇r| = 1, thus ensur-
ing that the normal component of the spoke vectorsU vanishes, and the spoke ends
meet. In 2D continuous m-reps, Yushkevich was able to repose the problem as a con-
straint on the control points of the B-spline. In 3-D, however, the number of points
at which the constraint must hold is infinite, while the number of control points is
still finite; hence, the problem is overdetermined. A solution was obtained by letting
the domain of the medial surface definition be the region in(u,v) space bounded
by the zeroth level set of|∇r|−1. In the B-spline framework, this solution was im-
plemented by forcing|∇r| to take large values on the perimeter of the unit square,
making sure that|∇r|< 1 somewhere inside of the unit square, and then finding the
level set to define the domain. The shape of the domain can be regulated using the
spline control points, but the domain can not be fitted exactly to some prescribed
curve. Figs. 14a-d illustrate how the implicit formulation makes it possible to de-
fine medial surfaces on free-form domains. Yushkevich et al. recently developed an
alternative method in which the continuous m-rep can be based on any set of basis
functions and the boundary of the domain can be explicitly defined; this method
treats the end-curve constraint as a boundary condition of a partial differential equa-
tion (PDE) that can be solved quickly (Yushkevich et al. (2005)).

As illustrated in Fig. 15, the control points of the continuous m-rep can be ad-
justed to optimize the fit of the implied boundary to the boundary of a given binary
image. In addition to minimizing the distance to the boundary, the optimization in-
cludes penalty and regularization terms that ensure that certain inequality constraints
are satisfied and that the parametrization of the medial surface by(u,v) coordinates
is more or less uniform. One of the penalty terms prevents the formation of singular-
ities on the implied boundary by ensuring that the Jacobian of the functionU(u,v)
is positive.
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a. b.

c. d. e.

Fig. 14 a.A free-form domainΩ defined as the level set of the function|∇r|−1. b. A B-spline
medial surface interpolated on the domainΩ . c.One side of the boundary defined by the continuous
m-rep.d. Both sides of the continuous m-rep’s boundary. The constraint|∇r|= 1 ensures that the
two sides form a closed surface.e. The fin-like formation of the 3D Blum medial axes poses
challenges for continuous spline-based modeling.

The resulting continuous m-rep is a Blum medial locus of the object it implies.
This contrasts with the locus of medial atoms produced by interpolating a discrete
m-rep. That locus is a skeletal surface interpolating its medial atoms, but it is not
necessarily a medial surface. The effect is that the discrete m-rep is typically able to
fit a particular binary image more closely than the continuous m-rep.

The spline-based cm-reps method described above can model multifigure ob-
jects in 2D, but in 3D it is currently limited to single-figure m-reps. The alternative
PDE-based method described in Yushkevich et al. (2005) appears to have the same
limitation, though it does provide a means of computing the edge of the medial sheet
explicitly rather than implicitly. Chapter 3 of the recently completed dissertation by
Terriberry (2006) gives a method based on control points and implied control curves
that not only provides all medial features explicitly but also supports medial branch-
ing. Terriberry’s method also provides analytic calculation of various volume and
medially implied boundary integrals useful in determining correspondences among
a family of m-reps. Therefore, it appears to be an alternative for statistical m-reps
worthy of exploration.

Terriberry’s cm-reps provide an additional useful capability, calculation of inte-
grals over medially implied object interiors or boundaries or parts thereof by integra-
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a. b. c.

d. e. f.

Fig. 15 Examples of fitting a continuous m-rep template to manually outlined hippocampus
boundaries.a.A hippocampus template shown with a semi-transparent boundary.b-f. Examples of
the fitted template’s boundary (shown as green surface) displayed together with the hippocampus
boundary outline (shown as orange mesh). The fit is lossy because the continuous m-rep template
imposes a simple medial branching topology.

tion over the medial sheet(s) ((Terriberry, 2006), Chapter 4). Useful integrals over
the object interior are moments of the medially implied object, the volume overlap
between an object and a binary image, and various distances between the interiors
of two objects. Useful integrals over the object boundary are the ratio of the area
of a boundary patch and that of the corresponding medial sheet patch and regional
averages of such geometric entities as mean and Gaussian curvature, principal cur-
vatures, and principal directions. In particular, these and other integrals are useful in
fitting a cm-res to a binary image or fitting cm-reps to multiple binary images with
established correspondences over boundary points.

Both types of integration are done by pulling back the integration to the medial
sheet according to the methods discussed in Chapter 3, Sections 4.1-4.4. Recall that
the pullback requires calculation of the radial shape matrixSrad at the hub of each
spoke involved in the integration. The ability to expressSrad as an analytic function
of the cm-rep spline coefficients allows the necessary integrations to be carried out
using accurate adaptive subdivision numerical integration techniques on the medial
sheet.
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11 Summary and Conclusion

M-reps are designed for deformation by global and local combinations of object
interior magnifications, rotations, and translations. The m-rep has the following ad-
vantages over alternative representations of objects or object complexes:

1. it inherently allows the deformation of an object to be decomposed into local
translations, local twistings and bendings (rotations), and local magnifications;

2. it allows one to distinguish object deformations into along-object deviations,
namely elongations and bendings, and across-object deviations, namely bulgings
and attachment of protrusions or indentations;

3. it is especially designed to deal with both objects and the surrounding ensembles
of objects;

4. it provides an anatomic object and object ensemble based coordinate system in
terms of which to deal with the geometry-to-image match and allowing efficient
determination of interpenetration of one object with another or a distant section
of an object with itself;

5. it directly supports a series of object-based representation at successively smaller
spatial scales and thus tolerances, allowing image analysis methods to proceed
in an inherently efficient coarse-to-fine manner;

6. it deals with objects in terms of figures, i.e., protrusions and indentations that
users frequently think of the objects in terms of and have names for.

A geometry and a statistics for such transformations has been devised, and a
physical modeling capability is also partially developed. Among the strengths of
this representation, providing efficiency, is a natural multi-scale framework made
possible because of the representation’s capabilities in providing within object and
inter-object geometric neighborhood relationships. These capabilities can be lever-
aged in a wide variety of applications. Besides the image analysis applications of
segmentation and hypothesis testing on shape populations described in Chapter 9,
there are many other image analysis applications available and myriad applications
in computer graphics and physically based modeling. Among the places of pos-
sible use in computer graphics, many of which have been piloted, are animation,
texture rendering, image-based rendering, computer games, and computer-aided de-
sign. Physically based modeling using the nonlinear basis that m-reps provide is an
open opportunity.

Nevertheless, m-reps, as presently designed, force the fitting of a fixed branch-
ing structure to objects in a population that may have a more complex or different
branching structure. In addition, while the discretely sampled m-reps have an ad-
vantage of more tightly fitting objects over the parametrized m-reps, the discrete
representation requires a more complex computational infrastructure, which is also
more complex than that required by alternative non-medial object representations
commonly in use. Also, like the the alternative object representations and associ-
ated statistical methods commonly in use, m-reps’ statistical analysis is not pre-
vented from including in the domain of random objects those that are geometrically
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improper, e.g., ones that self-penetrate or have unsmooth boundaries, even if they
are less likely than the alternatives to have such improprieties.
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Statistical Applications with Deformable
M-Reps
Anatomic Object Segmentation and Discrimination

Stephen Pizer and Martin Styner and Timothy Terriberry Robert Broadhurst and
Sarang Joshi and Edward Chaney and P. Thomas Fletcher

Abstract There are many uses of the means of representing objects by discrete
m-reps and of estimating probability distributions on them by extensions of lin-
ear statistical techniques to nonlinear manifolds describing the associated nonlinear
transformations that were detailed in Chapter 8. Two important ones are described
in this chapter: segmentation by posterior optimization and determining the signifi-
cant shape distinctions that can be found in two different probability distributions on
an m-rep with the same topology but from two different classes. Both uses require
facing issues of probabilities on geometry at multiple levels of spatial scale. The
segmentation problem requires the estimation of the probability of image intensity
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distributions given the object description; we describe a way of doing that by an ex-
tension of principal component analysis to regional intensity summaries produced
using the object-relative coordinates provided by m-reps. Applications of both seg-
mentation and determination of shape distinctions to anatomic objects in medical
images are described. Also described is a variant on the segmentation program used
in estimating the probability density on an m-rep; this program fits an m-rep to a
binary image in a way that is intended to achieve correspondence of medial atoms
across the training population.

1 Introduction and Statistical Formulation

Both segmentation, i.e., extraction, of objects from images and characterization of
geometric differences between classes of objects are usefully accomplished in terms
of deformable shape models. In segmentation a geometric model is deformed into
the image data, allowing the method to reflect an understanding of what legitimate
or typical shapes are. In characterizing the differences between shapes in two dif-
ferent populations, the differences are measured in terms of the deformation from
one shape to another. Medial models provide a useful representation of the object or
complex of objects that undergoes deformation and of the deformations themselves.
Moreover, statistics on medial models are useful for both applications, specifying
the typicality of a shape or the population of deformations between shapes in the
two classes being compared. Finally, the segmentation application requires not only
statistics on the geometry, i.e., on the medial models or their deformations, but also
statistics on the image intensities, given a medial model. Because these intensities
are best understood statistically in object-relative coordinates, the figural coordi-
nates provided by m-reps are an important means of producing the image intensity
statistics.

In Chapter 8 the geometry of discrete m-reps and statistics on these entities were
discussed. This chapter discusses the use of these geometric representations and
their statistics, as well as the statistics on image intensities in figural coordinates for
segmentation of anatomic objects and object complexes. It also discusses the use
of these geometric representations and their statistics for statistical shape difference
characterization between classes of anatomic objects or object complexes extracted
from medical images, e.g., between the hippocampi or lateral ventricles of healthy
and schizophrenic individuals as extracted from magnetic resonance images.

In characterizing the difference between two anatomic populations the differ-
ences need not only to be specified statistically, but also this specification needs to
includewherethe differences are andwhat form of deformationoccurs there, for
example, whether it is a local twist or a local bend or a local swelling or a local
contraction. Also, in segmentation, a coarse-to-fine, i.e., successively more local
approach has serious speed advantages for any given quality of segmentation. M-
reps with their coordinate systems, their provision of multiscale statistics, and their
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Fig. 1 A tree of objects, figures, medial atoms and voxels.

medial basis’ provision of both local width and local figural orientation are well
matched to these needs.

More precisely, as illustrated in Fig. 1, consider a tree of geometrical entities such
that the discrete m-rep at the root of the tree describes a whole object complex and
such that the children of a node describe sub-entities which taken together make up
that entity. For example, if the root node describes a complex of objects, its children
would respectively describe each object making up the complex. Similarly, if a node
describes an object made up of figures, its children would respectively describe
the figures making up the object, their children might describe individual medium
atoms, and their children might describe sequences of displacement on individual
voxels. In each node is a collection of atoms made up of all its children, each atom
with a value. The value of a node is the atom values of all the atoms making up
that node. Then deforming the entity corresponding to a node deforms all of its sub-
entities, and after that deformation we may move on to the sub-entities of the node
and deform them further in some order. We refer to these stages at which processing
occurs asscale-levels.

At each scale-level other than the top of the tree, an entitym has as set of neigh-
borsN(m), that are at nearby physical positions. It is useful to think of the prob-
abilistic relationship among entities in terms of the value of each child of a node,
given the value of that node and the conditional probability of a node given the val-
ues of its neighbors. The former describe inter-scale-level differences, and the latter
describe inter-neighbor differences, i.e., differences across position. This view al-
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lows us to think of the problem with a Markov random field formulation in both the
scale and positional dimensions.

That is, if the m-repn is a child sub-entity of an m-repm, andm → n is the
value thatn takes as a result of the deformations of its ancestors and most recently
as a result of its parentm, we wish the conditional probability of the deformation
describing the difference(m → n)	 n, given the parent nodem, where the sym-
bol 	 denotes the geodesic path between its two operands. Similarly, if< N(n) >
describes the prediction ofn based on its neighbors, we wish the conditional prob-
ability, p(n	 < N(n) > |N(n)), of n	 < N(n) > given the neighbor nodesN(n).
Because the essence of geometry is that entities are locally correlated, a thesis that
for medial atoms of various anatomic objects is supported by our data, it is reason-
able to condition(m → n)	 n, on only the parent nodem and not on ancestors
more distant in scale, and it is reasonable to conditionn	< N(n) > on its immedi-
ate neighborsN(n) and not on more distant entities.

