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Abstract
In this paper, we present and validate a framework, based on deformable image
registration, for automatic processing of serial three-dimensional CT images
used in image-guided radiation therapy. A major assumption in deformable
image registration has been that, if two images are being registered, every
point of one image corresponds appropriately to some point in the other. For
intra-treatment images of the prostate, however, this assumption is violated by
the variable presence of bowel gas. The framework presented here explicitly
extends previous deformable image registration algorithms to accommodate
such regions in the image for which no correspondence exists. We show how
to use our registration technique as a tool for organ segmentation, and present
a statistical analysis of this segmentation method, validating it by comparison
with multiple human raters. We also show how the deformable registration
technique can be used to determine the dosimetric effect of a given plan in
the presence of non-rigid tissue motion. In addition to dose accumulation, we
describe a method for estimating the biological effects of tissue motion using
a linear–quadratic model. This work is described in the context of a prostate
treatment protocol, but it is of general applicability.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In radiation cancer therapy, the problem of organ motion over the course of treatment is
becoming more urgent as techniques for conformal therapy improve. These techniques, such
as intensity modulated radiation therapy (IMRT), offer important benefits: with high gradients
between the region receiving a therapeutic dose and surrounding regions, it is possible, in
principle, to increase the prescribed dose to the tumour while reducing the dose to critical
organs. The problem with these high gradients is that organ location varies between treatment
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days, because of both set-up error and internal changes such as bowel and bladder filling.
With high dose gradients, relatively little organ motion is required to bring parts of the tumour
outside of the therapeutic region, or to bring healthy critical tissues in. Both forms of tissue
misplacement can harm the patient, in the one case by failure of local control, and in the other,
by toxicity to normal tissue. There are now in-the-treatment-room imaging methods, such as
cone beam CT and CT-on-rails, that enable image-guided radiation therapy as a way to meet
this challenge. However, there remains a pressing need for automatic techniques to translate
these images into useful information about organ location and likely treatment effectiveness.

The traditional approach to the problem of organ motion has been to specify a margin
around the clinical target volume (CTV) to create the planning target volume (PTV). The goal
of the margin is to achieve a specified confidence level, interpreted as the probability, at a
given treatment session, that actual tumour is contained entirely within the PTV. Work by
Goitein and Busse (1975) and Goitein (1985, 1986) suggests that a confidence level of 95% is
required. Typically, the size of the margin is expressed as a single parameter, its width, which
is based on studies of organ motion across populations of patients. Sometimes the width is
reduced near critical structures. For instance, with prostate cancer, the size of the margin may
be set to 1 cm, with a reduction to 6 mm towards the rectum (Happersett et al 2003).

This simple construction of the PTV relies on two assumptions that have been necessitated
by technical limitations in treatment planning and delivery. The first assumption is that organ
motion has the same statistical properties for different patients, so that the variance in organ
position for a single patient will be equal to that computed previously for a population of
patients. The second assumption is that organ motion is statistically the same for all parts of
the organ.

To avoid having to make the first assumption Yan et al (1997) introduced the framework of
adaptive radiation therapy (ART), in which organ motion for the individual patient is measured
over the course of treatment, and the PTV is modified once the amount of motion for that
patient has been estimated with sufficient confidence. In their work, the position variation
is expressed as a single parameter, a 95% confidence radius for the position of the tumour
isocentre, thus still making the assumption that motion is uniform across the relevant organs.

To account for motion that is not uniform, in which organs deform and move relative to one
another, a more sophisticated analysis of images is necessary. Recent computational advances
have enabled the emergence of a discipline called computational anatomy (Grenander and
Miller 1998) with the principal aim of developing specialized mathematical and software tools
for the precise mathematical study of anatomical variability. Within computational anatomy,
deformable image registration techniques have proved to be effective in the study of anatomical
variation (Davatzikos 1996, Christensen et al 1997, Csernansky et al 1998, Joshi et al 1997,
Thompson and Toga 2002).

In the framework of computational anatomy, this paper presents a comprehensive approach
for automatic processing of three-dimensional (3D) CT images acquired during image-guided
radiation therapy. Deformable image registration is the key to the approach, making it
possible to establish a correspondence between points in images taken on different days. Such
a correspondence is useful in two key ways: it facilitates automatic organ segmentation, and
it makes it possible to calculate the dosimetric effects of non-rigid tissue motion.

The need for careful repeated segmentations has been one of the major limitations for the
widespread application of ART and other image-guided techniques. Although careful manual
segmentation techniques remain the standard of practice, a full manual segmentation of the
intra-treatment CT images is time consuming, expensive and not practical in a routine clinical
setting. Moreover, manual segmentation introduces uncertainties associated with variability
both between and within raters. Two European studies that focused on user-guided tumour
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segmentation found large inter-user variabilities for well-circumscribed lesions (Leunens et al
1993, Valley and Mirimanoff 1993).

The dosimetric analysis of tissue motion has the potential to permit more sophisticated
ART planning than is currently being pursued (Birkner et al 2003). A number of groups
have studied the dosimetry of rigid patient motion (Booth and Zavgorodni 2001, Booth 2002,
Unkelbach and Oelfke 2004), and there has also been some work in dosimetric analysis of
deforming tissue (Schaly et al 2004, Yan et al 1999). The registration algorithm we describe
here differs from previous work in that it provides a fully automated means of performing
dose accumulation that can handle large deformations.

In the context of radiotherapy of the prostate or cervix, several deformable image
registration methods are currently being investigated for alignment of serial CT data sets.
Schaly et al (2004) use an approach based on thin-plate splines (Bookstein 1989) for matching
CT volumes, where homologous points are chosen from manually drawn organ segmentations.
They use the resulting displacement fields to measure cumulative dose over multiple fractions
for prostate cancer patients. Christensen et al (2001) reported registration of serial CT images
for patients undergoing treatment for cervix cancer. Their method matches the boundaries of
the bladder, rectum and vagina/uterus, which are first manually segmented in the planning and
treatment images. As with our work, they use a viscous-fluid model that accommodates large
deformation changes in the anatomy. Wang et al (2005) register CT volumes using a method
similar to the demons algorithm of Thirion (1998). Their method employs a voxel-based
driving force motivated by optical flow and a Gaussian regularization kernel. They provide
an example of automatic segmentation of a treatment image using the resulting deformation
fields. Lu et al (2004) present a deformable registration technique based on the minimization
of an energy functional that combines an image matching term with a smoothness measure
on the resulting deformation field. However, none of these studies address the problem of
bowel gas for deformable registration of CT images. Also, while some authors have presented
validation studies based on known transformations or phantoms, to our knowledge none have
presented a large scale analysis of the accuracy of their methods for automatic segmentation
of treatment images based on manual contours.

