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Abstract. Respiratory motion challenges lung radiation therapy with
uncertainties of the location of important anatomical structures in the
thorax. To capture the trajectory of the motion, dense image match-
ing methods and learning-based motion prediction methods have been
commonly used. However, both methods have limitations. Serious mo-
tion artifacts in treatment-guidance images, such as streak artifacts in
respiration-correlated cone-beam CT, challenge the intensity-based im-
age matching; the learning-based prediction methods require consistency
between the training data for planning and the data for treatment. This
paper proposes a prediction-driven motion atlas framework for motion es-
timation with artifact-laden images, using a Fréchet-mean-image match-
ing scheme that is softly constrained by deformation predictions. In this
framework, all the respiration phase-stamped images within a breathing
cycle are diffeomorphically deformed to their Fréchet mean. The iter-
ative optimization is driven by both intensity matching forces and the
prediction forces trained from patient-specific planning images. The effec-
tiveness of the framework is demonstrated with computational phantom
and real cone-beam CT images.

1 Introduction

Positional uncertainties caused by the respiratory motion have been shown to
have a large impact on radiation dose [1]. Accurate respiratory motion estima-
tion is necessary for removing the motion-induced uncertainties. Cone-beam CT
(CBCT) exploits flat panel technology to integrate the imaging system directly
into the treatment accelerator, allowing acquisition of a volumetric image at each
respiratory phase in the treatment position and eliminating the need for marker
implantation [2–4]. A major limitation of CBCT systems is image degradation
caused by respiration-induced motion, which compromises tumor and organ-at-
risk localization for guiding radiation treatment of cancer. The work presented
here is part of a larger project to correct respiratory motion-induced artifacts



in CBCT scans [4]. Briefly, CBCT projection images are sorted into subsets ac-
cording to a respiration signal and reconstructed to obtain a set of low-quality
respiration-correlated CBCT images. Application of nonrigid registration de-
forms each of the respiration-correclted CBCT (RC-CBCT) images to a chosen
reference image in the set; combining all images yields a single high-quality
CBCT image with reduced blurring and motion artifacts. However, degradation
of image quality resulting from the sparse projections for each subset in the
filtered back-projection reconstructions imposes serious limitations on non-rigid
image registrations. The fourth dimension of the “4D” notion in this paper refers
to the respiration phase during one breathing cycle.

Two different categories of methods have been used to capture the respiratory
motion trajectory. One is ordinary intensity-based image matching or tracking.
Various non-linear dense image registrations can be used to calculate the spatial
changes of each voxel between images by matching their intensity profiles [5, 6].
However, the image registration could easily get trapped in local minima when
imaging artifacts are present and thus tends to over-fit to those artifacts.

The other category is linear motion modeling with surrogate signals. Recog-
nizing the hysteresis of respiration, various external and internal surrogate sig-
nals have been used for motion modeling and prediction in lung. The diaphragm
position of the lung has been used as a navigator of the image deformation and
used for motion prediction for CBCT-guided radiation therapy [7, 4]. Recently,
the shape of the lung has been used as an advanced surrogate for motion pre-
diction, in which the so-called shape-correlated deformation statistics (SCDS)
reveals the maximum linear correlations between the shape surrogates and the
image deformations [8, 9]. The SCDS is trained on a prior respiration-correlated
CT (RCCT) set acquired for treatment planning purposes. The RCCT consists
of a sequence of volumetric CT images over the breathing cycle.The underly-
ing assumption of any surrogate-involved learning-based model that uses a prior
image set is that the correlation between the surrogate and the underlying mo-
tion are the same for both planning/training time and treatment/test time. The
assumption simplifies the complicated breathing system and justifies the estima-
tion by directly incorporating the training information. However, the correlations
between the surrogate and the spatial deformation cannot be exactly the same,
especially for cancer patients who have difficulty in stabilizing their breathing
over time. Besides, noise kept in the SCDS trained from few planning phases
tend to result in local region prediction errors.

To fully utilize both categories of methods while avoiding their limitations, in
this paper we combine the intensity information (from the treatment RC-CBCT)
and the SCDS-predictions (from the planning RCCT) into a unified framework
for improved motion estimation. On the one hand, the motion prediction can
help regularize the intensity matching from over-fitting. On the other hand,
meaningful image features can be utilized to reduce prediction errors.