In the work described here, we simplify the probabilistic formulation even fur-
ther. We assume that(m → n)	 n is statistically independent ofm and that
p(n	< N(n) > |N(n)) can be broken up into two factors, one describing the change
independent of its neighbors and the other describing the interrelationship of it with
its neighbors. Breaking things down according to this Markov formulation allows
a segmentation or hypothesis test with final locality such that the total number of
primitives at that level of locality isM (e.g., there areM voxels in the objects being
segmented or at which shape differences are being tested) to operate inO(M) time
rather than theO(M2) that are required when the relation of every primitive with
every other one must be dealt with.

The geodesic differences between m-reps used in the foregoing formulation are
in the same symmetric space as the subtrahend and the minuend. That is, the, the
geodesic differences of a collection of medial atoms is the collection of differences
of the corresponding atoms, and the difference of two atoms is the Cartesian product
of the corresponding components, as illustrated by the difference between interior
slab atoms in the following:

1. the difference of the hub positions, which like a hub position itself is a vector in
Rn;

2. the “difference” of the spoke lengths, which is the ratio of these lengths giving
the magnification of one into the other, and thus like a length itself is a scalar in
R+;

3. the “difference” of each spoke position on the unit sphereS2 with the correspond-
ing spoke’s position onS2, which can be understood as a position onS2. There
are difficulties with differences of angle differences associated with having to
specify a reference angle; these will not be further discussed here.

As a result, statistics on such geodesic differences can be accomplished by the same
methods of computing means and principal geodesics described in Chapter 8.

Finally, consider the probabilities on differences of m-reps that are the target of
statistical characterization of inter-class differences. These differences of m-reps are
again in the same symmetric space as the subtrahends and minuends. One requires
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methods of hypothesis testing that yield the significance of distinctions in probabil-
ity distributions in this symmetric space and, as well, the location of such significant
changes, for various levels of locality.

In Section 2 we introduce segmentation via posterior optimization of deformable
m-reps with an overview of the approach. We find that two log probability densities
are needed, one measuring the geometric typicality of an m-rep and the other mea-
suring the match between the m-rep and an image. In Section 3 we discuss how to
train the first probability density, given binary images of sample objects, and how
to measure this geometric typicality on any m-rep, given this training. In Section 4
we discuss estimating the probability density on image intensities given a medial
model and how to measure this probability density on any target image. In Section
5 we conclude our discussion of segmentation by specifying the segmentation scale
at the smallest scale level, that of the voxel, followed by the excellent results ob-
tained using our multi-scale method using the geometric and intensity probabilities.
In Section 6 we discuss means of hypothesis testing based on m-reps for statisti-
cal characterization of shape differences between populations of objects or object
complexes. Section 7 gives some examples of results using this method. In Sec-
tion 8 we discuss the apparent strengths and weaknesses of the medial methods we
propose for the segmentation application and characterization of shape differences
application, as compared to alternative object representations. In that section we
also discuss work that remains in both these methods of application of m-reps and
in the formulation of m-reps themselves and their statistics.

2 Segmentation by Posterior Optimization of Deformable
M-reps: Overview

Published studies by others and our own research results strongly suggest that seg-
mentation of a normal or near-normal object (or objects) from 3D medical images
in all but the simplest cases will be most successful if it uses 1) knowledge of the
geometry of not only the target anatomic object but also the complex of objects pro-
viding context for the target object and 2) knowledge of the image intensities to be
expected relative to the geometry of the target and contextual objects.

We use the general segmentation approach already shown by others to lead to
success ((Cootes et al., 1993; Staib and Duncan, 1996; Delingette, 1999), among
others; also see (McInerny and Terzopoulos, 1996) for a survey of active surfaces
methods), namely deforming a geometric model by optimizing an objective function
that includes a geometry-to-image match term which is constrained by or summed
with a geometric typicality term. In this approach a model of the object(s) to be seg-
mented is placed in the target image data and undergoes a series of transformations
that deform the model to closely match the target object.

In computer vision an important class of methods uses explicit geometric models
in a Bayesian statistical framework to providea priori information used in posterior
optimization to match the deformable shape models against a target image. Using
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this approach, we start from a statement of the segmentation objective as finding
the most probable conformation of the target object(s)m given the imageI , i.e.,
of computing argmaxm p(m|I). Herem is the geometric representation of the target
object(s), in our case the tree of medial atom meshes that comprises an m-rep, andI
is a tuple formed by a 3D array of image intensities. The probability densityp(m|I)
is frequently called theposterior density, so the method is called one ofposterior
optimization(Duda et al., 2001).

By Bayes rule, argmaxm p(m|I) = argmaxm[logp(m)+ logp(I |m)]. Thus the ge-
ometric typicality term ideally measures the logarithm of the so-calledprior proba-
bility density, the probability density that the candidate geometric entity exists in the
population of objects, as described in Chapter 8. And the geometry-to-image match
term ideally measures the logarithm of the so-calledlikelihood, the probability den-
sity that the target image values, relative to the candidate geometry, would arise in
the population of images from that modality. As a fundamental means of obtaining
efficiency, we optimize such an objective function for successively smaller spatial
tolerances (spatial scales), where each of the spatial scale levels are object-relevant:
the object complex, the object, the slab (or tube) figure, the figural section, and the
voxels not only interior to the object(s) but also the voxels between them, which we
call interstitial voxels.

The success of the deformable shape models posterior optimization approach de-
pends on the object representation, i.e., the structural details and parameter set for
the deformed model, as well as on the form of the objective function. The most
common geometric representation in the literature of segmentation by deformable
models is made up of directly recorded boundary locations, sometimes calledb-
reps (Cootes et al. (1993); Kelemen et al. (1999), also see papers surveyed by
McInerny and Terzopoulos (1996)). Our m-reps representation (Fig. 2), principal
geodesic analysis to produce its statistics, and the associated segmentation method
use a medial representation intended to produce improved and/or more efficient seg-
mentations for the reasons given in Chapter 8, Section 11. The most relevant of these
advantages for this application are the efficient training of the prior it provides, its
ability to provide a coordinate system in which to describe intensities probabilisti-
cally, and its inherent multi-object, multi-scale nature, which leads to effectiveness
and efficiency of segmentation of single or multiple objects. However, small inden-
tations and protrusions of anatomic objects are impractical to model medially. Our
approach to solving this problem is to implement a non-medial voxel stage described
in Section 5.1.

M-reps, combined with the voxel-level representation, provide their advantages
over other deformable object representations at the expense of a level of complex-
ity that required the development of special theoretical underpinnings, software,
and validations. Largely automatic segmentation by large to small application of
deformable m-reps has been implemented in software calledPablo (Pizer et al.,
2005b) that accomplishes 3D segmentations in a few minutes. Software for building
and training models has also been developed. The methods underlying this software
and its abilities are the subject of Sections 2-5.
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Fig. 2 M-rep modeled kidney with its medial mesh, a liver model that is made from two figures,
one for each lobe, and male pelvis model made from multiple objects (two bones, bladder, rectum,
prostate). The kidney model also shows the underlying representation of a sampled medial surface
and a tiled boundary.

The next two sections give a more specific picture of Pablo’s method (Section
2.1) and operation (Section 2.2).

2.1 Segmentation Method: Posterior Optimization for Multiscale
Deformation of Figurally Based Models

Our method for deforming a model into image data typically begins with a manually
chosen initial positioning of the mean model, frequently via choosing a few rough
landmark positions. The segmentation process then follows a number of stages of
segmentation at successively smaller levels of scale. The spatial tolerance of the
resulting segmentation can be large at the largest scale level but decreases as the
scale gets smaller.

As illustrated in Fig. 3, at each scale level, i.e., level of the tree shown in fig. 1,
the same log prior + log likelihood objective function is optimized by geometrically
transforming the entities at that scale level, using a transformation global to the re-
spective entity. Thus, at the largest scale level, the object ensemble stage, the whole
object ensemble undergoes a global transformation. At the next smaller scale level,
each object making up the object ensemble separately undergoes a transformation
global to it. And as the computation moves to successively smaller scale stages, suc-
cessively smaller entities making up the entities at the next larger scale level, namely
figures, subfigures, and medial atoms, are optimized with a transformation global to
each of them. The series of optimizations concludes with a small relocation of all of
the voxels in the image being optimized.

At all of these scale levels, we follow the strategy of iterative conditional modes,
so the algorithm cycles among the component entities in random order until the
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Fig. 3 Stage by stage progress of deformable m-rep segmentation of the kidney. Top: rendered 3D
view, after model alignment via landmarks, the figure stage, and the figural section (atom) stage.
Bottom: results on axial, sagittal and coronal CT slices. Each image compares progress through
consecutive stages via overlaid curves: magenta - aligned position; green - post object stage; red -
post atom stage.

group converges1. For example at the figural atom stage, the algorithm cycles
through the atoms in random order.

At each scale level larger than the voxel scale level, the geometric transformation
of the entity is made up of a typically deterministic similarity transformation and
a maximum posterior warp. The similarity transform, a translation, rotation, and
uniform magnification, aligns the entity to neighboring entities of the same type
(objects to neighboring objects, medial atoms to neighboring atoms), except it aligns
to landmarks at the largest scale. The warp is formed from a few principal geodesics
(see Chapter 8) of the deformations of that entity experienced in the training data.
At the voxel scale level, the optimization is over displacements per voxel of only a
few voxel widths. The result is that we typically optimize 6 or fewer parameters per
entity, providing efficiency and convergence of the segmentation at that scale level.

1 The convergence properties are shared with all iterative conditional modes methods and are based
on the underlying Markov random field. In practice, convergence always occurs, but sometimes
the convergence is to a local maximum of the objective function rather than the desired global
maximum.
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a b c

Fig. 4 Boundary-relative regions used for measuring geometry-to-image match to a kidney. a, b:
Example from two different patients displayed in 2D cuts. The kidney interior region is portrayed
in blue, and the kidney exterior region is portrayed in orange. c: A mesh showing in 3D the m-rep
implied boundary of the kidney, and the kidney interior and exterior regions in two orthogonal cuts
through the 3D image.

At each scale level we use the conjugate gradient method to optimize the log
prior + log likelihood objective function. The log prior metric is detailed further in
Section 3. As detailed in Section 4.2, we have implemented a way of computing
the log likelihood that measures the geometry-to-image match based on probabil-
ity densities on intensity distribution features in various figural-coordinate-specified
regions inside and outside of the object (Fig. 4) such that each region is expected to
be a constant mixture of tissue types (Broadhurst et al., 2005).

2.2 Segmentation method: user operation

M-rep-defined objects can be viewed as a boundary mesh (at any of a number of ver-
tex spacing levels), a rendered surface, a collection of points at the aforementioned
boundary vertices, or a medial atom mesh. Most users find the first two of these the
most useful. Images are normally viewed in a tri-orthogonal display, with the three
possible slice directions fixed to the cardinal within-image and cross-image slice
directions given by the stored target image. The displayed object can be presented
together with the intensity display (see Fig. 3). Moreover, we also provide a bound-
ary display mode on the displayed slice, in which the 3D object does not appear
but the curve of its intersection with the displayed slice(s) is displayed on that slice
(those slices).

Using these viewing mechanisms, the user either chooses the location of pre-
selected landmarks in the target image, which is then used as the basis of an Pro-
crustes initialization of the model, or he or she manually initializes the chosen model
by placing it in an initial position relative to the 3D image (for example, see Figs.
3-bottom row, 4c, and 9-bottom left). The initialization transform derived from the
landmarks is frequently a similarity transform, but we have found it also useful
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that this landmark-based transform optimize in the shape space of the principal
geodesics of the object with a data-match term given by the sum of squared model
landmark to image landmark squared distances, with each squared distance divided
by its tolerance squared.

The landmarks on the model are chosen as a specified spoke end. These land-
marks appear as colored spots on the base model in the display space. These land-
marks can also be used for editing an m-rep in the middle of the optimization process
or as another term in the geometry-to-image match.

The user is also given control of the values of the weights controlling the strength
of the geometric typicality term in the objective function, relative to the geometry-
to-image match term. However, since the two terms are now both Mahalanobis dis-
tances, the default weight of unity needs seldom be changed.