To give background for what follows, we briefly describe the ART protocol (adapted from
Yan et al (2000)) that we use in our regular prostate care. The fundamental purpose is to use a
planning target volume (PTV) that reflects the typical organ motion of the particular patient.
Rather than attempting to determine that motion prior to treatment, we use a conventional
plan during the first five treatment days, at the same time acquiring a registered CT scan each
day. After the fifth treatment day, we construct a new PTV by placing a margin around the
approximate convex hull of the CTVs from the first five treatment days, and then generate a
new plan, this time using IMRT, based on the new PTV. For the remainder of the treatment
period, images are acquired twice weekly to indicate whether further adjustments may be
necessary. For each image, the patient is first set up for treatment using crosshair tattoos that
are aligned with laser fiducials. Then CT-visible skin markers (2.3 mm ‘BBs’) are placed
at the locations marked by the lasers, so that the treated isocentre is indicated on the scan.
In a future paper we will assess the effectiveness of this protocol in our practice, using the
dosimetric techniques described in this paper.

Shown in figure 1 is a visualization of the organ motion over the course of treatment for
nine patients treated in our clinic using the ART protocol. The internal organ motion of the
prostate shown in the images was estimated using manual segmentations of intra-treatment
CT images acquired by the CT-on-rails system.

The rest of the paper will be organized as follows. In section 2 we explain the registration
algorithms that we use. In section 3 we explain how we use deformable registration as a tool
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Figure 1. Visualization of prostate motion over the course of treatment for nine patients involved
in our study. White contours, superimposed on an axial slice of each patient’s planning image,
indicate the actual location of the prostate on each treatment day. These contours are taken from
manual segmentations of treatment images. The discrepancies between the contours exhibit the
effect of set-up error and organ motion on the prostate position. Note that different patients exhibit
different amounts of prostate motion; compare the close contour agreement for patient 3101 with
the wide contour variability for patient 3109. For some patients (3102, 3109) motion is primarily
noticeable in the anterior–posterior direction; for other patients (3106, 3107) motion is primarily
noticeable in the lateral direction.

for segmentation, and evaluate the reliability of the resulting segmentations. In section 4 we
explain dosimetric applications of our algorithms, and we conclude in section 5.

2. Deformable image registration

The key to our approach is the measurement of organ motion by means of deformable image
registration. We interpret the term ‘organ motion’ broadly, to include set-up error and any
internal tissue displacement or deformation. We measure organ motion by comparing a
CT image taken at planning time to a treatment image taken immediately before a given
treatment, both of which are acquired using a Siemens Primatom system that provides a
CT scanner sharing a table with the treatment machine. If there were no organ motion, the
planning image and all the treatment images would be the same, except for noise from
the imaging device. However, because there is organ motion, these images will differ,
and the difference characterizes the motion (figure 2).

Figure 3 compares a difference image between two unregistered images (aligned as
treated) to the difference image for the same two images after registration has been performed.
We have understood the motion when we can tell, for each point in the planning image, which
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Figure 2. First row: axial and sagittal slices from the planning image of patient 3102. Second
row: the same slices (with respect to the planning image coordinate system) taken from a treatment
image. Third row: the voxelwise absolute difference between the planning and treatment images.
Black represents perfect intensity agreement, which is noticeable in the interior of the bones and
outside the patient. Brighter regions, indicating intensity disagreement, are especially apparent:
(1) in regions where gas is present in one image and absent in the other; (2) around the bladder
which is large on the treatment day compared to the planning day; (3) uniformly along boundaries
with high intensity gradient, indicating a global set-up error such as a translation.

point in the treatment image it corresponds to. In this way organ motion and image registration
are linked—we can understand organ motion if we can estimate image correspondence. Once
image correspondence is established, contours of structures such as the tumour body can be
transformed, and other detailed analysis of the changes can be done. The purpose of this
section is to explain the registration algorithms we use to establish the correspondence.

We use the term tissue voxel to refer to a volume of tissue small enough to be considered
as a single point for the purposes of analysis. We view an image as a function I (x) from a
domain V ⊂ R

3 to R, so that I (x) is the intensity of the image at the point x ∈ V . Then
the image correspondence can be expressed as a function h: V → V , called a deformation
field. For x ∈ V, h(x) is the point in the treatment image that corresponds to x in the planning
image. To the extent that the image registration corresponds to the tissue motion, h(x) is the
location, at treatment time, of the tissue voxel originally at x. We find h(x) by approximately
minimizing an energy term

E(h) =
∫

V

(IP(x) − IT(h(x)))2 dx, (1)

subject to an appropriate regularity condition. It makes sense to minimize the squared
differences of image intensities directly because the CT intensities (expressed in Hounsfield
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Difference Before Registration Difference After Registration

Figure 3. Difference images comparing a planning to a daily image before and after deformable
registration.

units) have direct physical meaning. The fact that the same machine is used to acquire all
images reduces the chance of calibration error.

We decompose the motion into two components, a global rigid transformation (translation
and rotation) followed by a deformation that allows the soft tissue to align. This decomposition
improves performance since the rigid alignment is fast and accounts for a large portion of
the image misalignment. It also makes sense from a clinical perspective since the rigid
misalignment corresponds closely to patient set-up error and can thus be used to provide
guidance for improving set-up techniques.

There is one point about image registration that is worth emphasizing. In our formulation,
h maps the space of IP to that of IT. But we use it to deform IT, by composing IT with h,
creating a new image that we could write as I deformed

T (x) = IT(h(x)). This approach makes
it straightforward to calculate the new image: for each voxel x, we use h(x) to look up an
intensity in IT, interpolating if necessary. If we wish to deform IP, we compute h−1 and then
evaluate IP(h

−1(x)).