A respiratory motion atlas formation method driven by a combination of
prediction matching forces and image matching forces is developed in this pa-
per. A respiratory motion atlas contains an atlas image and the dense image



deformations that transform each phase-stamped image in the breathing cycle
to the atlas image. Instead of an image at an arbitrary time point, a Fréchet
mean image that takes the minimum total amount of transformations to match
all images is computed and used as the atlas image for increased robustness. The
deformations predicted from a shape-correlated deformation statistics (SCDS)
model are used as a soft constraint during the optimization. The balancing force
between the intensity force and the prediction force can be adjusted via a weight-
ing factor, selected upon the credibility of the training statistics and the quality
of the treatment images.

The rest of the paper is organized as follows. Section 2 introduces the frame-
work of the proposed prediction-driven deformation atlas formation. Specifically,
section 2.1 introduces the Fréchet mean image formation method that is used
to obtain the respiratory motion atlas from a 4D image sequence; section 2.2
presents the techniques that are used to apply trained SCDS to predict motion
from a noisy 4D image sequence; Section 2.3 introduces the prediction-driven
atlas formation by integrating the SCDS-predictions into the Fréchet mean for-
mation framework. Experimental results are presented in Section 3.

2 Methodology

2.1 Respiratory Fréchet mean image formation

To quantify the breathing motion from a 4D image sequence, non-linear dense
image registrations are often used to compute the spatial changes for each voxel
in the image. The breathing motion can be quantified by the non-linear deforma-
tions that match each phase-stamped image in the breathing cycle to an atlas
image. The atlas image, together with the deformations, form the respiratory
motion atlas for this patient. For the respiration-correlated CT (RCCT) that is
used at the planning time in IGRT, the high-contrast and good image resolution
enables intensity-based registration methods to accurately capture the spatial
changes over the breathing cycle.

There are several aspects to be considered in choosing a proper atlas image.
First of all, due to the large anatomical variations between patients, it is more
practical for the atlas image to be patient-specific. Secondly, to be used for
motion prediction, the conformation of the atlas image should also be stable over
time or at least stable between the planning time and the treatment or target
time. The end expiration (EE) phase is commonly used as the reference phase for
registration due to its relatively stable repeatability. However, computationally,
a smaller total amount of deformations is preferred for better image registration
accuracy and efficiency. Further, in order to carry out statistical analysis on the
deformations (for SCDS calculation in Section 2.2), an “averaged” atlas will help
to get tightest statistical distribution.

A Fréchet mean image has the property that it minimizes the sum of squared
distances on the Riemannian manifold of diffeomorphic transformations to a
group of images (see Figure 1). It represents an averaged spatial configuration



of that group [10]. Therefore, the Fréchet mean image of the breathing sequence
well satisfies the aforementioned criteria and is used in this paper as the atlas
image.

Fig. 1: Fréchet image mechanism: a) The filled circles represent individual points
pi on the Riemannian manifold M. The Fréchet mean (filled square) is the
point µ on the manifold that minimizes the sum of squared distances to the
observations. Distances are measured along the manifold; b) Iterative Fréchet
mean image construction framework illustrated on images of spheres with varying
radius. The mean image in the middle minimizes the sum of squared deformation
distances required to match all input images.

Given a group of phase-stamped images, geometric changes over time are
represented as the action of a group of diffeomorphisms on images. Let DiffV (Ω)
be the group of diffeomorphisms that are isotropic to the identity. An element
φ : Ω → Ω in DiffV (Ω) deforms an image I to the image I ◦ φ. The geodesic
distance between a pair of images on the manifold is defined by diffeomorphic
matching:

d2(IF , IM ) = argmin

∫ 1

0

||vt||2V dt+
1

σ2
||IM ◦ φ− IF ||2L2, (1)

subject to φ(x) = x+
∫ 1

0
vtdt, where t ∈ [0, 1]. The first term defines a metric on

the space of diffeomorphisms that are generated by integrating velocity fields v.
These diffeomorphisms are used to deform a moving image IM (image at t = 0)
to match a fixed image IF (image at t = 1). The second term penalizes residual
image dissimilarity. The parameter σ controls the relative weight of these terms.

The Fréchet mean Î is the image that requires the least amount of defor-
mation to map onto the group of input images Ii: Î = argmin

∑N
i=1 d(I, Ii)2.

Combined with geodesic distance definition (1), the optimization problem can
be summarized as

Î , φ̂i = argmin
I,φ̂i∈I×DiffV (Ω)N

N∑
i=1

[∫ 1

0

||vit||2V dt+
1

σ2
||I − Ii ◦ φi||2L2

]
,

subject to φi0 = Id, φi(x) = x+
∫ 1

0
vit(φ

i
t(x))dt.



Initialized with identity transformations, an iterative optimization updates
the Fréchet mean image at each iteration, and the deformations that transform
all the phases to the Fréchet mean are optimized at the same time.