3 Training and measuring statistical geometric typicality

To be able to measure a log prior, one needs a parametrized function that one can
evaluate with any m-rep for the desired object as the argument. Section 3.1 de-
scribes the means for training the parameters of this prior probability density on
m-reps that is then used to measure geometric typicality of any candidate m-rep ap-
pearing in the optimization of the log posterior. This training of the prior is done by
principal geodesic analysis of m-reps fit to binary images extracted from training
greyscale images. Section 3.1 describes both the fitting of m-reps to binary images
and how principal geodesic analysis is used at multiple scales to produce the prior
probabilities needed for the various scale levels. Section 3.2 describes the means
for measuring the log prior at multiple scales needed in the multiscale segmentation
procedure.

3.1 M-rep model fitting and geometric statistics formation

Model-building must designate the figures making up an object or object ensemble,
give the size of the mesh of each figure, and give the way the figures are related. It
must also specify each medial atom in the model forming the mean object or object
ensemble and the variability of these at many scale levels. Illustrated in the panels
of Fig. 5 are m-rep models of a variety of anatomic structures that we have built. In
the following we sketch our model building procedure, leaving the details of how
we meet this challenging goal to other papers (Merck et al., 2006).

Because an m-rep is intended to allow the representation of a whole population
of an anatomic object across patients, we build it based on a significant sample
of instances of the object. Typically we use some tens of instances, say 50. For
each instance we begin with both a 3D binary image representing the interior of the
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object, typically manually segmented, and an associated 3D greyscale image (CT or
MRI or another modality).

Styner et al. (2003a) describe a tool for producing m-rep models from such bi-
nary image samples, based on the principle that effective segmentation depends on
building a model that can easily deform into any instance of the object that can ap-
pear in a target image. We can use this tool to compute the set of appropriate figures
at a given level of approximation from a training population, or we can choose the
figures based on anatomic expertise to correspond to named anatomic structures.
The tool measures the level of approximation in the figure computation step via
error in volume overlap (typically 98%). In either case, given the figures, the tool
chooses the number of atoms in each figure as the minimal number that can fit every
training instance to a given error measured by the mean absolute distance of the
surfaces (typically 5% of the average radius).

More recently we have completed a stable web-sharable tool calledBinary Pablo
for fitting an m-rep model to each member of a collection of binary images and
deriving the Fŕechet mean and principal geodesic modes and variances (Merck et al.,
2006). Once a base model is generated, we use Pablo to deform it into the binary
segmented training images. The program optimizes an objective function that has
an “image match” term giving an average distance between the boundary implied
by the m-rep and the binary image boundary, and three geometry terms: 1) giving
an average squared-distance between each atom and the geodesic average of its
neighbors, thus producing a regular mesh of atoms; 2) discouraging folded objects
by penalizingrSrad eigenvaluesε1 (see Chapter 3); 3) giving a squared-distance
from a reference m-rep. The sharable version only operates for single-figure objects,
but versions that fit m-reps to multi-figure objects and to multi-object complexes are
available in our research toolkit.

Given the m-rep models for all the training cases (Fig. 6), we use a tool initially
developed in Dam et al. (2004) and further developed by Lu (Lu et al., 2003) to
compute the mean model and the principal-standard-deviation-weighted principal
geodesics describing its variability. This tool uses the method of principal geodesic
statistics on symmetric spaces described in Chapter 8, Section 7. As with linear
statistics, each principal geodesic has an associated variance, and moving along that
geodesic gives a principal mode of variation of the population of m-reps.

The statistics at one scale level need to describe the variability of the geometric
entity at that scale level after the variability at the larger scale levels has been ac-
counted for and after alignment to neighboring entities has been done. Description
of this residue statistics, based on the theory of Markov random fields, is given in
[Lu 2003].

With these means and a number of principal geodesics chosen to capture some
fraction of the variance at that scale level, deforming a geometric entity at that scale
level involves aligning the object to its neighbors and then computing the coeffi-
cients of the principal geodesics of the deformation of that entity.
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Fig. 5 M-reps for a kidney, a liver, and a male pelvis. Top row: mesh of atom hubs; middle row;
mesh of medial atoms (including spokes); bottom row: the implied boundaries shown with atom
mesh(es).

3.2 measuring statistical geometric typicality

The geometric typicality that we wish to use is log(p(m)), or in the case thatm has
neighborsN(m), log(p(m|N(m)). But except for an additive constant and a con-
stant multiplier of -0.5, when the principal geodesic analysis given in Section 8.7 is
used, the log probability density in the symmetric space at any scale level is just a
Mahalanobis distance in a tangent space to that symmetric space. Thus, when opti-
mizing in the space of principal geodesics, we are optimizing over the weightsai of
the projectionsvi of the unit-variance principal geodesics onto the feature space tan-
gent plane at the mean. For any value of theseai , and given the variancesσ2

i of the
principal geodesics in that tangent plane that are derived in the principal geodesic
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Fig. 6 Left: A subset of our population of training kidneys. Right: the mean of the population and
the mean+/−1 standard deviation in each of the first two principal geodesic modes.

analysis, the Mahalanobis distance of−∑i a
2
i forms the geometric typicality mea-

sure.
As discussed earlier, at all scale levels but the global one this geometric typicality

metric of the relevant geometric entity needs to reflect its shape properties but also
its relation to immediately neighboring peer entities. This can be accomplished with
principal geodesics that were computed with augmenting atoms in adjacent objects
or figures (see Chapter 8, Section 7).

Two special neighbor relations deserve comment. One is the non-interpenetration
relation among very nearby (possibly abutting) objects (see the male pelvis in Fig.
2). Not only the correct relative position, orientation and size need to be reflected in
the geometric typicality, but also an interpenetration of the figures needs to result in
a low geometric typicality. The second neighbor relation of note is that between a
protrusion or indentationsubfigureto the “host” figure on or into which it sits (see
liver in Figs. 2 and 5) or the relation between an object and a nearby, possibly abut-
ting, object. In Chapter 8 we argued that the subfigure should ride on the boundary
implied by the host’s representation and be known in the figure-relative coordinates
of the host. The augmentation idea mentioned as applying to nearby objects uses a
similar concept. Thereby we can make measurements of typicality in terms of the
position of the subfigure (or related object) relative to the host, the orientation of
the subfigure relative to the host, and the size of the subfigure relative to the host.
When slight modifications of the hinge atom relationship are created due to motions
in symmetric spaces not maintaining the relationship of hinge atoms to their host
figure boundary, we find success in simply projecting the hinge atoms back onto the
host boundary along host surface normals (interpolated spokes).
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4 Training and measuring statistical geometry-to-image match

Methods for training and measuring a probability density on image intensities must
do so in a way respecting correspondence of locations across the population. There
is much good work on correspondence, e.g., (Davies et al., 2002; Yushkevich et al.,
2005), but here we suggest that correspondence be obtained through object-relative
coordinates (Fig. 7). For m-reps that means that the figural coordinates provided
by u = (u,v,φ ,τ) within figures (see Chapter 8, Section 3) and byu = (v,w,φ ,τ),
within inter-figural blend regions (see Chapter 8, Section 8) provide the means of
correspondence. More precisely, intensity statistics are done with respect toI (u).

Fig. 7 Correspondence over deformation via figural correspondence. In each pair of corresponding
marked points, the two points have the same value of the figural coordinatesu = (u,v,φ ,τ).

Recall that within an object main figure and within a subfigure outside of the
blend region,(u,v) measures relative location along the medial sheet,φ expresses
which side of the medial sheet the location is or at the end where in the transition
between the sides the location is, andτ gives the fraction of the distance along the
spoke from the medial end to the boundary end. For interfigural blend regions be-
tween a subfigure and a host figurev andφ are the cross-figure figural coordinates of
the subfigure andw∈ [−1,1] moves along the blend from the curve on the subfigure
terminating the blend(w=−1) to the curve on the host figure terminating the blend
(w = +1). Section 4.1 describes the computation transforming between Euclidean
coordinatesx and figural coordinatesu. Between objects one must interpolate be-
tween the figural coordinates of the nearby objects. The means of this interpolation
is still a subject of research, but one of the options is described in Section 5.1.

We have used two basic methods that go from m-reps and associated greyscale
images to geometry-to-image match functions on an image given an m-rep. The
method we used first (Stough et al., 2004) was based, like that of the active shape
method of Cootes et al. (1993), on normalized correlation between cross bound-
ary intensity profiles and template profiles determined in training. However, in our
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method the template in each profile was chosen from among a limited number of
possibilities chosen by clustering profiles during training, and values needed in
the normalizations of the target profiles at each boundary vertex were also deter-
mined during training, thus stabilizing the normalization. Both normalized correla-
tion methods produce a log probability density only under the poor assumption that
the profiles are uncorrelated and that the tissue mixture at a voxel in the template
can be expected to be precisely the same as that in the corresponding voxel in the
target image. To overcome the first weakness Ho (2004) argues for improvements
based on multiscale profiles, produced by a variant on Gaussian weighting across
but not along the profiles.

Either variant of this profile match method can be expected to achieve less suc-
cess than our new method, which is designed to produce log probabilities without
these faulty assumptions. Our experiments on kidney segmentation, sketched in Sec-
tion 5.2 and detailed in (Broadhurst et al., 2006), showed the new method to give
better results in practice. Thus we describe only the new method, which generates a
log likelihood on discrete quantile functions from the intensities in regions relative
to the m-rep. It is detailed in Section 4.2.

4.1 Transforming between figural and Euclidean coordinates

The geometry to image match term in the objective function requires object-relative
image positionsx(u) to be computed in large number. Thus, interpolation withinI (x)
must be very efficient. In Pablo at present, this transformationx(u) is done through
the mechanism of subdivision surface methods (Thall, 2004), as described below.
Han is developing a more accurate method based on the interpolation of medial
atoms (see Chapter 8) and is seeing how to make it adequately speedy.

In the subdivision surface method we interpolate the boundary first and conse-
quently can interpolate medial atoms at any position on the sheet of atoms. The
implied boundary is computed from the set of atom spokes connected into quadri-
lateral and triangular tiles both within figures and in interfigural blend regions (Figs.
8.3 & 8.13). The boundary interpolation is accomplished by a variation of the very
efficient Catmull-Clark subdivision (Catmull and Clark, 1978) of the mesh of polyg-
onal tiles. Thall’s variation (Thall, 2004) of Catmull-Clark subdivision produces a
limit surface that iteratively approaches a surface interpolating in position to spoke
ends and with a normal interpolating the respective spokes. That surface is a B-
spline at all but finitely many points on the surface. The program gives control of a
tolerance on the normal and on the closeness of the interpolations.

The resulting B-spline allows the computation of both boundary positionsb and
boundary normalsU, which are spoke directions there. Interpolating the medial ra-
diusr as well asu andv at such boundary positions allows the computation ofx(u)
= b + (τ-1) U.

Pointsx can also be given a figural coordinateu by finding the figural coordi-
nates of the closest medially implied boundary point, using the boundary normal or
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the gradient of the distance function as the spoke direction, and calculatingτ from
the intersection of this spoke with the sheet of hubs. This calculation, however, is
fraught with danger, since the boundary may be inadequately smooth.

4.2 Geometry-to-image match via statistics on discrete regional
quantile functions

4.2.1 Conceptual basis for statistics on intensity quantile functions

Any efficient geometric description does not capture all there is to say about the
biology or physics of the individual being modeled. Thus for a given medially spec-
ified object or complex of objects, the variation between different images of the
same class of object frequently is due not only to intensity noise but more so to the
variation of the materials of which the object are made and of the variation across
the object of the weights of those materials making up the materials mixture. Thus in
medical images there is variation across patients of the locations of specified tissue
types within and between their respective objects. This suggests that point-by-point
correspondence as provided, for example, in the active shape models and active ap-
pearance models of (Cootes et al., 1993, 1999), where the probability densities are
on corresponding intensity values, be replaced by probability densities on regional
collections of intensities, ignoring the particular locational correspondences within
these regions. In particular, this suggests probabilities on intensity summaries, such
as histograms, of regions expected to have uniform mixtures of tissue types.