2.1. Rigid motion

We have used both translation and general rigid motion in our work. For clarity, we will
explain our algorithm for translation first, after which we will place this method in a more
general setting, which we use to perform general affine and rigid registration.

In the case of translation, we want to minimize the energy E subject to the condition that
h(x) is of the form x + τ for some translation vector τ . Thus (1) becomes

E(τ) =
∫

V

(IP(x) − IT(x + τ))2 dx.

Following Joshi et al (2003), we use a quasi-Newton algorithm to minimize E(τ),
constructing a sequence {τk} such that E(τk) converges to a local minimum. Let τk+1 =
τk + �τk; we will derive a formula for �τk . For convenience, write x ′ = x + τk . If we expand
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IT(x + τk+1) = IT(x ′ + �τk) in a first-order Taylor series about x ′, we get

E(τk+1) ≈
∫

V

(IP(x) − IT(x ′) + ∇IT(x ′) · �τk)
2 dx.

At each step in the iteration we find the �τk that minimizes our approximation to E(τk+1), by
setting its gradient to 0 and solving. We get

�τk =
(∫

V

∇IT(x ′)∇IT(x ′)T dx

)−1 ∫
V

(IP(x) − IT(x ′))∇IT(x ′) dx. (2)

In a more general setting, we consider a transformation h that depends on a parameter
vector a as well as x, so that we may write h = ha(x). We then want to find �ak . The
expression IT(ha(x)) is a function of both x and a, and, in the same way that (2) was derived,
we find that

�ak =
(∫

V

∇aIT(ha(x))∇aIT(ha(x))T dx

)−1 ∫
V

(IP(x) − IT(ha(x)))∇aIT(ha(x)) dx. (3)

An important example is the case of h an affine transformation, that is, of the form
h(x) = Ax + τ for some matrix A and translation vector τ . In this situation, ∇aIT(ha(x)) can
be expressed conveniently in the following way. We define the parameter vector a by

a = [A11 A12 A13 A21 . . . A32 A33 τ1 τ2 τ3 ]T .

We then define, for any point x = (x1, x2, x3),

X =




x1 x2 x3 0 0 0 0 0 0 1 0 0

0 0 0 x1 x2 x3 0 0 0 0 1 0

0 0 0 0 0 0 x1 x2 x3 0 0 1


 ,

so that Ax + τ = Xa. With this convention, ∇aIT(ha(x)) = (∇IT

∣∣
ha(x)

)T
X, which can be

easily computed and used in (3). Here we use the notation ∇IT

∣∣
ha(x)

, rather than ∇IT(ha(x)),
to indicate that the gradient ∇IT(·) is calculated first, with the result simply evaluated at ha(x).

For rigid registration, as opposed to affine, at each iteration we perform the same step
as for affine registration, and then replace the resulting matrix A by the rotation matrix that
most closely approximates it. To find the rotation matrix we calculate the polar decomposition
A = RD (Horn and Johnson 1990), where R is an orthogonal matrix and D is positive semi-
definite, and take the matrix R as our approximation to A. This decomposition is unique
provided that A is invertible, which holds in practice for medical images.

2.2. Deformation

In the case of large deformation registration, rather than constraining h by requiring that it be
expressed in a specific form, we modify the energy functional by adding a regularity term that
quantifies how severely h deforms the image. Thus we get

E(h) =
∫

V

(IP(x) − IT(h(x, t)))2 dx + Ereg(h).

In Bayesian terms, the first term is a likelihood estimate, and the second is a kind of prior on
the space of transformations. The key difficulty in this kind of registration is to find a prior
that permits large deformations but not arbitrary rearrangements of voxels. The solution that
we adopt was first detailed by Christensen et al (1996) and further developed by Joshi and
Miller (2000). The idea is to introduce a time parameter t and define a function h(x, t) such
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that h(x, 0) = x and h(x, tfinal) is the desired deformation field h(x) that aligns IP and IT. We
construct h as the integral of a time-varying velocity field,

h(x, t) = x +
∫ t

0
v(h(x, s), s) ds,

and we define

Ereg(h) =
∫

V,t

‖Lregv(x, t)‖2 dx dt

where Lreg is some suitable differential operator. In this way, the size of Ereg is not directly
based on the difference between h(x) and x, which would tend to prevent large deformations.
In the context of landmark-based image registration, Joshi and Miller (2000) show that this
method, with proper conditions on Lreg, produces a diffeomorphism (i.e., differentiable with
a differentiable inverse). As a result, each position x in the planning image corresponds to a
unique position in the treatment image, and no tearing of tissue occurs.

Optimization of the resulting functional E(h) is computationally intensive, since the
velocity vector fields for all time steps must be optimized together (Miller et al 2002, Beg
et al 2005). Therefore we follow a greedy approach. At each time step, we choose the velocity
field that improves the image match most rapidly, subject to the smoothness prior. Precisely,
for each t we minimize

d

ds

∫
V

(IP(x) − IT(h(x, t) + sv(h(x, t), t)))2 dx

∣∣∣∣
s=0

+
∫

V

‖Lregv(x, t)‖2 dx.

After evaluating the derivative and solving the resulting variational problem, we find that
v must satisfy the differential equation

(IP(x) − IT(h(x, t)))∇IT(h(x, t)) = Lv(x, t), (4)

where L is a differential operator proportional to (Lreg)
†Lreg.

A number of choices of L are reasonable, depending on the desired behaviour of the
algorithm. We choose the operator Lv = α∇2v + β∇(∇ · v) + γ v, a choice motivated by
the Navier–Stokes equations for compressible fluid flow with negligible inertia. Note that the
Laplace operator ∇2 is applied to each component of v separately.

If we interpret v as the velocity field of a fluid, then the left-hand side of (4) represents
an image force exerted on each point in the fluid domain. Note that, at each point, the force is
along the direction of greatest change in image intensity of IT(h(x, t)), and the magnitude and
sign of the force are determined by the difference in intensity between the two images. The
right-hand side of the equation expresses the resistance to flow. This notional fluid has the
non-physical property that it resists compression (and dilation) inelastically, so that volume
can be permanently added or removed in response to image forces. Also, the γ term, which
can be thought of as a ‘body friction’ term, ensures that L is a positive definite differential
operator, and hence invertible (Joshi and Miller 2000).