2.2 SCDS-based prediction

The shape-correlated deformation statistics (SCDS) model has been shown to
effectively reveal the patient-specific linear correlations between the shape surro-
gates and the image deformations [8, 9]. In this method, the shape of the lung is
used as an internal surrogate signal to navigate the dense image deformation by
linear regression. The shape models are extracted using lung surface segmenta-
tion from the images followed by application of an entropy-based particle system
[11] to obtain a group-wise surface correspondence over the phases within the
breathing cycle. The SCDS model trained from the planning images is used to
predict the motion of the images via extracted shape surrogates.

In previous papers [8, 9], the SCDS model used the EE phase as the image
atlas. In this paper, we improve the tightness of the SCDS by using the Fréchet
mean as the image atlas. Also we use deformable segmentation techniques to
apply the SCDS for motion prediction to CBCT images with image artifacts.
The resulting predicted deformations are going to be used as soft constraints in
the overall prediction-driven atlas framework described in Section 2.3.

Probabilistic deformation segmentation To apply this method to CBCT
images, robustly extracting the lung boundaries against the streak intensity ar-
tifacts is important. We have developed a posterior probability optimization
scheme to calculate the models that fit into the target images while staying in
the trained shape space. The optimization is described in

log p(qi|J i) = argmax
qi

[log p(J i|qi) + log p(qi)], (2)

where qi is the deformable surface mesh (to distinguish the shapes pi in training)
segmented from the CBCT image J i (to distinguish the training image Ii). The
image match term or the likelihood term is the summation of a second-order
gradient magnitude measured on the surface of the model, indicating how well
the model fits to the boundaries. The prior term is measured by Mahalanobis
distance of the model from the training mean in the trained shape space.

SCDS-prediction for 4D CBCT In the motion atlas, the deformation of
the whole dense deformation field is represented by the displacement vector field
(DVF) u as the result of the diffeomorphic transformation from each phase image
to the atlas image. To distinguish the planning data and the treatment data, in
this paper φi denotes the deformations calculated from RCCT images Ii and ϕi

denotes the deformations calculated from RC-CBCT images J i. It follows that



uϕ denotes the DVFs from RCCTs and uϕ denotes the DVFs from RC-CBCT. In
summary, three major steps are carried out to estimate the image deformations
in 4D CBCT.

1. The DVFs uiφ of RCCTs are obtained by the intensity-based Fréchet mean
formation method introduced in the last section. The surface models of the
lung are extracted from each CT phase images. The linear correlation C
that maps a shape surrogate pi to its corresponding image deformation uiφ
is calculated such that uφ = C · p + ε, where ε is the regression error.

2. The lung shape qi is segmented from the CBCT images J i using the posterior
probability optimization scheme.

3. Deformations of each time-point of the CBCT sequence uiϕ are calculated

by uiϕ = C · qi.

After the motion prediction, an atlas image can be calculated by averaging
all the intensity images after warping them using the predicted deformations.

2.3 Prediction-driven respiratory motion atlas formation

The SCDS-prediction method is a learning-based approach that is resistant to
image artifacts. However, as mentioned in the introduction, its accuracy also
depends on the correlation consistency condition of the motion between the
training data and the target data. For lung cancer patients who themselves
have difficulties to strictly regularize their breathing patterns or as a result of
anatomical changes such as tumor growth, the correlation between the surrogate
lung and the overall image deformation can not be exactly the same. Besides,
the linear correlation regression results contain statistics errors due to the high
dimensional low sample size (HDLSS) problem.

To increase the prediction robustness of the method, image intensity features
can be used to adapt to the motion variations between the training and the
testing data. Despite the CBCT artifacts, there are still many intensity features
(besides the lung boundaries) useful for guiding the image registration, such as
the bony rib cage, the bronchial structures, and the tumor region itself.

A prediction-driven deformation atlas formation method, optimized by the
combination of prediction constraints and image matching forces is presented
here to improve the motion estimation accuracy and robustness. The deformation
predictions are used as soft constraints in the iterative Fréchet mean image
optimization, as follows:

Ĵ , ϕ̂i = argmin
J,ϕ̂i

N∑
1

[∫ 1

0

||vit||2V dt+
1

σ2
1

||J − J i ◦ ϕi||2L2 +
1

σ2
2

d2
R(ϕi, φi(qi))

]
,

subject to ϕi = x+
∫ 1

0
vitdt, where J i denotes the CBCT image at phase i, Ĵ is

the atlas image and qi is the lung shape segmented from J i using the deformable
segmentation method introduced in Section 2.2. The distance between the vary-
ing deformation ϕi and the prediction φ(qi) is measured via the Riemannian



manifold metric dR, which is defined as the minimum of the integral over all
piecewise smooth curves that connect ψ1 and ψ2. This distance can be alterna-
tively computed by dR(ψ1 ◦ ψ−1