Our regional intensity summary based match method (Broadhurst et al., 2005;
Pizer et al., 2005a) uses a region inside the object and a region outside the object
(Fig. 4) and sometimes subregions of these regions defined according to figural ge-
ometry.

The feature space formed by using the bin counts of histograms of intensity pro-
vides a poor basis for probabilistic analysis. The weakness is exemplified by the
fact that the average of two unimodal histograms in this form would be a bimodal
histogram, rather than a unimodal histogram whose center is between the two being
averaged. In the following we argue that instead representing the regional inten-
sity collection by the curve of intensity values versus quantile (regional intensity
quantile function, orRIQF) allows an effective log probability density to be calcu-
lated by factor analysis. Also, histogram bin counts as features suffer from quan-
tization effects, i.e., binning errors, while discrete RIQFs do not since no arbitrary
bin boundaries are selected.

The RIQF of an intensity distributioni can be shown to be the inverse of the
cumulative distribution functionI of i. Discretely sampling the RIQF yields the
discrete RIQF (DRIQF). The DRIQF is ann bin quantile function where each bin
j, representing 1/n of the probability distribution area, stores its average image
intensity i j . Considering these values in sorted order, the DRIQF for region k can
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be represented as a vectorik = (ik1, . . . , i
k
n). Computing this vector requires partial

sorting of the list ofN intensities in the region, takingO(Nlog(n)) time.
The effectiveness of using standard statistical tools to construct a probability dis-

tribution of RIQFs depends on the fact that the space of RIQFs has several known
linear properties related to Euclidean distance and thus mean and principal com-
ponents. Euclidean distance between RIQFs corresponds to the Mallows distance
(Mallows, 1972; Levina and Bickel, 2001) between the corresponding probability
distributions, defined as follows. For two continuous one-dimensional distributions
with cumulative distribution functionsQ andR, and RIQFsq = Q−1 andr = R−1,
respectively, the Mallows distance between them is defined as the MinkowskiL2

norm betweenq andr:

M2(q, r) =
(∫ 1

0
|Q−1(t)−R−1(t)|2dt

)1/2

=
(∫ 1

0
|q(t)− r(t)|2dt

)1/2

.

The Mallows distance can be shown to measure the work required to change one
distribution into another by moving probability mass, i.e, the Earth Mover’s distance
between the corresponding probability distributions, intuitively a good measure of
difference between RIQFs. For DRIQFsq andr, the Mallows distance is defined as
theL2 norm of the vector difference betweenq andr:

M2(q, r) =

(
1
n

n

∑
j=1
|q j − r j |2

)1/2

.

Location and scale changes to any probability distribution, or changes in any
affine combination of the DRIQF values, are linear in the space of DRIQFs. Several
families of common continuous distributions, including Gaussian, uniform, and ex-
ponential distributions, are parameterized by location and scale parameters. Thus,
DRIQFs of each of these families of distributions exist in a two-dimensional lin-
ear subspace. Also, the Euclidean average (or any linear combination) of a set of
DRIQFs from one of these families of distributions results in a DRIQF contained
within the family and having means and standard deviations averaging (or corre-
spondingly linearly combining) the respective means and standard deviations. For
example, the Mallows distance between two Gaussian distributionsN(µ1,σ

2
1) and

N(µ2,σ
2
2) is

√
(µ1−µ2)2 +(σ1−σ2)2. The average in this space of a set of RIQFs

corresponding to Gaussian probability densities is a Gaussian with a mean and
standard deviation equal to the average mean and standard deviation of the set of
Gaussians. However, a weakness of the space is that for probability distributions
composed of a mixture of multiple underlying unimodal distributions, changing the
mixture amount is a nonlinear operation.

The consequence of the foregoing is that analysis of regional intensity distribu-
tions can be captured by linear statistics on their DQRIFs, which can efficiently cap-
ture variation in location and scale change. The method is not effective for dealing
with multimodal probability distributions with widely separated peaks and varying
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interpeak separations, but our experience is that it works well for unimodal proba-
bility distributions and even multimodal probability distributions whose peaks are
not widely separated.

DRIQFs of interior and exterior regions of the bladder in 15 CT images are shown
in Fig. 8. The first two principal directions of variation of the interior and exterior
regions capture 95% and 97% of the variation, respectively. DRIQFs of subregions
can also be constructed; this example and this discussion are only in terms of interior
and exterior regions. In this example, the contribution of each voxel to the DRIQF
is Gaussian weighted by its distance to the surface. This allows narrow regions to
be defined that have larger capture ranges and smoother objective functions during
segmentation than equivalent non-weighted regions. In each region, gas and bone
intensities have been automatically removed from the distribution using a threshold,
and the probability of each is independently measured. The Mallows distance is
sensitive to the variation in these intensities due to their extreme intensity values
compared to the differences in fat and tissue intensities.

Fig. 8 Bladder DRIQFs (top) and corresponding histograms (bottom). Left: training samples;
right: learned mean and±2 standard deviations along the first principal direction.

4.2.2 Training probability densities on regional intensity quantile functions

The probability densities on DRIQFs that we use are estimated by principal compo-
nent analysis of the DRIQFs, taken as feature vectors. Then the geometry-to-image
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match of the DRIQF obtained from a target image region is a Mahalanobis distance
based on this principal component analysis. In the following we detail the estimation
of this Mahalanobis distance function.

We model the variation in our DRIQF feature space as a multivariate Gaussian
distribution. The dimension of this space is equal to the number of bins used to
represent a DRIQF, which is typically 200. This often results in a high dimension,
low sample size situation, which prevents us from estimating a full rank multivariate
Gaussian model. Therefore, we use principal component analysis to estimate a low
dimensional subspace, typically of dimension 2-4, in which we build a Gaussian
model. We then measure the expected distance to this subspace by summing the
remaining eigenvalues since during segmentation we expect to estimate the proba-
bility of many image regions that are not typical of the training regions. Thus, the
final Gaussian model for each region is of dimension equal to the number of eigen-
modes plus one.

The geometry-to-image match function is the resulting Mahalanobis distance
function. Intuitively, the Mahalanobis distance of a target DRIQF is equal to the
Mallows distance between probability distribution corresponding to the target DRIQF
and that corresponding to the mean RIQF, modified by the standard deviations in
each direction of the Gaussian model. Thus the Mahalanobis distance is a natural
enhancement of the Mallows distance that accounts for the variability in the training
set.

The training data on which the principal component analysis is done is formed as
follows. For each training case we have a greyscale image, a binary image, and an m-
rep fit to the binary image as discussed in Section 3.1. Voxel correspondences spec-
ified by m-rep based figural coordinates (Section 4.1) allows us to compute the set
of DRIQFs for each object-relative image region across the training images. When
determining if a voxel belongs in a region, we initially use the binary image, not the
m-rep, to label voxels as being inside or outside the object. This allows us to define
mean DRIQFs that correctly provide references for the Mahalanobis distances used
to form the geometry-to-image match. These DRIQFs do not, however, measure the
expected variation of the actual training segmentations. Therefore, we estimate the
covariance of the DRIQF in each region from the DRIQF values based on m-rep re-
gion labeling minus the already computed respective mean DRIQF, which is based
on binary labeling.

5 Pablo Details and Results

5.1 The Voxel-Scale Stage of Segmentation

After all of the stages of segmentation that modify the medial atoms, an m-rep
has undergone transformation from the beginning model (typically the mean of the
global object complex or object). Figural coordinates allow this transformation to
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be understood as a diffeomorphism within all of the objects making up the complex
represented by the m-rep. This warp can be interpolated into a chosen portion of
3-space including the complex, including the interstitial space between multiple ob-
jects or figures, if the complex is made up of more than one figure. A further finer
scale transformation on that portion of 3-space can then be determined.

We interpolate the transformation from the objects to the surrounding 3-space,
as follows. Each implied boundary position of the m-rep is understood as the tip of
a particular m-rep spoke, either one of the basic representation or one interpolated
from it. That spoke is from a medial atomm(1) at particular figural coordinates
that allow it to be associated with a corresponding atomm(0) in the original m-rep
model. Pathsm(t), 0≤ t ≤ 1, in the abstract space of atoms between the original
atoms and the corresponding transformed atoms can be found according the math-
ematics in Chapter 3, Section 3.3, such that at everyt the m-rep is unfolded and
thus the continuous transformation of m-rep interiors is diffeomorphic. These paths
can be sampled int to produce a path of the corresponding spoke ends, and this
sequence of positions can be used as a boundary condition in a landmark interpo-
lation method. For example, one can use the thin-plate spline interpolation (Book-
stein, 1991) on each of the corresponding successive pieces of the paths of all of
the spoke ends. If the interstitial transformation was not diffeomorphic, as when ob-
jects slid along each other between individuals, an interpolation that allowed such
transformations would need to be used.

We determine the fine scale warp to be composed with the transformation inter-
polated from the medial transformation using the fluid-flow warp method of (Miller
et al., 1999). If the final map might not be diffeomorphic, as when regions of gas
formed or were lost in the rectum or when tumors existed in the particular patient but
the model was of well patients, then a warp method that permitted such situations
would need to be applied.

The approach of computing a small scale space warp to be composed with a
medially determined warp has the following advantages over computing the whole
deformation as a space warp from an atlas. Optimizing large scale deformations is
likely to be heavily affected by local minima, and in any case it is very likely to
be slow as result of having to work over the combinatorially related, many small
voxels. Indeed methods that have attempted to compute such warps have found it
necessary to begin the process by preceding the voxel-scale warp by applying larger
scale transformations such as ones based on manually chosen landmarks (Chris-
tensen et al., 1997). Using medial transformations to provide the large scale warp
has advantages of being automatic, of using object-based correspondences, and of
dividing itself into multiple scales, e.g., global to the object complex, object by
object (with sympathetic inter-object relations), figure by figure (with sympathetic
inter-figure relations), and medial atom by medial atom (reflecting inter-atom rela-
tions). Using these many scale levels produces both a much improved likelihood of
convergence to the global optimum and qualitatively improved speed.
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5.2 Evaluation of Segmentations

We have applied Pablo anecdotally to the segmentation of variety of organs or or-
gan complexes. M-rep models have been built for both the liver (Han et al., 2005),
a multifigure object, and the heart (Pilgram et al., 2003), a multi-object ensemble,
and statistical description of these anatomic entities have been generated. Controlled
evaluations, described in the next two sections, have been carried out for the follow-
ing two situations: 1) the extraction of kidneys from new patients’ CT scans;
2) the extraction of the bladder, prostate, rectum complex from CT scans of a patient
on one day of radiation treatment given the CT scans and segmentations of that pa-
tient on the planning day and other days of treatment. The first of these involves the
segmentation of a single single-figure object with statistics drawn from many other
patients’ images, so we refer to it as aninter-patient segmentation. The second in-
volves the segmentation of a multi-object complex with the statistics describing the
variation across days within a patient (intra-patient).

5.2.1 Inter-patient Kidney Segmentation Results

We have studied segmentation of the kidney from CT scans over a few years. An
early result of evaluation of an earlier form of Pablo was described in (Rao et al.,
2005). In that study we determined that averaged over a particular test sample, two
humans’ manual segmentations differed from each other in average surface distance
over the kidney by 1.2mm. Averaged over these cases the Hausdorff distance be-
tween the two segmented kidneys was 10mm.

In a controlled study on segmentation of kidneys from 3D CT images of clini-
cal quality, we used the sum of Mahalanobis distances described in Sections 3 and
4.2 as the objective function at the figure (object) stage. Since the log probability
densities relieves the necessity of setting the relative weights of the two terms of
the objective function by user control, these weights were set to unity in the study.
However, at the atom stage we used the average squared-distance between each
atom and the geodesic average of its neighbors, i.e, the atom irregularity penalty
used in Binary Pablo (Section 3.1) for the geometric typicality, since the probability
density training for the atom stage was not yet ready. This required a manually set
weight on this term, which was held fixed for the experiment. The DRIQFs used
in the geometry-to-image match at both stages were from Gaussian weighted re-
gions inside and outside the kidney that hadσ = 3mm. In one trial training was
on 20 cases and testing was done on 19 cases. In another trial leave-one-out test-
ing was applied, i.e., all tests with 38 training cases and 1 test case were evaluated.
In the geometry-to-image match, principal components carrying 97% and 99% of
the variance were used to form the inside-object and outside-object log probability
densities, respectively.