To compute h(x), we integrate the resulting velocity field forward in time until the change
in image match between successive time steps drops below a threshold. At each time step we
find v, using the fast Fourier transform, by explicitly inverting L in the frequency domain. To
make sure that Euler integration, being discrete, does not introduce singularities, we choose a
step size such that the largest distance moved by a voxel between successive time steps is less
than the inter-voxel spacing. Figure 4 shows the effect of deformable registration on a pair of
images.
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Figure 4. Example of deformable image registration. The first and last rows show axial and
sagittal slices of the planning and treatment images. The second row shows the treatment image
after deformable image registration, which brings the treatment image into alignment with the
planning image. The improvement in soft tissue correspondence suggests that the registration
procedure accurately captures internal organ motion. Note how the changes in size and shape of
the bladder and rectum are accounted for.

2.3. Bowel gas

In images of the pelvic region, one problem that arises in deformable image registration is
associated with the presence of bowel gas. Regions of gas appear as black blobs surrounded
by grey tissue (see figures 2 and 4). Typically, there will not be gas at the same location in the
intestine for different images, and in that case there is no reasonable diffeomorphism between
the domains of the two images. That is, if x ∈ V is in a region containing gas in the planning
image, and there is no intestinal gas in the same part of the treatment image, then there is no
location in the treatment image that naturally corresponds to x, and thus no reasonable value
for h(x). Solid bowel contents do not produce the same difficulty because they do not contrast
greatly with the inner wall of the bowel, and are therefore handled by the compressibility of
the fluid flow model.
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(a) (b)

Figure 5. Example of gas deflation. Panel (a) shows an axial slice of a treatment image containing
a large region of bowel gas. Panel (b) shows the same image after automatic gas deflation. This
deflated image can be accurately registered using deformable image registration.

To resolve the problem of gas, we process each image exhibiting the problem to shrink
the gassy region to a point, using a variation of our image deformation algorithm that we
refer to as deflation. This algorithm is not meant to simulate the true motion of the tissue
but to eliminate the gas in a principled way so that the image can be accurately registered.
Deflation needs to be applied to both the planning and treatment images, if they both have gas,
since the pockets are typically in different places. In this section, we describe the deflation
algorithm itself, and in the next, we explain how we combine deflation with the deformable
and translation registration algorithms to establish the correspondence between the planning
and treatment images.

The algorithm is defined as follows. We first threshold the image so that gas appears black
and tissue appears white, which is possible since the contrast between gas and surrounding
tissue is very high in CT images. We refine this binary segmentation by a morphological
opening, eroding and then dilating the gas region, which eliminates small pockets of gas
from the thresholded image and thus prevents them from being deflated. We have found that
such small pockets do not cause problems for registration and would introduce unnecessary
deformations. The amount of erosion is two voxels, and of dilation, four. The extra voxels
of dilation make the gas region in the binary image slightly larger than before, allowing the
deflation to act on more of the intestinal wall than otherwise.

Using the refined thresholded image, we compute a deformation field just as for general
deformable registration, by integrating an evolving velocity field v(x, t) to get a deformation
field hdefl(x, t). In this case, the velocity field is computed using the equation

∇I (hdefl(x, t)) = Lv(x, t), (5)

with L as in the equation for diffeomorphic registration (4). The only difference between (5)
and (4) is that here the image force is simply given by the gradient of the image intensity.
This causes the boundaries of the gas volumes to shrink towards the middle, as if deflating a
balloon. We finally apply the resulting deformation field hdefl(x) to the original image with
gas. Figure 5 shows an axial slice of a treatment image before and after gas deflation.

2.4. The composite transformation

We now describe how we combine the translation registration, the general fluid registration
and the gas deflation computation to calculate a single transformation from a planning image
IP to a treatment image IT. We first perform the rigid translation to align the bones as well as
possible. For this rigid registration, we choose an intensity window such that relatively dense
bone appears white (maximum intensity), and other tissue appears black. We use a region
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Table 1. Parameters used in the regularizing operator L = α∇2 + β∇∇ · + γ , along with the
maximum number of iterations permitted.

Scale α β γ Iterations

Coarse 0.01 0.01 0.001 150
Medium 0.01 0.01 0.001 75
Fine 0.02 0.02 0.0001 25
Deflation 0.02 0.02 0.0001 200

of interest that includes the medial portion of the pelvis and excludes the femur outside the
acetabulum. This computation gives us a translation vector τ .

We then apply the deflation algorithm to IP and IT to get two new images IP-defl and IT-defl,
with associated deformation fields hP-defl and hT-defl such that IP-defl(x) = IP(hP-defl(x)), and
similarly for IT-defl. Finally, we apply deformable registration to IP-defl and IT-defl, yielding the
deformation field hTP(defl). Then the full deformation field warping IT to the space of IP is
given by

hTP(x) = hT-defl
(
hTP(defl)

(
h−1

P-defl(x)
))

+ τ.

Accordingly, the point x in the planning image corresponds to the point hTP(x) in the treatment
image. This sequence of transformations can be represented as follows:

VP
h−1

P-defl−→ VP-defl
hTP(defl)−→ VT-defl

hT-defl−→ VT-align
+τ−→ VT.

2.5. Multiscale registration implementation

For both rigid and deformable registration we use multiscale techniques to improve efficiency.
We resample the images to 1/2 and 1/4 their original resolutions, and then apply our
registration algorithm to the coarsest image first, using the result to initialize the algorithm on
the next finer image. In the case of deformable registration, we interpolate the deformation
field acquired at one resolution to generate the initialization for the immediately finer stage.
The parameters we use for α, β and γ in the definition of L depend on the coarseness of the
scale. The values we have used are shown in table 1. For gas deflation we only do fine-scale
calculations.

The runtime for the full registration algorithm is proportional to the size of the images being
registered, and is dominated by the gas deflation and deformable registration computations,
which require two 3D fast Fourier transforms (FFT) per iteration. Each FFT requires on the
order of n log n floating point operations, where n is the number of voxels in each image. For
our experiments, n ranges from 1164 942 (81 × 102 × 141) to 7912 905 (187 × 217 × 195),
depending on the patient.