2 , id), where id is the identity transformation.
To simplify the computation and to directly use the resulting deformation

represented by DVFs (deformations from the atlas image) computed from the
SCDS-prediction, an Euclidean approximation of the square Riemannian dis-
tance is given by d2

R(ϕi, φ(qi)) ≈ ||uϕi − uφ(qi)||2L2 , where the SCDS-predicted
deformation uφ(qi) is computed by linear mapping uφ(qi) = C·qi. The Euclidean
deformation space is only an approximation of the Riemannian deformation man-
ifold. However, when deformations are not very large, the Euclidean space can
be thought of as the tangent plane of the Riemannian manifold at the Fréchet
mean and thus the linear approximation is sufficient.

The balancing force between the prediction and the noisy intensity profile
can be adjusted via the weighting factors σ1 and σ2, selected upon the credibil-
ity of the training statistics and the quality of the treatment images. To have
equal influences from both the intensity and the prediction, the weighting fac-
tors should make the two energy terms have the same order of magnitude. The
energy term of the prediction is treated as an extra feature channel.

Computationally, this extra channel itself is a three-dimensional-vector chan-
nel and takes three times the storage as the image intensity. In comparison to
the intensity-based atlas method, the prediction-driven atlas method takes more
time to compute the gradient for the extra prediction constraints. On the other
hand, due to the prediction constraints fewer iterations are typically required
for convergence.

3 Experimental results

3.1 Breathing spheres

We started with some simulation data to test the prediction-driven atlas forma-
tion method. A sequence of sphere images with varying radii were designed to
mimic the breathing scenario. The radii follow a sinusoidal curve to simulate the
breathing pattern of a volume enlarging process followed by a volume shrinking.
The surface points on the spheres (not shown) are used as the shape surrogate to
carry out the SCDS motion prediction. With the same dateset, Gaussian noise
is added to create the test data, as shown in Figure 2a.

The underlying correlation between the shape surrogate, the surface point
set sampling on the spheres with group-wise correspondence, and the image
deformation are the same for the training and the testing data, since the only
difference between the two datasets is the added Gaussian noise. It is shown
that the intensity-based atlas formation method (Figure 2c) tends to over-fit the
noise, while the SCDS-prediction (Figure 2d) that is determined by the training
SCDS shows resistance to the noise and gives better results.

To simulate variations in the correlations between the training set and the
test set, the correlation coefficients between the shape surrogate (surface point



(a) noisy input images

(b) Euclidean (c) Fréchet (d) SCDS (e) SCDS (f) pred-driven

Fig. 2: Noisy breathing spheres test: a) The noisy test image sequence. b)
The Euclidean mean of the noisy test sequence. c) The Fréchet mean image of
the test data using the intensity-based atlas formation method. d) The resulting
atlas image of SCDS motion prediction. Test with correlation perturba-
tions: e) The resulting atlas image of SCDS motion prediction with correlation
perturbations; f) The prediction-driven atlas image with correlation perturba-
tions.
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(a) DVF (image deformation) error
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(b) Intensity differences

Fig. 3: Noisy spheres with correlation perturbations: a) Average displacement
vector field error per voxel at each iteration. b) Average image intensity difference
per voxel at each iteration.

set of the sphere) and the image deformations were perturbed randomly by 0.15
at maximum. The SCDS prediction is influenced by the artificial perturbation
and produces errors mostly visible at the edge of the atlas sphere (Figure 2e).
On the other hand, it is shown that the prediction-driven deformation is able to
balance between the intensity force and the prediction force thus getting the best
result (Figure 2f). Errors and intensity energies are shown at each iteration step
in Figure 3 for a detailed investigation. The intensity-based matching over-fits
the noise: intensity differences diminish with iteration but DVF error increases.



Since the SCDS-prediction is directly computed without iterative optimizations,
it is shown as the constant value line for comparison. The best estimation result
(i.e., lowest DVF error) is achieved by the prediction-driven atlas formation
method.

3.2 NCAT data

4D Nurbs-based Cardiac-Torso (NCAT) phantom thorax RCCTs were produced
[12] at 10 phases sampled in one breathing cycle. A corresponding RC-CBCT
sequence was simulated from the NCAT RCCTs using the protocol of a gantry-
mounted KV on-board imaging system [3] that is used in patient radiation ther-
apy guidance. An example image pair is given in Figure 4. Note the strong
artifacts in the phase-sorted CBCT caused by the sparse and unevenly spaced
projections. The image grid for each image is 512 × 512 × 100, with voxel size
of 0.742 mm × 0.742 mm × 1.52 mm. Figure 4 shows an example of the NCAT
CT and CBCT image and the surface lung shape model.