For our evaluation, we first consider the segmentation result to be that leading
to minimum values of the atom-stage objective function. On the 19 test CTs the
segmented kidneys had average surface distances to one human segmentation that
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was at least as good as found between humans in the Rao study on a different test
set. More precisely, the computer vs. human segmentations differed from each other
in average surface distance over the kidney by 1.2mm on the average case, and the
Hausdorff distance between the two segmented kidneys was 6.8mm on the average
case. In all of the test cases, the automatic segmentation was usable without editing
in radiotherapy treatment planning, although a voxel-stage editing would have been
considered desirable in many of the cases. In fact, the automatic segmentations are
frequently judged to be superior to the manual segmentations, and they have the
additional benefit of being reproducible, even if the initialization is slightly different.

In the leave-one-out experiment, with its larger training sets, the results were
roughly equivalent. The results of both experiments are given in more detail in
(Broadhurst et al., 2006). An atom stage with a probabilistic geometric typicality
might be expected to yield a further improvement.

These results were made less impressive by the fact that the objective function
optimum that was found was not always achieved when we used the initialization
based on six landmarks that we anticipated using for clinical purposes, namely, the
north and south poles of the kidney and the two kidney crests at the level of the renal
pelvis, and two positions at that level centered between the two crest landmarks.
However, only 2 of the 19 cases in the first experiment and 4 of the 39 cases in the
leave-one-out experiment would have required editing for clinical purposes.

5.2.2 Intra-patient Multi-object Male Pelvis Segmentation Results

As illustrated in Fig. 9, we have built a model for the multi-object ensemble of blad-
der, prostate, and rectum in the male pelvis. We have fit this multi-object model into
a few dozen binary segmentations of these organs from fraction-by-fraction2 CT
images in five patients’ cases, and after alignment of the prostate based on the two
landmarks of the urethral entrance into and exit from the prostate, and after align-
ment of the bladder based on two polar and four equatorial landmarks, we have built
statistical descriptions of the variability of the these objects across fractions within
each particular patient. As well, we have built DRIQF statistics as described in the
previous section, but here for 6 regions: interior and exterior regions for each organ.
For the prostate and for the bladder, we also evaluated the use of approximately 200
overlapping regions to produce the exterior DRIQFs.

Finally, we have used these statistics to segment the prostate and the bladder from
the CT images in other fractions in a leave-one-out experiment. (The rectum was
represented as a tubular m-rep, and successful segmentation of the rectum was done
in a separate experiment.) The initialization was done using the aforementioned
landmarks. Since we are nearly ready to apply our method of principal geodesic
analysis on medial atom residues and factor analysis on DRIQFS in local atom-
relative object regions, we have optimized at the object stage only. The best results
are produced when using the 200 exterior regions for DRIQFs. These results show

2 A fraction is the radiation treatment on a given day.
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segmentations that have a median, over the cases, of the intersection/average vol-
ume overlap to a human segmentation of 93% for both the bladder and prostate and
a median, over the cases, of the average closest point distance to the human segmen-
tation of 1.13 mm for the bladder and 0.99 mm for the prostate. The numbers for the
prostate, comparing segmentation based on statistics from a human who produced
the training manual segmentations to the that human’s result in the left-out-case,
should be compared to the numbers comparing another observer’s manual segmen-
tation of the prostate to that of the training observer in one of the five patients’
set of 16 multi-day CTs (Foskey et al., 2005). The agreement of the two humans’
segmentations was 81% volume overlap and 1.9 mm average closest point surface
separation.

When our segmentation was not as good as we wished, there were two explana-
tions. First, in many of the segmentations of the bladder, a smaller scale refinement
was necessary. We expect this to be accomplished when the log posterior optimiz-
ing atom stage is applied. Second, in a few cases the bladder initialization based
on prostate landmarks was not adequate, but with a bladder-based initialization the
segmentation was improved in a majority of cases.

This multi-object segmentation has been adapted for the clinical situation of
adaptive radiotherapy by training the object principal geodesics by a pooling of
aligned deviations from the mean of other patients. The results, which will soon be
published with the details of the method, are comparable to those reported above.
Also, we expect shortly to report results of the atom-stage refinements of these seg-
mentations.

Moreover, we are presently investigating having each object’s change at the ob-
ject scale level be divided into an m-rep change∆msel f independent of neighboring
objects and an m-rep change∆mngbr reflecting the effect on the object of changes
in neighbor atoms (Jeong et al., 2006). The neighbor-induced change is statistically
described using the method of augmented object descriptions and prediction de-
scribed in Chapter 8, Section 8.∆mngbr is decomposed as a conditional mean of
the object, given designated neighbor atoms in its neighbors, plus a neighbor-effect
residue with its own probability density. Probability densities on∆msel f, on the
augmented object, and on the neighbor effect residue are estimated by repetition of
successive principal geodesic analyses. In segmentation the posterior is successively
optimized with the prior iteratively in succession being theself probability density
and theneighbor residueprobability density, respectively. Initial results from sta-
tistical analysis on the bladder, prostate, rectum object complex are biologically
reasonable, but it remains to test this approach by segmentations that use the self
and neighbor residue probability densities.

5.2.3 Speed of Computation

The speed of a 3D segmentation on a Pentium IV, 1.7GHz computer subdivides as
follows.

• Preprocessing computations take less than 1 second.
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Fig. 9 M-reps for segmenting the male pelvis in CT images in later radiotherapy fractions. Top left:
m-rep for pubic bones, used to register the later day fraction images with the first day fraction. Top-
right: the m-rep for the bladder, prostate and rectum. Bottom left: a visualization of the bladder,
prostate rectum m-rep’s implied boundaries relative to a slice of the associated 3D CT image.
Bottom middle and right: the segmentation result in a later fraction, shown in one of the image
slices first vs. the greyscale CT image and then vs. the human segmentation shown in white.

• The largest scale stage (the object complex stage for an ensemble, the object
stage for a single multifigure object, the figure stage for a single-figure object)
takes a about 5 seconds per iteration and on the average requiring 20 iterations
for a total time of about 3 minutes to determine the geometric warp coefficients.

• When the smaller scale medial stages are appropriately re-programmed, the same
numbers will apply to each subfigure stage and about double for a full pass
through the atoms at the atom stage, modulo the number of iterations required.

• The voxel displacement stage has not been timed, but it is expected to operate in
under a minute.

Thus the total time for a kidney segmentation will typically be 7 minutes to segment
a single-figure object.

While the method’s speed has already benefited strongly from moving much of
the computation from the deformation stage to the model building stage, there is
still much room for speedup of integer multiples by more medial levels of coarse
to fine, by medial deformation measured directly from the atoms without resort to
the implied boundary, by having the gradients of the objective function relative to
the changing parameters needed by the optimization steps be computed analytically
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rather than with numerical derivatives (shown in initial tests to more than double the
speed), and just by more careful coding.

6 Hypothesis Testing for Localized Shape Differences between
Groups

We now focus on the quantitative morphologic assessment of structures between
groups of human subjects. Our examples are individual brain structures in neu-
roimaging. Conventional methods study only volumetric changes, which explain
intuitively global atrophy or dilation of structures. On the other hand, structural
changes at specific locations are not sufficiently reflected in volume measurements.
Statistical shape difference testing has thus become of increasing interest. Its poten-
tial to precisely locate morphological changes and to discriminate between groups
makes it a good choice for studying pathological morphologic processes due to dis-
ease, as well as neuro-developmental processes. For example, we may wish to un-
derstand the shape differences in the hippocampus, caudate nucleus, cerebral ven-
tricle complex in the brain between control patients and schizophrenics, or we may
be interested in the differences of the hippocampus between 2-year olds who will
develop autism and 4-year olds who will develop autism.

We focus in this section on thehypothesis testingof whetherandwherethere
are m-rep shape differences between the groups. We will discuss both global tests
and truly local tests. Hypothesis testing applications using other medial descriptions
have been proposed by Golland et al. (1999) and Bouix et al. (2005).

We call the group designatorC, which is numbered from 1 to the number of
studied groups. Each groupCi consists of the objects of a sample ofNi cases. We
assume that the objects or object complexes have been aligned across all cases, with
the same alignment applied for the cases in both classes. The discrete m-rep objects
are described as a tuple of medial atoms. The first idea is either to take all the atoms
together and do a global test by studying the multivariate tuple of atoms× the 8
or 9 parameters per atom. Such a test can be powerful but will fail to localize the
differences found to a particular collection of locations (i.e., parameters).

The alternative is to do a local (for a particular parameter of a particular atom)
test on each atom parameter, at each position. We will use the termlocationto refer
to such a combination of parameter and atom. The first idea might be to design a
statistical test separately on any such location, and then to repeat that test over all
atoms× parameters. However, the atoms are all correlated, and the parameter val-
ues are all correlated. To avoid unintended looseness in the threshold for rejecting
the null hypothesis for any parameter, the threshold for rejection has to be adjusted
for each parameter in a way reflecting the correlations. In Section 6.1.2 we describe
a non-parametric permutation method to deal with this problem for individual pa-
rameters.

Section 6.2 will then focus on testing the full m-rep atom parameters jointly in
symmetric space at a fixed scale. Finally, Section 6.2.2 will discuss why even atom
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by atom testing is not adequately local to the regions determined by the atoms and
how to more appropriately handle locality.

6.1 Tests in Euclidean space

6.1.1 Univariate Tests in Euclidean space

We may test a particular location (see Fig. 10). Here we focus on the two param-
eters, local position and radius (Styner et al., 2003b, 2004) of a particular atom.
We first compute the group average objects by averaging the position and radius for
each medial atom across each group. The overall average location is then computed
as the average over all group average locations and serves as a template for com-
puting univariate shape distance measurements. The signed position and thickness
differences to the template are computed separately for the specified atom. The sign
of the position difference is computed using the direction of the template medial
surface normals.

Fig. 10 Scalar m-rep shape difference (schematically in 2D) of 2 m-rep objects: Differences
in the radius (top graph) and position (lower graph) are studied separately in Euclidean space.
The properties express different kinds of underlying processes (growth vs. deformation) that
are assumed to be statistically independent in the scalar testing.

Global shape analysis is computed by analyzing summarizing features such as the
mean, median or other quantile measurements of the local differences across each
object by standard statistical hypothesis tests. The choice of the feature evidently
influences the outcome of the tests. The statistical tests mainly include parametric
mean difference tests based on the Students-t distribution, and non-parametric mean
difference tests, as well as parametric analysis of variance tests (ANOVA).
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Local shape analysis does not need a summarizing feature as it is a truly local test.
It is computed by testing each medial atom independently with a standard statistical
hypothesis test. This results in a significance value (P-value) for each parameter and
medial atom. We can represent this significance in a 3D visualization using color and
size of spheres at the atom positions of the overall average object. This visualization,
called a medial statistical significance map, allows one to locate significant shape
differences between the groups in an intuitive but not truly local fashion (see Section
6.2.2). However, this raw significance map is incorrectly optimistic in regard to
false-positive error rate because the atoms as well as the individual parameter values
of a single atom are correlated, leading to themultiple comparison problem, a topic
of active research in the field of shape analysis (Worsley et al., 1996; Nichols and
Holmes, 2001).

The raw significance map can be corrected for this multiple comparison prob-
lem using a uniformly sensitive, non-parametric permutation test approach (Pantazis
et al., 2004) described in the next section. This results in a corrected significance
map. In contrast to the raw significance map, which is a quite optimistic estimate of
the real significance map, the corrected significance map is a somewhat pessimistic
estimate, as discussed in the next section.

6.1.2 Multivariate Permutation tests in Euclidean spaces

The permutation tests we describe here localize regions (atom indices or parame-
ters thereof) in objects that exhibit statistically significant morphological variation
among two population groups while controlling the risk of any false positives, as
long as the object features are in a Euclidean space. We find local thresholds that
control the false-positive error rate and at the same time achieve uniform sensitivity
among all locations.