For deformable registration specifically, the time per iteration, averaged over all patients
in our study, is 0.2 s, 2.0 s and 22.7 s for coarse, medium and fine resolution computations,
respectively. The average time for deformable registration was approximately 12.5 min per
daily image. These results were obtained on a PC with 4 GB of main memory and dual 3 GHz
Intel Xeon processors (although only one processor was used in the computations).

3. Automatic segmentation

The goal of image guidance in radiation therapy is to measure the changes over time of tumour
and organs in both location and shape, so that the treatment can be adjusted accordingly. In
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(a) (b) (c)

Figure 6. Example of automatic segmentation using deformable image registration. (a) Axial
slice of a planning image with the prostate labelled by a white contour. (b) The same axial slice
(in terms of planning coordinates) from a treatment image. The planned prostate position is shown
in white, the actual prostate in black (both contours manual). (c) The same treatment image and
manual (black) contour. The white contour is automatically generated by performing deformable
image registration and applying the resulting deformation to the planning segmentation. The close
agreement of the contours indicates that image registration accurately captures the prostate motion.

(a) (b)

Figure 7. Visualization of organ segmentations. Panel (a) is an anterior view of a 3D rendering
displaying segmentations of the skin, prostate, rectum, bladder, seminal vesicles and femoral heads.
Panel (b) shows a lateral view of the prostate, rectum and bladder of the same patient. The surfaces
are constructed by tiling manually drawn contours.

our current ART practice we use manual contouring of organs for this purpose, but this is
problematic because it is time consuming, and because there is considerable variation even
when the same individual contours an image repeatedly on different days (Collier et al 2003).
Instead, using image deformation, it is possible to carry the contours from the planning image
to a daily image, deforming them to match the new image. This provides an automatic
segmentation of the new image, based on the manual segmentation of the planning image. In
practice, the automatic segmentations must still be reviewed by a physician, but they need not
be edited unless an error is found. In this section, we explain our method, and then present a
statistical analysis of its accuracy and reliability.

The idea is to use the deformation fields to move the vertices of the contours from their
locations in the planning image to the corresponding points in the treatment image (figure 6).
This process does not result in a set of planar contours, since vertices will typically be moved
out of plane to varying degrees. Therefore, instead of working with the contours directly, we
first convert the sequence of contours to a surface model made up of triangles (figure 7) using
an algorithm due to Amenta et al (2001). Then, we replace each vertex x in the model with
h(x), after which we slice the model with planes parallel to the xy-axis to generate a new set
of contours.
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Figure 8. Visualization of the result of image registration algorithm. The images show manual
segmentations of each daily image deformed into the space of the planning image. The close
agreement of the deformed segmentations with the position of the prostate in the planning images
provides evidence for the accuracy of the image registration algorithm along the prostate boundary.

Figure 8 permits a visual assessment of the accuracy of our method. This figure is
similar to figure 1 except that, instead of denoting the actual daily prostate positions, the
contours represent the daily prostate positions deformed into the space of the planning image.
Discrepancies between the deformed segmentations measure not only image registration
uncertainty, but also intra-rater variability of the manual, treatment-day segmentations. In
the rest of this section we quantify the accuracy of our segmentation method in more detail,
with attention to human variability.

Our statistical analysis is based on comparing automatically generated segmentations
to manual, hand-drawn segmentations. However, there is appreciable variation in manual
segmentation, making it unreasonable to choose a particular manual segmentation as definitive.
Groups have reported segmentation variation in a number of contexts, including brain tumours
(Leunens et al 1993), lung cancer (Valley and Mirimanoff 1993, Ketting et al 1997) and
prostate MR (Zou et al 2004). Rasch et al (1999) reported inter-user variabilities in the
segmentation of the prostate in CT and MRI, finding overall observer variation of 3.5 mm
(1 standard deviation) at the apex of the prostate and an overall volume variation of up to 5%
in CT.

Given this inter-rater variability, we assess our method by comparing our automatically
generated segmentations with segmentations from manual raters. We then compare
segmentations from different manual raters. We judge the accuracy and reliability of the
automatic segmentations based on the standard of the measured inter-rater variability.
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We have acquired CT scans for a total of 138 treatment days from nine patients enrolled
in our protocol. All of these images have been manually segmented by at least one expert.
However, due to the time-consuming nature of manual segmentation, images from only five
of these patients have been manually segmented by a second expert. We use the 65 images
from these five patients for the analysis in this section. Eventually we plan to perform the
same analysis for all of the patients enrolled in our protocol. Volume overlap statistics for the
available segmented organs for all nine patients are presented in section 3.2.

The experimental set-up is as follows. This study is based on a total of 65 CT images
representing 65 treatment days for five patients. Each CT scan was collected prior to treatment
on the Siemens Primatom scanner mentioned above, with a resolution of 0.098 × 0.098 ×
0.3 cm3. Each planning image, as well as every treatment image, is manually segmented
twice, once by rater A and once by rater B. For each patient, our method is used to compute the
transformations hi that deformably align the planning image with the treatment image for each
treatment day i. Automatic segmentations are generated for each treatment image by applying
hi to a segmentation in the planning image. We consider our automatic method for producing
segmentations as rater C (for ‘computer’). We use CA and CB to represent treatment image
segmentations that have been automatically generated by deforming the manual planning
image segmentations drawn by raters A and B, respectively. Therefore, there are a total of
four segmentations for each treatment image: two manual segmentations (A and B) and two
automatic segmentations (CA and CB).

For each patient and for each treatment day, there are six pairwise comparisons that can
be made from the set of four segmentations. We report data on five of these comparisons:
AB, comparing manual segmentations by rater A against those by rater B; CAA and CBB,
comparing automatic segmentations with manual segmentations produced by the same rater;
and CAB and CBA, comparing automatic segmentations with manual segmentations produced
by a different rater. It should be emphasized that the automatic segmentations are produced
by transforming manual planning segmentations produced by either rater A or rater B. Thus,
we expect the same-rater comparisons to be more favourable than the cross-rater comparisons,
which will be influenced by inter-rater variability.