(a) NCAT RC-CBCT (b) Lung shape model

Fig. 4: a) An axial slice of a NCAT RCCT image at EE phase and its correspond-
ing RC-CBCT image. b) The surface mesh representation of the shape of lungs
extracted from NCAT RCCTs. The color shows the magnitude of the spatial
variation of each point during the breathing cycle.

To test the prediction-driven atlas formation method, inconsistency of the
breathing correlation patterns between the training data and the test data were
simulated by adding random perturbations into the SCDS-predicted DVFs.The
NCAT data set in Figure 5 has a maximum of 2.0 cm diaphragm motion and
0.5 cm anterior-posterior motion. The intensity-based atlas formation results,
the SCDS motion prediction results and the prediction-driven atlas formation
results are compared in terms of the center of gravity (COG) location errors of
the tumor region (Figure 5a). The intensity-based atlas performs better than the
SCDS-prediction in terms of the tumor region estimation. The reason is that the
tumor region after the CBCT reconstruction has a quite strong contrast respect
to its surrounding tissue despite the global streak artifacts. The overall DVF
errors of the three methods are compared in Figure 5b. The SCDS-prediction
performs better than the intensity-based atlas method. The prediction-driven
atlas method shows a compromised overall DVF estimation between the other



two as a result of the combination. These measurements are confirmed from the
visual comparison of the atlas images in Figure 6. The prediction-driven atlas
(Figure 6c) has less global signal-to-noise ratio (SNR) compared to the intensity
atlas (Figure 6a) and has a sharper tumor boundary than the SCDS-prediction
atlas (Figure 6b).
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(a) Tumor COG error
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(b) DVF (image deformation) error

Fig. 5: a) Tumor COG estimation errors, with the static measurement indicating
the mobility of the tumor. The fourth phase is used as the base phase to propa-
gate the tumor contour to other phases. b) DVF estimation error per voxel. The
ground truth DVF is obtained by linear interpolation from the RCCT DVFs.

3.3 Patient data

RCCT data sets are provided by a 8-slice scanner, acquiring repeat CT images
for a complete respiratory cycle at each couch position while recording patient
respiration. The CT images are retrospectively sorted to produce a series of 3D
images at 10 respiratory phases. The RC-CBCT scans of five-minute duration are
acquired using a slowing-rotating gantry-mounted KV on-board imaging system.
The scan produces 3D images at 6 respiratory time points. The image grid for
each image is 196 × 196 × 100, with voxel size of 1.52 mm × 1.52 mm × 1.52
mm.

Motion estimation results are evaluated on a mock tumor region as shown
in Figure 7. Manual segmentations are provided for each CBCT image for error
measurements. The manual tumor contour of the fourth phase image (the end-
expiration phase) is propagated to all the other phases. The three methods are
compared in terms of the COG location errors, see Figure 7. The average COG
errors of the 5 phases for the three approaches are 3.5 mm, 2.3 mm and 1.7
mm respectively. The prediction-driven atlas method outperforms the other two
approaches in this patient.



(a) Intensity-based (b) SCDS-prediction (c) Prediction-driven

Fig. 6: Atlas image comparison of NCAT data set tests. The axial (the first row),
coronal (the second row) and sagittal (the third row) slices are compared. a) The
Fréchet mean atlas image of the CBCT sequence. b) The atlas image from the
SCDS-prediction results. c) The atlas image from the prediction-driven atlas
formation method.
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Fig. 7: Left: Axial slices of tumor contours at the fifth phase from the three
methods, with the same color legend used in the bar plot on the right. The
manual segmentation is shown in white. Right: The comparison of tumor COG
errors.

4 Conclusion

The prediction-driven atlas formation framework has the advantage of utiliz-
ing high-contrast intensity information from CBCT while being constrained by
the shape-correlated prediction results. The overall image deformation result
is a compromise between the pure-intensity-based atlas formation method and
the SCDS-prediction results, and the structures that have relatively higher con-
trast contribute to a more accurate local motion estimations. With our prelim-
inary studies on both simulated phantom data and cone-beam CT data, the



prediction-driven atlas method is shown to be more robust for modeling and es-
timating sophisticated respiratory motion in lung than both the intensity-based
atlas method and the learning-based SCDS prediction. More comprehensive val-
idations on patient data are needed to quantify the robustness of the method.
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