We assume we have two groups of local parameter sets, group A and group B.
Each parameter set represents either shape parameters or differences of shape pa-
rameters. We want to test the two groups for difference in the means at each location.
Permutation tests are a valid and tractable approach for such an application. Our null
hypothesis is that the distribution of the parameter set at each element is the same
for every subject regardless of the group. Permutations among the two groups sat-
isfy the exchangeability condition, i.e., they leave the distribution of the statistic of
interest unaltered under the null hypothesis. Givenn1 members of the first group
ak, k = 1. . .n1 andn2 members of the second groupbk, k = 1. . .n2, we can create
M ≤

(n1+n2
n2

)
permutation samples. A value of M from 20000 and up should yield

results that are negligibly different from using all permutations (Edgington, 1995).
The complex set of steps needed to test the null hypothesis that the two groups

have the same probability distributions is illustrated in Fig. 11. We take the reader
through this process step by step. For each permutation samplej, we compute a
difference metricTj between the groups, with elementsTi j . For univariate Euclidean
parameters the absolute distance between the means of the groups is often used:
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Ti j =
∣∣µ̂ai j − µ̂bi j

∣∣ (1)

wherei is the location index,j the permutation index. If we wish to sense locations
at which differences of collections of parameters at the locations are signficant, we
can use difference metrics for multivariate, Euclidean or non-Euclidean parameters,
as long as the difference metric itself is in Euclidean space, such as the multivariate
Hotelling T2 test statistic for the collection:T2 ∝ D2 = (µ̂a− µ̂b)T Σ̂−1(µ̂a− µ̂b),
whereΣ̂ is the pooled sample covariance. InRn this statistic is invariant to coor-
dinate transformations and is uniformly the most powerful test with this property
(see Anderson (1958) for a derivation). We cannot use this statistic directly on the
multivariate combination of all atoms and parameters due to its inability to provide
sensing of location.

In Fig. 11 it is assumed that we are given a target division of the data into two
groups, A and B. To achieve uniform sensitivity across all locations, the parameter
(or group of parameters) valueTi j at each location is first transformed to a uniformly
distributed probability density value on [0,1], making all locations comparable. This
is applied both to the test grouping, producingT p

i0, and as illustrated in the bottom
row of Fig., 11, it is also applied to the random permutations derived from the union
of groups A and B, producing theT p

i j . We can compareT p
i j for each parameteri

within each permutationj to produce a conservative summary statisticSj for each
permutation. Across the permutations the distribution of this summary statistic pro-
duces a common thresholdSth for each of the respective probability-normalized
local parametersT p

i0, as illustrated in the top row. The justification and specification
of this scheme now follows.

The conservative summary statistic that we use for each permutation is the small-
est probability density value over all locationsi. We may then use the empirical dis-
tribution of this conservative summary statistic to extract thresholds that control the
false positives to a desired level.

This method depends on having a form of normalization in the statisticTi j that
makes the locations comparable. A suitable normalization scheme is based on com-
puting p-values, i.e., at each spatial location we compute the empirical distribution
across permutations and then replace the statisticTi j for each permutation sample
with its p-valueT p

i j . The normalized metricT p
i j is then guaranteed to have a uniform

distribution on [0,1] underHo for eachi.
We can use the normalized data to define a local threshold map that controls the

false-positive error rate to a desired level, sayα = 5%, when applied to the original
data. If the conservative summary statistic of the local parameters isSj = mini{T p

i j }
over all locationsi andF̂S is the empirical cumulative distribution function ofS, the
appropriate global thresholds for a levelα test would beF̂−1

S (α). For example, if
we choose a threshold that leaves 5% of the area of the empirical distribution on the
left side ofSj , then we have 5% probability of one or more false positives across all
locations. This thresholdSth can be directly applied toT p

i0 (the statistic formed by
probability-normalizing the original data with permutation indexj = 0). Since the
statisticTi j is normalized separately for each locationi, the sameSth corresponds
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Fig. 11 Illustration of the permutation scheme. In the bottom row we createM permutation
samples from the original data. We letj index the permutations and leti index the loca-
tions. For each permutation and location we compute the group difference metricTi j , which
is probability-normalized intoT p

i j . The data is then summarized across all locations to cre-
ate the conservative summary statisticSj over all locations. The empirical distribution ofSj ,
called F̂S is used to define a global thresholdSth which for each location is applied to the
probability-normalized test statistic obtained from the division to be tested, into groups A and
B.

to different values of local thresholdsp−1
i (Sth) of the unnormalized statisticTi0 at

different locations.
Due to the use of the minimump-value statistic across the whole surface, this

correction scheme is focused only on controlling the rate of false positives at the
given levelα (commonlyα = 0.05) across the surface. No similar control of the
rate of false negatives is available with this scheme. As the local significance level
correctly controlled for false negatives can be anywhere between the rawp-value
and thep-value corrected with our scheme, this corrected significance map is a
pessimistic estimate of the true significance map.

6.2 Tests in Symmetric Spaces

The ideas in the previous section must be generalized to the non-Euclidean feature
spaces appearing in m-reps and their symmetric space. We can derive permutation
tests for equality of means of two groups using elements of the symmetric space.
The sample means of each group,µ̂a andµ̂b, can be computed using the techniques
described in Chapter 8. ReplacingTi j from (1) with

Ti j = d(µ̂
∗
a , µ̂

∗
b) (2)
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yields a natural extension of local tests to symmetric spaces.
This provides a way to produce tests for a single aspect of the m-reps, such as

position or radius of a particular atom, independently of the others, but typically
we require a multivariate test using all of the parameters of one or more atoms
simultaneously. We cannot fall back on Hotelling’sT2 test because it applies only
to the linear case. Instead we can apply a transformation that forms new features
from marginal probabilities, handling differing degrees of variability or correlation
and making the test independent of magnification.

6.2.1 Global Multivariate Permutation Tests in Symmetric Spaces

We must now generalize the desirable properties of Hotelling’sT2 test to a nonpara-
metric, nonlinear setting. One seemingly attractive option is to perform statistics
in the tangent plane as is done with principal geodesic analysis, since its linearity
means Hotelling’sT2 test can be applied directly. However, with two samples, the
question that arises iswhichtangent plane, since there is a different one around each
sample’s mean, and there may be no unique map between them.

The other conceptual problem is that if one follows geodesics past thecut locus—
the set of points where two or more geodesics cross—then points on the manifold
no longer have a single well-defined representative in the tangent plane. Instead of
addressing these problems, we take a more general approach, which only requires
that our objects lie in a metric space.

Our approach is based upon a general framework for nonparametric combination
introduced by Pesarin (2001). The general idea is to perform a set of partial tests,
each on a different aspect of the data, and then combine them into a single summary
statistic, taking into account the dependence between the variables and the true mul-
tivariate nature of the data. When performing the partial tests, we require that each
distribution has the same structure around the mean—equivalent to the assumption
of a common covariance required by Hotelling—and test for a difference of means.
More precisely, following the idea described in the previous section, we map each
feature to its marginal probability and use these probability values as features.

The following two sections describe the details.

Partial Tests. We compute test statisticsTi j as before, where as beforei indexes
the model parameters andj is the permutation index. We now turn to the case where
we haveQ test statistics: one for each of the parameters in our shape model. Let
µa,i and µb,i be the means of theith model parameter for each group. Then we
wish to test whether any hypothesisH1,i : {µa,i 6= µb,i} is true against the alterna-
tive, that each null hypothesisH0,i : {µa,i = µb,i} is true. The partial test statistics
Ti j , i ∈ 1. . .Q, j ∈ 1. . .M are defined analogously to (2).

It can be shown that each of our mapped featuresT p
i j has the properties of be-

ing significant for large values, consistent, and marginally unbiased, as defined
in (Pesarin, 2001). Given that, Pesarin shows that a suitable combining function
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Fig. 12 The observed data and test statistics for our simple example. (a) shows the distribution
of our two samples, with×’s for the first and◦’s for the second. (b) shows the distribution of the
partial test statistics under permutation. The large dot indicates the location of the observed data
point.

(described in the next section) will produce an unbiased test for the global hypothe-
sisH0 againstH1.

Since each of our tests are restricted to the data from a single model parameter
and we have assumed that the distributions around the means in each group are
identical, they are marginally unbiased. We cannot add an explicit test for equality
of the distributions about the mean, as then the test for equality of means would be
biased on its outcome.

To illustrate these ideas, we present a simple example, which we will follow
through the next few sections. We take two samples ofn1 = n2 = 10 data points
from the two-dimensional spaceR×R+, corresponding to a position and a scale
parameter. The samples are taken from a multivariate normal distribution by expo-
nentiating the second coordinate, and then scaling both coordinates by a factor of
ten. They are plotted together in Fig. 12a. They have a common covariance (before
the exponentiation), and the two means are slightly offset in the second coordinate.

We constructQ = 2 partial test statistics using (2) for each coordinate, and eval-
uate them using Monte Carlo simulation withM = 10,000 permutations.

The results are shown in Fig. 12b. The first partial test value lies in the middle of
the distribution, while the second lies near the edge. However, the scale of the first
test is much larger, because no logarithm is involved in its metric.

Multivariate Combination. Given the partial tests from the previous section, we
wish to combine them into a single test, while preserving the underlying dependence
relations between the tests. This is done in the following manner. We apply the
sameM permutations to the data when computing each of partial tests, and we then
compute ap-value statistic,T p

i j as in Section 6.1.2. It is critical to use the same
permutations for each partial test, as this is what captures the nature of the joint
distribution.

We now wish to design a combining function to produce a single summary statis-
tic, T ′j , from eachp-value vectorTp

j . For one-sided tests, this statistic must be mono-
tonically non-increasing in each argument, must obtain its (possibly infinite) supre-
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mum when anyp-value is zero, and the critical valueS′th must be finite and strictly
smaller than the supremum. If these conditions are satisfied along with those on the
partial tests from the previous section,T ′j will be an unbiased test for the global
hypothesisH0 againstH1 (Pesarin, 2001).

Our combining function is motivated by the two-sided case (with signed dis-
tances), where we can use the Mahalanobis distance. Thus we need to transform
the uniformly distributedp-values to a random variable that is normally distributed
with mean zero and standard deviation 1. This is straightforwardly accomplished by
applying the inverse of the cumulative density function for that Gaussian after sub-
tracting 1

2M . The extra 1
2M term keeps the values finite when thep-value is 1, and it

is negligible asM goes to infinity. That is, we compute aUj vector for each permu-
tation, whereUi j = Φ−1(T p

i j −
1

2M ), j ∈ 1. . .M, andΦ is the cumulative distribution
function for the standard normal distribution. The map via thep-values and theΦ
function gives the statistics known distributions that are directly comparable.

Arranging theUj vectors into a singleM× p matrix U, we can estimate the co-
variance matrixΣ̂U = 1

M UTU and use the Mahalanobis statistic:T ′j = (Uj)T Σ̂
−1
U Uj .

In the event that the data really is linear and normally distributed, theΣ̂U matrix
converges to the true covariance as the sample size goes to infinity (Pallini and Pe-
sarin, 1992), making it asymptotically equivalent to Hotelling’sT2 test. Even if the
sample size is small, the matrixΣU is well-conditioned regardless of the number of
variables, since it is the covariance over theM permutations.

Typically, our distances are not signed, so we are interested in a one-sided test.
In this case, we use the positive half of the standard normal cumulative distance
function,Ui j = Φ−1(1− 1

2(T p
i j −

1
2M )) and assume theUj distribution is symmetric

about the origin. This assumption, however, implies that the covariance between
Ui1 j andUi2 j is exactly zero wheni1 6= i2. The diagonal entries of̂ΣU are 1 by
construction, sôΣU = I , the identity matrix. The fact that thep-values of the partial
tests are invariant to scale obviates the need for arbitrary scaling factors. Thus, our
one-sided combining function is

T ′j = (Uj)T ·Uj . (3)

The normality of the partial test statistics is not required. Also, even though the
marginal distributions of theUj vectors are normal, the joint distribution may not be.
Therefore, we must use the empirical distribution ofT ′j in order to compute the final

p-value of the global test:T ′p0 . It is this nonparametric approach that corrects for
correlation among the tests, even without explicit diagonal entries in the covariance
matrix.

We return to our example from the previous section. TheUj vectors are plotted
in Fig. 13a, along with theα = 0.05 decision boundary, and our sample is shown to
lie outside of it. As can be seen, equal power is assigned to alternatives lying at the
same distance from the origin in this space. Fig. 13b shows this boundary mapped
back into the space of the originalp-values.