In the rest of this section, we present the results of this experiment when measuring
centroid differences and volume overlap of segmentations. We also show radial distance
maps, which help us understand which regions of the prostate have the largest segmentation
differences.

3.1. Centroid analysis

The centroid of the prostate is especially important for radiation treatment planning and therapy
because it is the origin, or isocentre, for the treatment plan. To measure the accuracy of our
automatic segmentations with respect to centroid measurement, we compare the centroid of
each automatic segmentation with the centroid of the corresponding manual segmentation.

First we consider the question: Are the centroids of the automatic segmentations
systematically shifted with respect to the manual rater segmentations? Let Si

A, Si
B, Si

CA

and Si
CB

denote the prostate segmentations from raters A,B,CA and CB , respectively, for
image i. Let C(·) be a function that returns the centroid (in R

3) of a segmentation. In
order to determine whether the centroids of the automatic segmentations are systematically
shifted in any particular direction, we examine the distribution of the centroid differences
C
(
Si

CA

)−C
(
Si

A

)
, i ∈ 1, 2, . . . , N (and similarly for CB). Likewise, to test for systematic shifts

between manual raters A and B, we examine the distribution C
(
Si

B

) − C
(
Si

A

)
. Figure 9(a)

shows box-and-whisker plots of these differences for the BA,CAA and CBB comparisons.
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Figure 9. (a) Centroid differences measured in the lateral (X), anterior–posterior (Y ) and superior–
inferior (Z) directions. The horizontal lines on the box plots represent the lower quartile, median
and upper quartile values. The whiskers indicate the extent of the rest of the data, except that
outliers, which fall more than 1.5 times the interquartile range past the ends of the box, are denoted
with the ‘+’ symbol. (b) Euclidean distance between segmentation centroids.

Table 2. Summary statistics for centroid difference distributions. The mean, standard deviation
and 95% confidence interval for the mean are reported.

Lateral (X) A–P (Y ) Sup–inf (Z)

BA CAA CBB BA CAA CBB BA CAA CBB

Mean 0.00 −0.01 0.03 −0.01 0.02 0.12 0.07 0.10 −0.07
STD 0.07 0.07 0.06 0.15 0.13 0.18 0.28 0.18 0.28

95% CI
−0.02 −0.03 0.01 −0.05 −0.02 0.07 0.00 0.05 −0.14

0.02 0.00 0.04 0.02 0.05 0.16 0.14 0.14 0.00

The differences in the lateral (X), anterior–posterior (Y ) and superior–inferior (Z) directions
are measured separately. Summary statistics are provided in table 2. It can be seen from
these data that there is no significant shift between centroids of the computer-generated
segmentations and rater A’s manual segmentations in the lateral and A–P directions. There is
a significant shift (p < 0.001 for two-tailed t-test) in the sup–inf direction of approximately
0.09 cm, which is less than one third of the sup–inf image resolution (0.3 cm). For the CBB

comparisons we find significant shifts in the lateral and A–P directions of approximately 0.03
cm and 0.12 cm, respectively, which are at or less than the voxel resolution in these dimensions.
The comparison between manual raters shows that there is a significant shift in the sup–inf
direction of approximately 0.07 cm.

In the lateral and sup–inf directions, the standard deviation of the manual AB comparisons
is as large or larger than the standard deviation of the CAA and CBB comparisons. In the A–P
direction, the standard deviation of the CBB comparisons is slightly higher than the manual
comparison.

Next we examine the Euclidean distance measured between segmentation centroids.
Figure 9(b) shows box-and-whisker plots of these distances. Summary statistics for these data
are presented in table 3. As the distributions of these distances are not approximately normal,
we report medians and interquartile ranges as well as means and standard deviations.
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Table 3. Summary statistics for centroid distance distributions.

Euclidean distance

AB CAA CBB CAB CBA

Mean 0.29 0.21 0.32 0.37 0.35
Median 0.25 0.20 0.32 0.31 0.35
Max 0.72 0.67 1.08 1.08 0.70
STD 0.16 0.13 0.17 0.22 0.15
IQR 0.23 0.21 0.19 0.26 0.24

All of the mean distances are within image resolution. We tested for equality of the means
of these distributions using paired t-tests. The CAA mean distance is significantly less than
the AB mean distance (p < 0.001) while there is no significant difference between the CBB

and AB mean distances. As expected, we see that centroids of the automatically generated
segmentations are consistently closer to same-rater manual segmentations than cross-rater
manual segmentations.

We conclude that the automatic segmentation method is comparable to human raters in
accuracy for estimating centroids and, as judged by the error bars and standard deviations, at
least as reliable. However, there are outliers, with the maximum centroid distance being over
1 cm. For this reason, segmentations should be reviewed by a physician before being used in
planning.

3.2. Volume overlap analysis

To measure the coincidence between volumetric segmentations of the prostate we use the Dice
similarity coefficient (DSC) of Dice (1945). For two segmentations, S1 and S2, the DSC is
defined as the ratio of the volume of their intersection to their average volume:

DSC(S1, S2) = Volume(S1 ∩ S2)
1
2 (Volume(S1) + Volume(S2))

. (6)

The DSC has a value of 1 for perfect agreement and 0 when there is no overlap. A DSC
value of 0.7 or greater is generally considered to indicate a high level of coincidence between
segmentations (Zijdenbos et al 1994, Zou et al 2004). The DSC can be derived from the kappa
statistic for measuring chance-corrected agreement between independent raters (Zijdenbos
et al 1994).

Figure 10(a) shows a box-and-whisker plot of the Dice similarity coefficient for each
comparison. The mean DSCs for the CAA and CBB comparisons are 0.82 (STD = 0.08) and
0.84 (STD = 0.08), respectively, indicating that the automatic segmentations have generally
good coincidence with the manual segmentations. The mean DSC for the two manual raters
was similar (mean = 0.81, STD = 0.06). See table 4.

A similar study, carried out by Zou et al (2004), assessed the reliability of manual prostate
segmentations in interoperative MR images. They report a mean DSC for manual raters of
0.838. Note that because prostate boundaries are more evident in MR images than in CT
images, manual raters are likely to segment MR images more reliably than CT images.

To evaluate the DSC distributions we use the logit of the DSC (LDSC), defined by

LDSC(S1, S2) = ln

(
DSC(S1, S2)

1 − DSC(S1, S2)

)
.
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Figure 10. Dice similarity coefficient (DSC) and logit DSC.

Table 4. Summary statistics for the DSC measures.

AB CAA CBB CAB CBA

Mean 0.81 0.82 0.84 0.78 0.78
Median 0.82 0.84 0.86 0.80 0.81
STD 0.06 0.08 0.08 0.08 0.08
IQR 0.08 0.12 0.08 0.09 0.10

Table 5. Comparison of automatic segmentation to manual segmenter A via the DSC and LDSC.
This is the full set of segmenter-A segmentations that we have processed.

DSC(S1, S2) LDSC(S1, S2)

Prostate Bladder Prostate Bladder

n 76 20 76 20
Mean 0.801 0.816 1.466 1.576
Median 0.825 0.826 1.554 1.557
STD 0.081 0.078 0.494 0.539
IQR 0.121 0.133 0.804 0.034

Agresti (1990) has shown that for large sample sizes (in the case of our prostate segmentations,
the number of voxels is approximately 20 000), LDSC has a Gaussian distribution. Figure 10(b)
shows a box-and-whisker plot of the LDSC values for each comparison.

In order to test for a significant difference between the AB and CAA or CBB comparisons
we performed paired t-tests on the LDSC values. A one-tailed test shows that the DSCs
for the CBB comparisons are significantly (p < 0.001) greater than the DSCs for the AB

comparisons. We found no significant difference between the CAA and AB comparisons
(p = 0.12 for a two-tailed test). Therefore, the automatic segmentations coincide with the
manual segmentations at least as well as a second manual rater.

Table 5 summarizes the manual versus automatic comparison for segmenter A only, for
all patients that have been processed. After the first five treatment days, the bladder typically
was not segmented.
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(a)

(b)

Figure 11. Radial distance maps, for the prostate. Map (a): mean radial distance between
segmentations A and B (human raters). Map (b): mean distance between A and CA segmentations
(human and computer).

3.3. Radial distance maps

Manual segmenters tend to find some portions of the prostate more difficult to segment than
others. For instance, in CT there is often little or no apparent contrast between the prostate and
bladder. Thus it makes sense to examine segmentation variability as a function of position on
the prostate. For two segmentations X and Y of the same image, we can visualize the deviation
by choosing the centroid of X as a reference point, and considering, for each ray emanating
from the centroid, the distance between the intersection points of the ray with X and Y. For
each surface, we choose the first point that the given ray intersects that surface; typically
there is only one. This procedure produces a distance for each radial direction, which can
be plotted on the surface of a sphere, producing a radial distance map. This radial distance
map is inspired by that of Mageras et al (2004), but we use a slightly different definition. To
display the spherical map, we use the cartographic equal-area Mollweide projection. Since
the patients are all scanned in a consistent orientation, different radial distance maps can be
compared directly, and average maps can be computed point by point. Figure 11 shows the
mean radial distance at each point for the cases analyzed in this section. Notice that the largest
variation is generally found in the superior direction, which is consistent with the observed
difficulty of detecting the boundary between prostate and bladder.

4. Dosimetric evaluation of image-guided radiotherapy

The day-to-day effects of organ motion and set-up error can be illustrated by computing a
dose–volume histogram based on the observed organ location on each day. Figure 13(a)
shows DVHs for the first four days of treatment for patient 3102 of our protocol. The DVHs
were computed by calculating the dose distribution based on the image for the given day,
and applying that distribution to the organ segmentation computed by deforming the planning
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Figure 12. The position of the prostate in patient 3102 at day 2 compared to the time of planning.
Left: the treatment image from day 2, shown with a skin contour from the planning day. Top right:
planning image. Bottom right: day 2 image. On all three images, the location of the prostate is
shown for both days, along with isodose curves at the 95%, 98% and 100% level.

segmentations. Day 2 has a particularly severe cold spot, a fact confirmed by a comparison
of the planning and treatment images. In figure 12, contours for the prostate from both the
planning day and treatment day 2 are shown, along with isodose lines for 95%, 98% and 100%
of prescribed dose. The top panel shows a full axial slice of the treatment image from day
2, with an overlaid skin contour from the planning image as an indication of set-up accuracy.
The bottom two panels show closer views of the prostate from the planning and day 2 images.
In the slice shown, roughly half of the prostate appears to lie outside the 95% dose line.

It is not possible to directly combine a series of DVHs to produce an accurate DVH for
the total dose delivered, because each DVH only indicates how great a volume from a given
day received a specific dose. To combine information from different days, one needs to know
the daily dose received by each voxel. Bortfeld et al (2004) provide a survey on the statistical
effects of organ motion on dose distributions, using a rigid model. In the rest of this section
we will describe how to assess total delivered dose in actual cases, considering deformation,
by applying the displacement fields h computed from deformable image registration. Yan et al
(1999), Birkner et al (2003) and Schaly et al (2004) have all described similar approaches,
considering both raw and effective dose. However, their image registration algorithms require
either that fiducial points be manually selected in the images, or that all of the images be
segmented manually. In addition, none of these methods permit the range of deformations
allowed by the fluid model.

4.1. Total delivered dose

Let the dose per fraction, as a function of position x ∈ V , be given by D(x). Then the dose
received at treatment i, by the tissue originally at x, is given by D(hi(x)), and the total dose
received by that tissue voxel over the course of treatment is given by

DTot(x) =
∑

i

D(hi(x)).
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Figure 13. (a) Daily treatment prostate DVHs for each of the first four days, compared to the
planned DVH. (b) Dose–volume histograms for delivered dose, estimated over increasing sets of
days. These are compared against the planned dose. All doses are normalized to a prescription
dose of 78 Gy.