The entire procedure is very similar to procedures used in correction for multiple
tests described in the previous sections. However, instead of trying to find a local
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Fig. 13 The empirical distribution of our example plotted against the decision boundary atα =
0.05. (a) The distribution of theUj vectors, where the cutoff is a circle centered around the origin.
(b) The distribution of the originalp-values with the decision boundary pulled back into this space.
The observed value is shown as the large dot in both plots.

threshold for each test individually, we carve out a region of the multivariateT p
i j

space that contains some particular fraction, e.g., 5%, of the data to label as signifi-
cant. We lose the ability to saywhich test is significant but gain power in the cases
where multiple statistics independently signal significant differences.

6.2.2 Local Multivariate Tests in Symmetric Spaces

A test on all of the geometric primitives (e.g., medial atom) taken together is not
truly a large scale test, for it confuses correlation with spatial scale. A test on each
geometric primitive is not truly a small scale test, for it will respond equally well
to a variation with large spatial scale as to one with a small scale. The Markov
assumption on geometric neighbors allows the separation of scales by removing
the correlation of neighboring elements from an element. In particular, if we can
estimate the best predictor of a primitive by its neighbors and subtract that predictor
from the primitive, the resulting residue provides the entity to test for significant
variationat the specified locality.

This idea can be used for primitives such as objects or figures, but we are
presently working to test it at the scale of the medial atom. Using the ideas in Sec-
tion 1, the hypothesis testing would thus be done on each geodesic difference of
the interpoland from the atom. However, we are still working on this form of local
test, so the following section simply tests the atoms, one by one, rather than their
residues.
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7 Applications of Hypothesis Testing to Brain Structure Shape
Differences in Neuro-Imaging

This section presents two application of hypothesis testing of m-rep objects. In the
first application, scalar hypothesis testing of individual medial parameters was em-
ployed (see Section 6.1.2) for analyzing hippocampal shape in schizophrenia. In the
second application, hypothesis testing in the symmetric space (see Section 6.2) was
employed for analyzing ventricular shape in healthy twins and in schizophrenia.

7.1 Hippocampus study in Schizophrenia

In the study presented in this section, we investigated the shape of the hippocam-
pus structure in the left and right brain hemisphere in schizophrenic patients (SZ,
56 cases) and healthy controls (Cnt, 26 cases). The hippocampus is a gray matter
structure in the limbic system and is involved in processes of motivation and emo-
tions. It also has a central role in the formation of memory. Hippocampal atrophy
has been observed in studies of several neurological diseases, such as schizophre-
nia, epilepsy, and Alzheimer’s disease. The goal of our study was to assess shape
changes between schizophrenic patients and the control group.

The subjects in this study all have male gender and the same handedness. The
two populations are matched for age and ethnicity. The hippocampi were seg-
mented from inversion-recovery-prepped SPGR MRI datasets (resolution: 0.9375×
0.9375×1.5mm) using a manual outlining procedure based on a strict protocol and
well-accepted anatomical landmarks (Duvernoy, 1998). The segmentation was per-
formed by a single clinical expert (Schobel et al., 2001) with intra-rater variability
of the segmented volume measurements at 0.95. Spherical harmonic (SPHARM)
coefficients were computed using a sampling of 2252 points, and the results were
normalized via a rigid-body Procrustes alignment and a scaling to unit volume. The
m-rep model was built on the aligned full population including the objects of all
subjects on both sides, with the right hippocampi mirrored at the interhemispheric
plane prior to the model generation. The resulting m-rep model has a single figure
topology and a grid sampling of 3× 8 medial atoms, in total 24 atoms. The range
of the average distance error between the fitted m-rep’s boundary and the original
boundary was between 0.14mm and 0.27mm (mean error 0.17mm), less than half
the voxel size of the original MRI, so the medial shape analysis should capture the
shape changes in the image data.

The template for the medial shape analysis was determined by the overall average
structure. As the two populations are not equal in size, we computed the overall
average as the average of the population averages. Due to age variation in both
populations, the shape difference values were corrected for age influence, using a
linear least squares model.
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The global shape analysis in Table 1 shows a strong trend in the m-rep position
analysis on the left side. The m-rep thickness analysis is significant for neither hip-
pocampus. This suggests a deformation shape change in the hippocampus between
the schizophrenic and the control group. The results of the m-rep position analysis
shows a stronger significance than the SPHARM-PDM analysis that was also car-
ried out. Additionally to the mean difference, several quartile measures (Median,
75% and 95%) were analyzed and produced structurally the same results.

Global Analysis M-rep Thickness M-rep Position
Left p = 0.722 p = 0.0513
Right p = 0.751 † p = 0.0001

Table 1 Results of global shape analysis (average across the surface/medial manifold): Table of
group mean differencep-values between the schizophrenic and control group ( †: significant at
α = 0.05 significance level).

Left hippocampus Right hippocampus
Posterior Lateral Posterior Lateral

M-rep local shape analysis of the position property
Corrected for multiple comparisons

Statisticalp-value colormap
p > 0.05 ; p = 0.05 p = 0.001

Fig. 14 Statistical maps of the local shape analysis from posterior and lateral views, corrected
for multiple comparisons. The m-rep analysis shows the statistical significance at each medial
atom using both the color and the radius of spheres placed at the atom positions. The main area
of significance is located at the hippocampal tail. The corrected results are overly pessimistic.

The m-rep local position shape analysis (Fig. 14) yields significant changes that
are in roughly the same position, mainly in the hippocampal tail, as shown by
SPHARM-PDM shape analysis and by distance maps of the averages. No signif-
icance was found in the local m-rep thickness analysis. Similar to the outcome of
the global analysis, the local m-rep position analysis shows a stronger significance
than the SPHARM-PDM analysis. The local shape differences are mainly located
at the right hippocampal tail, with near significance in the left hippocampal tail. By
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inspecting the average structures of the two groups, we further find that the hip-
pocampal tail region of the control group in our study is more bent than the one of
the schizophrenic group.

7.2 Lateral Ventricle Study of Healthy and Schizophrenic Twins

The data for these experiments comes from a twin pair schizophrenia study con-
ducted by Weinberger et al. (2001). High resolution(0.9375×0.9375×1.5 mm3)
MRIs scans were acquired from three different subject groups: 9 healthy monozy-
gotic twin pairs (MZ), 10 healthy dizygotic twin pairs (DZ), and 9 monozygotic twin
pairs with one twin discordant for schizophrenia and one twin unaffected (DS). See
Fig. 15 for some examples. A fourth group of 10 healthy non-related subject pairs
(NR) was constructed by matching unrelated members of the two healthy groups.
All four groups were matched for age, gender, and handedness. A tenth healthy,
monozygotic twin pair was discarded due to possible brain shape changes attributed
to major head trauma suffered by one of the twins in a car accident at age seven. A
tenth twin pair discordant for schizophrenia was discarded due to hydrocephaly in
the unaffected twin.

Fig. 15 Left: An example m-rep of a left lateral ventricle. The mesh vertices and off-shooting
spokes make up the medial atoms. The shape the m-rep was fit to is shown as a point cloud sur-
rounding it. Right: Ventricle pairs from five monozygotic twin pairs (top) and five dizygotic twin
pairs (bottom).

The left and right lateral ventricles were segmented using automatic atlas based
tissue classification (van Leemput et al., 1999) and 3-D connectivity. An automatic
morphological closing operation was applied to ensure a spherical topology. An
area-preserving map was used to map them to a sphere, after which they were
converted to a spherical harmonics representation (SPHARM) (Brechbühler et al.,
1995). Correspondence on the boundary was established using the first order har-
monics (Gerig et al., 2001). Point Distribution Models (PDMs) were constructed by
uniformly sampling the boundary at corresponding points. The m-rep models were
constructed using a robust method that ensures a common medial topology (Styner
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et al., 2003a). For our data, this consists of a single medial sheet with a 3×13 grid of
medial atoms, which provides 98% volume overlap with the original segmentations.

From this data set, we wish to determine if the twin pairs that were more closely
related had smaller variations in shape. We also wish to see if the shape variations
between the discordant and the unaffected twins in the schizophrenic pairs is similar
to the normal variation between healthy monozygotic twins. For this purpose, we
use the partial test statistics:

Ti j =
1
n1

n1

∑
k=1

d(a1∗
ki ,a

2∗
ki )−

1
n2

n2

∑
k=1

d(b1∗
ki ,b

2∗
ki ) . (1)

Here(a1,a2) form the twin pairs for one group, while(b1,b2) form the twin pairs
for the other. The partial tests are applied separately to all three components of the
medial atom location,x, as well as the radius and two spoke directions. This gives
six partial tests per medial atom, for a total ofp = 3×13×6 = 234, much larger
than the sample size. Each is a one-sided test that the variability in group 2 is larger
than that in group 1.

For consistency with previous studies (Styner et al., 2005), all shapes were vol-
ume normalized. After normalization, we also applied m-rep alignment, as de-
scribed by Fletcher et al. (2004), to minimize the sum of squared geodesic distances
between models in a medial analog of Procrustes alignment. First, the members of
each twin pair were aligned with each other, and then the pairs were aligned together
as a group, applying the same transformation to each member of a single pair.

In order to ensure invariance to rotations, we had to choose data-dependent co-
ordinate axes for thex component of each medial atom. Our choice was the axes
which diagonalized the sample covariance of the displacement vectors from one
twin’s atom position to the other at each site. While this had some influence on the
results, the general trend was the same irrespective of the axes used.

For each pair of twin groups, we generatedM = 50,000 permutations, and com-
puted theirp-value vectors. Following Section 6.2.1, these were mapped intoUj vec-
tors, from which the empirical distribution of the combined test statisticT ′k from (3)
was estimated, producing a single globalp-value.

The results are summarized in Table 2. For comparison, we list the results of a
previous study which used a univariate test on the average distance between corre-
sponding points on the PDMs (Styner et al., 2005). While we note that the signifi-
cance of ap-value on an experimental data set is not a useful metric for comparing
different methods, it is interesting to see the differences between the two. Our tests
give a consistent ranking: MZ≈ DS < DZ ≈ NR, which is fully transitive. The
boundary study, however, finds a significant difference between DZ and NR, but
fails to identify the difference between DS and DZ.

We also performed local tests, to identify specific medial atoms with with strong
differences. A multivariate test was conducted using our procedure on the 6 com-
ponents of each atom, and the results were corrected for multiple tests using the
minimum p-value distribution across the shape described in Section 6.1.2. The re-
sults are shown in Fig. 16.
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Our Study Boundary Study (Styner et al., 2005)
Left Right Left Right

MZ vs. DS 0.12 0.38 0.28 0.68
MZ vs. DZ † 0.00006 † 0.0033 † 0.0082 † 0.0399
MZ vs. NR † 0.00002 † 0.00020 † 0.0018 † 0.0006
DS vs. DZ † 0.020 † 0.0076 0.25 0.24
DS vs. NR † 0.0031 † 0.00026 † 0.018 † 0.0026
DZ vs. NR 0.16 0.055 † 0.05 † 0.016

Table 2 p-values for paired tests for the difference in the amount of shape variability in groups with
different degrees of genetic similarity. Results from our method are in the first two columns, while
results from a previous study (Styner et al., 2005) are in the last two for comparison. Groups are:
monozygotic (MZ), monozygotic twins with one twin discordant for schizophrenia (DS), dizygotic
(DZ), and non-related (NR). ( †: significant at theα = 0.05 significance level)

MZ vs. DZ MZ vs. NR DS vs. NR

MZ vs. DZ MZ vs. NR DS vs. NR

Left

Right

Fig. 16 Results for local tests for the difference in shape variability in groups with different degrees
of genetic similarity. Atoms with differences significant at theα = 0.05 level are shown in a larger
size. Tests not shown had no significant local differences.

8 Discussion and Future Work

8.1 Are M-reps Effective?

The main objective of this chapter was to describe m-reps based methods for 3D
medical image segmentation and for statistical characterization of differences of
anatomic shapes seen in populations of medical images. M-reps have been used both
to capture knowledge of object geometry and to give a basis of the positional corre-
spondences needed in training and measuring geometry-to-image match log prob-
abilities. As well, they have allowed efficient, multiscale operation in both training
the probabilities and applying them. It has been our expectation that they provide
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more stable estimates of modes of variation and the associated principal variances
for a given number of training samples than alternative bases for geometric statis-
tics, and we have some early results suggesting that this is the case, but this is yet to
be proven.