Using this formula, we can compute a distribution for total delivered dose, in the frame of
reference of the planning day. Using the organ segmentations from the planning image, we
can calculate DVHs that correctly reflect the variation in dose distribution over time. Figure 13
shows a series of delivered DVHs for increasing sets of treatment days. Before the histograms
were computed, the dose distributions were normalized to the same prescription dose of 78 Gy.
For instance, for the single-fraction DVH, the prescribed total dose was 2 Gy, so the dose to
each voxel was multiplied by 39. As expected, the quality of the DVH improves as the number
of treatments being accumulated is increased, and we would expect further improvement given
images from all 39 treatment days. But note that the DVH is still quite poor even based on 18
treatments, and that it only improved modestly over the 9-treatment DVH.

4.2. Effective cumulative dose

The difficulty with the measure DTot is that the biological effect does not depend simply on
the total dose received, but also on the way it is distributed into fractions. Consider a volume
of cells irradiated to a dose D over a time that is short relative to that required for cell repair
to occur. Then the linear quadratic (LQ) model (Fowler 1989) gives the following estimate of
the survival fraction SF of the cells in the volume:

SF(D) = e−αD−βD2
.

Now let T = (D1,D2, . . . , DN) be a series of varying doses separated by time for cell recovery.
In our situation, the relevant volume of tissue is a voxel x and, for each i,Di = D(hi(x)).
Assuming that cell proliferation is negligible, the survival fraction for the treatment T will be
given by

SF(T ) =
∏

i

e−αDi−βD2
i = exp

(∑
i

−αDi − βD2
i

)
.

Just as with uniform fractionation, one can construct the biological effective dose, or BED
(Fowler 1989, Barendsen 1982). The BED is the dose that, if delivered in a series of fractions
so small that the β term may be ignored, would kill the same number of cells as the actual dose
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Figure 14. DVHs for planned total dose, planned BED and delivered BED. Delivered BED is
modelled from a sample of 18 out of 39 treatment days. α/β = 1.5.

in question. That is, we define SF(BED) = e−α·BED, and compute the BED for a particular
treatment regimen T by setting SF(BED) = SF(T ) and solving to obtain

BED(T ) =
∑

i

Di +
D2

i

α/β
.

Then, following the analysis for the total delivered dose, we can define the total BED for a
tissue voxel x as follows (see also Yan et al (1999), Birkner et al (2003), Schaly et al (2004)):

BEDTot(x) =
∑

i

D(hi(x)) +
D(hi(x))2

α/β
. (7)

To illustrate, figure 14 makes two comparisons. The planned BED is compared to the
delivered BED, to indicate the differences due to organ motion. Also, the planned total dose
is shown, to indicate the significance of the biological effect. For the purposes of illustration
we assumed an α/β value of 1.5 Gy, which is at the low end of current estimates (Fowler
et al 2001). The large difference between the planned BED and planned total dose reflects an
assumption, embodied in the low value chosen for α/β, that prostate cancer is highly sensitive
to the per-fraction dose. Larger values of α/β would bring the BED curves closer to the total
planned dose curve. The delivered BED was estimated based on the 18 treatment images.
That is, the delivered BED was computed by applying equation (7) to the appropriate 18 dose
distributions and deformation fields, with each distribution based on a prescription dose of
2 Gy/f. The resulting distribution represented the biological effect of the 18 treatments for
which image data were available, so that the prescribed dose level for those prescriptions was
36 Gy. The resulting distribution was then normalized to a 78 Gy prescription dose by applying
a scale factor of 78/36. As with raw dose accumulation, this estimate does not account for the
improvement in the distribution that would result from averaging together a greater number
of random motions.

Because of evidence indicating that prostate tumours may have α/β values comparable to
healthy tissue, there is now considerable discussion of hypo-fractionation for prostate cancer
(Kupelian et al 2002, Brenner 2003, Craig et al 2003). Figure 15 shows DVHs of accumulated
BED for four values of α/β, assuming a regimen of 50 Gy delivered over 16 fractions, similar
to one described by Logue et al (2001).
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Figure 15. Biologically effective DVHs, assuming four possible values of α/β and 50 Gy delivered
in 15 equal fractions.

5. Discussion

We have described how large deformation image registration can be used for automatic
segmentation and dose accumulation in the course of image-guided radiation therapy. Our
image registration technique is fully automatic, permits large deformations, and ensures a
smooth one-to-one correspondence between two images. We use a variation of the registration
method to eliminate bowel gas when it occurs, so that images can be brought into a meaningful
correspondence.

For segmentation purposes, we compute the deformation that transforms the planning
image to match the daily treatment image, and apply that deformation to the initial manual
contours. We have validated this method by comparing the automatic segmentations to
manual segmentations produced by the same segmenter who generated the original planning
segmentations. Based on centroid difference and the DSC measure of volume overlap, we
find that the automatic deformations of a planning segmenter correspond at least as closely
to the daily segmentations of the same segmenter, as do daily segmentations by a different
individual. Although, in clinical practice, it will be necessary for a physician to check the
segmentations, our data indicate that the number requiring modification will be small.

We also show how to use our registration method to estimate the amount of dose delivered
to the patient over time, as a function of position within the imaged area. In a single case
study we compare daily DVHs to both the planned DVH and to cumulative DVHs, observing
that, as expected, the accumulation of multiple fractions tends to improve the correspondence
between delivered and planned DVH, though we still find a pronounced difference based on
19 images. We also consider the accumulation of biologically effective dose. For 39 fractions,
accumulated BED is very close to accumulated dose, but hypo-fractionation schemes lead to
a greater difference. In the future, we intend to apply these dose accumulation measures to
assess the effectiveness of protocols both planned and currently in use in our clinic.

Acknowledgments

We thank Gregg Tracton for his assistance in organizing and processing the CT data sets, and
Joshua Stough for his volume computation software. We also thank Gig Mageras, Michael



Large deformation 3D image registration in image-guided radiation therapy 5891

Lovelock, and Paul Keall for helpful discussions. This work was supported by the DOD
Prostate Cancer Research Program DAMD17-03-1-0134.

References

Agresti A 1990 Categorical Data Analysis (New York: Wiley-Interscience)
Amenta N, Choi S and Kolluri R K 2001 The power crust ACM Symp. on Solid Modeling and Applications pp 249–60
Barendsen G W 1982 Dose fractionation, dose rate and iso-effect relationships for normal tissue responses Int. J.

Radiat. Oncol. Biol. Phys. 8 1981–97
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