In addition, much more than other geometric representations, m-reps have pro-
vided a means of yielding probability distributions whose samples were very un-
likely to be geometrically improper, avoiding illegal interpenetrations and creases.
Checks on geometric propriety viaSrad has avoided creasing or near creasing and the
improved estimates of boundary normals without lowering the tightness of bound-
ary fits to training binary images. DRIQF statistics based on these fits have led to
improved segmentations.

The success of m-reps as an object representation designed for statistical uses
should be judged by the success of the applications. Within the class of deformable
models methods that might be considered to provide comparable segmentation ac-
curacy, robustness and low interaction requirements, m-reps based segmentations
are among the speedier.

In terms of accuracy and robustness, the 3D segmentation method based on m-
reps have produced single-figure object, viz. kidney, segmentations that are compet-
itive with human manual segmentation and are, to our knowledge, the most accurate
kidney segmentations reported in the literature. The same can be said of the initial
multi-object segmentations of male pelvis objects in CT images using intra-patient
statistics, though given the serious challenge of this problem, further work must be
done before the method can be tested on many patients and its results compared to
the results of alternative methods for segmentation of these objects. Moreover, while
the apparatus for segmentation of multi-figure objects exists and has been tried on
simple test cases, real application and testing of such segmentation is yet to be done.

Of course, when comparing m-reps to other object representations that are be-
ing used for segmentation via deformable models, the issue is not simply whether
m-reps are as good or better than the alternatives, but whether they are enough bet-
ter to justify the complexities of the medial representation. Controlled, quantitated
validation on a variety of objects by multiple methods in competition needs to be
carried out before this can be judged.

We are in the process of making the following improvements to our deformable
m-reps segmentation method and software:

1. Sensing and reporting locations on the segmented object that do not have the
expected level of geometry-to-image match, so that the user can take actions of
relocating that object section and then restart the segmentation.

2. Bringing to routine usability a posterior optimizing atom stage as well as the
option of computing a small scale diffeomorphism both in the target object(s)
and in the interstitial space between objects in place of the small scale boundary
displacement.

3. Developing a form of our software intended for clinical use and thus being as
automatic as possible, and making all interactions in clinical terms.
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The m-rep hypothesis testing tools have been applied to several studies in neuro-
imaging and have shown to provide meaningful results. The main advantage of our
m-rep hypothesis testing tools over boundary based testing tools is the identification
of different types of processes using the different m-rep atom properties. This leads
to results that are more intuitively interpretable. In several studies of the hippocam-
pus, the caudate and the lateral ventricles, we have shown that the overall results
correlate well between medial and boundary description, but also that our m-rep
analysis is able to capture additional information not seen in the boundary analysis.

Our current hypothesis testing tools are based on a true multivariate permutation
test approach for hypothesis testing in direct products of metric spaces. The resulting
test does not require a priori scaling factors to be chosen, and captures the true
multivariate nature of the data. It is well-defined even in the high-dimensional, low-
sample size case. The method has been developed for m-reps, though it is suitable
for any type of metric data, including potentially categorical data. An important
area for future research is the design of suitable partial tests to use in each space.
Because they cannot be broken into smaller pieces than a single component of the
direct product, the distance to the mean and similar tests are limited in the types of
distributions they can describe. For example, the distance from the mean can only
characterize an isotropic distribution on the sphere. This would allow us to relax our
assumption of identical distribution about the mean.

Even though our hypothesis testing tools have matured to a degree that they can
be employed routinely in neuro-imaging studies, there are several limitations to our
current tools making the following enhancements to our methods necessary:

1. Developing a combined analysis of multiple objects in order to capture corre-
lated differences of the shape in neighboring brain structures such as the lateral
ventricle and the caudate.

2. Enhancing the analysis scheme to incorporate several layers of scale starting at
the global multi-object scale down to the local single atom scale.

3. Incorporating statistical models of patient covariates such as gender, age and
medication in the permutation test algorithm. The current method incorporates
covariates by correcting atom parameters independently using least-squares lin-
ear regression.

8.2 Other M-rep Uses and Properties

In a separate paper (Crouch et al., 2003) we have shown how the space parametriza-
tion provided by m-reps also allows the interior of the object to be divided into
mesh elements useful for efficient mechanical modeling of intra-patient motion of
anatomic structures due to such interventions as intrarectal imaging probes. The
measures of mechanical energy computed in this approach could be used for seg-
mentation of a patient whose segmented m-rep from an earlier (e.g., planning) image
can be used as the model for a segmentation in a later (e.g., intra-treatment) image.
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M-reps provide one means of modeling objects and collections of objects; bound-
ary representations (b-reps) are a common alternative means of such object model-
ing. They share the limitations of all object modeling methods, namely that a single
object model will not serve for a class of objects with mixed topologies at the fig-
ural level. However, because they explicitly model the interfigural relations, they
have special weaknesses when these relations are variable over the population of
objects. For example, an m-rep for a right kidney and a separate left kidney will
not perform well for a horse-shoe kidney, in which the kidneys are joined. For such
mixed classes, a separate m-rep is required for each exemplar. Another issue shared
with other object models is instability for nearly spherically or circularly symmetric
objects. In such cases the nearly degenerate geometry creates computational insta-
bilities in discriminating among the three major axes which in turn can cause an
m-rep to “flip” during deformation in the image data in an unstable manner. How-
ever, m-reps share with other object models the particular strength of resolving these
orientational instabilities via the relations among objects.

M-reps’ special abilities relative to b-reps derive from their explicit representa-
tion of object orientation changes such as twisting and bending and of object size
changes such as widening and narrowing. Thus statistics on rectal widenings due to
gas, on the variability in the relative pose of the two lobes of the liver, and on the
orientation of the bladder relative to the prostate are very effective in m-reps terms.
The limitations not of m-reps by themselves but of m-reps with statistics come in
situations when the orientational or magnificational relationships are very variable.
Thus, like b-reps m-reps are well suited to complex slabs and tubes such as the
cerebral cortex or the intestine, and both are well suited to intra-patient variations of
these structures over time. But because in the population of humans the variability
of the folding structure of the cerebral cortex is high and the variability of the curva-
ture of the intestine is high, statistics on m-reps is a weak tool over that population
for these structures.

Because m-reps represent the interior of objects, they lose their effectiveness in
image situations where only one side of an object appears in an image, and they
have weakness relative to b-reps in situations where one side of an object boundary
is statistically stable but the other side has great variability. In that situation b-reps
can ignore the unstable or unimaged side, whereas m-reps inherently must represent
both sides together.

M-reps allow statistics by providing a fixed topology of sheets and their branch-
ing. As presently designed, populations that are not well modeled by fixed topology
m-reps together with voxel scale refinements will require a different geometric rep-
resentation.
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a Resampling Procedure’. In: K. H. Jöckel, G. Rothe, and W. Sendler (eds.):
Bootstrapping and Related Techniques, Vol. 376 ofLecture Notes in Economics
and Mathematical Systems. Berlin, pp. 93–97, Springer-Verlag. [332]

Pantazis, D., R. Leahy, T. Nichol, and M. Styner: 2004, ‘Statistical Surface-Based
Morphometry using a Non-parametric Approach’. In:Int. Symposium on Biomed-
ical Imaging(ISBI). [327]

Pesarin, F.: 2001,Multivariate Permutation Tests with Applications in Biostatistics.
Chirchester: John Wiley & Sons, Ltd. [330, 332]

Pilgram, R., P. T. Fletcher, S. M. Pizer, O. Pachinger, and R. Schubert: 2003, ‘Com-
mon Shape Model and Inter-individual Variations of the Heart using Medial Rep-
resentation: a pilot study’. Technical report, Institute for Medical Knowledge
Representation and Visualization, University for Health Informatics and Tech-
nology, Tyrol, Austria. [321]

Pizer, S., J. Jeong, R. Broadhurst, S. Ho, and J. Stough: 2005a, ‘Deep Structure of
Images in Populations via Geometric Models in Populations’. In: O. Olsen, L.
Florack, and A. Kuijper (eds.):International Workshop on Deep Structure, Sin-
gularities and Computer Vision (DSSCV), Vol. 3753. pp. 48–58, Springer LNCS.
[316]

Pizer, S. M., P. T. Fletcher, S. Joshi, A. G. Gash, J. Stough, A. Thall, G. Tracton,
and E. L. Chaney: 2005b, ‘A Method and Software for Segmentation of Anatomic
Object Ensembles by Deformable M-Reps’.Medical Physics32(5), 1335–1345.
[306]

Rao, M., J. Stough, Y.-Y. Chi, K. Muller, G. S. Tracton, S. M. Pizer, and E. L.
Chaney: 2005, ‘Comparison of Human and Automatic Segmentations of Kidneys
from CT Images’.International Journal of Radiation Oncology, Biology, Physics
61(3), 954–960. [321]

Schobel, S., M. Chakos, G. Gerig, H. Bridges, H. Gu, H. Charles, and J. Lieberman:
2001, ‘Duration and Severity of Illness and Hippocampal Volume in Schizophre-
nia as Assessed by 3D-Manual Segmentation’.Schizophrenia Research49(1-2),
165. [334]



Statistical Applications with Deformable M-Reps 345

Staib, L. H. and J. S. Duncan: 1996, ‘Model based Deformable Surface Finding for
Medical Images’.IEEE Transactions on Medical Imaging15(5), 1–13. [305]

Stough, J., S. M. Pizer, E. L. Chaney, and M. Rao: 2004, ‘Clustering on Image
Boundary Regions for Deformable Model Segmentation’. In:International Sym-
posium on Biomedical Imaging (ISBI), Vol. Catalog Number 04EX821C. pp.
436–439, IEEE. [314]

Styner, M., G. Gerig, S. C. Joshi, and S. M. Pizer: 2003a, ‘Automatic and Robust
Computation of 3-D Medial Models Incorporating Object Variability’.Interna-
tional Journal of Computer Vision55, 107–122. [311, 336]

Styner, M., G. Gerig, J. Lieberman, D. Jones, and D. Weinberger: 2003b, ‘Statis-
tical Shape Analysis of Neuroanatomical Structures Based on Medial Models’.
Medical Image Analysis7(3), 207–220. [326]

Styner, M., J. Lieberman, D. Pantazis, and G. Gerig: 2004, ‘Boundary and Medial
Shape Analysis of the Hippocampus in Schizophrenia’.Medical Image Analysis
8(3), 197–203. [326]

Styner, M., J. A. Lieberman, R. K. McClure, D. R. Weinberger, D. W. Jones, and G.
Gerig: 2005, ‘Morphometric Analysis of Lateral Ventricles in Schizophrenia and
Healthy Controls Regarding Genetic and Disease-Specific Factors’.Proceedings
of the National Academy of Science102(12), 4872–4877. [337, 338]

Thall, A.: 2004, ‘Deformable Solid Modeling via Medial Sampling and Displace-
ment Subdivision’. Ph.D. thesis, University of North Carolina, Chapel Hill, North
Carolina. [289, 315]

van Leemput, K., F. Maes, D. Vandermeulen, and P. Seutens: 1999, ‘Automated
Model-based Tissue Classification of MR Images of the Brain’.IEEE Transac-
tions on Medical Imaging18, 897–908. [336]

Weinberger, D. R., M. F. Egan, A. Bertolino, J. H. Callicott, V. S. Mattay, B. K.
Lipska, K. F. Berman, and T. E. Goldberg: 2001, ‘Prefrontal Neurons and the
Genetics of Schizophrenia’.Biological Psychiatry50, 825–844. [336]

Worsley, K. J., S. Marrett, P. Neelin, A. C. Vandal, K. J. Friston, and A. C. Evans:
1996, ‘A unified statistical approach for determining significant signals in images
of cerebral activation’.Human Brain Mapping4, 58–73. [327]

Yushkevich, P., H. Zhang, and J. C. Gee: 2005, ‘Parametric Medial Shape Repre-
sentation in 3-D via the Poisson Partial Differential Equation with Non-Linear
Boundary Conditions’. In: G. Christensen and M. Sonka (eds.):IPMI 2005, Vol.
3565. pp. 162–173, Springer. [314]




